Raspberry Pi Image Signal Processor
(PiSP) Specification

S

Raspberry Pi Ltd.

Raspberry Pi Image Signal Processor (PiSP) Specification

Colophon

This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0
International (CC BY-ND).

Copyright © 2023, Raspberry Pi Ltd.
All rights reserved.

Compiled on 25/10/2023
Version 0.5(1b8074448ac1c9742fe8e33a8a0749c3fdbefaeb-clean)

Revision History

Version | Date Description

0.5 10-October-2023 | Initial public draft revision.

Raspberry Pi Ltd.

Raspberry Pi Image Signal Processor (PiSP) Specification

Contents

1 Introduction

2 Overview

2.7
22

Front ENd
Back End

3 Chip and Camera Peripheral Integration

3.1
3.2

Pixel Data
Control Signals

4 PiSP Compressed Raw Format

4.1
4.2

Outline of the delta-based scheme
Companding

5 Image Format Specifications

5.1
5.2
5.3
5.4

Image Formats e
Image Format Flags o
Image DIMensions e
Image Address Alignment

6 The PiSP Front End

6.1
6.2

6.3
6.4

Front End Overview
Programmers Model
6.21 Registersand Interrupts L o
6.2.2 ProccessingQueue e
623 FrontEndStates . . /..
6.24 TheFrontEndStatus
6.2.5 FramesandBurstframeso
Frame Size Limits
Register Definitions o
641 Control Registers
6.42 DebugRegisters
6.4.3 Input/Output Configuration Registers
6.4.4 Global Configuration Registers
6.4.5 Input Configuration Registers,
6.4.6 Decompression Configuration Registers
6.4.7 Decompand Configuration Registers
6.4.8 BLA (Black Level Alignment) Configuration Registers
6.4.9 DPC (Defective Pixel Correction) Configuration Registers
6.4.10 Statistics Crop Configuration Registers
6.4.11 Statistics Decimation Configuration Registers
6.4.12 BLC (Black Level Correction) Configuration Registers
6.4.13 RGBY (RGB to Luminance) Configuration Registers
6.4.14 LSC (Lens Shading Correction) Configuration Registers
6.4.15 AGC Statistics Configuration Registers
6.4.16 AWB Statistics Configuration Registers
6.4.17 CDAF (Contrast Detect Autofocus) Configuration Registers
6.4.18 Floating Statistics Configuration Registers
6.4.19 Output AXI Configuration Registers
6.4.20 Crop 0 Configuration Registers

N

& B

Raspberry Pi Ltd.

Raspberry Pi Image Signal Processor (PiSP) Specification

6.4.21 Downscale O Configuration Registers 52
6.4.22 Compression 0 Configuration Registers, 53
6.4.23 Output 0 Configuration Registers 54
6.4.24 Crop 1Configuration Registers 56
6.4.25 Downscale 1 Configuration Registers 56
6.4.26 Compression 1 Configuration Registers 57
6.4.27 Output 1 Configuration Registers 58

6.5 Statistics Output Definitions 60
6.5.1 AWBStatistics 60
6.52 AGCStatistics 61
6.5.3 CDAF Statistics 62

7 The PiSP Back End 63
77 BackEnd Overview 63
7.2 BackEndPipeinDetail 63
7271 BayerPipe e 63
722 RGBPipe e 66

7.3 ProgrammersModel 69
7.371 Tiles, Tiles, Tiles e 69
7.3.2 Tile Address Offsetsand Sizes L. 69
7.3.3 Registersand Interrupts 70
7.3.4 Processing QUEUE L e e 70
7.3.5 BackEndStates e 71
736 TheBackEndStatus. 71

74 TileParameters. 71
7470 Tile Alignment . . .o 74

7.5 Register Definitions and Tile Parameters 75
751 ControlRegisters 75
7.5.2 Input/Output Configuration Registers 79
7.5.3 Global Configuration Registers 82
7.5.4 Input Configuration Registers 85
7.5.5 Decompression Configuration Registers 88
7.5.6 DPC (Defective Pixel Correction) Configuration Registers 88
7.5.7 GEQ (Green Equalisation) Configuration Registers 89
7.5.8. TDN (Temporal Denoise) Input Configuration Registers 90
7.5.9 TDN (Temporal Denoise) Decompression Configuration Registers 92
7.5.10 TDN (Temporal Denoise) Configuration Registers 92
7.511 TDN (Temporal Denoise) Compression Configuration Registers 94
7.512 TDN (Temporal Denoise) Output Configuration Registers 94
7.5.13 SDN(Spatial Denoise) Configuration Registers 96
7.5.14 BLC (Black Level Correction) Configuration Registers 97
7.5.15 Stitch Compression Configuration Registers 98
7.5.16 Stitch Output Configuration Registers 99
7.5.17 Stitch Input Configuration Registers 101
7.5.18 Stitch Decompression Configuration Registers 103
7.5.19 Stitch Configuration Registers 103
7.5.20 LSC (Lens Shading Correction) Configuration Registers 105
7.5.21 WBG (White Balance Gain) Configuration Registers 106
7.5.22 CDN (Colour Denoise) Configuration Registers 107
7.5.23 CAC (Chromatic Aberration Correction) Configuration Registers 107
7.5.24 Debin Configuration Registers 109

Contents 2

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.25 Tonemap Configuration Registers 110
7.5.26 Demosaic Configuration Registers 12
7.5.27 RGB Input Configuration Registers 112
7.5.28 CCM (Colour Correction Matrix) Configuration Registers 112
7.5.29 Saturation Control Configuration Registers 13
7.5.30 YCbCr Conversion Configuration Registers 114
7.5.31 Sharpening Configuration Registers 115
7.5.32 False Colour Configuration Registers 122
7.5.33 Sharpening and False Colour Combining Configuration Registers 123
7.5.34 YCDbCr Inverse Conversion Configuration Registers 123
7.5.35 Gamma Configuration Registers 124
7.5.36 Crop 0 Configuration Registers 125
7.5.37 Crop 1Configuration Registers 125
7.5.38 CSC (Colour Space Conversion) 0 Configuration Registers. 126
7.5.39 CSC (Colour Space Conversion) 1 Configuration Registers 126
7.5.40 Downscale 0 Configuration Registers <. 127
7.5.41 Downscale 1 Configuration Registers 128
7.5.42 Resample 0 Configuration Registers 129
7.5.43 Resample 1 Configuration Registers« 131
7.5.44 Output 0 Configuration Registers 133
7.5.45 Output 1 Configuration Registers 136
7.5.46 HOG (Histogram of Oriented Gradients) Output Configuration Registers 140

Raspberry Pi Ltd.

Raspberry Pi Image Signal Processor (PiSP) Specification
___|

List of Figures

O OO0~ wWwN

PiSP showing Frontand Back Ends 2
Two Front Ends connected to two camera peripherals 5
Connections between a Front End and a camera peripheral 6
Example waveforms for the Camera to Front End interface 6
PiSP Front End clustersand blocks, 18
PiSP Front End state diagram 21
PiSP Front End Input block 36
Grid layout for AGC statistics (not all grid rectangles shown) 43
Grid layout for CDAF statistics (not all grid rectangles shown) 48
Back End divided into Bayerand RGB pipes 63
PiSP Back End Bayer Pipe 64
PiISPBack End RGBPipe 67
2x2 binning: every 4x4 input block is converted to a single Bayerquad. 109

Raspberry Pi Ltd.

Raspberry Pi Image Signal Processor (PiSP) Specification

List of Tables
2 Bayerimage formats. 9
3 RGBimageformats. 12
4 Write-only RGBimage formats. 13
5 Additionalimage formats. 13
6 Imageformatflags. 14
7 PISP_FE_VERSION register definition. 23
8 PISP_FE_CONTROL register definition. 24
9 PISP_FE_STATUS register definition. 24
10 PISP_FE_FRAME_STATUS register definition. 25
11 PISP_FE_ERROR_STATUS register definition. 26
12 PISP_FE_OUTPUT_STATUS register definition.o 26
13 PISP_FE_INTERRUPT_EN register definition. 27
14 PISP_FE_INTERRUPT_STATUS register definition. /. 27
15 PISP_FE_DEBUG_CHECKSUM register definition.« 28
16 PISP_FE_DEBUG_FIFO_FULLNESS register definition. 28
17 PISP_FE_DEBUG_FIFO_DEPTHS register definition. 28
18 PISP_FE_DEBUG_STATUS2 register definition.« 29
19 PISP_FE_IO_STATS_ADDR_LO register definition. 29
20 PISP_FE_IO_STATS_ADDR_HI register definition. 30
21 PISP_FE_IO_OUTPUTO_ADDR_LO register definition.. 30
22 PISP_FE_IO_OUTPUTO_ADDR_HI register definition. 30
23 PISP_FE_IO_OUTPUT1_ADDR_LO register definition. 30
24 PISP_FE_IO_OUTPUTI1_ADDR_HI register definition. 31
25 PISP_FE_IO_INPUT_ADDRL_LO register definition. 31
26 PISP_FE_IO_INPUT_ADDR_HIregister definition. 31
27 PISP_FE_IO_INPUT_ID register definition. 31
28 PISP_FE_GLOBAL_ENABLE register definition.« 32
29 PISP_FE_GLOBAL_BAYER_ORDER register definition. 33
30 PISP_FE_INPUT_SOURCE register definition. 33
31 PISP_FE_INPUT_SIZE register definition. 34
32 < PISP_FE_INPUT_FORMAT register definition., 34
33 PISP_FE_INPUT_STRIDE register definition. 34
34 PISP_FE_INPUT_STRIDE2 register definition. 35
35 PISP_FELINPUT_AXI register definition. 35
36 PISP_FE_LINPUT_HOLDOFF register definition. 35
37 PISP_FE_DECOMPRESS register definition. 36
38 PISP_FE_DECOMPAND_LUT[n] register definition. 37
39 PISP_FE_DECOMPAND_LUT[32] register definition. 37
40 PISP_FE_BLA_INPUT_RED register definition. 37
41 PISP_FE_BLA_INPUT_BLUE register definition., 37
42 PISP_FE_BLA_OUTPUT register definition. 38
43 PISP_FE_DPC register definition. 38
44 PISP_FE_STATS_CROP_OFFSET register definition. 39
45 PISP_FE_STATS_CROP_SIZE register definition. 39
46 PISP_FE_SPARET register definition., 39
47 PISP_FE_BLC_INPUT_RED register definition. 40
48 PISP_FE_BLC_INPUT_BLUE register definition. 40
49 PISP_FE_BLC_OUTPUT register definition. 40
50 PISP_FE_RGBY_GAINS_RG register definition. 41

