
Raspberry Pi Camera Algorithm and
Tuning Guide

Raspberry Pi Trading Ltd.

Raspberry Pi Camera Algorithm and Tuning Guide

Colophon

Released under the BSD 2-Clause "Simplified" License.
Copyright © 2023, Raspberry Pi Trading Ltd.
All rights reserved.

Compiled on 27/11/2023
Version 1.2(43d8169039926960bf43dac73d3b9404475f4410)

Revision History

Version Date Description

1.3 25-Oct-2023 General update and add Pi 5 information.

1.2 30-Jan-2021 Update formatting and style template to match internal guidelines.

1.1 27-Jan-2021 Update to CamHelper and various algorithm APIs. Also use of qcam replaced by
libcamera-apps.

1.0 15-May-2020 Initial revision.

Raspberry Pi Trading Ltd.

Raspberry Pi Camera Algorithm and Tuning Guide

Contents

1 Introduction 1

2 Overview 3

2.1 The Camera Module . 3
2.2 CSI Connector . 3
2.3 On-Chip Hardware . 4
2.4 Software and Control Algorithms . 4

3 Driver Framework 5

3.1 Camera Drivers . 5
3.2 Device Tree . 5
3.3 The CamHelper Class . 5

4 Control Algorithm Overview 7

4.1 Framework . 7
4.2 Defining and Loading Algorithms . 7
4.3 Standard Algorithms . 8
4.4 Algorithm Communication . 9
4.5 Performance Considerations . 9
4.6 Example Camera Tuning File . 10

4.6.1 Pi 4 and Ealier Devices . 10
4.6.2 Pi 5 Devices . 12

4.7 Directory Structure . 14

5 Raspberry Pi Control Algorithms 16

5.1 Black Level . 16
5.1.1 Name . 16
5.1.2 Overview . 16
5.1.3 Metadata Dependencies . 17

5.2 Defective Pixel Correction (DPC) . 17
5.2.1 Name . 17
5.2.2 Overview . 17
5.2.3 Parameters . 18
5.2.4 Metadata Dependencies . 18

5.3 Lux . 18
5.3.1 Name . 18
5.3.2 Overview . 18
5.3.3 Parameters . 18
5.3.4 Metadata Dependencies . 18

5.4 Noise . 19
5.4.1 Name . 19
5.4.2 Overview . 19
5.4.3 Parameters . 19
5.4.4 Metadata Dependencies . 19

5.5 GEQ (Green Equalisation) . 19
5.5.1 Name . 19
5.5.2 Overview . 19
5.5.3 Parameters . 20
5.5.4 Metadata Dependencies . 20

5.6 SDN (Spatial Denoise) . 20
5.6.1 Name . 20
5.6.2 Overview . 21
5.6.3 External API . 21
5.6.4 Parameters . 22
5.6.5 Metadata Dependencies . 22

5.7 Denoise (Combined Denoise Algorithms) . 22

Raspberry Pi Trading Ltd.

Raspberry Pi Camera Algorithm and Tuning Guide

5.7.1 Name . 22
5.7.2 Overview . 22
5.7.3 External API . 23
5.7.4 Parameters . 23
5.7.5 Metadata Dependencies . 24

5.8 AWB (Automatic White Balance) . 24
5.8.1 Name . 24
5.8.2 Overview . 24
5.8.3 Implementation . 27
5.8.4 External API . 28
5.8.5 Parameters . 28
5.8.6 Metadata Dependencies . 29
5.8.7 Extensions . 30

5.9 AGC/AEC (Automatic Gain Control / Automatic Exposure Control) 30
5.9.1 Name . 30
5.9.2 Overview . 30
5.9.3 Implementation . 34
5.9.4 External API . 35
5.9.5 Parameters . 36
5.9.6 Metadata Dependencies . 37

5.10 ALSC (Automatic Lens Shading Correction) . 37
5.10.1 Name . 37
5.10.2 Overview . 37
5.10.3 Adaptive ALSC Algorithm . 39
5.10.4 Implementation . 41
5.10.5 Parameters . 41
5.10.6 Metadata Dependencies . 42

5.11 Contrast . 43
5.11.1 Name . 43
5.11.2 Overview . 43
5.11.3 External API . 44
5.11.4 Parameters . 44
5.11.5 Metadata Dependencies . 44

5.12 CCM (Colour Correction Matrices) . 45
5.12.1 Name . 45
5.12.2 Overview . 45
5.12.3 External API . 46
5.12.4 Parameters . 46
5.12.5 Metadata Dependencies . 46

5.13 Sharpening . 46
5.13.1 Name . 46
5.13.2 Overview . 47
5.13.3 External API . 47
5.13.4 Parameters . 48

5.14 Auto Focus . 48
5.14.1 Name . 48
5.14.2 Overview . 48
5.14.3 External API . 48
5.14.4 Parameters . 49
5.14.5 Metadata Dependencies . 50

5.15 Chromatic Aberration Correction . 50
5.15.1 Name . 50
5.15.2 Overview . 50
5.15.3 External API . 51
5.15.4 Parameters . 51

5.16 HDR (High Dynamic Range) . 51
5.16.1 Name . 51
5.16.2 Overview . 51

Contents 2

Raspberry Pi Camera Algorithm and Tuning Guide

5.16.3 External API . 52
5.16.4 Parameters . 53
5.16.5 Metadata Dependencies . 54

5.17 Metadata and Statistics Usage . 54

6 Camera Tuning Tool 56

6.1 Overview . 56
6.2 Raspberry Pi rpicam-apps . 56
6.3 Software Requirements . 56
6.4 Equipment . 57

6.4.1 X-rite (Macbeth) Colour Checker . 57
6.4.2 Colorimeter . 57
6.4.3 Integrating Spheres and Flat Field LEDs . 58

6.5 Capturing Calibration Images with libcamera . 58
6.5.1 Capturing a Raw Image . 58

6.6 Image Capture Requirements . 58
6.6.1 Macbeth Chart Images . 59
6.6.2 Lens Shading Images . 59
6.6.3 Chromatic Aberration Correction (CAC) Images . 60

6.7 Creating the Tuning . 61
6.7.1 Collecting the Files . 61
6.7.2 Running the Tool . 61

6.8 Tweaking the Tuning produced by the Tool . 62
6.8.1 Blocks not Tuned . 62
6.8.2 Guidance on how to Tweak the Tuning . 63

Raspberry Pi Trading Ltd.

Raspberry Pi Camera Algorithm and Tuning Guide

List of Figures

1 Connecting a camera board through the CSI-2 port. Raspberry Pi 5 has a pair of mini CSI-2
connectors in the same location. 1

2 Overview of the libcamera system, explained below. 3
3 Control algorithms use image metadata and statistics to update their parameters. 4
4 Magnified image showing a bright defective pixel - its effect spreads slightly because of the fil-

tering operations performed using it. 17
5 Highly magnified image showing maze artifacts (right), and correction (left). 20
6 Same image as figure 5, highly magnified, showing “noise speckles”. 21
7 CT Curve showing colour temperature associated with each point. 25
8 AWB example - the incandascent illuminant gives a more plausible result than the daylight one. . 26
9 AGC metering regions. 31
10 Cumulative frequency: a proportion q of the pixels lie below the value p 32
11 An example exposure profile - analogue gain and shutter time increase one after the other. . . . 34
12 Lens shading: no correction (left), luminance correction only (middle), full correction (right). . . . 37
13 A grid of 16x12 lens shading gains. The grid may extend slightly beyond the image to ensure

every pixel is covered. On a Pi 5, the grid consists of 32x32 regions. 38
14 Cells and their neighbours in a 16x12 grid. The same kinds of definitions hold for the 32x32 grid

on a Pi 5. 40
15 An example gamma curve with 16-bit inputs and outputs. 43
16 Sharpening Parameter model . 47
17 Usage of imagemetadata and other information by ISP control algorithms on aPi 4. Pi 5 operates

mostly in an identical manner. 55
18 X-rite Macbeth Chart. 57
19 A Colorimeter. 57
20 Acceptable Macbeth Chart calibration images. 59
21 Lens shading images . 60
22 CAC images . 60
23 Too little denoise (left), and on the right the leaves look even more plasticky than they really are! . 64
24 Effect of setting sensitivities to 0.8 (left), 1.0 (centre) and 1.2 (right). 65
25 base_ev at the default value 1.0 on the left, and at 1.414 - about half a stop - on the right. 65
26 sigma has the extreme value 0.03 on the left - spot the purple halo round the green chair. 66
27 No contrast enhancement (left) and strong contrast enhancement (right) - note the change to

the image histogram. 67
28 On the left too much residual noise is being sharpened because threshold was lowered. 68

Raspberry Pi Trading Ltd.

Raspberry Pi Camera Algorithm and Tuning Guide

List of Tables

2 Algorithm type monikers. 8
3 Raspberry Pi controller folder structure. 15
4 Black level algorithm parameters. 16
5 Defective pixel correction algorithm parameters. 18
6 Lux algorithm parameters. 18
7 Noise algorithm parameters. 19
8 Green equalisation algorithm parameters. 20
9 Denoise algorithm public API. 21
10 Spatial denoise algorithm parameters. 22
11 Denoise algorithm public API. 23
12 SDN, CDN and TDN denoise algorithm parameters. 24
13 AWB algorithm public API. 28
14 AWB algorithm parameters. 29
15 AGC algorithm public API. 35
16 AGC algorithm parameters. 36
17 ALSC algorithm parameters. 42
18 Contrast algorithm public API. 44
19 Contrast algorithm parameters. 44
20 Ccm algorithm public API. 46
21 CCM algorithm parameters. 46
22 Sharpen algorithm public API. 47
23 Sharpening algorithm parameters. 48
24 Autofocus algorithm public API. 49
25 Autofocus algorithm parameters. 50
26 Chromatic aberration correction algorithm parameters. 51
27 Hdr algorithm public API. 52
28 Sharpening algorithm parameters. 54
29 Camera tuning tool command line options. 61
30 Camera tuning tool runtime config parameters. 62

Raspberry Pi Trading Ltd.

Raspberry Pi Camera Algorithm and Tuning Guide

1 Introduction

The “Raspberry Pi Camera Algorithm and Tuning Guide” is intended for users of the Raspberry Pi computer with
an image sensor (camera) connected through the Raspberry Pi’s CSI (Camera Serial Interface) camera port,
such as one of the following.

• The v1 camera based on the Omnivision OV5647.

• The v2 camera based on the Sony imx219.

• The HQ Camera, based on the Sony imx477.

• The Camera Module 3, based on the Sony imx708.

• The Global Shutter Camera, based on the Sony imx296.

There are also a number of compatible camera modules available from third parties, though information and
support for such modules will come from the respective third party vendor.

Figure 1: Connecting a camera board through the CSI-2 port. Raspberry Pi 5 has a pair of mini CSI-2 connectors
in the same location.

The software stack driving the camera system is libcamera. Experience has shown that driving complex camera
systems directly through kernel (typically, V4L2) drivers is very difficult, often leading to large amounts of un-
desirable and highly platform-specific application code. For this reason a much higher level userspace camera
stack, libcamera, has emerged providingmechanisms to integrate image sensors and Image Signal Processors
(ISPs).

Here we describe just such an integration, showing how drivers can be written to make the components of the
Raspberry Pi imaging system work with libcamera, concentrating in particular on the processes of calibrating
and tuning the ISP to work well with different image sensors. Moreover, the libcamera integration avoids using
any of the proprietary control algorithms supplied by chip vendors. Rather, Raspberry Pi is providing its own
control algorithms, running directly on the chip’s ARM cores, as open source codewhich can be easily inspected
and modified by users.

This document is not specifically a tutorial on or guide to libcamera itself, for which the reader is referred to
http://libcamera.org for more information.

The remainder of this document is organised as follows.

• Chapter 2: Overview. This is a brief overview of the system as a whole, showing what is already pro-
vided, and what must be added in terms of image sensor drivers and ISP control algorithms to obtain a
successful images.

• Chapter 3: Camera Drivers. As far as possible the camera, or image sensor, is driven by a standard type
of kernel driver. However, there are one or two details involved in making drivers work optimally in the
Raspberry Pi framework.

1 Introduction 1

http://libcamera.org

Raspberry Pi Camera Algorithm and Tuning Guide

• Chapter 4: Control Algorithm Overview. Raspberry Pi provides a control algorithm framework which
makes it very easy for applications to use Raspberry Pi’s, or anyone else’s, ISP control algorithms.

• Chapter 5: Raspberry Pi Control Algorithms. Here we supply a detailed description of Raspberry Pi’s
implementation of the control algorithms.

• Chapter 6: Camera Tuning Tool. Finally, there is also a Camera Tuning Tool which automates most of the
process of tuning the ISP control algorithms for different image sensors.

For further help beyond the contents of this user guide, please visit the Raspberry Pi Camera Board forum at
https://www.raspberrypi.org/forums.

1 Introduction 2

https://www.raspberrypi.org/forums

Raspberry Pi Camera Algorithm and Tuning Guide

2 Overview

We have already seen the camera board connected through the ribbon cable to (one of) the CSI port(s) on the
Raspberry Pi itself.

Pipeline
Handler

Control
Algorithms (IPAs)

I2C
Interface

Control
Algorithms (IPAs)

CSI-2
Receiver

ISP

Commands

Pixels

Control
Parameters

and data

Userspace

Kernel

Camera
Module

CSI-2I2C

libcamera

Figure 2: Overview of the libcamera system, explained below.

2.1 The Camera Module

Raspberry Pi already produces compatible camera boards, as listed in the introduction.

These are Bayer sensors, that is, they output so-called “raw” Bayer images which have not yet been processed
into anything a user could recognise. These rawpixels are transmitted back to theRaspberry Pi in discrete image
frames, using the MIPI CSI-2 protocol. This is the 2nd version of the CSI (Camera Serial Interface) defined by
the MIPI (originally “Mobile Industry Processor Interface”) Alliance, an organisation dedicated to standardising
interfaces between different components of mobile devices.

2.2 CSI Connector

Besides supplying power and clock signals, the ribbon cable performs two principal functions. It allows com-
mands (typically register updates) to be sent to the image sensor using the I2C interface. These values define
the operating mode of the sensor, including the output image size and framerate, as well as commands to start
and stop streaming images.

Secondly, the output images from the camera are transmitted through the cable along the CSI-2 interface back
to the Raspberry Pi.

There are a number of different types of CSI-2 connectors. Raspberry Pi 4s and other older full-sized Raspberry
Pis use the larger 15-pin connector. Compute Module 4s and Raspberry Pi 5s use smaller connectors accepting
a 22-pin cable.

A more detailed specification of the modules and connector, including a link to the schematics, can be found at
https://www.raspberrypi.org/documentation/hardware/camera/README.md.

2 Overview 3

https://www.raspberrypi.org/documentation/hardware/camera/README.md

Raspberry Pi Camera Algorithm and Tuning Guide

2.3 On-Chip Hardware

The Raspberry Pi has the following hardware.

• An I2C interface, for sending commands to the image sensor.

• A CSI-2 Receiver, for receiving image frames, in the form of pixel data, back from the sensor. The CSI-
2 Receiver is on the main processor on Raspberry Pi 4 or older devices, where it is known as Unicam.
On Raspberry Pi 5s, the CSI-2 receiver, along with some early “front end” parts of the ISP (Image Signal
Processor) are on the RP1 I/O chip. Collectively, these entities are referred to as the Camera Front End

(often abbreviated to CFE).

• And an ISP (Image Signal Processor) which converts the raw Bayer images from the sensor into some-
thing a user might recognise. On Pi 4 and earlier devices, the ISP also produces statistics from the pixel
data, from which a number of software control algorithms will deduce appropriate parameters to be fed
to the ISP in order to produce pleasing output images. On Pi 5, the statistics are produced by the CFE
(Camera Front End), though the bulk of the processing (the ISP Back End) still happens on the main pro-
cessor.

Interactions between these on-chip hardware devices is mediated though interrupts, responded to by the cam-
era software stack.

2.4 Software and Control Algorithms

libcamera is responsible for handling and fulfilling application requests using Raspberry Pi’s pipeline handler. In
turn, the pipeline handler must ensure that the camera and ISP control algorithms are invoked at the correct
moment, and must fetch up to date parameter values for each image frame.

Sensor

ISPISP

Statistics

AEC/AGC AWB

MetadataMetadata

Output imagesOutput images

More

algorithms...Current Exposure

Updated Exposure

Updated ISP Configuration

MetadataMetadata

Figure 3: Control algorithms use image metadata and statistics to update their parameters.

The Raspberry Pi control algorithm framework associates a buffer of metadata with each image, containing
exposure and other information about it. The algorithms each receive this metadata and statistics about the
imagewhichwere calculated by the hardware ISP (or CFE on Pi 5). They run in turn to compute new and updated
values which are deposited back into the metadata.

Finally, the pipeline handler reads values out of the metadata and uses them to update the camera’s exposure
settings and the ISP parameters for the next frame. There will be more details on this in chapter 4 (Control
Algorithm Overview).

2 Overview 4

Raspberry Pi Camera Algorithm and Tuning Guide

3 Driver Framework

There are a number of different types of driver involved in the camera system.

Firstly there are drivers for the various Raspberry Pi hardware devices, including Unicam (Pi 4 and earlier devies),
the CFE (Camera Front End) on Pi 5, the ISP and so forth. These are all published in the raspberrypi/linux

Github repository (https://github.com/raspberrypi/linux). Users and third parties should not need to change
these drivers, but if you feel that you do and need help, please reach out on the Raspberry Pi support forums.

3.1 Camera Drivers

Those wishing to add support for new cameras will need to provide a standard Linux kernel driver for the new
image sensor. Before embarking on this, wewould recommend gaining some experience of Linux kernel drivers,
and also of the Linux V4L2 framework.

Much the easiest route to creating a new camera driver is to start from an existing one, and to replace the
calculations and register settings with ones that you have obtained from the sensor manufacturer. Both the
imx477 (https://github.com/raspberrypi/linux/tree/rpi-6.1.y/drivers/media/i2c/imx477.c) and ov5647 (https://
github.com/raspberrypi/linux/tree/rpi-6.1.y/drivers/media/i2c/ov5647.c) would be suitable starting points.

You should endeavour to duplicate all the ioctls and V4L2 controls that you find in those drivers, as most of
them will be mandatory for libcamera to work correctly.