List of Tables 5

Raspberry Pi Image Signal Processor (PiSP) Specification

51 PISP_FE_RGBY_GAIN_B register definition. 41
52 PISP_FE_LSC_SCALE register definition. 42
53 PISP_FE_LSC_CENTRE register definition. 42
54 PISP_FE_LSC_GAINSn] register definition. 42
55 PISP_FE_AGC_OFFSET register definition. 43
56 PISP_FE_AGC_SIZE register definition. 44
57 PISP_FE_AGC_WEIGHTS[n] register definition. 44
58 PISP_FE_AGC_ROW_OFFSET register definition. 44
59 PISP_FE_AGC_ROW_SIZE register definition. 45
60 PISP_FE_AGC_SHIFT register definition. 45
61 PISP_FE_AWB_OFFSET register definition. 46
62 PISP_FE_AWB_SIZE register definition. 46
63 PISP_FE_AWB_SHIFT register definition.+ 46
64 PISP_FE_AWB_RED register definition. 47
65 PISP_FE_AWB_GREEN register definition. /., 47
66 PISP_FE_AWB_BLUE register definition. <. 47
67 PISP_FE_CDAF_NOISE register definition.o, 48
68 PISP_FE_CDAF_OFFSET register definition. 48
69 PISP_FE_CDAF_SIZE register definition.« 49
70 PISP_FE_CDAF_SKIP register definition. 49
71 PISP_FE_CDAF_MODE register definition., 49
72 PISP_FE_FLOATING[n]_OFFSET register definition. 50
73 PISP_FE_FLOATINGI[n]|_SIZE register definition. 50
74 PISP_FE_OUTPUT_AXl register definition. 51
75 PISP_FE_OUTPUT_PANIC register definition. . ..« 51
76 PISP_FE_CROPO_OFFSET register definition., 52
77 PISP_FE_CROPO_SIZE register definition. 52
78 PISP_FE_DOWNSCALEQ_RATIOS register definition. 53
79 PISP_FE_DOWNSCALEO_BAYER register definition. . .« 53
80 PISP_FE_DOWNSCALEO_OUTPUT_SIZE register definition. 53
81 PISP_.FE_COMPRESSO register definition. 54
82 PISP_FE_OUTPUTO_SIZE register definition., 54
83 < PISP_FE_OUTPUTO_FORMAT register definition., 55
84 PISP_FE_OUTPUTO_STRIDE register definition. 55
85 PISP_FE_OUTPUTO_STRIDEZ? register definition. 55
86 PISP_FE_LOUTPUTO_ILINES register definition. 55
87 PISP_FE_OUTPUTO_SPARE register definition. 56
88 PISP_FE_CROPI_OFFSET register definition. 56
89 PISP_FE_CROPI_SIZE register definition. 56
90 PISP_FE_DOWNSCALET_RATIOS register definition. 57
91 PISP_FE_DOWNSCALET_BAYER register definition. 57
92 PISP_FE_DOWNSCALET_OUTPUT_SIZE register definition. 57
93 PISP_FE_COMPRESST register definition., 58
94 PISP_FE_OUTPUTI_SIZE register definition. 58
95 PISP_FE_OUTPUTI_FORMAT register definition. 58
96 PISP_FE_OUTPUTI_STRIDE register definition. 59
97 PISP_FE_OUTPUTI_STRIDEZ register definition. 59
98 PISP_FE_OUTPUTI_ILINES register definition., 59
99 PISP_FE_OUTPUTI_SPARE register definition. 59
100 Outputformatof AWBzones. 60
101 Output format of AWB floatingzones. 61

List of Tables 6

Raspberry Pi Image Signal Processor (PiSP) Specification

102
103
104
106
106
107
108
109
110
Il

12
113
114
115
116
117

118
119
120
121

122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151

152

Output format of AGC row suUms., 61
Output format of AGC histogram. 61
Output format of AGC floating zones. 62
Output format of CDAF FOMs. 62
Output format of CDAF floatingzone FOMs. 62
Tile parameter structure. Offsets and sizes are giveninbytes. 74
PISP_BE_VERSION register definition. 75
PISP_BE_CONTROL register definition. 76
PISP_BE_TILE_ADDR_LO register definition., 76
PISP_BE_TILE_ADDR_HI register definition., 76
PISP_BE_STATUS register definition. 77
PISP_BE_BATCH_STATUS register definition. 77
PISP_BE_INTERRUPT_EN register definition.«, 77
PISP_BE_INTERRUPT_STATUS register definition. 78
PISP_BE_AXI register definition. /. 78
PISP_BE_IO_INPUT_ADDR[n][m] register definition.« 79
PISP_BE_IO_TDN_INPUT_ADDR_LO register definition.. 79
PISP_BE_IO_TDN_INPUT_ADDR_HI register definition. 79
PISP_BE_IO_STITCH_INPUT_ADDR_LO register definition. 80
PISP_BE_IO_STITCH_INPUT_ADDR_HI register definition. .~ 80
PISP_BE_IO_TDN_ADDR_LO register definition., 80
PISP_BE_IO_TDN_ADDR_HI register definition. 80
PISP_BE_IO_STITCH_ADDR_LO register definition. 81
PISP_BE_IO_STITCH_ADDR_HI registerdefinition. 81
PISP_BE_IO_OUTPUTO_ADDR[n][m] register definition. . = 81
PISP_BE_IO_OUTPUTI1_ADDR[n]lm] register definition. . . = 81
PISP_BE_IO_HOG_ADDR_LO register definition. 82
PISP_BE_IO_HOG_ADDR_HI register definition., 82
PISP_BE_GLOBAL_BAYER_ENABLE register definition. ~. 83
PISP_BE_GLOBAL_RGB_ENABLE register definition. 84
PISP.BE_GLOBAL_BAYER_ORDER register definition. 84
PISP_BE_INPUT_SIZE register definition. 85
PISP_BE_INPUT_FORMAT register definition. 86
PISP_BE_INPUT_STRIDE register definition. 86
PISP_BE_INPUT_STRIDE? register definition., 87
Tile parameters for the Input block. 87
PISP_BE_DECOMPRESS register definition. 88
PISP_BE_DPC register definition. 89
PISP_BE_GEQ_CONFIG register definition., 89
PISP_BE_GEQ_MINMAX register definition. 90
PISP_BE_TDN_INPUT_SIZE register definition. 90
PISP_BE_TDN_INPUT_FORMAT register definition. 91
PISP_BE_TDN_INPUT_STRIDE register definition., 91
PISP_BE_TDN_INPUT_STRIDEZ register definition. 91
Tile parameters for the TDN Inputblock. 91
PISP_BE_TDN_DECOMPRESS register definition. 92
PISP_BE_TDN_CONFIGT register definition. 93
PISP_BE_TDN_CONFIG_NOISE register definition., 93
PISP_BE_TDN_CONFIG2 register definition. 93
PISP_BE_TDN_COMPRESS register definition. 94
PISP_BE_TDN_OUTPUT_SIZE register definition. 95

List of Tables 7

Raspberry Pi Image Signal Processor (PiSP) Specification

153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177

178
179
180
181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203

PISP_BE_TDN_OUTPUT_FORMAT register definition. 95
PISP_BE_TDN_OUTPUT_STRIDE register definition. 95
PISP_BE_TDN_OUTPUT_STRIDEZ2 register definition. 96
Tile parameters for the TDN Outputblock. 96
PISP_BE_SDN_CONFIG register definition. 97
PISP_BE_SDN_NOISE register definition. 97
PISP_BE_SDN_NOISE2 register definition. 97
PISP_BE_BLC_INPUT_RED register definition. 98
PISP_BE_BLC_INPUT_BLUE register definition. 98
PISP_BE_BLC_OUTPUT register definition. 98
PISP_BE_STITCH_COMPRESS register definition. 99
PISP_BE_STITCH_OUTPUT_SIZE register definition. 99
PISP_BE_STITCH_OUTPUT_FORMAT register definition.« 100
PISP_BE_STITCH_OUTPUT_STRIDE register definition. 100
PISP_BE_STITCH_OUTPUT_STRIDEZ register definition. 100
Tile parameters for the Stitch Outputblock. 101
PISP_BE_STITCH_INPUT_SIZE register definition. 101
PISP_BE_STITCH_INPUT_FORMAT register definition. 102
PISP_BE_STITCH_INPUT_STRIDE register definition. .« 102
PISP_BE_STITCH_INPUT_STRIDE2 register definition. . . .~ 102
Tile parameters for the Stitch Input block. 102
PISP_BE_STITCH_DECOMPRESS register definition.. 103
PISP_BE_STITCH_THRESHOLD register definition. 104
PISP_BE_STITCH_CONFIG register definition. 104
PISP_BE_LSC_GRID register definition.« 105
PISP_BE_LSC_GAINS[n] registerdefinition. 105
Tile parameters for the LSC block. 106
PISP_BE_WBG_GAINSO register definition. 106
PISP_BE_WBG_GAINST register definition.« 106
PISP_BE_CDN_CONFIG register definition., 107
PISP.BE_CAC_GRID register definition. 107
PISP_BE_CAC_SHIFTS[n] register definition. 108
Tile parameters forthe CACblock. 108
PISP_BE_DEBIN_COEFFS register definition. 109
PISP_BE_DEBIN_ENABLE register definition. 110
PISP_.BE_TONEMAP_DETAIL register definition. (N
PISP_BE_TONEMAP_STRENGTHS register definition.. 111
PISP_BE_TONEMAP_LUT[n] register definition. 111
PISP_BE_DEMOSAIC_CONFIG register definition., 112
PISP_BE_CCM_MATRIX[n] register definition. 113
PISP_BE_CCM_OFFSETSIn] register definition. 113
PISP_BE_RGB_SAT_CONTROL_SHIFT register definition. 14
PISP_BE_YCBCR_MATRIX[n] register definition. 114
PISP_BE_YCBCR_OFFSETS[n] register definition. 14
PISP_BE_SHARPEN_FILTERO[n] register definition. 115
PISP_BE_SHARPEN_FILTER1[n] register definition. 116
PISP_BE_SHARPEN_FILTER2[n] register definition. 116
PISP_BE_SHARPEN_FILTER3[n] register definition. 117
PISP_BE_SHARPEN_FILTER4[n] register definition. 17
PISP_BE_SHARPEN_THRESHOLDO register definition. 118
PISP_BE_SHARPEN_SCALEQ register definition. 118

List of Tables 8

Raspberry Pi Image Signal Processor (PiSP) Specification

204
205
206
207
208
209
210
21

212
213
214
215
216
217

218
219
220
221

222
223
224
225
226
227
228
229
230
231

232
233
234
235
236
237
238
239
240
247

242
243
244
245
246
247
248
249
250
2571

252
253
254

PISP_BE_SHARPEN_THRESHOLD1 register definition. 118
PISP_BE_SHARPEN_SCALET register definition. 118
PISP_BE_SHARPEN_THRESHOLD2 register definition. 119
PISP_BE_SHARPEN_SCALE? register definition., 119
PISP_BE_SHARPEN_THRESHOLDS register definition. 119
PISP_BE_SHARPEN_SCALES register definition. 119
PISP_BE_SHARPEN_THRESHOLD4 register definition. 120
PISP_BE_SHARPEN_SCALEA4 register definition. 120
PISP_BE_SHARPEN_POSITIVE_CONFIG register definition. 120
PISP_BE_SHARPEN_POSITIVE_FUNCIn] register definition. 120
PISP_BE_SHARPEN_POSITIVE_FUNCI4] register definition. 121
PISP_BE_SHARPEN_NEGATIVE_CONFIG register definition. 121
PISP_BE_SHARPEN_NEGATIVE_FUNCIn] register definition. ..« 121
PISP_BE_SHARPEN_NEGATIVE_FUNC[4] register definition. . =~ 121
PISP_BE_SHARPEN_MASKS register definition. . /., 122
PISP_BE_FALSE_COLOUR_CONFIG register definition. <. 122
PISP_BE_SH_FC_COMBINE_CONFIG register definition. 123
PISP_BE_YCBCR_INV_MATRIX[n] register definition. 123
PISP_BE_YCBCR_INV_OFFSETSI[n] register definition.« 124
PISP_BE_GAMMA_LUTI[n] register definition. 124
Tile parameters for the Crop block on output branch 0. 125
Tile parameters for the Crop block on outputbranch 1. 125
PISP_BE_CSCO_MATRIX[n] register definition. 126
PISP_BE_CSCO_OFFSETSIn] register definition. 126
PISP_BE_CSCT_MATRIX[n] register definition. . ..« 127
PISP_BE_CSC1_OFFSETS[n] register definition. 127
PISP_BE_DOWNSCALEQ_SCALE register definition. 127
PISP_BE_DOWNSCALEO_RECIP register definition. 128
Tile parameters for the Downscale block on output branch 0. 128
PISP_BE_DOWNSCALET_SCALE register definition. 128
PISP.BE_DOWNSCALE1_RECIP register definition. 129
Tile parameters for the Downscale block on output branch 1. 129
PISP_BE_RESAMPLEO_SCALE register definition., 130
PISP_BE_RESAMPLEO_COEFFS[n][m] register definition. 130
Tile parameters for the Resample block on output branch 0. 131
PISP_.BE_.RESAMPLET_SCALE register definition. 131
PISP_BE_RESAMPLE1_COEFFS[n][m] register definition. 132
Tile parameters for the Resample block on output branch 1. 132
PISP_BE_OUTPUTO_SIZE register definition., 133
PISP_BE_OUTPUTO_FORMAT register definition. 134
PISP_BE_OUTPUTO_STRIDE register definition. 134
PISP_BE_OUTPUTO_STRIDE2 register definition. 134
PISP_BE_OUTPUTO_TRANSFORM register definition. 135
PISP_BE_OUTPUTO_CLIP register definition., 135
PISP_BE_OUTPUTO_CLIP2 register definition. 135
Tile parameters for the Output block onbranch 0. 136
PISP_BE_OUTPUTI_SIZE register definition. 136
PISP_BE_OUTPUTI1_FORMAT register definition. 137
PISP_BE_OUTPUTI_STRIDE register definition. 138
PISP_BE_OUTPUTI_STRIDEZ register definition., 138
PISP_BE_OUTPUTI1_TRANSFORM register definition. 138

List of Tables 9

Raspberry Pi Image Signal Processor (PiSP) Specification
___|

255
256
257
258
259
260

PISP_BE_OUTPUTI_CLIP register definition. 138
PISP_BE_OUTPUTI_CLIPZ2 register definition. 139
Tile parameters for the Output block onbranch 1. 139
PISP_BE_HOG_CONFIG register definition., 140
PISP_BE_HOG_STRIDE register definition. 140
Tile parameters for the HOG Outputblock. 141

__|
Raspberry Pi Ltd.

Raspberry Pi Image Signal Processor (PiSP) Specification

1 Introduction
The PiSP is Raspberry Pi's Image Signal Processor (ISP). It is designed to process images from Bayer
and monochrome (greyscale) camera sensors. The PiSP targets the following principal requirements:
- Similar or better image quality to previous versions of the Raspberry Pi.
- Simplified camera tuning compared to previous versions of the Raspberry Pi.

- Greater pixel throughput than previous versions of the Raspberry Pi, capable of handling up to
4Kp60, though this will depend on clock rate. We expect to target typically between 200MHz
and 700MHz maximum clock rate at 2 pixels/cycle (note that 4Kp60 will require > 320MHz).

- Raspberry Pi's own software and IP (Intellectual Property).

+ The hardware and software are both flexible allowing us to implement a wider range of applica-
tions and use cases.

This document gives an overview of the PiSP, explaining how its various components operate, moving
on to a complete specification of all the registers and their associated behaviours.

Software resources

Asoftware library is available at https://github. com/raspberrypi/libpisp to help configure the
ISP. Together with 1ibcamera and Linux V4L2 drivers, it provides a complete open source software
stack to drive the PiSP from user applications.

T Introduction 1

Raspberry Pi Image Signal Processor (PiSP) Specification

2 Overview

The PiSP is divided into two parts, one or more Front Ends and one or more (though usually only one)
Back End, as shown below.

Frames ‘
Tiles
» FrontEnd +——» \
< = >
v v
> Back End >
DRAM DRAM
> FrontEnd ——»

Frames

Figure 1: PiSP, showing Front and Back Ends

2.1 FrontEnd

The Front End normally receives streaming pixel data directly from the camera (via the chip’s camera
peripheral), performs certain minimal processing on the pixels, and writes the results to main memory.
For memory-to-memory operation, an AX| reader interface is provided which can feed data to the Front
End in place of the camera.

A single Front End can be dedicated only to a single camera at a time, so any application requiring
that multiple cameras operate simultaneously will require an equivalent number of Front Ends. The
precise number of Front Ends is a matter for the chip as a whole, external to the PiSP, and the decision
will be based on use case and other requirements. Please refer to section 3 for further information.

The Front End can perform limited image processing and rescaling, to reduce the load on the Back
End in certain use cases. It can generate up to two differently cropped and scaled outputs.

The Front End gathers various image statistics which are written to memory alongside the image.
The statistics are intended to be used by control algorithms running in the firmware, such as the 3A
algorithms (Auto Exposure/Gain Control, Auto White Balance and Auto Focus).

The Front End has to work in “hard” real-time and requires good Quality of Service to main SDRAM.
The maximum tolerable latency is governed by the size of internal FIFOs between the camera and
Front End, and of the Front End’s output buffer. The Back End, by contrast, can work in “soft” real-time
as it operates only from memory to memory. It is free to stall, so long as its average throughput is
sufficient. One Back End can multiplex between images written to DRAM by different Front Ends, even
at a sub-frame level.

2 Overview 2

Raspberry Pi Image Signal Processor (PiSP) Specification

2.2 Back End

The bulk of the processing is performed in the Back End. Images are read from DRAM in tiles. These
are limited in width (currently to 640 pixels) to reduce the requirement for internal line memories.
Software must divide the image into a series of tiles so that a proper tessellation of the output image is
created, with no visible discontinuities where distinct tiles abut one another. The software schedules
the Back End to work on the available Front End outputs in turn, possibly giving some priority over
others.

We note that the tiled approach permits:
+ Smaller line memories within the Back End resulting in a smaller overall design.

+ Multiplexing between different images on a sub-frame basis. For instance, we might be pro-
cessing 4Kp60 video whilst simultaneously creating a JPEG still, where the latter is produced
on a "best effort” basis, only when there is no unprocessed video frame outstanding.

- Video processing with sub-frame latency.

Subsequent sections of this document will present the Front and Back Ends in much greater detail.