Note that some sensors are able to return “embedded data” that lists the registers (including the exposure and
gain registers) used for each frame. If your sensor is able to do this, then the imx477 driver is probably a better
starting point. Otherwise we would recommend looking at the ov5647 driver first.

3.2 Device Tree

The camera driver needs to be listed as part of the Linux device tree so that it is correctly loaded. The details are
largely beyond the scope of this document, however, we draw the reader’s attention to the following resources.

1. In the raspberrypi/linux Github repository (https://github.com/raspberrypi/linux), please consult the
Documentation/devicetree/bindings/media/i2c directory for example bindings, such as imx219.

txt or ov5647.txt.

2. The existing overlays in the linux source tree at arch/arm64/boot/dts/overlays (use arm in place of
arm64 for 32-bit platforms). For example, look for imx219-overlay.dts or ov5647-overlay.dts.

3.3 The CamHelper Class

Unfortunately there is a certain amount of information that we need to know about cameras and cameramodes
but which the kernel driver framework (V4L2) does not supply. For this reasonwe provide the CamHelper class,
along with derived class implementations for all of Raspberry Pi’s supported sensors. These are all device-
specific functions, but implemented in userspace rather than by extending the existing kernel framework. The
principal functions of this class are:

1. To convert exposure times (in microseconds) to and from the device-specific representation (usually a
number of lines of pixels) used by V4L2.

2. To convert analogue gain values to and from the device-specific “gain codes” that must be supplied to
V4L2.

3. To allow parsing of embedded data buffers returned by a sensor.

4. To indicate how many frames of delay there are when updating the sensor’s exposure time or analogue
gain values.

5. To indicate how many frames are invalid and may need to be dropped on startup, or after changing the
sensor mode and re-starting streaming.

Generally speaking it should be sufficient to copy one of our existing implementations and work from there. In
particular note that

3 Driver Framework 5

https://github.com/raspberrypi/linux
https://github.com/raspberrypi/linux/tree/rpi-6.1.y/drivers/media/i2c/imx477.c
https://github.com/raspberrypi/linux/tree/rpi-6.1.y/drivers/media/i2c/ov5647.c
https://github.com/raspberrypi/linux/tree/rpi-6.1.y/drivers/media/i2c/ov5647.c
https://github.com/raspberrypi/linux

Raspberry Pi Camera Algorithm and Tuning Guide

• Sensors that do not supply embeddeddata buffers should copy theOV5647 implementation (cam_helper_

ov5647.cpp).

• Sensors that do supply embedded data buffers should copy the imx477 version (cam_helper_imx477.

cpp). If the sensor in question follows the general SMIA pattern then this implementation, and the meta-
data parser, should in fact be quite close to what is required.

The CamHelper class methods are well documented in cam_helper.hpp, however, we do further draw the
reader’s attention to the CameraMode class, which contains the important parameters related to each different
cameramode. The fields of the CameraMode are populated by the IPA, so they should automatically contain the
correct values once the kernel driver is functioning properly. These fields documented in controller/camera_

mode.h.

3 Driver Framework 6

Raspberry Pi Camera Algorithm and Tuning Guide

4 Control Algorithm Overview

4.1 Framework

Whilst Raspberry Pi provides a complete implementation of all the necessary ISP control algorithms, these
actually form part of a larger framework. The principal components of this framework are described as follows.

• The Controller class is a relatively thin layer which manages all the control algorithms running under
its aegis. It is responsible for loading the control algorithms at startup and invoking their methods when
instructed to through libcamera.

• The Algorithm class is specialised to implement each individual control algorithm. The Controller
invokes the methods of each algorithm as instructed.

The principal methods of the Algorithm class are

1. The Prepare method which is invoked just before the ISP is started. It is given information about the
captured image (including shutter speed and amount of analogue gain applied by the sensor) and must
decide the actual values to be programmed into the ISP.

2. The Processmethod which is invoked once statistics for the image frame are available. This method is
given these statistics and is expected to initiate new computationswhichwill determine the valueswritten
by the Preparemethod when it runs again. The Processmethod runs just after the ISP has produced
an output frame on Pi 4 and earlier devices, because it is the act of running the ISP that produces that
statistics. On a Pi 5, however, statistics are collected by the Camera Front End, so Process runs just
before Prepare, which programs the Back End ISP.

Other methods include the Readmethod, which loads the algorithm and may also initialise default values, and
the SwitchModemethod, which is invoked whenever a new CameraMode is selected for use.

In the following discussion, pathnames of specific files are given relative to the location of the Raspberry Pi spe-
cific code in the libcamera source tree, namely libcamera/src/ipa/rpi, unless we explicitly state otherwise.

4.2 Defining and Loading Algorithms

At startup, theController loads and initialises those algorithms that are listed in a JSONfile. The idea is that a
separate JSON file (the camera tuning) is loaded for each different kind of camera. Every algorithm is registered
with the system using a static RegisterAlgorithm initialiser, making it easy to add more algorithms to the
system.

The JSON file lists camera algorithms by name, conventionally given in a <vendor>.<moniker> format. The
moniker can be thought of as the type of the algorithm, such as AWB (Automatic White Balance) or AGC/AEC
(Automatic Gain/Exposure Control). For instance, Raspberry Pi’s implementation of AWB is named rpi.awb.
The implementation of each algorithm defines what parameters it has and in its Read method how it parses
them from the file or sets default values.

If, for example, the mythical Foo Corporation were to produce their own implementation of AWB, it might be
named foo.awb, and it could be listed directly in the JSON camera tuning file. Any algorithms no longer wanted
could be deleted from the JSON file, or commented out by renaming them. For instance, changing rpi.awb
to x.rpi.awb will cause the Raspberry Pi version to be silently ignored. We encourage developers to use a
separate folder for any algorithms they implement, so while Raspberry Pi’s algorithms all live in controller/

rpi, Foo Corporation’s algorithms might live in controller/foo.

Finally, we note that the order in which algorithms are listed in the JSON file is the order in which the controller
will load and initialise them, and is also the order inwhich thePrepare andProcessmethods of the algorithms
will run.

4 Control Algorithm Overview 7

Raspberry Pi Camera Algorithm and Tuning Guide

4.3 Standard Algorithms

The framework defines a number of abstract classes derived from Algorithm that provide standard interfaces
to particular kinds of algorithms. For example, the class AwbAlgorithm (controller/awb_algorithm.

hpp) requires the implementation of a setMode method which allows applications to set the AWB mode to,
for example, "tungsten", "daylight", and so forth. Developers are encouraged to use these standard
algorithm types when this is possible. Where it may be generally helpful, Raspberry Pi will also consider pull
requests to add new features to the standard algorithms.

Furthermore, implementations of these standard algorithms are expected, by convention, to have a namewhich
ends with the appropriate moniker for that type of algorithm. So an AWB algorithm would have a name always
ending in awb, and AGC/AEC (Automatic Gain/Exposure Control) would always end in agc, facilitating the type
of code shown below.

Algorithm * algorithm = controller -> GetAlgorithm ("awb");

AwbAlgorithm * awb_algorithm = dynamic_cast < AwbAlgorithm *>(algorithm);

if (awb_algorithm) {

awb_algorithm -> setMode ("sunny");

}

The full set of standard monikers for our different types of algorithm is set out in the table below, though there
is no reason in principle why developers should not invent new ones if they are appropriate for their own use
cases. The algorithms themselves are explained in detail in the following chapter.

Moniker Description

alsc Automatic Lens Shading Correction algorithm.

agc Automatic Gain/Exposure Control algorithm (AGC/AEC).

awb Automatic White Balance algorithm (AWB).

black_level Algorithm to set the correct black level for the sensor.

cac Algorithm to mitigate colour fringing caused by lateral chromatic aberration. Pi 5 only.

ccm Algorithm to calculate the correct Colour Correction Matrix (CCM).

contrast Adaptive global contrast and gamma control algorithm.

denoise Algorithm to jointly control spatial denoise, temporal denoise and colour denoise. Pi 5 only.

dpc Algorithm to set the appropriate level of Defective Pixel Correction.

geq Algorithm to set an appropriate level of Green Equalisation.

lux Algorithm that estimates an approximate lux level for the scene.

noise Algorithm to calculate the noise profile of the image given the current conditions.

sdn Algorithm to set an appropriate strength for the Spatial Denoise block. Pi 4 and earlier
devices only.

sharpen Algorithm to set appropriate sharpness parameters.

af Algorithm to control a lens driver for Auto Focus.

Table 2: Algorithm type monikers.

4 Control Algorithm Overview 8

Raspberry Pi Camera Algorithm and Tuning Guide

4.4 Algorithm Communication

Algorithms communicate with the outside world, and with each other, through image metadata. Image meta-
data is an instance of the Metadata class (controller/metadata.hpp) which is created for each new image
from the camera, and travels alongside the image through the entire processing pipeline; it is available to both
the Prepare and Processmethods. Code external to the algorithms themselves will look in the image meta-
data to find updated values to program into the ISP, and some algorithms may also look in the metadata to find
the results calculated by other algorithms that they wish to use.

This information written into the image metadata is normally referred to as the algorithm’s status, and is im-
plemented by a class whose name ends in Status, normally found in the files controller/*_status.h. For
example, the CCM algorithm (which calculates the colour correction matrix for the ISP) relies on the estimated
colour temperature which can be found in the AwbStatus object (controller/awb_status.h) in the image
metadata. In particular, items are stored in the image metadata indexed by a string key, and by convention this
key is made up of two parts joined by a period (.), the first being the algorithm moniker (awb) and the second
the word status.

Furthermore, we normally arrange that the status metadata contains any user-programmable settings that
affect the result of the algorithm. This is so that an application can request that a setting be changed, and then
sit back andmonitor the imagemetadata to discover when it has actually happened. For example, we have seen
the setMode method of the AWB algorithm. When the AwbStatus metadata shows the new mode name in
its mode field, then we know the change has taken effect.

When replacing existing algorithms, care must be taken still to generate the correct status information in the
image’s metadata, as other (un-replaced) algorithms may still expect it. So any replacement AWB algorithm
would still have to write out an AwbStatus object for the CCM algorithm (under the key awb.status), other-
wise the CCM algorithm would need amending or replacing also. Custom algorithms are free to communicate
using the image metadata too, only in this case the expectation is that any metadata keys would begin with
the organisation name. To wit, our friends at Foo Corporation might file their secret AWB parameters under
foo.awb.secret_parameters.

Recall that the order in which Prepare and Processmethods are run matches that of the JSON file, meaning
that when one algorithm has a dependency on the status information of another then that determines their
relative ordering within the file. So in the case of our example, we will have to list rpi.ccm after rpi.awb.

4.5 Performance Considerations

When writing new control algorithms, care must be taken not to delay the operation of the imaging pipeline any
longer than necessary. This means that both the Prepare and Processmethods for any algorithmmust take
considerably less than a millisecond, and that any significant amount of computation must be backgrounded
using an asynchronous thread. Amongst the Raspberry Pi algorithms, examples of this can be found in the AWB
(controller/rpi/awb.cpp) and ALSC (Automatic Lens Shading Correction - controller/rpi/alsc.cpp)
algorithms.

Although the details are of course up to developers, the general pattern is for the Processmethod to re-start
the computation (in the asynchronous thread) if the previous computation has finished. Often it makes sense to
wait a few frames before re-starting it as the results are not usually so critical that we need them immediately,
and we can thereby save on CPU load too.

The Prepare method normally has a notion of target values, and it filters the values that it outputs slowly
towards these target values with every frame (for example, using an IIR filter). It watches for any in-progress
asynchronous computation to finish though it does not block waiting for it. If unfinished, it will simply leave the
target values unchanged and try again on the next frame; if finished, this merely causes an update to its target
values, which it will immediately start filtering towards.

4 Control Algorithm Overview 9

Raspberry Pi Camera Algorithm and Tuning Guide

4.6 Example Camera Tuning File

4.6.1 Pi 4 and Ealier Devices

For earlier Raspberry Pi devices, the “target” field should read “bcm2835”.

{

" version ": 2.0,

" target ": " bcm2835 ",

" algorithms ": [

{

"rpi. black_level ":

{

" black_level ": 4096

}

},

{

"rpi.awb":

{

" use_derivatives ": 0,

"bayes": 0

}

},

{

"rpi.agc":

{

" metering_modes ":

{

"centre - weighted ":

{

" weights ": [4, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0,

0]

}

},

" exposure_modes ":

{

" normal ":

{

" shutter ": [100, 15000 , 30000 , 60000 , 120000],

"gain": [1.0, 2.0, 3.0, 4.0, 6.0]

},

"short":

{

" shutter ": [100, 5000 , 10000 , 20000 , 30000],

"gain": [1.0, 2.0, 4.0, 6.0, 8.0]

},

"long":

{

" shutter ": [1000 , 30000 , 60000 , 90000 , 120000],

"gain": [1.0, 2.0, 4.0, 6.0, 12.0]

}

},

" constraint_modes ":

{

" normal ": [

{

"bound": "LOWER",

"q_lo": 0.98 ,

"q_hi": 1.0,

" y_target ":

[

0, 0.4,

1000 , 0.4

]

4 Control Algorithm Overview 10

Raspberry Pi Camera Algorithm and Tuning Guide

}

]

},

" y_target ":

[

0, 0.16 ,

1000 , 0.165 ,

10000 , 0.17

]

}

},

{

"rpi.ccm":

{

"ccms": [

{

"ct": 4000 ,

"ccm":

[

2.0, -1.0, 0.0,

-0.5, 2.0, -0.5,

0, -1.0, 2.0

]

}

]

}

},

{

"rpi. contrast ":

{

" ce_enable ": 0,

" gamma_curve ":

[

0, 0,

1024 , 5040 ,

2048 , 9338 ,

3072 , 12356 ,

4096 , 15312 ,

5120 , 18051 ,

6144 , 20790 ,

7168 , 23193 ,

8192 , 25744 ,

9216 , 27942 ,

10240 , 30035 ,

11264 , 32005 ,

12288 , 33975 ,

13312 , 35815 ,

14336 , 37600 ,

15360 , 39168 ,

16384 , 40642 ,

18432 , 43379 ,

20480 , 45749 ,

22528 , 47753 ,

24576 , 49621 ,

26624 , 51253 ,

28672 , 52698 ,

30720 , 53796 ,

32768 , 54876 ,

36864 , 57012 ,

40960 , 58656 ,

45056 , 59954 ,

49152 , 61183 ,

53248 , 62355 ,

4 Control Algorithm Overview 11

Raspberry Pi Camera Algorithm and Tuning Guide

57344 , 63419 ,

61440 , 64476 ,

65535 , 65535

]

}

}

]

}

4.6.2 Pi 5 Devices

For devies based on Raspberry Pi’s new ISP, the “target” field must read “pisp”. The format of the file is very
similar, though in places it differs on account of the different capabilities of the underlying hardware.

{

" version ": 2.0,

" target ": "pisp",

" algorithms ": [

{

"rpi. black_level ":

{

" black_level ": 4096

}

},

{

"rpi.awb":

{

" use_derivatives ": 0,

"bayes": 0

}

},

{

"rpi.agc":

{

" metering_modes ":

{

"centre - weighted ":

{

" weights ":

[

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,

0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 0,

1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,

1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 1, 1,

1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1,

1, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 2, 2, 1, 1,

1, 1, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 1, 1,

1, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 2, 2, 1, 1,

1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1,

1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 1, 1,

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,

1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,

0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 0,

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0

]

}

},

" exposure_modes ":

{

" normal ":

{

4 Control Algorithm Overview 12

Raspberry Pi Camera Algorithm and Tuning Guide

" shutter ": [100, 15000 , 30000 , 60000 , 120000],

"gain": [1.0, 2.0, 3.0, 4.0, 6.0]

}

},

" constraint_modes ":

{

" normal ": [

{

"bound": "LOWER",

"q_lo": 0.98 ,

"q_hi": 1.0,

" y_target ":

[

0, 0.4,

1000 , 0.4

]

}

]

},

" y_target ":

[

0, 0.16 ,

1000 , 0.165 ,

10000 , 0.17

]

}

},

{

"rpi.ccm":

{

"ccms": [

{

"ct": 4000 ,

"ccm":

[

2.0, -1.0, 0.0,

-0.5, 2.0, -0.5,

0, -1.0, 2.0

]

}

]

}

},

{

"rpi. contrast ":

{

" ce_enable ": 0,

" gamma_curve ":

[

0, 0,

1024 , 5040 ,

2048 , 9338 ,

3072 , 12356 ,

4096 , 15312 ,

5120 , 18051 ,

6144 , 20790 ,

7168 , 23193 ,

8192 , 25744 ,

9216 , 27942 ,

10240 , 30035 ,

11264 , 32005 ,

12288 , 33975 ,

13312 , 35815 ,

4 Control Algorithm Overview 13

Raspberry Pi Camera Algorithm and Tuning Guide

14336 , 37600 ,

15360 , 39168 ,

16384 , 40642 ,

18432 , 43379 ,

20480 , 45749 ,

22528 , 47753 ,

24576 , 49621 ,

26624 , 51253 ,

28672 , 52698 ,

30720 , 53796 ,

32768 , 54876 ,

36864 , 57012 ,

40960 , 58656 ,

45056 , 59954 ,

49152 , 61183 ,

53248 , 62355 ,

57344 , 63419 ,

61440 , 64476 ,

65535 , 65535

]

}

}

]

}

The contents of the above JSON file are not particularly important for the moment, however we note the use
of named Raspberry Pi (rpi) algorithms. This example file is deliberately very simple, but contains enough
information to give quite recognisable images from almost any sensor.

4.7 Directory Structure

A summary of the folders and files provided as part of the Raspberry Pi framework is given below. The paths
listed can be assume to lie under libcamera’s src/ipa/rpi folder unless stated otherwise.