2 Overview 3

Raspberry Pi Image Signal Processor (PiSP) Specification

3 Chip and Camera Peripheral Integration

This section discusses how the PiISP might be integrated into an SoC with existing camera peripherals.

3.1 Pixel Data

Most of this material consists of recommendations or illustrations; however, we do have the following
strict requirements.

- There must be at least one source of camera image data, usually a camera peripheral.

- The camera peripheral(s) should be able to stream pixels directly into the Front End’s streaming
input, or should be able to write them directly to memory, or preferably, both. At least one of
these possibilities must be available.

+ Pixels streamed directly to the Front End must conformto the Front End’s interface specification.

+ Pixels written to memory should be either: 16-bit Bayer or monochrome pixel values, or PiSP
compressed image format. The camera peripheral(s) must always undo any. SMIA raw com-
pression or packing that is used.

Beyond this we recommend the following.

- The camera peripheral(s) should support both streaming to the Front End and writing images
to memory.

- Camera peripheral(s) should be able to demux multiple virtual MIPI channels.

- The system as a whole needs to consider whether it wishes to feed multiple virtual MIPI chan-
nels each to a different Front End, or whether to‘write (some of) them to DRAM in order to
process them later using a memory-to-memory Front End.

Below we illustrate one possible configuration of camera peripherals and Front Ends. We are assuming
the existence of two camera peripherals and two Front Ends (so two cameras can run simultaneously
without incurring extra round-trips through DRAM).

Legend:

+ Qutput n - output image stream n from the camera peripheral. Note that some are streaming
outputs; the others go straight to memory.

« Embedded n - any embedded data associated with Output n; this is always written to memory.
+ (' - proprietary PiISP RAW image compression.

The illustrative configuration above allows both cameras to run simultaneously, each delivering a sin-
gle image stream directly to the pair of PiSP Front Ends. Alternatively, camera peripheral O can deliver
a pair of image streams, each from a different virtual MIPI channel, to the two Front Ends. It is of
course not possible for Front End 1 to process streaming input from both camera peripherals simul-
taneously. If more image streams have to be processed, this could be accomplished by feeding the
largest directly to one of the Front Ends and writing all the others DRAM. These would then be be pro-
cessed by the second Front End operating in memory-to-memory mode. Recall that we recommend
that some, if not all, of the image AXI outputs be connected through the proprietary PiSP RAW im-
age compression block (although it should be possible to bypass compression when not appropriate,
such as for a YUV camera).

3 Chip and Camera Peripheral Integration 4

Raspberry Pi Image Signal Processor (PiSP) Specification

Output 0
o » FrontEnd O
Embedded 0
e > AXI
o
] Output 1
—
g Embedded 1
g /= > AXI
Y | output2
p P C o AX
@ | Embedded2
g > AX|
O | output3 c AX FrontEnd 1
Embedded 3
e > AXI
Output 0
i
< | Embedded 0
S < > AXI
| € < | Output1
g e C (»AX
[0
a | Embedded 1 » AXI

Figure 2: Two Front Ends connected to two camera peripherals

3.2 Control Signals

Besides passing pixel data to the PiSP Front End, a small number of control and other signals should
also be connected. These are:

- A Start of Frame (SOF) signal. This signal indicates that a new frame of pixel data is about to
start. When SOF is asserted, data bits [15:0] shall contain a 16-bit count (Frame ID) which is
incremented with every new frame started by the camera.

+ An End of Frame (EOF) signal. This immediately follows the end of a frame of pixel data (ac-
companying data bits are ignored, but error flags are significant).

+ Error Signals. These are latched by the PiSP Front End when the EOF signal is asserted. Two
kinds of errors may be distinguished, namely soft errors, meaning that if the frame just received
can be ignored then the system should continue to operate normally, and hard errors, mean-
ing that a permanent and fatal problem has occurred, which will probably require the camera
application to terminate.

- A Valid signal, indicating when data (or SOF/EOF) are available to the PiSP Front End.
+ A Ready signal, indicating that the PiSP Front End is able consume data.

This arrangement is shown in the diagrams below. The data bus for the pixel data is also shown. In
this version it is 32 bits wide, for a throughput of two 16-bit pixel values per clock cycle.

3 Chip and Camera Peripheral Integration 5

Raspberry Pi Image Signal Processor (PiSP) Specification

Data /
/32 >
SOF >
EOF >
Camera Peripheral . PiSP Front End
Error Bits / >
/
Valid >
< Ready

Figure 3: Connections between a Front End and a camera peripheral

cek [[L [L [L L L L L e

Data[31:0] 77/) FramelD Y _{P1,Po} ¥/ _(P3P2} X {P5,P4) {{Pr.Pey X I XPNAPN2NTT

SOF Vi
EOF Vi
Error{1:0] I [emor?_\
Valid Vi
Ready \ SE—— }ﬁ

Figure 4. Example waveforms for the Camera to Front End interface

This interface always uses 16-bit pixel data (MSB-justified if smaller), and never uses compression.

Note that when multiple camera peripherals and are connected to a Front End as in figure 2, Data, SOF,
EOF, Error and Valid signals should all be multiplexed under software control.

3 Chip and Camera Peripheral Integration 6

Raspberry Pi Image Signal Processor (PiSP) Specification

4 PiSP Compressed Raw Format

A number of the I/0 blocks in the PiSP are able to read and write raw (Bayer or monochrome) image
data in a compressed format. These blocks are:

+ Front End input blocks
+ Front End output blocks
+ Back End input blocks

- TDN (Temporal Denoise) in the Back End supports writing and reading the long-term filtered
frame in compressed format

- Stitching in the Back End needs to read a long/short exposure frame and write a short/long
exposure frame in order to support HDR

- Additionally, camera peripherals may write directly to/memory in the compressed format.

The PiSP Compressed Raw Format is a fixed-rate lossy compression format with 8 bits per pixel.
The compresser accepts 16-bpp raw data in blocks of 8 horizontally adjacent pixels, encoding each
block with 64 bits (in all modes). Blocks are coded independently, to reduce the cost of hardware
implementation and to facilitate random access.

Source data should be justified to the MS bits of a 16-bit word and will be padded to a multiple of 8
samples. The compressor has an offset parameter which is subtracted from incoming pixels: this
may be used to improve fidelity when there is a high black level.

The compressor has three distinct modes of operation:

- Mode 1is a delta-based scheme optimized for linear-light Bayer images with 10—12 significant
bits, and is recommended in most such cases.

+ Mode 2 uses simple square-root-like companding, for simpler interoperation with other hard-
ware and software.

+ Mode 3 combines companding and compression, to target HDR imagery with up to 14 signifi-
cant bits, where values below FSD/16 are expected to dominate.

4.1 Outline of the delta-based scheme

When the compressor is operating in mode 1 or 3, each block of 8 x 1 samples is decomposed into
even and odd components of 4 samples each (even if the source image was monochrome), and rep-
resented by a pair of 32-bit words, one per component, at adjacent addresses in memory.

Two bits of each 32-bit word give the quantization mode. This determines how pixels are quantized
and encoded. The smallest and largest quantization modes use nonlinear quantization; between them
they provide step sizes ranging from 16 to 512.

When quantization mode is less than 3, pixel values are represented by four fields of {9,7,7,7} bits. The
first field is usually the MIN of the two middle samples, and the other fields are horizontal deltas, but
the encoding is modified for values close to 0 or to FSD (to avoid redundant codes). The compressor
should find the smallest quantization mode for which the MIN and deltas can be represented within
their respective fields.

Quantization mode 3 represents an “escape” case in which all four samples are independently quan-
tized to 176 levels (roughly, 7.5 bits per pixel). This limits the worst-case error to +256.

4 PiSP Compressed Raw Format 7

Raspberry Pi Image Signal Processor (PiSP) Specification

4.2 Companding

In mode 2, the compressor simply maps the eight 16-bit pixel values (after offsetting for black level)
to 8-bit codes, by linear interpolation between these points:

(0,0), (256,16), (512,24), (2048,48), (8192,96), (32768,192), (65024,255).

In mode 3, a related companding function maps 16-bit pixel values to a 16-bit intermediate, which
is then compressed using the above delta scheme. This improves precision for tiny values at the
expense of larger ones.

4 PiSP Compressed Raw Format 8

Raspberry Pi Image Signal Processor (PiSP) Specification

5 Image Format Specifications

5.1 Image Formats

The tables below explain the supported image formats. The PiSP specifices image formats using a
32-bit field which aggregates a number of flags and smaller values, and the tables indicate both the
numeric value of the field as well as the names of the flags used by the accompanying software (which
ORs them together).

Note: in the following

- shifts refer to left shifting pixel values on input, and right shifting them on output. Note that
programmable shifts are supported only with 16 bit per pixel output. Pixels are implicitly shifted
by 8 or 6 places for, respectively, 8 bit per pixel and 10 bit per pixel output.

+ aplanar image is one where all three colour planes are stored in disjoint memory buffers.

+ 422 and 420 sampling refer to pixel sub-sampling in the manner of YUV422 and YUV420 data.
Both are supported as planar formats, though only 422 is supported as an interleaved format.

- interleaved 422 output may be written with the first colour plane first (that is, YUYV...) or second
("swapped”, namely UYVY...). Any other pixel reordering should be performed with the CSC block
in the same output branch.

+ a semi-planar image is one where the first colour plane is stored separately but the 2nd and 3rd
colour planes are interleaved. This is only supported for 422 or 420 sampling.

- a wallpaper format image is where the image is stored in “wallpaper rolls”. That is, images are
stored in vertical stripes that are 128 bytes wide. Wallpaper format is only supported for semi-
planar images (with 422 or 420 sampling).

- thereis an additional 422/420 semi-planar wallpaper format that uses 10 bits per sample. In this
format, three 10-bit samples are written out followed by 2 bits of padding (the two high MSBs
of the 32-bit word), making up a total of 32 bits.

+ We note additionally that all 422 and 420 images must have even widths, counted in pixels. 420
images must additionally have even height.

The following formats can be read by the Front End AXI Input block, the Back End Input block at the
head of the Bayer pipe, the TDN Input block and the Stitch Input blocks. The same formats can be
written by the Front End Output blocks, the TDN Output block and the Stitch Output block. These
formats implicitly include (single channel) greyscale images.

Description Value Flags

16-bits per pixel single channel uncom- 0x000n0003 PISP_IMAGE_FORMAT_BPS_16
pressed with 16 — n LSBs of dynamic PISP_IMAGE_FORMAT_SHIFT_n
rangefor0 <n <8

8-bits per pixel single channel com- 0x0n000000 PISP_IMAGE_FORMAT_
pressed with mode n, forn =1,2,3 COMPRESSION_MODE_n

Table 2: Bayer image formats.

The Input block at the head of the RGB pipe, and the Output blocks at the very end of the Back End,
support the following formats.

5 Image Format Specifications 9

Raspberry Pi Image Signal Processor (PiSP) Specification

Description

Value

Flags

8-bits per pixel three channel interleaved

0x40000000

PISP_IMAGE_FORMAT_THREE_CHANNEL

16-bits per pixel three channel inter-
leaved with 16 — n LSBs of dynamic
rangefor0 <n <8

0x4000003

PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_BPS_16
PISP_IMAGE_FORMAT_SHIFT_n

8-bits per pixel three channel interleaved
422, channel 0 first (YUYV)

0x40000100

PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_SAMPLING_422

16-bits per pixel three channel inter-
leaved 422 with 16 — n LSBs of dynamic
range for 0 < n < 8, channel O first
(YUYV)

0x400n0103

PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_SAMPLING_422
PISP_IMAGE_FORMAT_BPS_16
PISP_IMAGE_FORMAT_SHIFT_n

8-bits per pixel three channel interleaved
422, channel 0 second (UYVY)

0x40001100

PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_SAMPLING_422
PISP_IMAGE_FORMAT_ORDER_SWAPPED

16-bits per pixel three channel inter-
leaved 422 with 16 —n LSBs of dynamic
range for 0 < n < 8, channel 0 second
(UYVY)

0x400n1103

PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_SAMPLING_422
PISP_IMAGE_FORMAT_ORDER_SWAPPED
PISP_IMAGE_FORMAT_BPS_16
PISP_IMAGE_FORMAT_SHIFT_n

Three 8-bit pixel values plus 8 bits of
padding (value 0x00) so that every pixel
occupies a 32-bit word, and with the
padding byte at the highest address in
memory

0x40700000

PISP_LIMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_BPP_32

Three 8-bit pixel values plus 8 bits of
padding (value 0x00) so that every pixel
occupies.a 32-bit word, and with the
padding byte at the lowest address in
memory

0x40101000

PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_BPP_32
PISP_IMAGE_FORMAT_ORDER_SWAPPED

Three 8-bit pixel values plus 8 bits of
padding (value OxFF) so that every pixel
occupies a 32-bit word, and with ‘the
padding byte at the highest address in
memory

0x40300000

PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_BPP_32
PISP_IMAGE_FORMAT_X_VALUE

Three 8-bit pixel values plus 8 bits of
padding (value OxFF) so that every pixel
occupies a 32-bit word, and with the
padding byte at the lowest address in
memory

0x40301000

PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_BPP_32
PISP_IMAGE_FORMAT_X_VALUE
PISP_IMAGE_FORMAT_ORDER_SWAPPED

8-bits per pixel three channel semi-
planar 422

0x40000110

PISP_IMAGE_FORMAT_THREE_CHANNEL

PISP_IMAGE_FORMAT_
PLANARITY_SEMI_PLANAR

PISP_IMAGE_FORMAT_SAMPLING_422

5

Image Format Specifications

10

Raspberry Pi Image Signal Processor (PiSP) Specification

Description Value Flags
16-bits per pixel three channel semi- 0x400n0113 PISP_IMAGE_FORMAT_THREE_CHANNEL
planar 422 with 16 —n LSBs of dynamic PISP_IMAGE_FORMAT_
rangefor0 <n <8 PLANARITY_SEMI_PLANAR
PISP_IMAGE_FORMAT_SAMPLING_422
PISP_IMAGE_FORMAT_BPS_16
PISP_IMAGE_FORMAT_SHIFT_n
8-bits per pixel three channel semi- 0x40000210 PISP_IMAGE_FORMAT_THREE_CHANNEL
planar 420 PISP_IMAGE_FORMAT_
PLANARITY_SEMI_PLANAR
PISP_IMAGE_FORMAT_SAMPLING_420
16-bits per pixel three channel semi- 0x400n0213 PISP_IMAGE_FORMAT_THREE_CHANNEL
planar 420 with 16 —n LSBs of dynamic PISP_IMAGE_FORMAT_
rangefor0 <n <8 PLANARITY_SEMI_PLANAR
PISP_IMAGE_FORMAT_SAMPLING_420
PISP_IMAGE_FORMAT_BPS_16
PISP_IMAGE_FORMAT_SHIFT_n,
8-bits per pixel three channel semi- 0x60000110 PISP_IMAGE_FORMAT_THREE_CHANNEL
planar 422 wallpaper format PISP_IMAGE_FORMAT_
PLANARITY_SEMI_PLANAR
PISP_IMAGE_FORMAT_WALLPAPER_ROLL
PISP_IMAGE_FORMAT_SAMPLING_422
16-bits per pixel three channel semi- 0x600n0113 PISP_IMAGE_FORMAT_THREE_CHANNEL
planar 422 wallpaper format with 16 = n PISP_IMAGE_FORMAT_
LSBs of dynamic range for0 < n < 8 PLANARITY_SEMI_PLANAR
PISP_IMAGE_FORMAT_WALLPAPER_ROLL
PISP_IMAGE_FORMAT_SAMPLING_422
PISP_IMAGE_FORMAT_BPS_16
PISP_IMAGE_FORMAT_SHIFT_n
10-bits per pixel three channel semi- 0x60000111 PISP_IMAGE_FORMAT_THREE_CHANNEL
planar 422 wallpaper format PISP_IMAGE_FORMAT_
PLANARITY_SEMI_PLANAR
PISP_IMAGE_FORMAT_WALLPAPER_ROLL
PISP_IMAGE_FORMAT_SAMPLING_422
PISP_IMAGE_FORMAT_BPS_10
8-bits per pixel three channel semi- 0x60000210 PISP_IMAGE_FORMAT_THREE_CHANNEL

planar 420 wallpaper format

PISP_IMAGE_FORMAT_
PLANARITY_SEMI_PLANAR

PISP_IMAGE_FORMAT_WALLPAPER_ROLL

PISP_IMAGE_FORMAT_SAMPLING_420

5

Image Format Specifications

1

Raspberry Pi Image Signal Processor (PiSP) Specification

Description

Value

Flags

16-bits per pixel three channel semi-
planar 420 wallpaper format with 16 —n
LSBs of dynamicrange for0 <n < 8

0x600n0213

PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_
PLANARITY_SEMI_PLANAR
PISP_IMAGE_FORMAT_WALLPAPER_ROLL
PISP_IMAGE_FORMAT_SAMPLING_420
PISP_IMAGE_FORMAT_BPS_16
PISP_IMAGE_FORMAT_SHIFT_n

10-bits per pixel three channel semi-
planar 420 wallpaper format

0x60000211

PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_
PLANARITY_SEMI_PLANAR
PISP_IMAGE_FORMAT_WALLPAPER_ROLL
PISP_IMAGE_FORMAT_SAMPLING_420
PISP_IMAGE_FORMAT_BPS_10

8-bits per pixel three channel planar

0x40000020

PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_
PLANARITY_PLANAR

16-bits per pixel three channel planar
with 16 — n LSBs of dynamic range for
0<n<8g

0x400n0023

PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_
PLANARITY_PLANAR
PISP_IMAGE_FORMAT_BPS_16
PISP_IMAGE_FORMAT_SHIFT_n

8-bits per pixel three channel planar 422

0x40000120

PISP_IMAGE_FORMAT_THREE_CHANNEL

PISP_IMAGE_FORMAT_
PLANARITY_PLANAR

PISP_IMAGE_FORMAT_SAMPLING_422

16-bits per pixel three channel planar
422 with 16 — n LSBs of dynamic range
for0 <n <8

0x400n0123

PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_
PLANARITY_PLANAR
PISP_IMAGE_FORMAT_SAMPLING_422
PISP_IMAGE_FORMAT_BPS_16
PISP_IMAGE_FORMAT_SHIFT_n

8-bits per pixel three channel planar 420

0x40000220

PISP_IMAGE_FORMAT_THREE_CHANNEL

PISP_IMAGE_FORMAT_
PLANARITY_PLANAR

PISP_IMAGE_FORMAT_SAMPLING_420

16-bits per pixel three channel planar
420 with 16 — n LSBs of dynamic range
for0<n<8

0x400n0223

PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_
PLANARITY_PLANAR
PISP_IMAGE_FORMAT_SAMPLING_420
PISP_IMAGE_FORMAT_BPS_16
PISP_IMAGE_FORMAT_SHIFT_n

Table 3: RGB image formats.

5 Image Format Specifications

12

Raspberry Pi Image Signal Processor (PiSP) Specification

Additionally, the single channel formats listed below can be output by the Back End Output blocks
(writing out only the first of the three channels), but it is not possible to read them in through the RGB
Input block as they stand.

Description Value Flags

8-bits per pixel single channel 0x00000000 None

16-bits per pixel single channel with 16— 0x000n0003 PISP_IMAGE_FORMAT_BPS_16
n LSBs of dynamic range for0 < n < 8 PISP_IMAGE_FORMAT_SHIFT_n

Table 4: Write-only RGB image formats.