4 Control Algorithm Overview 14

Raspberry Pi Camera Algorithm and Tuning Guide

Path Description

cam_helper/cam_helper* Implementation of the CamHelper class for different sensors.

cam_helper/md_parser_smia.cpp Functionality for parsing camera embedded data (see chapter 3).

controller/*_status.h Definitions of the status objects placed into the image metadata by
control algorithms.

controller/*_algorithm.hpp Interfaces for standard algorithms, such as AWB, AGC/AEC etc.

controller/metadata.hpp Class representing image metadata.

controller/histogram.cpp A simple histogram class that may be useful to control algorithm
implementations.

controller/pwl.cpp A simple implementation of piecewise linear functions that may be
useful to control algorithms. Many of Raspberry Pi’s own control
algorithms depend on these.

controller/rpi Folder containing all of Raspberry Pi’s algorithm implementations.

vc4/data Folder containing existing camera tuning JSON files for Pi 4 and ear-
lier devices.

pisp/data Folder containing existing camera tuning JSON files for Pi 5 devices.

utils/raspberrypi/ctt The Camera Tuning Tool (see chapter 6). Note that this path lies
under the top-level libcamera directory.

Table 3: Raspberry Pi controller folder structure.

4 Control Algorithm Overview 15

Raspberry Pi Camera Algorithm and Tuning Guide

5 Raspberry Pi Control Algorithms

This section documents Raspberry Pi’s implementation of the ISP and camera control algorithms. For each
algorithm we give an overview and if necessary explain any concepts underlying the algorithm. We list all of
the tuning parameters for each algorithm including what they mean and their default values, and explicitly de-
scribe any metadata dependencies. Note further that when any of these algorithms runs, the image metadata
already contains the DeviceStatus metadata (controller/device_status.h), giving the shutter speed
and analaogue gain of the current image.

The algorithms are listed in the order in which they would normally appear in the JSON file as this is probably
the most natural order in which to understand them.

Many of the parameters listed here can be left at default values, however, others may appear distinctly esoteric.
Users are reminded that a Camera Tuning Tool (CTT) is provided (the subject of chapter 6) which facilitates the
automatic generation of JSON tuning files with all these difficult values correctly calibrated.

5.1 Black Level

5.1.1 Name

rpi.black_level

5.1.2 Overview

The pixels output by the camera normally include a “pedestal” value or black level. Pixels at or below this level
should be considered black. For a camera outputting 10-bit pixel values (in the range 0 to 1023) a typical black
level might be 64, but the correct value would be found in the sensor manaufacturer’s datasheet. The number
entered into the tuning file here is agnostic of the sensor’s native bit depth and always expects a value from a
16-bit dynamic range. So in this case, we would supply the value 4096 (= 64/1024 × 65536).

Name Default Description

black_level 4096 Specifies a default black level value to use for all three RGB channels, unless
over-ridden by subsequent entries.

black_level_r Optional If specified, over-rides the default black_level for the red channel.

black_level_g Optional If specified, over-rides the default black_level for the green channel.

black_level_b Optional If specified, over-rides the default black_level for the blue channel.

Table 4: Black level algorithm parameters.

5 Raspberry Pi Control Algorithms 16

Raspberry Pi Camera Algorithm and Tuning Guide

5.1.3 Metadata Dependencies

The Black Level control algorithm has no dependency on any other image metadata.

The Black Level control algorithmwrites a BlackLevelStatus object (controller/black_level_status.

h) into the image metadata. This gives a (16-bit) black level value for each of the three RGB channels.

5.2 Defective Pixel Correction (DPC)

5.2.1 Name

rpi.dpc

5.2.2 Overview

Camera images may contain a number of “stuck” or sometimes “weak” pixels. Pixels in the former category are
stuck at a particular value, sometimes completely black or sometimes completely white, whereas the latter kind
(weak pixels) vary atypically according to the incoming light and can be brighter or darker than their neighbours.
In both cases this can lead to undesirable image artifacts.

Figure 4: Magnified image showing a bright defective pixel - its effect spreads slightly because of the filtering
operations performed using it.

The ISP hardware has the ability to filter some of these out adpatively, without knowing in advance where they
are. We expose a simple control for this, namely no correction, normal correction or strong correction.

5 Raspberry Pi Control Algorithms 17

Raspberry Pi Camera Algorithm and Tuning Guide

5.2.3 Parameters

Name Default Description

strength 1 Strength of the correction. 0 = no correction, 1 = “normal” correction and 2 = “strong”
correction.

Table 5: Defective pixel correction algorithm parameters.

5.2.4 Metadata Dependencies

The DPC control algorithm has no dependency on any other image metadata.

TheDPCcontrol algorithmwrites aDpcStatus object (controller/dpc_status.h) into the imagemetadata.

5.3 Lux

5.3.1 Name

rpi.lux

5.3.2 Overview

The Lux algorithm does not actually generate any parameters that are subsequently programmed into the ISP.
Instead, it merely provides a single location where an estimate of the lux level (amount of light) of the current
image can be generated. It writes this value into the image metadata where downstream control algorithms
can find it and use it.

It is set up with the exposure/gain parameters and known lux level of a reference image, which must be cali-
brated during the camera tuning process (most straightfowardly with the CTT). It generates its lux estimate for
the current image by a simple ratio calculation comparing current exposure/gain and statistics values to the
ones recorded for the reference image.

5.3.3 Parameters

Name Default Description

reference_shutter_speed Required Shutter speed (exposure time) of the reference image, in mi-
croseconds, e.g. 33000.

reference_gain Required Analogue gain of the reference image, e.g. 1.5.

reference_Y Required Measured Y (luminance) value of the reference image. This
should normally be obtained through the CTT.

reference_lux Required Estimated lux level of the reference image scene. Normally
supplied by the CTT.

Table 6: Lux algorithm parameters.

5.3.4 Metadata Dependencies

The Lux control algorithm requires the presence of the DeviceStatusmetadata (which should automatically
always be available).

The Lux control algorithmwrites a LuxStatus object (controller/lux_status.h) into the imagemetadata.

5 Raspberry Pi Control Algorithms 18

Raspberry Pi Camera Algorithm and Tuning Guide

5.4 Noise

5.4.1 Name

rpi.noise

5.4.2 Overview

TheNoise algorithmalso does not calculate any newparameters for the ISP, itmerely calculates the noise profile

for the current image. It does this by being calibrated with the noise profile of a reference image and then, for
each image passing through the pipeline, adjusts the noise profile according to the analogue gain of the current
image and also information about the camera mode. The camera mode is significant because most cameras
are able to average pixels together, outputting a less noisy image than the native full resolution image. These
values would normally be calculated by the CTT (Camera Tuning Tool).

5.4.3 Parameters

Name Default Description

reference_constant Required Constant offset of the noise profile. In practice, it can be taken al-
ways to have the value zero.

reference_slope Required Slope of the noise profile, plotted against the square root of the pixel
value. Supplied by the CTT, a typical value might be somewhere
around 3.0.

Table 7: Noise algorithm parameters.

5.4.4 Metadata Dependencies

The Noise control algorithm requires the presence of the DeviceStatus metadata (which should automati-
cally always be available).

The Noise control algorithm writes a NoiseStatus object (controller/noise_status.h) into the image
metadata.

5.5 GEQ (Green Equalisation)

5.5.1 Name

rpi.geq

5.5.2 Overview

Standard Bayer cameras produce raw images with two slightly different kinds of green pixels, those on the red
rows, and those on the blue rows. Under some circumstances these can respond slightly differently even when
exposed to a solid and completely uniform colour. Downstream processing (especially demosiacking) can have
a tendency to pick up and accentuate these differences, giving rise to what are frequently described as maze

artifacts.

Green Equalisation is the process of correcting green imbalance, shown in the image above. Most simply, it
is applying a low pass filter to the green pixels, but it needs to be given some expectation of the size of the
imbalance so as not to blur the image more than is necessary. The Green Equalisation parameters would
normally be provided by the CTT.

5 Raspberry Pi Control Algorithms 19

Raspberry Pi Camera Algorithm and Tuning Guide

Figure 5: Highly magnified image showing maze artifacts (right), and correction (left).

5.5.3 Parameters

Name Default Description

offset 0 Constant offset of the green imbalance level.

slope 0.0 Slope of the green imbalance level (compared to pixel value). Must be < 1.0.

strength Optional If specified, a piecewise linear function that applies a gain to the green imbalance
level based on estimated lux level. This allows even stronger green imbalance cor-
rection in very low light situations.

Table 8: Green equalisation algorithm parameters.

5.5.4 Metadata Dependencies

The Green Equalisation algorithm requires the presence of the DeviceStatus metadata (which should au-
tomatically always be available). It also requires the presence of LuxStatus metadata from the Lux control
algorithm.

The Green Equalisation algorithm writes a GeqStatus object (controller/geq_status.h) into the image
metadata.

5.6 SDN (Spatial Denoise)

5.6.1 Name

rpi.sdn

Note: this algorithm applies only to the Pi 4 and earlier devices. For Pi 5, please refer to the rpi.denoise
algorithm.

5 Raspberry Pi Control Algorithms 20

Raspberry Pi Camera Algorithm and Tuning Guide

5.6.2 Overview

The SDN (Spatial Denoise) control algorithm generates parameters for controlling the ISP’s spatial denoise
function. It derives a new noise profile from the one calculated (and placed in the image metadata) by the
Noise control algorithm, and this is ultimately passed to the ISP. It also determines the “strength” of the denoise
function, meaning howmuch of the final pixel is taken from the denoised pixel, the remainder being made up by
the un-denoised pixel. This turns out to be helpful because denoising an image completely can leave it looking a
little artificial or “plasticky”; leaving some noise in the final image normally proves to be aesthetically beneficial.

The SDN control algorithm parameters can normally just be left at their default values.

Figure 6: Same image as figure 5, highly magnified, showing “noise speckles”.

Colour channel denoising is another operation controlled by the SDN algorithm. Colour denoising can operate
in two modes - a high quality mode, or a fast mode. The former should be used for still image captures where
frame time is not critical, while the latter should be used for viewfinder and video recoding where processing
time is more important to avoid dropping frames. No colour denoising is enabled by default.

5.6.3 External API

The Sdn class is derived from the DenoiseAlgorithm class. As such it defines the following publicly acces-
sible methods.

DenoiseAlgorithm class API

setMode(DenoiseMode mode)
Sets the operating mode for SDN. DenoiseMode may be one of the following enum values {Off,
ColourOff, ColourFast, ColourHighQuality}.

Table 9: Denoise algorithm public API.

An example use of the DenoiseAlgorithm method:

Algorithm * algorithm = controller -> GetAlgorithm ("sdn");

DenoiseAlgorithm * deniose_algorithm = dynamic_cast < AgcAlgorithm *>(algorithm)

;

if (denoise_algorithm) {

denoise_algorithm -> setMode (DenoiseMode :: ColourHighQuality)

}

5 Raspberry Pi Control Algorithms 21

Raspberry Pi Camera Algorithm and Tuning Guide

5.6.4 Parameters

Name Default Description

deviation 3.2 Scaling applied to the Noise control algorithm’s noise profile. Increasing this
means wider pixel differences will be denoised (producing a blurrier image) and
reducing it results in only smaller pixel differences being denoised. Making this
too small will produce an image with little “noise speckles” in it.

strength 0.75 Proportion of the final output pixel made up by the denoised pixel value, the re-
mainder (0.25 in the default case) coming from the original (noisy) pixel.

Table 10: Spatial denoise algorithm parameters.

5.6.5 Metadata Dependencies

The SDN control algorithm requires the presence of the NoiseStatusmetadata from the Noise control algo-
rithm.

TheSDNcontrol algorithmwrites aDenoiseStatusobject (controller/denoise_status.h) into the image
metadata.

5.7 Denoise (Combined Denoise Algorithms)

5.7.1 Name

rpi.denoise

Note: this algorithm applies only to the Pi 5. For earlier devices, please refer to the rpi.sdn algorithm.

5.7.2 Overview

The Denoise control algorithm generates parameters jointly for the ISP’s three denoise functions: SDN (Spatial
Denoise), TDN (Temporal Denoise) and CDN (Colour Denoise). It derives a new noise profile from the one calcu-
lated (and placed in the imagemetadata) by the Noise control algorithm, and writes SDN, TDN and CDN control
parameters into the image metadata in order to be programmed into the hardware pipeline.

SDN performs spatial denoise, which involves averaging together pixels in a small neighbourhood. Where pixels
look “close enough” it will average them.

TDN (Temporal Denoise) averages a pixel in the frame that has arrived most recently with the previous output
of the TDN block (that is, the temporally denoised version of the previous frame). Where they look similar, they
are averaged, and where they do not, the most recent pixel is taken. TDN denoises more effectively once it has
seen “several frames”.

Finally CDN (Colour Denoise) is another spatial filter but works specifically on the colour, rather than brightness,
signal. Here the scale of the noise tends to cover a larger area, but we can also denoise more aggressively
because the colour signal contributes less to image detail.

On Pi 5, all these algorithms operate directly in hardware at the full pixel rate of the ISP.

5 Raspberry Pi Control Algorithms 22

Raspberry Pi Camera Algorithm and Tuning Guide

5.7.3 External API

The Denoise class is derived from DenosieAlgorithm, defining the following publicly accessible methods.

DenoiseAlgorithm class API

setMode(DenoiseMode mode)
Sets the operating mode for SDN. DenoiseMode may be one of the following enum values {Off,
ColourOff, ColourFast, ColourHighQuality}. Pi 5 does not distinguish between “fast” and “high
quality” colour denoise as the two are the same on this platform.

setConfig(std::string const &name)
Sets the current denoise configuration. Different imaging modes may use slightly different denoise config-
urations such as "normal" for normal use-cases, "hdr" for HDR imaging and "night" for night mode
imaging.

Table 11: Denoise algorithm public API.

An example use of the DenoiseAlgorithm:

Algorithm * algorithm = controller -> GetAlgorithm (" denoise ");

DenoiseAlgorithm * deniose_algorithm = dynamic_cast < DenoiseAlgorithm *>(

algorithm);

if (denoise_algorithm) {

denoise_algorithm -> setConfig (" normal ")

}

5.7.4 Parameters

Name Default Description

sdn The following pameters should be in a "sdn" sub-block.

deviation 3.2 Scaling applied to the Noise control algorithm’s noise profile. In-
creasing this means wider pixel differences will be denoised (pro-
ducing a blurrier image) and reducing it results in only smaller pixel
differences being denoised. Making this too small will produce an
image with little “noise speckles” in it.

strength 0.75 Proportion of the final output pixel made up by the denoised pixel
value, the remainder (0.25 in the default case) coming from the
original (noisy) pixel.

deviation2 deviation Deviation value used for a pixel that has not been temporally de-
noised. When temporal denoise is running, it can be helpful to set
deviation lower because, as temporal denoise is running, pixels
tend to be less noisy. But where TDN has decided not to denoise
a pixel, a higher value here can be beneficial.

deviation_no_tdn deviation The SDN deviation value to use when the camera starts or
switches mode. When this happens, TDN has to be reset and
is therefore having a minimal effect for the first few frames. As
frames pass through the system, the value passed to the hardware
ramps down from this value to the normal deviation value.

strength_no_tdn strength The SDN strength value ramps from this value to the normal
strength value as TDN operates on frames.

backoff 0.75 Controls the rate at which SDN backs off from the “no TDN” to
the “normal” values with every frame. Larger values imply slower
back-off.

5 Raspberry Pi Control Algorithms 23

Raspberry Pi Camera Algorithm and Tuning Guide

cdn The following pameters should be in a "cdn" sub-block.

deviation 120 The colour denoise deviation parameter. Increasing it will cause
more cause more colour denoise to happen.

strength 0.2 Colour denoise filter strength. A larger value implies more colour
denoise.

tdn The following pameters should be in a "tdn" sub-block.

deviation 0.5 The temporal denoise deviation parameter. Increasing it will cause
more cause more temporal denoise to happen.

threshold 0.75 Temporal denoise threshold, below which pixels are considered
not to have been temporally denoised. Increasing this value
will cause more pixels to be treated by SDN as though tempo-
ral denoise did not change them, so that the deviation2 and
strength2 parameters are applied to them.

Table 12: SDN, CDN and TDN denoise algorithm parameters.

5.7.5 Metadata Dependencies

The denoise control algorithm requires the presence of the NoiseStatus metadata from the Noise control
algorithm.

Thedenoise control algorithmwritesSdnStatus,TdnStatus andCdnStatusobjects (controller/denoise_

status.h) into the image metadata, giving the control parameters for each of the 3 denoise functions.

5.8 AWB (Automatic White Balance)

5.8.1 Name

rpi.awb

5.8.2 Overview

Readers are no doubt aware how, when you look at a particular (non-changing) object, its colour always appears
the same, irrespective of whether you look at it outside in broad daylight or indoors under some kind of artificial
light. If it looks orange outdoors, then it looks orange indoors too. Yet if you measured the colour directly using
a spectrometer, you’d discover that outdoors the object is much bluer and indoors it is much redder.

The Human Visual System has adapted amazingly over time to hide these differences from us - a phenomenon
known as Colour Constancy. Unfortunately no such magic occurs when viewing a digital image so we have to
make this correction ourselves. This is the job of the AWB (Automatic White Balance) Algorithm. We describe
the algorithm below, though readers should note that the settings and calibrations should normally be produced
by the Camera Tuning Tool.

Raspberry Pi takes a simple Bayesian approach to the problem. We need to define a feasible set of illuminants
and then, for any given image, choose that illuminant from the set which gives us the most likely resulting
colours. The mathematically inclined will recognise this as a maximum likelihood estimation problem. Finally
we apply the correction to the image according to the selected illuminant.

5 Raspberry Pi Control Algorithms 24

Raspberry Pi Camera Algorithm and Tuning Guide

The Feasible Set

The illuminants that we encounter in the real world have historically tended to lie on the so-called Planckian

Locus, as the light is produced by some kind of heat-radiating body (be it the sun, or a tungsten filament). In
recent years, with the advent of fluorescent, LED and other light sources, this is less true, however, with some
slight loosening of our constraints it can still be considered an adequate approximation.

The feasible set is constructed by measuring the response of the sensor to a known grey target. In practice
this means capturing an image of something like a Macbeth Chart (with objectively grey squares) under each
of our possible illuminants, and measuring the average RGB value of the grey squares. For each RGB triple
we calculate normalised colour values r = R/G and b = B/G, and plot these on a graph called the Colour

Temperature Curve (or CT Curve) for the camera. Each point on the curve can be associated with the colour
temperature of the illuminant that provided it.

Figure 7: CT Curve showing colour temperature associated with each point.

Note how, in this example, colour temperatures get closer at the left hand (daylight) end of the curve, and
spread out at the right hand (indoor) end. In particular, the points for colour temperatures 2911K and 2919K are
quite distinct even though the colour temperatures are virtually identical. This is most likely because they were
produced by different kinds of illuminant - perhaps one was a fluorescent tube and the other an incandescent
bulb.

Finally, whilst the (r, b) coordinate gives the response of the camera to light of that colour temperature, the red
and blue gains that need to be applied to the image in order to white balance it correctly (that is, make actual
grey have an equal response on all RGB channels) are

gainr =
1

r

and

gainb =
1

b

5 Raspberry Pi Control Algorithms 25

Raspberry Pi Camera Algorithm and Tuning Guide

Bayes Theorem

In our case we are wishing to find the illuminant I with the highest probability given the observed pixel data D,
written as P (I | D). According to Bayes’ Theorem we have

P (I | D) =
P (D | I) · P (I)

P (D)

where

P (I) is the prior probability of the illuminant I ,
P (D) is the prior probability of the observed pixel data,
P (D | I) is the posterior probability of the observed pixel data D given the illuminant I , and finally
P (I | D) is the posterior probability of the illuminant I given the observed pixel data D.

The Priors

Firstly, in our case we take P (D) as constant, therefore the problem reduces to finding

arg max
I

P (D | I) · P (I)

It is up to us how we wish to define P (I), and indeed this is one of the principal means of tuning the AWB
algorithm. Typically, we might choose larger (more likely) values for daytime illuminants when the ambient
conditions (as measured by the Lux control algorithm) suggest the scene is very bright. Accordingly, the indoor
illuminants would be dispreferred under these conditions. In medium to low light situations we would most
likely reverse these biases, favouring the indoor illuminants instead.

Calculating the Posteriors

P (D | I) is not difficult to calculate providing we have some kind of probabilistic model of the colours we
expect to see in an output image. In our case we regard certain colours as more likely than others. In particular
the most likely colour is generally grey or near-grey (the correspondance with simple “Grey World” algorithms
should be clear), but we could consider others too - blue sky, green grass and skin tonesmight be themost likely
candidates. (Note, however, that Raspberry Pi’s implementation only looks for near-grey colours at this time.)
The procedure is then to take the raw camera image, apply the red and blue gains for a particular illuminant,
and then assess how plausible the result looks.

We illustrate this belowwith an indoor image taken under incandascent lighting; note that the raw camera image
(as is often the case) looks rather green.

Figure 8: AWB example - the incandascent illuminant gives a more plausible result than the daylight one.

We also need to specify how we calculate the probability of any pixel’s colour. Given the pixel’s RGB colour
values we calculate, as before, r = R/G and b = B/G. For a given illuminant I (and hence known gainr and
gainb values), we define colour difference statistics

5 Raspberry Pi Control Algorithms 26

Raspberry Pi Camera Algorithm and Tuning Guide

∆r = gainr · r − 1

∆b = gainb · b − 1

Observe how, for the illuminant which turns the pixel grey we have that ∆r = ∆b = 0.

Nowwe assume that a 2-dimensional Gaussian distribution gives a reasonable approximation to the PDF (prob-
ability density function) of our variables ∆r and ∆b, meaning that for a single pixel we have

P (D | I) ∝ e
−(∆r

2

σ2
r

+ ∆b
2

σ2

b

)

where σr and σb are the standard deviations of the distribution, and we use ∝ in place of equality because we
have elided the (unimportant) fixed constant (that makes the PDF integrate to unity).

Now, we do not actually work directly on pixels as this would be far too slow. Instead the image is divided
into 16 × 12 = 192 regions for which the hardware ISP calculates R, G and B averages; in many ways it can be
thought of as if we are operating on an image only 16×12 pixels in size. So extending our probability calculation
to the entire image, and assuming that all the regions are independent (an assumption we shall return to later),
we obtain the following expression for the posterior probability of the illuminant:

P (I | D) ∝ P (I)
∏

regions

e
−(∆r

2

σ2
r

+ ∆b
2

σ2

b

)

Log Likelihood

At this point it should be clear that working in terms of log likelihood is going to be more convenient. The large
product turns simply into a sum, and as we are defining P (I) ourselves anyway we may as well just define its
log likelihood instead. We use L in place of P to denote log likelihoods.

Further, we take σr = σb as it actually makes little difference to the end results, and then can drop this term
entirely as we can scale our L(I) function (the prior log likelihood of the illuminant) to compensate. Finally we
are left with finding

arg max
I

L(I) −
∑

regions

(∆r2 + ∆b2)

5.8.3 Implementation

Somenotes on theRaspberry Pi implementation of the algorithmdescribed above. It can be found incontroller/

rpi/awb.cpp.

1. The prior for the illuminant depends only on estimated lux level. Normally this involves interpolating be-
tween the two priors either side of the current lux estimate.

2. The CT Curve definition in the tuning file makes 2 piecewise linear functions, giving us r and b in terms of
the colour temperature T . Thus r = r(T) and b = b(T).

3. The algorithm starts with a coarse search taking relatively large steps down the CT curve.

4. The “white point” the algorithm is looking for, in (∆r, ∆b) space is normally given by (0, 0). However the
configuration parameters (below) do allow this to be moved in case, for example, a slightly warmer look
is desired.

5. Subsequently there is a fine search around the area found. The fine search is allowed to wander tran-
versely off the CT Curve (within limits) to better accommodate lamps that do not lie perfectly on the
curve (often including fluorescent lights and so forth).

6. As mentioned previously, the algorithm only expects neutral colours at this time.

5 Raspberry Pi Control Algorithms 27

Raspberry Pi Camera Algorithm and Tuning Guide

7. The squared terms in the log likelihood expression get clamped; this reflects the fact that there genuinely
are non-neutral colours in the world, and once something looks non-neutral it is counterproductive to
penalise it further just because it appears very non-neutral.

8. For when no camera calibration has yet been done, our implementation includes a very plain Grey World
algorithm that gives adequate results in many circumstances. When the Grey World algorithm is used,
the estimated colour temperature produced by the AWB algorithm is not meaningful.

5.8.4 External API

The Awb class is derived from AwbAlgorithm. As such it defines the following publicly accessible methods.

AwbAlgorithm class API

GetConvergenceFrames()
This returns the number of frames the AWB algorithm recommends be dropped, while it converges, when
the camera and the AWB algorithm are started from scratch.

SetMode(std::string const &mode_name)
This method takes the name of the desired AWB mode (a string such as "tungsten" or "daylight").
The effect is to limit the range of the coarse search to the range listed alongside the mode (which must be
preset) in the JSON file.

SetManualGains(double manual_r, double manual_b)
Switches to using the provided manual red and blue gains. Set both values to zero to switch back to auto
mode.

Table 13: AWB algorithm public API.

An example use of AWB methods:

Algorithm * algorithm = controller -> GetAlgorithm ("awb");

AwbAlgorithm * awb_algorithm = dynamic_cast < AwbAlgorithm *>(algorithm);

if (awb_algorithm) {

awb_algorithm -> SetMode ("sunny");

}

5.8.5 Parameters

Name Default Description

bayes 1 Whether to use the Bayesian algorithm, or the simplified Grey World
algorithm. Note that if the CT Curve is not defined the implementa-
tion will default back to Grey World in any case.

frame_period 10 Only run the AWB calculation every time this many frames have
elapsed.

speed 0.05 IIR filter speed determining how quickly the image adapts towards
the most recent results of the AWB calculation. A speed of zero ef-
fectively disables AWB, and a value of 1 causes the AWB calculation
results to be followed immediately with no damping.

startup_frames 10 At startup, run the AWB algorithm as often as possible (ignoring
frame_period) for this many frames. During these frames the
speed parameter is also treated as having the value 1. This speeds
up initial convergence when a camera application is opened.

convergence_frames 3 When queried by the GetConvergenceFrames method, the algorithm
will return this value as the number of frames to drop.

5 Raspberry Pi Control Algorithms 28

Raspberry Pi Camera Algorithm and Tuning Guide

ct_curve Optional Defines the functions r = r(T) and b = b(T). The numbers in this
list always appear in threes. The first value of the triple is the colour
temperature (T), the second is the r value and the third is the b value.
The triples should be listed in increasing order of colour temperature.

priors Optional A list of illuminant priors for different lux levels. For each lux level
the prior is a list of numbers appearing in pairs, where the first is the
colour temperature and the second is the value of the log likeihood.
If omitted, the priors are simply assumed to be identically zero ev-
erywhere.

modes Required A list of AWB modes giving a name (a character string) and the “lo”
and “hi” range in terms of colour temperature on the CT curve that
must be searched.

min_pixels 16 Minimum number of pixels in a statistics region for that region to be
used in the AWB calculations.

min_G 32 Minimum average green value in a statistics region (out of a 16-bit
dynamic range) for the region to be used in the AWB calculations.

min_regions 10 Minimum number of usable statistics regions for the AWB algo-
rithm to run (otherwise the target red and blue gains will be left un-
changed).

delta_limit 0.15 Limit to the value of the squared colour error term in the log likei-
hood expression; stops very non-neutral colours being excessively
penalised.

coarse_step 0.2 Governs the size of the steps taken in the coarse search phase of the
algorithm.

transverse_pos 0.01 How far off the CT curve the fine search is allowed to go, in the di-
rection of less green illuminants.

transverse_neg 0.01 How far off the CT curve the fine search is allowed to go, in the di-
rection of more green illuminants.

sensitivity_r 1.0 Calibration of the red sensitivity of the sensor being used compared
to the one that was used for AWB tuning. This value cannot be set
by the tuning process and would need some form of measurement
for every sensor individually. Normally it lies close enough to 1.0 to
make little difference.

sensitivity_b 1.0 Calibration of the blue sensitivity of the sensor being used compared
to the one that was used for AWB tuning. This value cannot be set
by the tuning process and would need some form of measurement
for every sensor individually. Normally it lies close enough to 1.0 to
make little difference.

whitepoint_r 0.0 The whitepoint for the ∆r coordinate.

whitepoint_b 0.0 The whitepoint for the ∆b coordinate.

Table 14: AWB algorithm parameters.

5.8.6 Metadata Dependencies

The AWB control algorithm requires the presence of the LuxStatusmetadata from the Lux control algorithm.

The AWB control algorithm writes an AwbStatus object (controller/awb_status.h) into the image meta-
data.

5 Raspberry Pi Control Algorithms 29

Raspberry Pi Camera Algorithm and Tuning Guide

5.8.7 Extensions

There are many relatively minor improvements and tweaks we could make to the algorithm described here.
However, we have predominantly chosen to keep the approach simple and avoided anything that would com-
plicate either the algorithm itself or the tuning process it would require, even at the cost of some modestly
improved performance. We discuss just a couple of such ideas here.

Uniform Colour

One possible weakness of the algorithm is that it could be influenced excessively by large objects of a uniform
but non-grey colour. In Bayesian terms, if you have already seen something bright red in an image, then it’s
more likely for neighbouring parts of the image to have the same colour as it might just be the same object.
This obviously strikes at that assumption of independence that wemade eariler, and such ideas are not difficult
to incorporate. When we calculate the sum of squares term in the log likelihood expression for a particular
patch in the image (viz. ∆r2 + ∆b2) we could also calculate a similar term measuring the distance from (some
of) the neighbours’ colours, and then simply pick the smallest.

Of course, experimentation would be required with a reasonable corpus of test images to determine the precise
details, not least the relative strength of this effect overall and how it might vary.

Non-grey Colours

Another fairly clear improvement might be to “look for” colours other than grey in an image. For instance, it
might prove beneficial to look for things like blue sky, green grass and even skin tones. At one level this is not
difficult either. We compute the error term as before, but also compute the distance from these other measured
colours, and again take the smallest. However, this does end up complicating the algorithm and can make the
tuning process more difficult. In particular:

• These additional target colours would need to be measured, probably in the colourspace of the cam-
era, and this causes additional calibration/tuning problems. Or you could try to measure them in sRGB
which might save remeasuring them all the time - though then the AWB algorithm will implicitly include a
colourspace conversion, which is all starting to get a bit circular.

• These extra colours are not likely to be present in all situations. For example blue sky is unlikely to feature
in low light images, andmatching it erroneously could throw the whole algorithm off. So there would have
to be additional prior knowledge for each target colour expressing its effect in the known conditions.

• Finally, we have ended up with quite a lot of extra effects, parameters and new kinds of priors to calibrate.
Determining appropriate values is non-trivial, and depending on the details, may have to be repeated for
every new camera module.

5.9 AGC/AEC (Automatic Gain Control / Automatic Exposure Control)

5.9.1 Name

rpi.agc

5.9.2 Overview

The AGC/AEC algorithm controls the shutter time of the image sensor, the analogue gain applied by the image
sensor and the digital gain applied by the ISP. Normally we refer simply to the “AGC algorithm” but it encom-
passes all these aspects. The metering process uses both a matrix of rectangular regions spread across the
image and constraints derived from an intensity histogram of pixels in the image, as explained in the following
sections.

Multi-channel AGC

Normally AGC/AECoperates equally on every frame from the camera, which is the normal “single channel”mode
of operation. Optionally, AGC can be instructed to operate indpendently, with different parameter settings, on
different frames. For example, you might want to meter odd and even numbered frames differently, perhaps as
part of a more sophisticated multi-exposure camera application.

5 Raspberry Pi Control Algorithms 30

Raspberry Pi Camera Algorithm and Tuning Guide

Region-based Metering

The image is divided up into a number of distinct regsions and an average luminance value for the whole image
is calculated as

Y =

∑

i∈regions

wiYi

∑

i∈regions

wi

where Yi is the luminance of region i and wi is the weight associated with that region and which is defined in
the JSON camera tuning file.

This value is driven towards a target value y_target, also given in the tuning file. The weights can be adjusted
to create various forms of average, centre-weighted or spot metering.

Pi 4 and earlier devices

On Pi 4 and earlier devices, the image is divided up into regions as shown in figure 9.

Figure 9: AGC metering regions.

Pi 5

On Pi 5, the image is divided up into 16x16 equally sized regions covering the whole image. The list of weights in
the tuning file is therefore much larger, being a 16x16 matrix of numbers. Each weight must be an integer from
0 (meaning that the region is ignored) to 15 (for the most important regions).

5 Raspberry Pi Control Algorithms 31

Raspberry Pi Camera Algorithm and Tuning Guide

Histogram Constraints

Beyond controlling the weighted luminance value, the algorithm also uses a histogram, collected by the ISP for
this frame (Pi 5) or on an earlier frame (Pi 4 and earlier devices), to impose various other constraints on the final
target exposure value.

We assume basic familiarity the the idea of an intensity histogram for an image. We define F (p) to be the
cumulative frequency of the histogram, and further normalise it so that the input value p is 0 at the bottom of
the histogram and 1 at the very top. We also normalise the result so that F (p) = 0 indicates there are no pixels
below p and F (p) = 1 means than all pixels lie below p. Further, we adopt the convention that pixels are spread
evenly throughout the “bin” in which they lie, so that F (p) is a continuous (in fact, monotonically increasing)
function.

0

0

1

1

p

q

F

Range

Proportion

Figure 10: Cumulative frequency: a proportion q of the pixels lie below the value p

Observe that we always have F (0) = 0 and F (1) = 1.

Next we recap the notion of a quantile, which gives us the point p = Q(q) in the range such that a proportion q
of the pixels lie below p. Some quantiles are familiar to us, for example Q(0.25), Q(0.5) and Q(0.75) are known
as, respectively, the lower quartile, the median and the upper quartile of a distribution. We note further that F
and Q are in some sense inverses, as Q(F (p)) = p, though this breaks down when F has flat regions (that is,
there are no pixels in a part of the range) and Q becomes non-single-valued.

Q being ill-defined explains why quantiles are not ideal for metering as they are. Imagine, for instance, a picture
containing only black and white pixels (an image of a newspaper page, perhaps). Themedian pixel will be either
white or black, and will flick suddenly between them when only a single extra pixel pushes the number of white
pixels either above or below the 50% mark. Any metering scheme based on this will be subject to occasional
violent oscillations. Instead the Raspberry Pi algorithm uses the concept of the inter-quantile mean instead.
Here we define I(qlo, qhi) to be the mean of all the pixels between the qlo and qhi quantiles. Observe how the
possibly ill-defined nature of these locations in the pixel range become irrelevant as there are then no pixels to
average there. We refer to qhi − qlo as the width of the inter-quantile mean. We note that

• A narrow width gives precise control of a particular place in the histogram.

• A large width gives a stable response in the location of the inter-quantile mean.

• In practice we of course have to find some kind of happy medium.

Finally, our histogram constraints comprise therefore an inter-quantile mean (specifying values for qlo and qhi),
a target Y value for it, and an indication of whether this is to be a lower or an upper bound for our final target
exposure value. We illustrate this with a pair of examples.

1. I(0.98, 1) = 0.5, lower bound. Here we are saying that the top 2% of the histogram must lie at or above
0.5 in the pixel range (metering all happens before gamma, so this is a moderately bright value). Or in
short, we are requiring “some of the pixels to be reasonably bright”. This is a good strategy for snowy or

5 Raspberry Pi Control Algorithms 32

Raspberry Pi Camera Algorithm and Tuning Guide

beach scenes, also for images of documents. It actually raises the exposure of the whole scene; without
it, the entire image would look dull grey which is undesirable in such circumstances. On the other hand
when, as is usually the case, there is an abundance of bright and dark pixels, this constraint has no effect,
so it is often reasonable to apply this constraint all the time.

2. I(0.98, 1) = 0.8, upper bound. This requires the top 2% of pixels to lie at or below 0.8 in the pixel range
(actually a very bright value post-gamma). Effectively this lowers the exposure in order to stop pixels
saturating, and is effective in metering for highlights or perhaps as part of an HDR metering strategy.

A number of these constraints can be grouped together as a named constraint mode, in which they are applied
in sequence one after another. Applications are able to choose which of the available constaint modes in the
JSON file they wish to use.

Differences between Pi 4 and Pi 5

On a Pi 4 (or earlier) the histogram counts every pixel just once. On a Pi 5, however, each pixel is counted wi

times, where wi is the metering weight for the region containing the pixel. The Pi 4 also uses separate R, G and
B histograms meaning that histogram constraints really apply to the green pixels, whereas the Pi 5 has access
to a proper Y histogram.

Channel Constraints

There is one further type of constraint that gets applied in the case ofmulti-channel AGC. Here, we can constrain
one channel to be, for example, “more than 2 times the exposure of another channel” or “less than 4 times the
exposure of another channel”. For example

...