We note however that the 16bpp single channel format could be read by the Bayer Input block with
the entire Bayer pipe disabled. The 8bpp version could only be read by pretending it is a three channel
planar image, reading it with the RGB Input block, and setting all three buffer addresses to the single
actual image plane.

Finally, some versions of the Back End may support the following extra output formats, which cannot
be read back into the PiSP at all.

Description Value Flags

32-bit per pixel single channel integral 0x100n0000 PISP_IMAGE_FORMAT_INTEGRAL_IMAGE
image PISP_IMAGE_FORMAT_SHIFT_n

32-bit per pixel three channel integralim-. 0x500n0020 PISP_IMAGE_FORMAT_INTEGRAL_IMAGE
age PISP_IMAGE_FORMAT_THREE_CHANNEL
PISP_IMAGE_FORMAT_
PLANARITY_PLANAR
PISP_IMAGE_FORMAT_SHIFT_n

Single channel HOG output with signed = 0x04000000 PISP_IMAGE_FORMAT_HOG_SIGNED
gradients

Single channel HOG output with un- 0x08000000 PISP_IMAGE_FORMAT_HOG_UNSIGNED
signed gradients

Table 5: Additional image formats.

5.2 Image Format Flags

The table below lists the complete set of flags used in specifying image formats. For completeness
we list the name of the features indicated by the absence of the flag (for example, if none of the "BPS”
(bits per sample) flags is set, the pipeline will expect 8 bits per sample data).

Name Value

PISP_IMAGE_FORMAT_BPS_8 -

PISP_IMAGE_FORMAT_BPS_10 0x00000001

PISP_IMAGE_FORMAT_BPS_12 0x00000002

5 Image Format Specifications 13

Raspberry Pi Image Signal Processor (PiSP) Specification

Name Value
PISP_IMAGE_FORMAT_BPS_16 0x00000003
PISP_IMAGE_FORMAT_PLANARITY_INTERLEAVED -
PISP_IMAGE_FORMAT_PLANARITY_SEMI_PLANAR 0x00000010
PISP_IMAGE_FORMAT_PLANARITY_PLANAR 0x00000020
PISP_IMAGE_FORMAT_SAMPLING_444 -
PISP_IMAGE_FORMAT_SAMPLING_422 0x00000100
PISP_IMAGE_FORMAT_SAMPLING_420 0x00000200
PISP_IMAGE_FORMAT_ORDER_NORMAL 4
PISP_IMAGE_FORMAT_ORDER_SWAPPED 0x00001000
PISP_IMAGE_FORMAT_SHIFT_0 -
PISP_IMAGE_FORMAT_SHIFT_1 0x00010000
PISP_IMAGE_FORMAT_SHIFT_2 0x00020000
PISP_IMAGE_FORMAT_SHIFT_3 0x00030000
PISP_IMAGE_FORMAT_SHIFT_4 0x00040000
PISP_IMAGE_FORMAT_SHIFT_5 0x00050000
PISP_IMAGE_FORMAT_SHIFT_6 0x00060000
PISP_IMAGE_FORMAT_SHIFT_7 0x00070000
PISP_IMAGE_FORMAT_SHIFT_8 0x00080000
PISP_IMAGE_FORMAT_BPP_32 0x00100000
PISP_IMAGE_FORMAT_X_VALUE 0x00200000
PISP_IMAGE_FORMAT_UNCOMPRESSED -
PISP_IMAGE_FORMAT_COMPRESSION_MODE_1 0x01000000
PISP_IMAGE_FORMAT_COMPRESSION_MODE_2 0x02000000
PISP_IMAGE_FORMAT_COMPRESSION_MODE_3 0x03000000
PISP_IMAGE_FORMAT_HOG_SIGNED 0x04000000
PISP_IMAGE_FORMAT_HOG_UNSIGNED 0x08000000
PISP_IMAGE_FORMAT_INTEGRAL_IMAGE 0x10000000
PISP_IMAGE_FORMAT_WALLPAPER_ROLL 0x20000000
PISP_IMAGE_FORMAT_THREE_CHANNEL 0x40000000

Table 6: Image format flags.

Image Format Specifications

14

Raspberry Pi Image Signal Processor (PiSP) Specification

We repeat that not all flag combinations are meaningful; in fact, only the ones listed in previous tables
are valid. In particular we point out the following (non-exhaustive list of) rules.

+ The PiSP does not support 12-bit packed images so the PISP_IMAGE_FORMAT_BPS_12 value
is unused.

« Compression is supported only with single channel images so PISP_IMAGE_FORMAT_COM-
PRESSION_MODE_n flags should not be specified for 3-channel images, and would be ignored.

- PISP_LIMAGE_FORMAT_SHIFT_n flags are respected only for 16 bit per pixel images (i.e. PISP_-
IMAGE_FORMAT_BPS_16 set) and integral images (i.e. PISP_IMAGE_FORMAT_INTEGRAL_IM-
AGE set). Eight and ten bit output images are implicitly shifted by, respectively, 8 and 6 places.
For integral images it will be usual to set PISP_IMAGE_FORMAT_SHIFT_8.

+ PISP_IMAGE_FORMAT_ORDER_NORMAL and PISP_IMAGE_FORMAT_SWAPPED are significant
only for interleaved 422 and RGB_32 formats.

+ If PISP_LIMAGE_FORMAT_WALLPAPER_ROLL is set then PISP_IMAGE_FORMAT_THREE_CHAN-
NEL and PISP_IMAGE_FORMAT_SEMI_PLANAR must be set, and one of PISP_IMAGE_FOR-
MAT_SAMPLING_422 or PISP_IMAGE_FORMAT_SAMPLING. 420 must be set.

- If PISP_LIMAGE_FORMAT_BPS_10 is set, then PISP_IMAGE_FORMAT_WALLPAPER_ROLL must
also be set (10 bit per pixel formats are only supported as wallpaper rolls).

+ If PISP_IMAGE_FORMAT_INTEGRAL_IMAGE is set, appropriate PISP_IMAGE_FORMAT_SHIFT_-
n bits should also be set. Where multi-channel, PISP_IMAGE_FORMAT_PLANARITY_PLANAR
and PISP_IMAGE_FORMAT_THREE_CHANNEL should be set. Other flags must be clear.

« If one of PISP_IMAGE_FORMAT_HOG_SIGNED or PISP_IMAGE_FORMAT_HOG_UNSIGNED is
set, no other bits should be set.

- Ifanimage is interleaved (neither planar nor semi-planar), PISP_IMAGE_FORMAT_SAMPLING._-
420 may not be set.

- If PISP_LIMAGE_FORMAT_BPP_32 is set, then PISP_IMAGE_FORMAT_THREE_CHANNEL must
be set. PISP_IMAGE_FORMAT_ORDER_SWAPPED and PISP_IMAGE_FORMAT_X_VALUE are op-
tional. Other flags must be clear.

Formats with the PISP_IMAGE_FORMAT_BPP_32 flag set are recognised by the Back End only when
MINOR_VERSION > 1.

5.3 Image Dimensions

Input images to the Front End and to the Bayer Input block of the Back End must have even image
dimensions (width and height).

Input images to the RGB Input block of the Back End are also required to have even width. Further, if
they have 420 sampling format they must also have even height.

Output images from the Front End must also have even image dimensions.

Output images from the end of the Back End are not required to have even dimensions, except for 422
sampling format images which must have even width, and 420 sampling format images which must
have even height as well.

There is a further constraint that no single image plane (there being up to three planes in a Back End
output image) may contain more than 232 bytes.

5 Image Format Specifications 15

Raspberry Pi Image Signal Processor (PiSP) Specification

5.4 Image Address Alignment

The base addresses of image buffers supplied to the PiSP must be at least 16-byte aligned. This
includes all image buffers supplied as input or output to either the Front or Back Ends. Similarly, the
stride of the image buffers, that is, the line-to-line separation in bytes, must always be a multiple of 16.

The Back End, however, works more efficiently when its input/output buffer addresses and strides
are a multiple of 64 bytes. It is recommended, therefore, that the Front End is given 64-byte aligned
addresses and strides for image buffers that are destined for the Back End.

Finally there is one exception to these rules which is that wallpaper format images must have both the
address and stride aligned to 128 bytes. (For a wallpaper image, the stride is actually the distance from
the top of one wallpaper roll to the next roll; the line-to-line distance is implicitly always 128 bytes.)

Generally, firmware would be expected to calculate appropriate stride values when they are not given
explicitly.

There are also constraints on the alignments of the tiles into which the Back End breaks images for
processing. These constraints are discussed in subsequent sections.

5 Image Format Specifications 16

Raspberry Pi Image Signal Processor (PiSP) Specification

6 The PiSP Front End

6.1 Front End Overview

The Front End receives pixels either from a camera, or can read them from memory. It performs some
minimal processing and gathers statistics. Finally it outputs up to two images to memory which may
be cropped and scaled differently. Normally it both receives and writes Bayer images though it also
supports non-Bayer purely greyscale images. When writing to or reading from memory the pixel data
may optionally be compressed (using the scheme from section 4) to save memory bandwidth usage.

The Front End consists of the Input Cluster, the Processing Cluster, the Statistics Cluster and the Output
Cluster, as shown in figure 5.

6 The PiSP Front End 17

Raspberry Pi Image Signal Processor (PiSP) Specification

IXV —

SY00|q puB SJ21SN|0 pug 1U0I4 dSId G ainbi

IXV

salishels
«— SIISDOV || DS13/dWIS e A019DY
A
sieis
- - 0} JoAe
FMV/S1OV 54 d
A
— S1EIS 4VAD = o1g
1ewdaq
ndinp |euondo
o) le— 3jeOSUMOQ |— doi)
dos)
A m induj
I
v
.
o) — 9|eISUMOQ |e— dou) - Jda 34 —] V19 «— puedwodag ATT el ndu|
n
|
.
m
Suissasoud |

18

6 The PiSP Front End

Raspberry Pi Image Signal Processor (PiSP) Specification

Legend:
- C~! - optional decompression.
+ Decompand - undo any companding applied by the sensor to the pixel data.