" channel_constraints ": [

{

"bound": "UPPER",

" channel ": 2,

" factor ": 8

}

]

...

would constrain a channel to have no more than 8 times the exposure of channel 2. Use "LOWER" to enforce
a lower bound. Several such constraints may be included in the "channel_constraints" list, and they are
applied in the order listed.

5 Raspberry Pi Control Algorithms 33

Raspberry Pi Camera Algorithm and Tuning Guide

Exposure Modes

The region-based averages and histogram constraints determine the total exposure of the final scene, however
they do not determine how to divide this up between the shutter time and the analogue gain. This is the job
of the exposure mode. Each named exposure mode (in the JSON file) consists of a list of shutter times and
analogue gains. First the desired analogue gain is set to 1 and the shutter time is allowed to ramp to the first
value in the list. Thereafter, the analogue gain is allowed to ramp to the first value in its list. The procedure then
simply repeats with the second value in each of the lists.

Total Exposure

Analogue Gain Shutter time (ms)

10

20

30

40

50

60

1x

2x

3x

4x

5x

6x

0

Analogue Gain

Shutter time

Figure 11: An example exposure profile - analogue gain and shutter time increase one after the other.

The maximum possible total exposure is determined by the final values in these two lists. Note how

• The maximum shutter time can be limited to avoid dropping the frame rate (assuming the camera driver
supports this behaviour).

• If the camera driver does not support an analogue gain as high as listed in the exposure modes, the AGC
algorithm will simply make up the difference with digital gain.

• For any total exposure value (less than the maximum), there is only a single pair of analogue gain and
shutter time values that achieves it.

5.9.3 Implementation

The implementation of the AGC algorithm can be found in controller/rpi/agc_channel.cpp. We note the
following.

• Y targets are generally defined by piecewise linear functions, making it possible to vary the Y target with
estimated lux level.

• Mostly the algorithm can be regarded as simply adjusting the total exposure of the images, filtering the
requested values over time to prevent sudden changes. When it needs to reduce the exposure substan-
tially, itmay elect to cut the camera exposuremore rapidly, whilst (temporarily) hiding any sudden changes
from observers using increased digital gain. (Please refer to the source code for more details.)

• The algorithm is able to avoid exposure times that will result in flicker under artificial lighting. It would
have to be given the period (in microseconds) of the lighting cycle.

• The implementation allows for the application to fix the shutter time and/or the analogue gain (for exam-
ple, for fixed ISO exposures).

• The Raspberry Pi AGC algorithm does not currently handle flashes as we have no camera modules or
boards that incorporate them.

5 Raspberry Pi Control Algorithms 34

Raspberry Pi Camera Algorithm and Tuning Guide

• The Raspberry Pi AGC algorithm does not currently handle variable apertures as we have no camera
modules that feature them.

• OurHistogram class, which provides histogram-relatedmethods, is implemented incontroller/histogram.

cpp, though it does not in fact normalise the input and output ranges of the histogram as we did in the
theoretical discussion above.

5.9.4 External API

The Agc class is derived from the AgcAlgorithm class. As such it defines the following publicly accessible
methods. These APIs apply to all AGC channels, unless there is an explicit channel parameter.

AgcAlgorithm class API

GetConvergenceFrames()
This returns the number of frames the AEC/AGC algorithm recommends be dropped, while the AGC con-
verges, when the camera and the AGC algorithm are started from scratch.

SetEv(unsigned int channel, double ev)
Sets the exposure compensation according to a linear scale. So for an extra stop, use ev = 2. For an extra
half stop, use ev = 1.414. The channel identifies the AGC channel the setting applies to, which will be zero
if running in single channel mode.

SetFlickerPeriod(double flickerPeriod)
Set the lighting cycle period in microseconds. Set to zero to disable flicker avoidance.

SetFixedShutter(unsigned int channel, double fixedShutter)
Sets a fixed shutter time, meaning only analogue (and digital) gain can be used to affect exposure. Set to 0
to cancel fixed shutter operation. The channel identifies the AGC channel the setting applies to, which will
be zero if running in single channel mode.

SetMaxShutter(double maxShutter)
Sets maximum allowable shutter speed to use. This is typically based on the application requested framer-
ate. Set to 0 to disable any limitation on the maximum shutter speed.

SetFixedAnalogueGain(unsigned int channel, double fixedAnalogueGain)
Sets a fixed analogue gain value, meaning only shutter time can be varied to affect exposure. Set to 0 to
cancel fixed analogue gain operation. The channel identifies the AGC channel the setting applies to, which
will be zero if running in single channel mode.

SetMeteringMode(std::string const &meteringModeName)
Choose which metering mode to use from the JSON file.

SetExposureMode(std::string const &exposureModeName)
Choose which exposure mode to use from the JSON file.

SetConstraintMode(std::string const &contraintModeName)
Choose which (histogram) constraint mode to use from the JSON file.

SetActiveChannels(const std::vector<unsigned int> &activeChannels)
Separate instances of AGC are run repeatedly in the exact order given in this list. For example, passing the
values {1, 2} will alternate between channels 1 and 2 (which would have to be defined in the tuning file).

Table 15: AGC algorithm public API.

An example use of AGC methods:

Algorithm * algorithm = controller -> GetAlgorithm ("agc");

AgcAlgorithm * agc_algorithm = dynamic_cast < AgcAlgorithm *>(algorithm);

if (agc_algorithm) {

agc_algorithm ->SetEv (1.414) ;

agc_algorithm -> SetExposureMode ("sport");

}

5 Raspberry Pi Control Algorithms 35

Raspberry Pi Camera Algorithm and Tuning Guide

5.9.5 Parameters

Name Default Description

startup_frames 10 For this many frames the AGC algortihm runs with maximum speed
(1.0) so as to adapt quickly to the initial conditions.

convergence_frames 6 When queried by the GetConvergenceFrames method, the algorithm
will return this value as the number of frames to drop, unless both
shutter and gain values have been set (when there is no convergence
required).

desaturate 1 When set, AGC will sometimes decide to lower the camera exposure
to meter more effectively for saturated image regions, whilst hiding
this sudden reduction from the application by applying digital gain to
compensate. This behaviour can be suppressed by setting the value
zero.

metering_modes Required A list of metering modes. Each mode specifies a name and 15 num-
bers, which are the weights for the region-based AGC calculation.

exposure_modes Required A list of exposure modes. Each mode specifies a name and a list of
of shutter and gain values which define how the total exposure time
is to be broken up between shutter time and analogue gain.

constraint_modes Required A list of constraint modes. Each mode specifies a name and a list of
histogram constraints, involving the bound type (UPPER or LOWER),
q values for an inter-quantile mean, and a Y target value for it.

y_target Required Pieceswise linear function defining a Y target value (out of a maxi-
mum value of 1.0) for the region-based metering.

base_ev 1.0 Optional parameter that linearly scales the final target exposure
value of the algorithm. Useful for tuning if ever it is desired for the
AGC to be globally a bit brighter (> 1.0) or darker(< 1.0) purely for
reasons of taste.

speed 0.2 Speed of adaptation of the AGC algorithm. A larger value (with a
limit of 1.0) makes the algorithm adjust the camera’s exposure more
quickly to the scene conditions.

Table 16: AGC algorithm parameters.

Single and Multi-channel operation

The parameters above can be listed directly in the "rpi.agc" section of the camera tuning file for single
channel operation, as shown below.

...

{

"rpi.agc":

{

parameters here (which define channel 0)

}

},

...

For multi-channel operation, the "channels" keyword should be used, followed by a list of parameter groups,
each of which defines a single channel. There is no specific limit to the number of available channels. Although
entirely optional, there is a convention of putting a "comment" into each channel that briefly describes it.

5 Raspberry Pi Control Algorithms 36

Raspberry Pi Camera Algorithm and Tuning Guide

...

{

"rpi.agc":

{

" channels ": [

{

" comment ": "This is normal AGC metering ",

parameters for channel 0

},

{

" comment ": "This is a modified AGC configuration ",

parameters for channel 1

}

]

},

...

Defining multi-channel AGC (with the "channels" keyword) but listing parameters for only a single channel
(channel 0) is identical to the single-channel example that we saw previously (without the "channels" key-
word). By default, when AGC starts, it runs using only channel 0, even when there are more available.

5.9.6 Metadata Dependencies

The AGC control algorithm requires the presence of

1. The DeviceStatusmetadata (which should always be available from the camera).

2. The LuxStatusmetadata from the Lux control algorithm.

3. The AwbStatus metadata from the AWB algorithm. Note that it is therefore best to list the AGC algo-
rithm in the JSON file after the AWB algorithm (there is no reverse dependence of the AWB on the AGC
algorithm).

The AGC control algorithm writes an AgcStatus object (controller/agc_status.h) into the image meta-
data in its processmethod, and an AgcPrepareStatus object (same file) in its preparemethod.

5.10 ALSC (Automatic Lens Shading Correction)

5.10.1 Name

rpi.alsc

5.10.2 Overview

Lens shading, also known as vignetting, is the problemwhere light does not fall equally on all parts of the sensor,
particularly near the edges. It causes obvious darkening but also discolouration to parts of the image, as the
effect is not identical in all three colour channels.

Figure 12: Lens shading: no correction (left), luminance correction only (middle), full correction (right).

We see how the uncorrected image (left) shows obvious darkening towards the edges. The middle image
corrects this luminance fall-off, but we still see the colours shifting towards the image edge. Whilst the very

5 Raspberry Pi Control Algorithms 37

Raspberry Pi Camera Algorithm and Tuning Guide

centre isn’t too bad we clearly see progressively more of a cyan cast as we move away. The final image on the
right shows how the image should look - there is no (or minimal) luminance fall-off, and the colour shift has
been corrected.

Lens shading is corrected by creating a spatial 2-dimensional table of gain values that covers the image in ques-
tion. The gains are located at regular horizontal and vertical intervals and pixels are corrected by interpolating a
local gain value from the four nearest values on the grid. We create a separate table for each of red, green and
blue so as to be able to correct the varying colours caused by the lens shading effect.

Figure 13: A grid of 16x12 lens shading gains. The grid may extend slightly beyond the image to ensure every
pixel is covered. On a Pi 5, the grid consists of 32x32 regions.

It is generally found that while luminance correction is beneficial it is usually not necessary to correct it fully.
Firstly we are quite accustomed to seeing images with at least a little darkening in the periphery and secondly,
full correction can boost noisemore thanwemight like. However, colour shading problems are generally viewed
asmore serious as they cause very obvious colour shifts and casts (especiallywhen the background of an image
is very uniform), and there is no real upside to not fixing them.

The Raspberry Pi ALSC algorithm separates the luminance and colour shading problems. We always correct
any colour shading artifacts fully, and then a proportion of the luminance fall-off according to preference. We
calculate separate tables for the red and blue channels to correct the colour shading (and set the green table
to unity everywhere) and then post-multiply each of these by a single luminance correction table.

ALSC tables and parameters would normally be calculated automatically from a set of calibration images by
the Camera Tuning Tool.

5 Raspberry Pi Control Algorithms 38

Raspberry Pi Camera Algorithm and Tuning Guide

Luminance Shading

Luminance shading is measured straightforwardly from a set of calibration images. Whilst the algorithm calcu-
lates only a single average luminance correction table, there would be no difficulty in extending this to a more
complex scheme should we wish.

Colour Shading

This is by far the more difficult part of the problem. We take a hybrid approach to the problem, calculating the
red and blue colour correction tables partly by calibration and partly using an adaptive procedure.

Historically the preferred method for colour shading correction has been to measure separate correction tables
for each of red and blue under different colour temperature illuminants. Then the correct tables are chosen (or
interpolated) according to the current colour temperature being reported by the AWB algorithm. There are a
couple of problems with this.

1. The nature of the colour shading actually varies with the whole spectrum of the illuminant, not just its
apparent colour temperature. Using only the colour temperature based tables will invariably leave some
illuminants with residual colour shading problems (this can be a particular problem when dealing with
mixtures of incandescent, fluorescent or other types of light).

2. There are also variations between different camera modules. Whilst we may tune the colour shading
correction tables with a particular reference (or “golden”) sensor, other sensors in use out in the field may
respond slightly differently, also causing residual colour shading problems (unlesswe go to great expense
and calibrate every single module).

Our solution is to fix “as much as we can” using the colour temperature based calibration method, and then
further to apply the adaptive procedure to “mop up” some of the residual problems. The adaptive procedure is
calibrated so as not to be more aggressive than is necessary.

Colour Temperature based calibration

Here we simply list tables of G/R (or G/B for the blue tables) for our calibration images. Wemay list a separate
table for each colour temperature that we have. As the algorithm runs it will interpolate as necessary so as to
create an appropriate estimate of a table for the current illuminant. These tables are then applied to the statistics

information from the ISP, so that the adaptive algorithm, which runs next, only makes the additional changes
required on top of the calibration-based fixes.

5.10.3 Adaptive ALSC Algorithm

Without loss of generalityweshall assumeweareworkingwith the red colour channel. Exactly the sameprocess
can be followed subsequently for blue (mutatis mutandis). We also denote each of the grid regions (or cells)
with a number i, 0 ≤ i < N , where N is the total number of grid cells (16 × 12 = 192 in the case of the VC4
platform, or 32 × 32 = 1024 on a Pi 5).

We start by defining a chrominance statistic for each grid cell so that Ci = Ri/(Gi +k), using a small constant
k to avoid numerical instabilities and potential division by zero, and also a neighbourhood Ni consisting of the
north, south, east and west neighbours of grid cell i. Writing #Ni to denote the number of neighbours of a grid
cell we note that #Ni = 4 for all interior cells, 3 for edge cells and 2 for the four corner cells.

5 Raspberry Pi Control Algorithms 39

Raspberry Pi Camera Algorithm and Tuning Guide

#N
i
 = 4

#N
i
 = 3

#N
i
 = 2

Figure 14: Cells and their neighbours in a 16x12 grid. The same kinds of definitions hold for the 32x32 grid on a
Pi 5.

Now, the problem at hand is to findmultipliers λi so that λiCi is the same “in places where it looks like it should
be”. To cope with this somewhat nebulous phrase we introduce a matrix of weights wij defined for j ∈ Ni and
zero otherwise. Notice that wij forms a large (192 x 192, or 1024 x 1024 on a Pi 5) but sparse matrix with only
#Ni non-zero entries on each row. Where non-zero, wij will be calculated by comparing Ci and Cj . When they
are very similar then wij takes a value near one; when they are very different, the value goes to zero. It could be

implemented by a Gaussian-style (e−x2

) function.

Now we can define a constraint saying that λiCi should be the same as its neighbours, taking account of the
defined weights. Thus:

λiCi =

∑

j∈Ni

wijλjCj

∑

j∈Ni

wij

There is obviously a danger here that all the wij can go to zero, so in practice we add another term weighted
by the small value ε saying that “when the neighbours don’t help, simply use the average of the neighbour’s λ
values”. Hence:

λiCi =

∑

j∈Ni

wijλjCj +
ε

#Ni
(

∑

j∈Ni

λj)Ci

∑

j∈Ni

wij + ε

Rearranging a little, we end up with a linear system of N equations:

(ε +
∑

j∈Ni

wij)Ciλi −
∑

j∈Ni

(wijCj +
ε

#Ni
Ci)λj = 0

Rewriting these coefficients as a matrix M and the λi as a vector λ we finally have

Mλ = 0

5 Raspberry Pi Control Algorithms 40

Raspberry Pi Camera Algorithm and Tuning Guide

Solution

Astute readers will observe that, as there is no particular reason why the matrix M is singular, then there is
only a single solution to this system, namely λ = 0. In practice, however, the equations lend themselves to the
Gauss-Seidel method (https://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method) wherein λi is updated
from the ith equation according to:

λi =

∑

j∈Ni

(wijCj +
ε

#Ni
Ci)λj

(ε +
∑

j∈Ni

wij)Ci

Note how, informally, λiCi is replaced by a convex combination of its neighbours; therefore the iterations do
not run off towards zero but remain bounded, iterating to a place of lower overall colour error.

5.10.4 Implementation

The ALSC algorithm is implemented in controller/rpi/alsc.cpp.

• The statistics are in fact obtained with the colour shading correction already applied. Therefore the algo-
rithm has to start by dividing out its estimate of the previous correction before continuing (the function
copy_stats).

• The calibrated tables are expected to be for the full field of view sensor frame. When operating in a
cropped mode these tables need to be cropped and resampled (see resample_cal_table).

• The Gauss-Seidel method is applied with a small amount of over-relaxation so as to reach a point of low
colour error more quickly (gauss_seidel2_SOR).

• We apply a normalisation to the λ values, such that mini λi = 1. This is because it is only their relative
values that matter and we do not wish to add any unnecessary extra gain into the image (or indeed apply
any gains less than unity).

• The main part of the algorithm - constructing the matrix M and the Gauss-Seidel iterations - runs asyn-
chronously, and only every few frames. Other than that the implementation closely follows the method
and nomenclature in this document.

• Lens shading algorithms do not have any additional public methods (at this time).

5.10.5 Parameters

Name Default Description

frame_period 12 The ALSC algorithm runs once per this many input frames. Note that
new tables are generated on every frame, being filtered gradually to-
wards the results of the most recent run of the ALSC computation.

startup_frames 10 For this many frames the ALSC algortihm runs as often as possible
(ignoring frame_period) so as to adapt quickly to the initial condi-
tions.

speed 0.05 Coefficient of the IIR filter that adapts the tables, on every frame, to-
wards the latest ALSC result. A value of 1 would adopt the most re-
cently calcualted results immediately.

sigma 0.1 Default value for the standard deviation of colour differences (R/G or
B/G), used in calculating the weights w.

sigma_Cr sigma Standard deviation of red channel colour differences (R/G).

sigma_Cb sigma Standard deviation of blue channel colour differences (R/G).

5 Raspberry Pi Control Algorithms 41

https://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method

Raspberry Pi Camera Algorithm and Tuning Guide

min_count 10 Number if pixels in a statistics region for that region’s data to be con-
sidered meaningful.

min_G 800 Average green value (out of a 16-bit dynamic range) in a statistics
region for that region’s data to be considered meaningful.

n_iter 28 Maximum number of Gauss-Seidel iterations for perform.

omega 1.3 Amount of over-relaxation to apply in Gauss-Seidel iterations. A value
greater than 1 implies (increasing) over-relaxation; values less than 1
would imply under-relaxation.

calibrations_Cr Optional Tables, one for each colour temperature listed, giving the gains re-
quired to correct the red colour channel for that colour temperature
in a 16x12 spatial grid. If omitted, the algorithmwill behave as if these
tables contained unity values everywhere.

calibrations_Cb Optional Tables, one for each colour temperature listed, giving the gains re-
quired to correct the blue colour channel for that colour temperature
in a 16x12 spatial grid. If omitted, the algorithmwill behave as if these
tables contained unity values everywhere.

luminance_strength 1.0 Proportion of the full luminance correction to apply, so that zero
means no luminance correction and 1 means 100% correction.

luminance_lut Optional 16x12 spatial luminance correction table. This table gives gains that
will be applied to all colour channels for full, or 100% luminance cor-
rection.

default_ct 4500 Colour temperature (in kelvin) to be assumed if no AWB metadata is
found.

threshold 1e-3 Gauss-Seidel iterations stop once the step sizes in the solution are all
less than this value.

Table 17: ALSC algorithm parameters.

5.10.6 Metadata Dependencies

The AGC control algorithm requires the presence of the AwbStatusmetadata from the AWB algorithm. Note
that it is therefore best to list the ALSC algorithm in the JSON file after the AWB algorithm (there is no reverse
dependence of the AWB on the AGC algorithm).

The ALSC control algorithm writes an AlscStatus object (controller/alsc_status.h) into the image
metadata.

5 Raspberry Pi Control Algorithms 42

Raspberry Pi Camera Algorithm and Tuning Guide

5.11 Contrast

5.11.1 Name

rpi.contrast

5.11.2 Overview

The Contrast Control Algorithm is responsible for calculating a gamma curve with which to program the ISP
hardware. In the first instance, the JSON tuning file may supply a gamma curve, and applications may allow
users manually to change contrast and brightness (as is customary with monitors and TVs). Additionally, the
algorithm has some ability to watch the image histogram being reported by the ISP and alter the gamma curve
slightly so as to enhance the global contrast.

Figure 15: An example gamma curve with 16-bit inputs and outputs.

Note how the gamma curve is more properly an inverse gamma curve, looking more like y = x1/2.2 than
y = x2.2. Furthermore, the “theoretical 2.2 gamma” is rarely used in practice as it gives rise to rather washed-
out low contrast images.

Adpative Contrast Enhancement

Adaptive Contrast Enhancement uses the image histograms collected by the ISP. It works by selecting a partic-
ular quantile near the bottom of the histogram and moving it to a particular place in the output pixel range. A
similar calculation is performed for a point near the top of the histogram. Normally we use this to ensure the
resulting images have sufficiently strong contrast.

The algorithm also allows brightness and contrast to be adjusted globally. After applying the gamma curve to
the pixel data, the following transformation is applied.

pixelout = (pixelin − 32768) ∗ contrast + 32768 + brightness

(note: pixel values are always treated as being unsigned 16-bit numbers).

5 Raspberry Pi Control Algorithms 43

Raspberry Pi Camera Algorithm and Tuning Guide

5.11.3 External API

TheContrast class is derived fromContrastAlgorithm. Thismeans it implements the following additional
public methods.

ContrastAlgorithm class API

setBrightness(double brightness)
Sets a fixed brightness offset (a pixel value out of a 16-bit range).

setContrast(double contrast)
Sets a fixed contrast value. A value less than one decreases the contrast, a value greater than one increases
the contrast.

Table 18: Contrast algorithm public API.

Algorithm * algorithm = controller -> GetAlgorithm (" contrast ");

ContrastAlgorithm * contrast_algorithm = dynamic_cast < ContrastAlgorithm *>(

algorithm);

if (contrast_algorithm) {

contrast_algorithm -> setBrightness (2000) ;

contrast_algorithm -> setContrast (1.1);

}

5.11.4 Parameters

Name Default Description

startup_frames 6 The first few frames emerging from the ISP can be rendered entirely as
black, in case algorithms like AEC/AGC are still converging (and applica-
tion code is not hiding them).

ce_enable 1 Whether to enable adaptive contrast enhancement. If set to zero, the
gamma curve is used exactly as specified (subject to user brightness/-
contrast settings).

lo_histogram 0.01 Quantile near the bottom of the histogram to bemoved when ce_enable
is set.

lo_level 0.015 Level (out of a maximum of 1.0) in the range where the current lo_-
histogram quantile will be moved.

lo_max 500 Maximumamount (out of 16 bits) bywhich the lowquantilemaybemoved.

hi_histogram 0.95 Quantile near the top of the histogram to be moved when ce_enable is
set.

hi_level 0.95 Level (out of a maximum of 1.0) in the range where the current hi_-
histogram quantile will be moved.

hi_max 2000 Maximum amount (out of 16 bits) by which the high quantile may be
moved.

gamma_curve Required Gamma curve. A list of alternating input and output points, each given out
of a 16-bit range. There must be an even number of points in this list.

Table 19: Contrast algorithm parameters.

5.11.5 Metadata Dependencies

The Contrast Control Algorithm does not require any other metadata.

5 Raspberry Pi Control Algorithms 44

Raspberry Pi Camera Algorithm and Tuning Guide

The Contrast Control Algorithm writes a ContrastStatus object (controller/contrast_status.h) into
the image metadata.

5.12 CCM (Colour Correction Matrices)

5.12.1 Name

rpi.ccm

5.12.2 Overview

The CCM (Colour Correction Matrix) Algorithm selects an appropiate CCM for the prevailing conditions to con-
vert the camera’s notion of RGB into our standard version of RGB according to





Rstandard

Gstandard

Bstandard



 = C





Rcamera

Gcamera

Bcamera





where C is a 3x3 matrix. Note that the rows of C will normally sum to 1 (otherwise grey pixels will not be
preserved).

Calibration is usually performed using the Camera Tuning Tool, and consists of a list of colour temperatures,
each followed by a 3x3 matrix written out as 9 values in normal reading order. During operation, the algorithm
will estimate a CCM - interpolating as necessary - using the current estimated colour temperature as reported
by the AWB algorithm.

In the following example colour matrix





1.80439 −0.73699 −0.06739

−0.36073 1.83327 −0.47255

−0.08378 −0.56403 1.64781





observe how we have large values on the diagonal and smaller but still significant negative values next to them
- this is fairly typical.

The algorithm allows the colour saturation of the output image to be altered. It does this by transforming the
colour matrix Coriginal from above according to the following equation for the saturation parameter s.

Cnew = A−1





1 0 0

0 s 0

0 0 s



 A Coriginal

where the matrix A here converts from RGB to YCbCr, viz.

A =





0.299 0.587 0.114

−0.169 −0.331 0.500

0.500 −0.419 −0.081



 .

5 Raspberry Pi Control Algorithms 45

Raspberry Pi Camera Algorithm and Tuning Guide

5.12.3 External API

The Ccm class is derived from CcmAlgorithm. This means it implements the following additional public meth-
ods.

CcmAlgorithm class API

setSaturation(double saturation)
Sets a fixed sautration level, where 1.0 = normal saturation, 0.0 = greyscale and values greater than 1.0 imply
increased colour saturation.

Table 20: Ccm algorithm public API.

Algorithm * algorithm = controller -> GetAlgorithm ("ccm");

CcmAlgorithm * ccm_algorithm = dynamic_cast < CcmAlgorithm *>(algorithm);

if (ccm_algorithm) {

// Set colour saturation to 90% of the normal level.

ccm_algorithm -> setSaturation (0.9);

}

5.12.4 Parameters

Name Default Description

ccms Required List of colour temperatures followed by 3x3 colour matrix.

saturation Optional An optional piecewise linear function that allows colour saturation to vary with
the estimated lux level of the image (for example, to reduce colour saturation in
low light). It is specified by listing alternative lux and saturation values.

Table 21: CCM algorithm parameters.

5.12.5 Metadata Dependencies

The CCM Control Algorithm requires

1. The AwbStatusmetadata from the AWB algorithm, and

2. the LuxStatusmetadata from the Lux algorithm.

The CCM Control Algorithm writes a CcmStatus object (controller/ccm_status.h) into the image meta-
data.

5.13 Sharpening

5.13.1 Name

rpi.sharpen

5 Raspberry Pi Control Algorithms 46

Raspberry Pi Camera Algorithm and Tuning Guide

5.13.2 Overview

The Sharpening Control Algorithm gives rudimentary control over the Sharpening hardware block in the ISP
according to the following simple model.

Limit

Threshold

Strength (slope)

Pixel high freq. response

Amount of
sharpening

Figure 16: Sharpening Parameter model, where:
• the pixel high frequency response is measured, and nothing below threshold gets sharpened,
• the strength gives the rate (or slope) of how much sharpening increases with the pixel high frequency
response, and

• limit is a maximum value to the amount of sharpening applied.

The parameters are normally varied automatically according to the mode currently being used by the camera.
The default configuration and values should normally be sufficient for many purposes, although they may need
adjustment by hand for some sensors.

5.13.3 External API

The Sharpen class is derived from SharpenAlgorithm. This means it implements the following additional
public methods.

SharpenAlgorithm class API

setStrength(double strength)
Sets the sharpening strength, where 1.0 = normal sharpness, 0.0 = no sharpening at all and values greater
than 1.0 imply increased sharpening.

Table 22: Sharpen algorithm public API.

Algorithm * algorithm = controller -> GetAlgorithm (" sharpen ");

SharpenAlgorithm * sharpen_algorithm = dynamic_cast < SharpenAlgorithm *>(

algorithm);

if (sharpen_algorithm) {

// Set sharpening to 80% of the normal level.

sharpen_algorithm -> setStrength (0.8);

}

5 Raspberry Pi Control Algorithms 47

Raspberry Pi Camera Algorithm and Tuning Guide

5.13.4 Parameters

Name Default Description

threshold 1.0 Threshold below which pixels are not sharpened. Use values < 1 to sharpen more
low contrast pixels; use values > 1 to sharpen fewer low contrast pixels.

strength 1.0 Slope of the rate at which the smount of sharpening applied increases. Use values
< 1 to reduce the rate at which sharpening increases; use values > 1 to apply
increasing amounts of sharpening more quickly.

limit 1.0 Limit to the total amount of sharpening applied. Use value < 1 for a lowermaximum
amount of sharpening; use values > 1 to allow larger amounts to sharpening to be
applied.

Table 23: Sharpening algorithm parameters.

5.14 Auto Focus

5.14.1 Name

rpi.af

Note: This algorithm is only available for cameras with an associated lens driver. To implement Continuous AF,
it requires a PDAF sensor, such as Sony IMX708.

5.14.2 Overview

The AF algorithm is responsible for controlling a lens driver to achievemanual or auto focus. It has threemodes
of operation:

• In Manual mode, it simply sets the lens to focus at a distance specified by the user. Note that many lens
drivers are not accurately calibrated for absolute distances (but are usually repeatable);

• In Auto mode it will search for the best focus when triggered by the user, using either Contrast Detection
Auto Focus (CDAF) or Phase Detection Auto Focus (PDAF);

• In Continuous mode it implements a feedback loop to try to maintain the best focus – this mode works
only when PDAF data are available;

5.14.3 External API

The Af class is derived from AfAlgorithm, and implements the following additional public methods:

AfAlgorithm class API

setRange(AfRange range)
Sets the range of lens travel, which should be one of {AfRangeNormal, AfRangeMacro, AfRangeFull}.
Default is AfRangeNormal.

setSpeed(AfSpeed speed)
Sets the convergence speed, which should be one of {AfSpeedNormal, AfSpeedFast}. Default is
AfSpeedNormal.

setMetering(bool use_windows)
Controls whether user-defined windows are used for AF. When disabled, a default central window is used.

setWindows(libcamera::Span<libcamera::Rectangle const> const & windows)
Set AF windows. These are defined in pixels relative to the full sensor; i.e. the same coordinate system in
which crop rectangles are defined. If no windows are specified or if all windows are outside the current
mode’s maximum crop region, a default central window is used.

5 Raspberry Pi Control Algorithms 48

Raspberry Pi Camera Algorithm and Tuning Guide

setMode(AfMode mode)
Set the focus mode, which should be one of {AfModeManual, AfModeAuto, AfModeContinuous}.

setLensPosition(double dioptres, int32_t *hwpos)
For use in Manual mode: focus at the given position, specified as the inverse of a distance in metres. If
hwpos is not null and if the function returns true, *hwpos will be set to the V4L2 control value to which the
lens should immediately be driven.

triggerScan()
For use in Auto mode: start a scan.

cancelScan()
For use in Auto mode: cancel any incomplete scan.

pause()
For use in Continuous mode: pause or resume continuous focus.

Table 24: Autofocus algorithm public API.

5.14.4 Parameters

Name Default Description

ranges Parameters that depend on AfRange:

normal Parameters applied in AfRangeNormal:

min 0.0 Inverse of furthest focus distance in metres.

max 12.0 Inverse of nearest focus distance in metres.

default 1.0 Default inverse distance.

macro Same as normal Parameters applied in AfRangeMacro

full Union of normal,macro Parameters applied in AfRangeFull

speeds Parameters that depend on AfSpeed:

normal Parameters applied in AfSpeedNormal:

step_coarse 1.0 Coarse step size in dioptres (inverse metres), for CDAF.

step_fine 0.25 Fine step size in dioptres (inverse metres), for CDAF.

step_frames 4 Number of frames to linger between steps, for CDAF, to
allow the lens to settle and for latency.

contrast_ratio 0.75 Contrast threshold, relative to peak value, below which to
terminate coarse scan and start fine scan.

pdaf_gain -0.02 Feedback coefficient relating PDAF phase to lens move-
ment per frame. The correct sign and magnitude will de-
pend on how phase is encoded by the sensor. For a sen-
sor without PDAF, this must be 0.

pdaf_squelch 0.125 Lens movement per frame below which to suppress
small movements in Continuous mode, or to terminate
a scan in Auto mode with PDAF. Ignored without PDAF.

max_slew 2.0 Maximum lens movement per frame.

pdaf_frames 20 Number of frames to run thePDAF loop for each triggered
scan in Auto mode. For a sensor without PDAF, this must
be 0.

5 Raspberry Pi Control Algorithms 49

Raspberry Pi Camera Algorithm and Tuning Guide

dropout_frames 6 Number of frames with low PDAF confidence before
PDAF will be abandoned in favour of a CDAF-based scan.
For a sensor without PDAF, this must be 0.

fast Same as normal Parameters applied in AfSpeedFast

conf_epsilon 8 PDAF confidence global threshold. The scale of this and
the following two parameters will depend on how confi-
dence is encoded by the sensor. Ignored without PDAF.

conf_thresh 16 Per-region confidence threshold. Regions with less than
this PDAF confidence are ignored. Ignored without PDAF.

conf_clip 512 Per-region confidence upper limit. Regions with more
than this PDAF confidence do not receive any additional
weight. Ignored without PDAF.

skip_frames 5 Frames to skip at startup or after a mode switch, before
phase and contrast data can be considered reliable.

map [0.0, 445, 15.0, 925] PWL function which relates inverse distance to hardware
lens setting (V4L2_CID_FOCUS_ABSOLUTE). Also de-
fines the minimum andmaximum possible lens position.
It must be specified for each (sensor,lens) combination.

Table 25: Autofocus algorithm parameters.

5.14.5 Metadata Dependencies

The Auto Focus algorithm reads the focusRegions statistics, which are used for CDAF. Where available, it
also reads the pdaf.regions image metadata, generated by the sensor via its camera helper.

The output of the Auto Focus algorithm is the af.status image metadata, which encodes its state and, op-
tionally, the setting to which the lens should be driven.

Lens settings should be acted upon as soon as possible and should not wait until the associated frame is at
the head of the queue for display.

5.15 Chromatic Aberration Correction

5.15.1 Name

rpi.cac

Note: This algorithm is only available on Pi 5.

5.15.2 Overview

This hardware block is able to perform a slight resampling of the red and blue pixels in the Bayer pattern in order
to reduce lateral chromatic aberration. It is accomplished by shifting the red and blue pixels up to 2 pixels in
any direction.

These shift values are defined on an 8x8 grid covering the image. The shift values for each pixel are interpolated
bi-linearly from this table.

5 Raspberry Pi Control Algorithms 50

Raspberry Pi Camera Algorithm and Tuning Guide

5.15.3 External API

The Cac class does not currently implement any extra methods.

5.15.4 Parameters

Name Default Description

lut_rx Optional Table of 8x8 pixel displacements, each value lying between -2.0 and 2.0. This table
defines the amount of shift applied to red pixels in the x (horizontal) direction. When
unspecified, all the values default to zero.

lut_ry Optional As lut_rx but for the y (vertical) direction.

lut_bx Optional As lut_rx but for the blue pixels.

lut_by Optional As lut_ry but for the blue pixels.

strength 1.0 A scale factor applied to the pixel displacements as they are loaded.

Table 26: Chromatic aberration correction algorithm parameters.

5.16 HDR (High Dynamic Range)

5.16.1 Name

rpi.hdr

5.16.2 Overview

The HDR algorithm can support applications that require images with a higher dynamic range than normal. It
does so by running the AEC/AGC algorithm in a specially configured manner, and may then (on a Pi 5) merge
and apply tonemapping to the results.

Normally AGC runs in a single channel configuration, metering for a compromise level of brightness for the im-
age as a whole. However, we can define separate AGC channels to meter, for example, for the image highlights
(because this will shorten the exposure time it is often referred to as the “short” channel), or for the darker parts
of the image (similarly, the “long” channel).

The HDR algorithm can be set up to work with AGC running with a single different channel from the usual one
(usually a “short” channel), or using a number of different channels which are run on alternating frames (such
as a “short” and a “long” channel).

On a Pi 5 the images from these different channels can (optionally) be merged and tonemapped, whereas on a
Pi 4 or earlier device, this feature is not available. In this case the application will receive alternating “short” and
“long” exposure images, being, respectively, under- and over-exposed. It will be up to the application to decide
how to deal with the differently exposed images.

Tuning the HDR algorithm therefore consists of two steps.

• The AGC channel or channels must be configured in the “rpi.agc” section of the tuning file.