+ BLA - Black Level Alignment adjusts the black levels on all four Bayer channels to be the same,
in case they are marginally different.

« FE DPC - a simple Defective Pixel Correction algorithm, tuned to require only limited context so
that it can operate on full frames.

« Crop - crop to a window of interest in the image. Statistics and each output may be cropped
independently.

- Decimate - optional decimation of the statistics window, by a factor of two in each axis. Only
the lower-right 2 x 2 from each block of 4 x 4 pixels are used for statistics.

+ BLC - Black Level Correction removes the black level from pixels in the Statistics Cluster. Pixels
output by the Output Cluster do not have their black level removed.

« CDAF Stats - statistics for Contrast Detect Auto Focus.
+ Bayerto RGB-converts each “quad” of 2 x 2 Bayer pixelsto an RGB triple, for statistics gathering.

- ACLS/AWB Stats - statistics for AWB (Auto White Balance) and ACLS (Auto Colour Lens Shading)
algorithms.

+ RGB to Y - convert RGB to luminance, using configurable coefficients to take account of any
digital gain and WBG (White Balance Gains).

« Simple LSC - a simple Lens Shading Correction algorithm, used only to correct luminance shad-
ing effects for AGC/AEC statistics gathering.

-+ AGC Stats - statistics for AGC/AEC (Automatic Gain Control / Automatic Exposure Control) algo-
rithms.

- Downscale - downscale of Bayer or greyscale image data by a range of fixed factors.

- C - proprietary PiSP RAW image compression from section 4 (can be bypassed).

6.2 Programmer’s Model

6.2.1 Registers and Interrupts

The Front End is controlled by writing to a number of 32-bit registers (where 64-bit addresses are
required, they are supplied as a pair of 32-bit values). These registers are divided into three principal
groups:

+ Control and Status Registers which can be written to to start the PiSP Front End so that it will
process a frame. The status registers can be read to determine what the Front End has done.

+ Input/Output Configuration Registers (or just I/0 Registers) which define where the PiSP Front
End reads its pixels from, and where it writes its results to.

- Processing Configuration Registers (or just Configuration Registers) which control what process-
ing the PiSP Front End performs on the pixels once it is running. These registers are further
grouped according to the functional blocks shown in figure 5.

Additionally, interrupts are signalled by the Front End which the processor can respond to in order to
cause the PiSP to process further frames. Four kinds of interrupts are generated:

6 The PiSP Front End 19

Raspberry Pi Image Signal Processor (PiSP) Specification

- Frame-Start Interrupts occur when the PiSP Front End has started processing a new frame (or
when a queued frame is aborted).

+ Frame-Done Interrupts occur when the PiSP Front End has finished processing a frame, including
writing all pixel and statistics data to memory (or when a frame is aborted).

« Line Interrupts are signalled when every n lines of the frame have been written, for programmable
values of n. These interrupts may be configured independently for either output channel.

« Statistics Ready Interrupts which occur when all statistics have been written to memory.

6.2.2 Proccessing Queue

In order to reduce latency between processing frames, the PiSP Front End implements a 1-deep queue
of requests to process new frames. This means that the next frame canbe configured while the current
frame is still being processed. Consequently all the configuration registers (both I/0 and Processing
configuration registers) have internal shadow registers. Every time the Front End prepares to process
a new frame, all the values in the publicly addressable registers are latched internally and now cannot
change for the duration of that frame. The Processing Started interrupt is signalled only after the
values have been latched, and subsequently a new frame (sourced from a camera peripheral or from
memory) begins. It is safe for firmware to overwrite the publicly addressable register values once this
interrupt has been seen.

When the next frame to process has been configured and queued, if the Front End is currently idle it
will become ready to process this frame immediately. If the Front End is currently busy this is delayed
until the current frame is finished whereupon it will then become immediately ready for the new frame,
requiring no intervention from software.

When receiving pixels from a camera, the Front End must clearly delay any activity until the frame
starts to arrive. It is up to the firmware to program the Front End correctly prior to frames arriving
from the camera. If the Front End is not properly configured for the new frame then that frame will be
lost, and the Front End can only resume operation, if programmed to do so, with the next frame start.
However, when reading pixels from memory, operations can begin immediately (subject to memory
latency). Recall that the Processing Started interrupt is signalled only once all the publicly addressable
registers have been copied and when the new frame start has subsequently been seen (which may
involve a delay for frames from a camera, or will be immediate for frames read from memory).

Note that requests for the Front End to process new frames are also referred to as jobs.

6.2.3 Front End States

The Front End exists at all times in one of four states. These are:

1. IDLE -the Front End is completely idle and will not change state unless a new job is programmed
into it.

2. PREPARING - when a new job is submitted the Front End immediately enters this state. It re-
mains in this state until all the registers have been copied to their internal shadows.

3. WAITING - this state is entered spontaneously after the PREPARING state and indicates that the
Front End is waiting for pixels to arrive (for example, from the camera).

4. ACTIVE - this state is entered spontaneously from either the WAITING or (if pixels are immei-
dately available) from the PREPARING state. The Processing Started interrupt is signalled upon
entry to this state. It indicates that the Front End is actively processing pixels. When a frame is
complete, the Front End will return to IDLE (if no further job was queued), or to PREPARING (if a
job was queued), and the Processing Done interrupt will be signalled.

6 The PiSP Front End 20

Raspberry Pi Image Signal Processor (PiSP) Specification

The diagram below illustrates the normal state transitions of the PiSP Front End. The dotted lines also
show the immediate termination path caused by signalling the PiSP to abort processing.

PREPARING

No pixels
arrived

Pixels
_______ immediately
available

Pixels
arrived

\\ New job
< Abort already

o)
~ _ queued

Figure 6: PiSP Front End state diagram

The abort paths return the PiSP to the IDLE state as soon as possible. Any pixel processing is aban-
donned and the active frame (if any) will not be completed. Moreover, any queued job will also be
cancelled. However, if the PiSP is not IDLE an interrupt will still be raised indicating that any active
frame, plus any queued frame, have fully completed (by the value of the Done count, which will also be
the same as the Started count). During an abort, frame counters and interrupt flags are incremented
atomically; firmware will not need to deal with any intermediate states.

6.2.4 The Front End Status

Besides a status register that returns the current state of the Front End (see section 6.2.3), the Front
End also has a number of 32-bit registers which can be read (usually in response to an interrupt) to
discover exactly what has been processed. These include:

+ The 16-bit Frame ID of the frame most recently completed. This is the same frame ID as that
obtained from the camera peripheral (or supplied by the caller for frames read from memory).
Discontinuities in this count can be used to infer the number of dropped frames. This number
is referred to as the the DONE count.

- The 16-bit Frame ID of the frame which the PiSP has most recently started processing (entered
the ACTIVE state). Again this number is taken from the camera peripheral (or supplied by the
caller for frames read from memory). This number is referred to as the STARTED count.

+ There are also two sets of error indicator bits, one set for the most recently done frame and one
for the previous frame (according to the counters above).

6 The PiSP Front End 21

Raspberry Pi Image Signal Processor (PiSP) Specification

+ Each of the Front End outputs has a line-count which records how many lines of output have
been written for that branch. This line count always refers to the most recently started frame,
according to the counters described above. So, for example, if the STARTED count has pro-
gressed onto the next frame, then we can deduce that the previous frame has been written out
in its entirety, irrespective of the values in the line count registers.

For proper synchronisation it is nessary to be able to read all these status registers atomically, as if at
the same instant in time. As the values will not fit into a single 32-bit register, the Front End provides
a LATCH control bit that can be written to to force all the registers to be updated atomically from the
internal hardware state. These status registers are not updated at any other time, except when a 1is
written to the LATCH control bit. Thereafter, software can read the register values without worrying
about race conditions.

More information can be found in section 6.4.1.

6.2.5 Frames and Burstframes

We normally think of the PiSP Front End as operating on a single frame at a time. Under some circum-
stances, however, the Front End can operate on several frames at a time. This might be helpful, for
example, when processing hundreds of frames per second. Such a group of frames is then referred
to as a burstframe.

The use of burstframes significantly reduces the interrupt load on the system and correspondingly
increases the time within which PiSP interrupts must be serviced. Burstframes work only when the
Front End is running in streaming mode, and not when reading data from memory. When using burst-
frames:

+ The Front End will ignore a specified number of frame ends and subsequent frame starts from
the camera peripheral, so that several frames are received as a large single frame. The down-
stream parts of the Front End will treat this as a single tall frame.

- The Statistics Crop block should be configured to select the first (topmost) frame within the
burstframe. Control algorithms will naturally run at the reduced burstframe rate.

+ Vertical cropping should not be used on the outputs.

- If Bayer downscaling is used in the vertical axis, the denominator must be a factor of half the
(real) frame height, and at least the topmost row of each output frame should be ignored. In
practice, high frame rates may require cameras to run in binned mode, so downscaling might
not be necessary.

The PiSP Back End can also process burstframes efficiently, by tiling the (real) frames within the burst-
frame individually and then submitting them all to the Back End as a single job.

6.3 Frame Size Limits

Unlike the Back End, the Front End normally operates on entire frames (or burstframes). There is a
parameterized limit on the width of frames that can be processed with full functionality; in the first
instantiation of PiSP the limit will be 6144.

When the source image is wider than 6144 columns:
- If FE DPC is enabled, it must be configured in horizontal-only mode.

- If statistics are used, one or both of the Statistics Crop and Statistics Decimate blocks must be
enabled and configured to yield a width of 6144 columns or fewer.