• The HDR algorithm must be configured to advertise the AGC channels it wants to use, and on a Pi 5 it
may additionally be configured how to merge and tonemap images.

The tuning files supplied for a Pi 5 contain AGC channel and HDR configurations that should be useful in a
variety of situations.

AGC Channels

The AGC channels are as follows:

• Channel 0 - normal AEC/AGC metering.

5 Raspberry Pi Control Algorithms 51

Raspberry Pi Camera Algorithm and Tuning Guide

• Channel 1 - HDR short channel metering. This channel will attempt to expose for image highlights, but
not to the point of crushing the vast majority of the image to near darkness.

• Channel 2 - HDR long channel metering. This channel will meter for the less bright parts of the image,
whilst not straying too far from the short channel (channel 1).

• Channel 3 - A “night” modemetering channel. The tuning file supplies a subtle HDRmode whichmodestly
brightens up very dark images, whilst also recovering mildly over-exposed highlights.

HDR Modes

HDR configurations are each named and independent, and the ones defined to use these channels are:

• "off" - HDR is disabled. This HDR “mode” engages AGC channel 0 as the sole AGC channel.

• "SingleExposure" - HDR mode that accumulates multiple “short” exposure images using AGC chan-
nel 1. This is recommended on Pi 5 for most HDR applications.

• "MultiExposure" - HDRmode using short and long images (AGC channels 1 and 2). Thismode can be
used onlywhere a scene is completely static, does not really work for video, and the"SingleExposure"
mode should nearly always be preferred.

• "Night" - a “mild” HDR mode for low light imaging.

Finally there is also a special "MultiExposureUnmerged" mode which runs a short and long channel just
like the "MultiExposure" mode, but applies no image merging and tonemapping (the application receives
unmodified under- and over-exposued images). This mode is the only mode that could be used on a Pi 4 (or
earlier device). It can also be used on a Pi 5 where an application wants to take control of the HDR processing.

5.16.3 External API

The Hdr class is derived from HdrAlgorithm. This means it implements the following additional public meth-
ods.

HdrAlgorithm class API

setMode(std::string const &modeName)
Sets the HDR mode to one of the ones named in the tuning file, such as "Off", "SingleExposure" and
so forth.

getChannels()
Get the list of AGC channels for this mode. The returned list should be passed to the AGC algorithm’s
setActiveChannelsmethod.

Table 27: Hdr algorithm public API.

Algorithm * algorithm = controller -> GetAlgorithm (" sharpen ");

SharpenAlgorithm * sharpen_algorithm = dynamic_cast < SharpenAlgorithm *>(

algorithm);

algorithm = controller -> GetAlgorithm ("agc");

AgcAlgorithm * agc_algorithm = dynamic_cast < AgcAlgorithm *>(algorithm);

if (hdr_algorithm && agc_algorithm) {

hdr -> setMode (" SingleExposure ");

agc -> setActiveChannels (hdr -> getChannels ());

}

5 Raspberry Pi Control Algorithms 52

Raspberry Pi Camera Algorithm and Tuning Guide

5.16.4 Parameters

Name Default Description

cadence Required The sequence in which to run AGC channels on the cam-
era frames. For example, { 1, 2 }will run AGC channel
1 and then channel 2 on alternate frames.

channel_map Required A table mapping the HDR terms “short” and “long” onto
the AGC channels used in the cadence.

Note: all the subsequent fields apply only to Pi 5

stitch_enable 0 Whether to stitch multi-channel images together. This
should be set to 1 when there are two (“short” and “long”)
AGC channels, and otherwise zero. Though as noted, the
single (and not multi) exposure mode of HDR operation
is recommended.

tonemap_enable 0 Whether to apply tonemapping. Setting this to 0 will
make a Pi 5 run like an earlier device, where no tonemap-
ping occurs and the frames for the different AGC chan-
nels are returned directly.

spatial_gain 2.0 The darkest areas of the imagewill have this gain applied
to them. By default, areas where the brightness level is
between 0 and 1% of the full range will have this gain
applied, tapering down to a gain of 1.0 at 6% of the full
range.

spatial_gain_curve Optional A more detailed way of setting the spatial gain. Here
the entire piecewise linear function relating brightness to
gain can be specified. For example, { 0, 2.0, 0.01,
2.0, 0.06, 1.0, 1.0, 1.0 }would be equivalent
to setting spatial_gain to 2.

diffusion 3 The spatial gain is defined on a grid with granularity
32x32 across the image. This value determines across
howmany of these individual cells the gain can “diffuse”.
Too low a value leads to obvious halos, whereas too
large a value reduces the overall usefulness of the spa-
tial gain.

hi_quantile_targets Optional A list of quantile, target pairs of numbers. When a scene
does not show much saturation, as judged by the quan-
tile values in this list not reaching the targets, then the
tonemapping tries to use gain in place of tonemapping
curves, as this better preserves local contrast. The de-
fault value for this field is { 0.95, 0.65, 0.5,
0.28, 0.3, 0.25 }, meaning that the 95% point of
the histogram should reach the 65% part of the dynamic
range, and so on.

hi_quantile_max_gain 1.6 Themaximum gain that can be applied as a result of the
“high quantile” analysis.

5 Raspberry Pi Control Algorithms 53

Raspberry Pi Camera Algorithm and Tuning Guide

quantile_targets Optional Somewhat like the hi_quantile_targets, these are
targets for quantiles at the low end of the dynamic range
that the algorithm will attempt to achieve through a
power law tonemap, rather than through gain. It defaults
to { 0.2, 0.03, 1.0, 0.15 }, meaning that the
20% quantile should ideally reach at least 3% up the dy-
namic range, and so on.

power_min 0.65 The minimum allowed value of the exponent calculated
by the lowquantile analysis. Decreasing this valuewould
allow stronger tonemapping to be used.

power_max 1.0 The maximum allowed value of the exponent calculated
by the low quantile analysis.

contrast_adjustments { 0.5, 0.75 } The power law used for tonemapping tends to create
slightly washed out images because of the steep gains
at the bottom. These factors multiply the output values
at the bottom end of the tone curve, so as to lower them.
The values can be changed, or more values added, so as
to apply further up the curve.

Table 28: Sharpening algorithm parameters.

5.16.5 Metadata Dependencies

The HDR algorithm requires the "agc.status"metadata and "alsc.status"metadata to be available.

The HDR Control Algorithm writes a TonemapStatus object (controller/tonemap_status.h) into the im-
age metadata when tonemapping is enabled, and a StitchStatus object (controller/stitch_status.h)
when stitch is enabled.

5.17 Metadata and Statistics Usage

We finish with a diagram (figure 17) showing how image metadata is both read and written to by the various
stages of procesing.

5 Raspberry Pi Control Algorithms 54

Raspberry Pi Camera Algorithm and Tuning Guide

Black
Level

DPC Lux Noise GEQ SDN
Black
Level

DPC Lux AWB AGC ALSC
Cont-
rast

CCM
Shar-
pen

M
e

ta
d

a
ta

S
ta

ti
s
ti
c
s

S
e

n
s
o

r
A

lg
o

ri
th

m

d
e

v
ic

e
.s

ta
tu

s

b
la

c
k
_

le
v
e

l.
s
ta

tu
s

d
p

c
.s

ta
tu

s

d
e

v
ic

e
.s

ta
tu

s

lu
x
.s

ta
tu

s

d
e

v
ic

e
.s

ta
tu

s

n
o

is
e

.s
ta

tu
s

d
e

v
ic

e
.s

ta
tu

s

lu
x
.s

ta
tu

s

g
e

q
.s

ta
tu

s

n
o

is
e

.s
ta

tu
s

s
d

n
.s

ta
tu

s

lu
x
.s

ta
tu

s

a
w

b
.s

ta
tu

s

d
e

v
ic

e
.s

ta
tu

s

lu
x
.s

ta
tu

s
,
a
w

b
.s

ta
tu

s

a
g

c
.s

ta
tu

s

a
w

b
.s

ta
tu

s

a
ls

c
.s

ta
tu

s

c
o

n
tr

a
s
t.
s
ta

tu
s

a
w

b
.s

ta
tu

s

lu
x
.s

ta
tu

s

c
c
m

.s
ta

tu
s

s
h

a
rp

e
n

.s
ta

tu
s

Figure 17: Usage of image metadata and other information by ISP control algorithms on a Pi 4. Pi 5 operates
mostly in an identical manner.

In figure 17, observe that:

• Device metadata (device.status) is always supplied from the camera information.

• After AGC/AEC has run, updated exposure and gain values are fed back to the camera (though this hap-
pens outside of the algorithm itself).

• Some algorithms use image statistics but many do not. Many use only the device.status from the
image metadata.

• All algorithms write status information back to the image metadata.

5 Raspberry Pi Control Algorithms 55

Raspberry Pi Camera Algorithm and Tuning Guide

6 Camera Tuning Tool

6.1 Overview

The Camera Tuning Tool (CTT) is a Python program designed to produce a fully working camera tuning JSON
file from a relatively small set of calibration images. Once the tool has run, there should be either no or only
minimal further tweaking to the JSON file required in order to obtain the desired image quality. The tuning
algorithms are furthermore designed to work with a minimum amount of expensive or specialised equipment.
The processes required in creating a finished camera tuning are as follows.

1. Firstly, a functional V4L2 camera driver must be written (see Chapter 3). For the purposes of writing the
camera driver, an uncalibrated tuning file can be copied which should provide recognisable images. Copy
one of vc4/data/uncalibrated.json (Pi 4 and earlier devices) or pisp/data/uncalibrated.json

(Pi 5), depending on the platform you are using. Care should also be taken that the black level listed in
the file is adjusted to match the black level specified in the sensor data sheet (and scaled up to a 16-bit
range).

2. The set of calibration images must be captured. Again, this should use the uncalibrated tuning file. There
are two types of calibration images, those with a Macbeth chart, and a further set of completely uniform
images for measuring lens shading.

3. On a Pi 5 you may optionally capture some images to tune the Chromatic Aberration Correction (CAC)
block. These images can also be omitted. This feature does not exist on Pi 4 or earlier devices.

4. With the calibration images all correctly named and stored in a folder, the CTT can be run. The CTT finds
Macbeth charts in images automatically and uses them tomeasure noise profiles, green imbalance, white
balance and colour matrices.

5. The output JSON file of the CTT can be used directly, possibly with minor further tweaking.

6.2 Raspberry Pi rpicam-apps

Image capture is most conveniently performed using Raspberry Pi’s rpicam-apps. For readers who are familiar
with the existing raspistill and raspivid applications, the rpicam-apps, including rpicam-still and rpicam-vid are
libcamera-based replacements. Though not completely identical in functionality, they aim to be very similar.

The rpicam-apps should be installed by default on any Raspberry Pi OS. For more information about them,
please refer to https://www.raspberrypi.com/documentation/computers/camera_software.html.

6.3 Software Requirements

The CTT requires Python 3 to be installed, and uses the following additional modules.

matplotlib

scipy

numpy

cv2

imutils

sklearn

pyexiv2

rawpy

The following commands are sufficient to install all the required libraries and modules in an otherwise clean
Ubuntu 18.04.4 LTS installation. This process should be similar in other distributions.

sudo apt install python3 -pip libexiv2 -dev libboost -python -dev

pip3 install opencv - python imutils matplotlib scikit -learn py3exiv2 rawpy

6 Camera Tuning Tool 56

https://www.raspberrypi.com/documentation/computers/camera_software.html

Raspberry Pi Camera Algorithm and Tuning Guide

6.4 Equipment

The additional equipment required for camera tuning is described below.

6.4.1 X-rite (Macbeth) Colour Checker

These charts are very well known, and one is shown in figure 18. They normally cost less than £100.

Figure 18: X-rite Macbeth Chart.

6.4.2 Colorimeter

Some kind of colorimeter is required in order tomeasure the colour temperature and light level of the calibration
images. One such is shown in figure 19, costing normally a few hundred pounds.

Figure 19: A Colorimeter.

Depending on the application it may be possible to get by with significantly simpler instruments. For exam-
ple, a mobile phone may well report colour temperature and light level, and while its readings may be quite
approximate, it may suffice for certain use cases.

6 Camera Tuning Tool 57

Raspberry Pi Camera Algorithm and Tuning Guide

6.4.3 Integrating Spheres and Flat Field LEDs

There are some relatively sophisticated pieces of equipment - integrating spheres and flat field LED lamps -
that can help calibrate lens shading, and these are likely to prove beneficial when they are available. The CTT is
designed to average multiple images for each colour temperature, so quite reasonable results can be obtained
with a cheap LED video light costing less than £50, possibly with an extra diffuser. It’s convenient if the lamp
can generate a couple of colour temperatures, approximating to “indoor” and “outdoor”.

6.5 Capturing Calibration Images with libcamera

The tuning process requires raw images to be captured and fed into the tuning tool. We recommend Raspberry
Pi’s rpicam-apps for this purpose, as described earlier, however the qcam application supplied with libcamera

itself is also suitable. Both applicationswill capture the required full resolution raw files (in DNG, or Adobe “digital
negative” format).

6.5.1 Capturing a Raw Image

Camera tuning files are kept in the vc4/data (Pi 4 or earlier devices) or pisp/data (Pi 5) folder under the
Raspberry Pi IPA folder, and the control algorithms expect to find a JSON file there, named according to the
sensor name exposed in the driver, for every camera that is used. When tuning a new camera, of course, we
don’t have one so we provide a tuning file for uncalibrated cameras which can be copied. For example, when
tuning a new sensor named xyz123 we simply copy uncalibrated.json to xyz123.json, all in the same
folder.

The newly copied uncalibrated tuning will produce recognisable images from pretty much any sensor, but there
is just one single parameter that does have to be configured before use. This is the black level, and it must be set
to the correct value from the sensor datasheet scaled up to 16 bits. So if your sensor produces 10-bit samples,
and the black level is 64, then the correct value in the new uncalibrated tuning file (xyz123.json) will be 4096.

To capture a DNG using rpicam-still, enter (substitute an image name of your choice for image.jpg)

rpicam -still -r -o image.jpg

which will produce a full resolution jpeg file named image.jpg and a DNG file image.dng (the same name but
with the extension .dng). This second file contains the raw data that produced the jpeg.

Note that the CTT may sometimes discard an image if it is too over-exposed to be useful, and it will report this
in the console log. Mostly the tuning produced should still be reasonable, but you may wish to retake those
particular images with a lower exposure, for example:

rpicam -still -r -o image.jpg --ev -1.0

This will reduce the exposure by one stop.

6.6 Image Capture Requirements

As we have already explained, there are two (on a Pi 5, optionally three) distinct types of calibration images.
Because we are most likely to be using the uncalibrated tuning, it is possible that the colour balance may ap-
pear incorrect in some of the images. Rest assured that this makes no difference - it is only the raw camera
data (which is unaffected) that is used by the tuning tool; the image displayed while capturing is purely for
convenience and to aid framing each shot.

6 Camera Tuning Tool 58

Raspberry Pi Camera Algorithm and Tuning Guide

6.6.1 Macbeth Chart Images

The aim here is to capture images containing a Macbeth chart. The CTT locates the Macbeth charts automat-
ically, therefore the chart should be

• Reasonably central,

• Not too small,

• Reasonably straight, and

• Unobscured, except perhaps a little bit at the edges (where maybe it is being held).

The images should be captured under a range of different colour temperates spanning at least the operating
conditions the camera is expected to encounter. For a camera system to be used across a wide range of
conditions, this might include lamps from about 2500K up to about 8000K. It is acceptable to capture images
both in a camera lab that can generate the different illuminants, and/or out in real world operating conditions.
In general, the closer the calibration pictures to the final operating environment, the better the results are likely
to be. Below are a couple of acceptable calibration pictures.

Figure 20: Acceptable Macbeth Chart calibration images.

The left hand image is taken in a small purpose-built camera lab/studio, whist the second wasmerely taken out
in an office lobby. We would probably not recommend going very much smaller than the chart in this left hand
image. Observe further that the right hand image shows some barrel distortion - at the level shown the CTT is
still able to work with the image.

Once captured, images should be named so as to contain the colour temperature (followed by ’k’ or ’K’) and the
lux level (followed by ’l or ’L’) in the filename. Valid filenames might include

• imx219_2954k_1749l.dng for an image captured in 1749 lux with a colour temperature of 2954K, or

• 1749L_2954K.dng for the same image.

6.6.2 Lens Shading Images

As with theMacbeth calibration images, images should be captured in different colour temperatures depending
on what illuminants are available (though not necessarily the same ones). Images that accurately reflect and
cover the range of operating conditions are likely to be beneficial. Here, however, the image must be of a com-
pletely featureless, flat and uniform surface, such as an LED video light. Again, the filenames should contain the
colour temperature (followed by ’k’ or ’K’). The lux level does not need to be recorded on this occasion, though
the filenames must include alsc so that these images can be distinguished from the Macbeth chart images
as they are loaded.

Where specialised equipment is available a single lens shading image for each colour temperature may be
sufficient. Otherwise images should be captured where the luninance variation across the scene is as low
as practicably possible, and the CTT will expect a number of calibration images for each colour temperature,
where each image should be taken with the camera rotated or positioned differently. For example, for each
colour temperature we might submit

• 2 images each, one where the camera is the usual way up and the other where the camera is held upside
down, or

6 Camera Tuning Tool 59

Raspberry Pi Camera Algorithm and Tuning Guide

• 4 images each, where each image positions the camera distinctly on an LED video light.

The CTT averages the images for each colour temperature, thereby reducing the effect of the uneven illumina-
tion on the scene and making the intrinsic lens-produced colour and luminance shifts more discernible.

Figure 21: Lens shading images alsc_3850k_1.dng and alsc_3850k_2.dng. In this case the images differ
slightly because they have been placed differently on an LED light for capture.

The single luminance correction table required by the ALSC algorithm is calculated by averaging together all the
lens shading calibration images, for all colour temperatures.

6.6.3 Chromatic Aberration Correction (CAC) Images

This feature is only available on Pi 5 and can be ignored on other platforms. Even on Pi 5, it is optional to supply
these images. If none is supplied, the CAC function in the ISP will be left disabled by the final tuning file.

One ormore CAC images can be supplied, and they will all be identified by having the string cac in the file name.
Where more than one image is supplied, they are averaged together to form the final CAC adjustment tables.
The CAC correction feature only works for lateral chromatic aberration.

The images should be of the cac_chart.pdf file, which should be printed out with a reasonable quality printer
that does not create any colour fringes. Normally best results will be obtained by printing the image as large
as possible so that the camera is further away, preferably at least A3 size. We also recommend taking care to
adjust the focus of the lens where this is variable.

Figure 22: This image, cac_chart.pdf, should be supplied with the Camera Tuning Tool.

6 Camera Tuning Tool 60

Raspberry Pi Camera Algorithm and Tuning Guide

6.7 Creating the Tuning

6.7.1 Collecting the Files

Once all of the calibration images have been captured, they should be placed together into a single folder with
no other image files. The directory listing below shows an example of what such a calibration folder might
contain.

2498 K_106l .dng

2811 K_403l .dng

2911 K_1208l .dng

2919 K_605l .dng

3627 K_1247l .dng

4600 K_998l .dng

5716 K_1069l .dng

8575 K_170l .dng

alsc_3000K_1 .dng

alsc_3000K_1u .dng

alsc_3850K_1 .dng

alsc_3850K_1u .dng

alsc_6000K_1 .dng

alsc_6000K_1u .dng

In this example we have eight Macbeth chart images covering eight different illuminants and three pairs of
lens shading images covering only three colour temperatures, and where the second of the pair is rotated 180
degrees compared to the first. Please be aware that there should be only a single Macbeth chart image at each
distinct colour temperature.

6.7.2 Running the Tool

The tuning tool can be found under the root libcamera directory in utils/raspberrypi/ctt and can be run
by executing ctt.py found there. It takes the following arguments

Name Default Description

-i Required Path of the folder containing the calibration images.

-o Required Name of the output JSON file to contain the camera tuning.

-t vc4 The target platform for the tuning file, either vc4 (Pi 4 or earlier devices) or pisp
(Pi 5).

-c Optional The CTT takes a JSON file containing its own configuration options (see below).
If omitted, default parameters are used.

-l ctt_log.txt Name of a log file to which diagnostic output from the tool is written.

Table 29: Camera tuning tool command line options.

For example, one might, in the libcamera folder utils/raspberrypi/ctt, enter

./ ctt.py -t vc4 -i ~/ imx219_calibration_folder -o imx219 .json

The tool takes quite a few seconds to run, reporting its progress during this time. The default configuration
should normally be appropriate, but an example CTT configuration file is included below (also ctt_config_

example.json in the same folder) for completeness.

6 Camera Tuning Tool 61

Raspberry Pi Camera Algorithm and Tuning Guide

{

" disable ": [],

"plot": [],

"alsc": {

" do_alsc_colour ": 1,

" luminance_strength ": 0.5

},

"awb": {

" greyworld ": 0

},

" blacklevel ": -1,

" macbeth ": {

"small": 0,

"show": 0

}

If necessary the fields here can be modified, as follows.

Name Description

"disable": Do not tune the listed stages. Generally should be left as [].

"plot": Show plots during the tuning process.

"do_alsc_colour": Whether to calibrate for colour shading correction. Would be omitted for a
monochrome sensor.

"luminance_strength": Luminance shading strength to specify in the final output file, between zero
and one (inclusive).

"greyworld": Whether to request GreyWorld AWB in the tuning file, or the (usual) Bayesian
algorithm.

"blacklevel": Black level to use for this sensor (out of 16 bits). The value -1 indicates to
attempts to deduce it from the input file, if possible. Otherwise it is recom-
mended to enter the correct black level obtained from the sensor data sheet.

"small": Whether to search for extra small Macbeth charts in images (takes slightly
longer).

"show": Whether to show locations of Macbeth charts found in images.

Table 30: Camera tuning tool runtime config parameters.

6.8 Tweaking the Tuning produced by the Tool

6.8.1 Blocks not Tuned

There are a handful of blocks that the CTT does not actually tune but merely outputs default parameters. In
these cases the default parameters should normally be sufficient (they are already “adaptive” to the image in
some sense) and there would be no particular reason to change them other than as part of any more general
aesthetic alterations to the tuning file. These blocks are:

1. Defective Pixels (rpi.dpc) - this will be left at “normal” correction strength which should usually be ap-
propriate.

2. Spatial Denoise (rpi.sdn or the sdn block in rpi.denoise) - there is no particular tuning for this block,
however, as it inherits and uses the image noise profile which is tuned, there should be no particular need
to change anything here.

3. Contast (rpi.contrast) - the CTT outputs a gamma curve though in fact it is merely a fixed “sensible”
gamma curve. No actual measurements are made in order to deduce it, though again, it should work well
in nearly all circumstances.

6 Camera Tuning Tool 62

Raspberry Pi Camera Algorithm and Tuning Guide

4. Sharpening (rpi.sharpen) - the default parameters have been set to give reasonable results with our
existing sensors. However, it is possible that other sensors may require some manual tuning. For ex-
ample, for lower resolution sensors with larger pixels we might expect to have to reduce the amount of
sharpening.

5. Auto Focus(rpi.af) - by default this algorithm is not enabled. If enabled by hand, note that the default
parameters are appropriate for a Raspberry Pi v3 camera and may give poor results with other cameras.
Step sizes and delays can safely be left at the defaults, at least for a VCM-type focus mechanism, but it
is critical to tune the map between inverse distance and lens settings and, where PDAF is available, gain
and confidence values.

6.8.2 Guidance on how to Tweak the Tuning

The CTT makes every effort to produce a JSON tuning file that can be used directly and with minimal further
effort. Of course there occasions when we may wish to tweak it, either for purely aesthetic reasons (“I want
less sharpening”, or “I want brighter colours”) or because the camera is used in a slightly different situation than
the one tuned for (maybe it is used under an illuminant that was not in the calibration set, meaning the colours
could be slightly “off”). We include some general guidance for each block on how it might be tweaked.

Black Level (rpi.black_level)

There is nothing really to tweak here as the black level should match the one in camera data sheet (scaled up
to 16 bits).

Defective Pixel Correction (rpi.dpc)

There is only a single strength parameter here, which defaults to 1 (“normal”). If defective pixels are not
apparent it may be worth setting this down to zero as this would in theory allow very slightly more detail to be
recovered, although the effect would be very marginal.

If defective pixels are a problem then the value should be increased to 2. Note that testing should always include
low light images as “weak” pixels tend to come crawling out of the woodwork when the analogue gain is high.

Lux (rpi.lux)

There should not be anything to tweak here. The values are derived from one of the Macbeth Chart calibration
images and unless these were categorised with an incorrect lux reading it is hard to envisage what one might
need to change.

Noise (rpi.noise)

The noise profile itself - defined by the parameters here - should generally not be changed. If more or less spatial
denoise is wanted then it would be better to alter the Spatial Denoise parameters (rpi.sdn or rpi.denoise).

Green Equalisation (rpi.geq)

Test images will have to be examined to determine if there is a green imbalance problem, as evidenced by the
“maze” artifacts discussed previously. If the calibration images make up a wider set of conditions than those in
which the camera will be used, then it is possible the numbers here could be reduced. However, if maze artifacts
are visible then they will need to be increased. The values here (offset and slope) define a straight line - if maze
artifacts are seen in the darker parts of an image then increasing the offset may be more effective; if they are
seen in the bright parts of an image then increasing the slope may be recommended.

Maze artifacts may depend on both the light level and colour temperature of an illuminant and it is hard to
predict exactly when they are likely to be worst. Therefore a reasonably broad test set would be advised to
verify any changes.

6 Camera Tuning Tool 63

Raspberry Pi Camera Algorithm and Tuning Guide

Spatial Denoise (rpi.sdn or rpi.denoise)

The Spatial Denoise control algorithm takes the previously calculated Noise Profile and derives ISP parame-
ters from it. It has two parameters - deviation which multiplies the standard deviation of the pixel noise,
and strength which determines how much of the original (noisy) pixel to blend back in. We can provide the
following rules of thumb.

1. If an image is showing speckles of noise (the “noise speckles” we saw earlier) then the deviation (de-
fault value 3.2) should be inceased. Once there are no noise speckles there is no benefit in increasing this
further (you will just “eat” image detail).

2. It may sometimes be possible to reduce the deviation, though careful testing would be required to ascer-
tain whether the level is still sufficient.

3. Once the deviation is set appropriately, the amount of denoise is controlled with the strength (where
zero effectively disables denoise altogether and one denotes maximum denoise). Increasing this will use
more of the denoised pixel, though there may come a point where the image starts to look “plasticky” or
“like an oil painting”. In this case the strength should be reduced, allowing a little of the original noise back.

Figure 23: Too little denoise (left), and on the right the leaves look even more plasticky than they really are!

AWB (rpi.awb)

Problems related to colours are very difficult to debugwithout capturing an image, in the problematic conditions,
with aMacbeth Chart - so doing this should really be the first step. Once such an image is obtained itmay simply
be worth re-running the CTT with the new image.

Secondly, the AWB algorithm has some global “sensitivity” parameters. These are primarily designed for coping
with module to module variation among the cameras, but can also be used to shift the AWB tuning slightly
towards either purple (increase sensitivity_r and sensitivity_b by 5 or 10 percent) or towards green
(reduce them by a similar proportion). This accounts quite conveniently for users whomay prefer a very slightly
greeny-yellow tone to their colours and those who do not.

The other global parameters that we may wish to adjust based on personal taste are whitepoint_r and
whitepoint_b. For instance, people often quite like a slightly “warmer” look to their images, so thismay some-
timesbe aworthwhile change tomakeglobally. The values canbe experimentedwith, but settingwhitepoint_-
r to 0.05 and whitepoint_b to −0.05 should produce a slight but noticeable warming.

Beyond this we have to start delving more into the depths of the algorithm. Questions to ask are:

6 Camera Tuning Tool 64

Raspberry Pi Camera Algorithm and Tuning Guide

Figure 24: Effect of setting sensitivities to 0.8 (left), 1.0 (centre) and 1.2 (right).

• Does the illuminant of my problem picture actually lie on the CT curve? If not you might need to move at
least part of it.

• Is it searching enough of the CT curve to find my illuminant?

• Is it that some of my illuminants are on the curve but others lie too far to the side? If both need to work
you might need to increase the transverse_pos or transverse_neg values, which determine how
far off the curve an illuminant may lie.

Sometimes it may simply be that the illuminant is in the feasible set but the image content is misleading the
algorithm (it has a colour cast that can be interpreted as being caused by a different illuminant). In some cases
the prior illuminant distributions can be tweaked to force the algorithm to a particular solution - for example,
in bright conditions we bias the results quite strongly towards sunlight, whatever the image content. But bear
in mind that AWB is fundamentally an under-constrained problem - you can never be totally sure that the white
wall under a yellowish illuminant wasn’t really a yellow wall under a white-ish illuminant.

AGC/AEC (rpi.agc)

The CTT just outputs a fixed set of AGC/AEC parameters, though in practice this set works pretty well with any
camera.

If the tuning is found to be globally a bit too dark or a bit too bright, this can easily be adjusted using the base_-
ev parameter. Setting this to a value less than one makes everything a bit darker whilst leaving everything else
untouched, and a value greater than one makes everything a bit brighter.

Figure 25: base_ev at the default value 1.0 on the left, and at 1.414 - about half a stop - on the right.

If more specific changes are required it is largely a matter of taste how to set:

• The weightings of the AGC regions (in the metering modes);

• The manner in which analogue gain and exposure are divided up in the exposure modes (possibly so as
to limit the camera framerate);

• The various Y target functions (which allow the Y target to change with lux level); and

• The histogramconstraints (though an understanding of the section on the AGCalgorithmwill be required).

6 Camera Tuning Tool 65

Raspberry Pi Camera Algorithm and Tuning Guide

Automatic Lens Shading Correction (rpi.alsc)

There are a number of large tables here generated by the CTT, and it’s unlikely that one would ever want tomake
changes to these by hand. However, there are a number of parameters that onemight reasonably want to fiddle
with.

• omega controls the amount of over-relaxation in the Gauss-Seidel method. The default value is 1.3; any
value close to 1 is likely to work fine.

• luminance_strength determines the amount of luminance correction (recall that colour shading cor-
rection is always applied fully). Full luminance correction would be applied by the value 1.0, though in
practice small values in the 0.5 to 0.8 range will look better.

• n_iter gives the number of Gauss-Seidel iterations. Generally the iterations stop before this limit any-
way, so changing it does not have a great effect. The value zero can be useful as a way of turning off the
adaptive algorithm completely (only the pre-measured calibrated tables will be applied).

• Note also that the pre-measured calibrations can be disabled either by deleting them from the file, or re-
namingcalibrations_Cr to something likex.calibrations_Cr, and similarly forcalibrations_-
Cb.

• The sigma values can be increased to force the adaptive algorithm to “mop up” more residual colour
shading. Once you get to values beyond 0.01 there is a risk that some genuine colour variation in the
image might start to get slightly smeared; such large values are therefore not recommended.

Figure 26: sigma has the extreme value 0.03 on the left - spot the purple halo round the green chair.

6 Camera Tuning Tool 66

Raspberry Pi Camera Algorithm and Tuning Guide

Contrast (rpi.contrast)

Firstly, the gamma curve can easily be changed or replaced by another curve, there is no constraint on how
many points there must be or at what intervals they lie - any piecewise linear function will do. The values must
of course occur in pairs (each pair of numbers is an (x,y) point), and obey the 16-bit dynamic range.

Setting ce_enable to zero completely disables any runtime adaptation of the gamma curve. When set to one
the global contrast of an image can be increased by one or more of:

• Choosing a higher quantile value for lo_histogram (default 0.01).

• Choosing a lower level in the output range lo_level (default 0.015).

• lo_max (default 500) might need to be increased if the desired adjustment is larger than this value.

The high end of the dynamic range can bemanipulated similarly using the “hi” (rather than “lo”) versions of these
parameters, however, the effect is not usually as significant.

Figure 27: No contrast enhancement (left) and strong contrast enhancement (right) - note the change to the
image histogram.

Colour Correction Matrices (rpi.ccm)

Matrices are calculated by the CTT from the Macbeth Chart images. It fits them in RGB space as this is most
simple, however, there would be other arguably better ways to accomplish this if one wished - for example
measuring the fit error in Lab* space.

Otherwise there are some easy manipulations enabled by the saturation piecewise linear function. For in-
stance one could globally reduce or increase the colour saturation. Adding the following would increase colour
saturation globally by 10%.

" saturation ": [0, 1.1, 10000 , 1.1]

6 Camera Tuning Tool 67

Raspberry Pi Camera Algorithm and Tuning Guide

Sharpening (rpi.sharpen)

All the parameters (threshold, strength and limit) assume default values of 1.0. If it is clear that signif-
icantly less (or more) sharpening is required, for example if the sensor is exhibiting rather different behaviour
from that which we have been used to, it may be worth applying a few rounds of:

• halving all the parameters (if there was far too much sharpening), or

• doubling all the parameters (when there was far too little sharpening)

until the degree of sharpening appears to be approximately of the right order of magnitude. Once this has been
achieved the parameters can be fine tuned. If more sharpening is required:

1. Consider lowering the threshold as this will cause more low-contrast detail to be picked up and sharp-
ened.

2. Consider increasing limit - this will cause the strongest most obvious edges to be sharpened more.

3. Consider increasing strength - this will cause all details to be sharpened more up to the given limit.

In order to reduce the amount of sharpening, the reverse steps should be taken. In particular, if it looks as though
noise is being picked up and sharpened unwantedly, then the threshold value needs to be raised.

Figure 28: On the left too much residual noise is being sharpened because threshold was lowered.

6 Camera Tuning Tool 68

	Introduction
	Overview
	The Camera Module
	CSI Connector
	On-Chip Hardware
	Software and Control Algorithms

	Driver Framework
	Camera Drivers
	Device Tree
	The CamHelper Class

	Control Algorithm Overview
	Framework
	Defining and Loading Algorithms
	Standard Algorithms
	Algorithm Communication
	Performance Considerations
	Example Camera Tuning File
	Pi 4 and Ealier Devices
	Pi 5 Devices

	Directory Structure

	Raspberry Pi Control Algorithms
	Black Level
	Name
	Overview
	Metadata Dependencies

	Defective Pixel Correction (DPC)
	Name
	Overview
	Parameters
	Metadata Dependencies

	Lux
	Name
	Overview
	Parameters
	Metadata Dependencies

	Noise
	Name
	Overview
	Parameters
	Metadata Dependencies

	GEQ (Green Equalisation)
	Name
	Overview
	Parameters
	Metadata Dependencies

	SDN (Spatial Denoise)
	Name
	Overview
	External API
	Parameters
	Metadata Dependencies

	Denoise (Combined Denoise Algorithms)
	Name
	Overview
	External API
	Parameters
	Metadata Dependencies

	AWB (Automatic White Balance)
	Name
	Overview
	Implementation
	External API
	Parameters
	Metadata Dependencies
	Extensions

	AGC/AEC (Automatic Gain Control / Automatic Exposure Control)
	Name
	Overview
	Implementation
	External API
	Parameters
	Metadata Dependencies

	ALSC (Automatic Lens Shading Correction)
	Name
	Overview
	Adaptive ALSC Algorithm
	Implementation
	Parameters
	Metadata Dependencies

	Contrast
	Name
	Overview
	External API
	Parameters
	Metadata Dependencies

	CCM (Colour Correction Matrices)
	Name
	Overview
	External API
	Parameters
	Metadata Dependencies

	Sharpening
	Name
	Overview
	External API
	Parameters

	Auto Focus
	Name
	Overview
	External API
	Parameters
	Metadata Dependencies

	Chromatic Aberration Correction
	Name
	Overview
	External API
	Parameters

	HDR (High Dynamic Range)
	Name
	Overview
	External API
	Parameters
	Metadata Dependencies

	Metadata and Statistics Usage

	Camera Tuning Tool
	Overview
	Raspberry Pi rpicam-apps
	Software Requirements
	Equipment
	X-rite (Macbeth) Colour Checker
	Colorimeter
	Integrating Spheres and Flat Field LEDs

	Capturing Calibration Images with libcamera
	Capturing a Raw Image

	Image Capture Requirements
	Macbeth Chart Images
	Lens Shading Images
	Chromatic Aberration Correction (CAC) Images

	Creating the Tuning
	Collecting the Files
	Running the Tool

	Tweaking the Tuning produced by the Tool
	Blocks not Tuned
	Guidance on how to Tweak the Tuning