6 The PiSP Front End 22

Raspberry Pi Image Signal Processor (PiSP) Specification

- If Downscale 0 is enabled and the vertical ratio is not 1:1, its output width must not exceed 6144
(but the cropped image, and any unscaled outputs, may be wider).

Downscale 1T may have a different width limit, currently 4096:

- If Downscale 1is enabled and the vertical ratio is not 1:1, its output width must not exceed 4096
(but the cropped image, and any unscaled outputs, may be wider).

The largest possible frame or burstframe size is 65520 x 65534. These functional limits are indepen-
dent of performance considerations.

6.4 Register Definitions

Note that the entire register set is duplicated for each instance of the PiSP Front End. We detail first the
Control Registers, followed by the Input/Output Configuration Registers, and finally all the remaining
Processing Configuration Registers are listed block by block.

6.4.1 Control Registers

PISP_FE_VERSION 0x0000
PiSP Front End version and capabilities. Read-only and constant.

Bits Name Description R/W Reset

31.24 MAJOR_VERSION Front End hardware major version number. This R 0
document describes version zero.

23:20 MINOR_VERSION Counts minor changes other than to the parameters R 1
listed below. This document describes minor ver-
sions 0 and 1.

1916 NUM_INPUT Number of Streaming Input sources that may be R 1
connected to this Front End

1512 « MAXW_SCALE1 Width limit for Dowscale 1, in units of 1024 pixels. A R 4
value of zero means that there is no downscaler for
output channel 1.

11:8 MAXW_SCALEQ Width limit for Downscale 0, in units of 1024 pixels. R 6

74 MAXW_STATS Width'limit for statistics, in units of 1024 pixels. R 6

3:0 MAXW_DPC Width limit for FE DPC, in units of 1024 pixels. A R 6
value of zero means that FE DPC lacks vertical con-
text.

Table 7: PISP_FE_VERSION register definition.
6 The PiSP Front End 23

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_CONTROL

0x0004

Control register for the PiSP Front End.

Bits Name

Description

R/W

Reset

314 -

Reserved.

3 LATCH

Writing a Tto this bit causes the following status registers: PISP_-
FE_LFRAME_STATUS, PISP_FE_OUTPUT_STATUS and PISP_FE_-
ERROR_STATUS to be latched atomically from the internal hard-
ware state. Immediately after writing a 1 here, the listed registers
can be read by software without the risk of them changing again
(until another 1 is written to this bit).

W

2 RESET

Sets the PISP_FE_FRAME_STATUS, PISP_FE_OUTPUT_STATUS
and PISP_FE_ERROR_STATUS registers to zero. This bit should
only be written to when the PiSP is IDLE.

1 ABORT

Write a 1to abort current PiSP Front End processing. The frame
currently being processed (if any) and any queued frame are
abandoned as quickly as possible. If the Front End was not IDLE,
a Processing Done interrupt will be raised (Statistics Ready and
Lines interrupt status will be undefined).

0 QUEUE

Write a 11to queue the new job that has been programmed into
the configuration registers.

Table 8: PISP_FE_CONTROL register definition.

PISP_FE_STATUS

0x0008

Status register for the PiSP Front End. This register returns zero when the PiSP Front End is in

its IDLE state.

(See also PISP_FE_DEBUG_STATUS?2))

Bits Name Description R/W Reset
313 - Reserved. - -
2 ACTIVE Reads as 1 when the Front End is actively processing pixelsin R 0
a frame (is in the ACTIVE state).
1 WAITING Reads as 1when the Front End is ready to process aframebut R 0
is waiting for the frame to arrive (is in the WAITING state).
0 QUEUED Reads as 1when a job for the Front End is currently queued. If R 0
this is the only bit set, the Front End is PREPARING. It may also
read as 1during the WAITING or ACTIVE states if firmware has
programmed a new job since the current one started. When it
reads zero, it is safe to overwrite the configuration registers.
Table 9: PISP_FE_STATUS register definition.
6 The PiSP Front End 24

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_FRAME_STATUS 0x000C

Frame IDs of the frame the Front End has most recently started processing, and the frame
which it has most recently completed. These frame IDs match the values supplied either by the
camera peripheral or, if the frames are being read from memory, in the PISP_FE_IO_INPUT_ID
register at the time the frame was begun. This value is updated only when a 1 is written to the
LATCH bit of the PISP_FE_CONTROL register.

Bits Name Description R/W Reset
3116 DONE Frame ID of the frame most recently completed. R 0
150 STARTED Frame ID of the frame most recently started. R 0

Table 10: PISP_FE_FRAME_STATUS register definition.

PISP_FE_ERROR_STATUS 0x0010

Error status for the frame most recently completed (according to the DONE field of
PISP_FE_FRAME_STATUS), and the preceding frame. Also, statistics output status. [P_JFULL
and [P_]PANIC flags are defined only for MINOR_VERSION > 1. This register is updated when a
1is written to the LATCH bit of PISP_FE_CONTROL.

Bits Name Description R/W Reset

3117 - Reserved. - -

16 STATS_READY Reads as 1" when statistics have been written to mem- R 0
ory for the frame most recently started. Not an error.

15 - Reserved. - -

14 P_FULL Value of FULL for the frame immediately beforetheone R 0

most recently completed.

13 P_PANIC Value of PANIC for the frame immediately beforetheone R 0
most recently completed.

12 P_ABORTED Value of ABORTED for the frame immediately beforethe R 0
one most recently completed.

11 P_DECERR Value of DECERR for the frame immediately before the R 0
one most recently completed.

10 P_SLVERR Value of SLVERR for the frame immediately before the R 0
one most recently completed.

9 P_HARD_ERR Value of HARD_ERR for the frame immediately before R 0
the one most recently completed.

8 P_SOFT_ERR Value of SOFT_ERR for the frame immediately before R 0
the one most recently completed.

7 - Reserved. - -

Continued on next page. ..

6 The PiSP Front End 25

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_ERROR_STATUS (continued)

0x0010

Bits Name

Description

R/W Reset

6 FULL

Reads as 1" if streaming input FIFO was ever full dur-
ing the frame most recently completed. Not an error if
streaming source tolerates this. Defined only when MI-
NOR_VERSION > 1.

R 0

5 PANIC

Reads as '1'if the output FIFO reached a threshold during
the frame most recently completed. Not necessarily an
error. Defined only when MINOR_VERSION > 1.

4 ABORTED

Reads as 1" if the last frame was aborted while prepar-
ing, waiting or active.

3 DECERR

Reads as 1" if there was an AX| Decode Errorwhile writ-
ing out the frame most recently completed. This gener-
ally indicates an illegal output address.

2 SLVERR

Reads as 1" if there was an AXI Slave Error while writing
out the frame most recently completed. This generally
indicates an unsuitable output AXI burst configuration.

T HARD_ERR

Reads as ‘1" if a hard (unrecoverable) error was signalled
by a streaming source, or an AXl-Decode Error for a
memory source, for the frame most recently completed.

0 SOFT_ERR

Reads as ‘1" if a soft (recoverable) error was signalled by
a streaming source, or an AXI Slave Error for a memory
source, for the frame most recently completed.

Table 11: PISP_FE_ERROR_STATUS register definition.

PISP_FE_OUTPUT_STATUS

0x0014

Status register for the Front End output branches indicating how many image lines have been
completed. The number always refers to the most recently started frame, according to the
PISP_FE_FRAME_STATUS register. This value is updated only when a 1 is written to the LATCH
bit of the PISP_FE_CONTROL register.

Bits Name Description R/W Reset
3116 LINEST Number of image lines which have been written out for output R 0
branch 1.
150 LINESO Number of image lines which have been written out for output R 0
branch 0.
Table 12: PISP_LFE_OUTPUT_STATUS register definition.
6 The PiSP Front End 26

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_INTERRUPT_EN 0x0018

Interrupt enable register.

Bits Name Description R/W Reset
3125 - Reserved. - -
24 QREADY Setto 1toenable Queue Ready interrupts, valid when MINOR_- RW 0
VERSION > 1only.
2317 - Reserved. - -
16 STATS Set to 1to enable Statistics Ready interrupts. RW 0
1510 - Reserved. - -
9 LINEST Set to 1to enable Lines interrupts for output 1. RW 0
8 LINESO Setto 1to enable Lines interrupts for output 0. RW 0
72 - Reserved. - -
1 SOF Set to 1to enable Processing Started interrupts. RW 0
0 EOF Set to 1to enable Processing Done interrupts. RW 0

Table 13: PISP_FE_INTERRUPT_EN register definition.

PISP_FE_INTERRUPT_STATUS 0x001C

Interrupt status register. Writing a 1 to a particular bit will clear the corresponding interrupt.
Writing 0 to any bit, even reserved ones, has no effect. Interrupt events are recorded here even
when disabled.

Bits Name Description R/W Reset
31:25° - Reserved. - -
24 QREADY Read or clear Queue Ready interrupts, defined when MINOR_- RW 0
VERSION > 1 only.
2317 - Reserved. - -
16 STATS Read or clear Statistics Ready interrupt. RW 0
1510 - Reserved. - -
9 LINEST Read or clear output 1 Lines interrupt. RW 0
8 LINESO Read or clear output O Lines interrupt. RW 0
72 - Reserved. - -
1 SOF Read or clear Processing Started interrupt. RW 0
0 EOF Read or clear Processing Done interrupt. RW 0

Table 14: PISP_FE_INTERRUPT_STATUS register definition.

6 The PiSP Front End 27

Raspberry Pi Image Signal Processor (PiSP) Specification

6.4.2 Debug Registers

These read-only registers are for debug use only. Their contents may change whenever the Front End
is not idle. Do not write to them.

PISP_FE_DEBUG_CHECKSUM 0x0020

Fletcher checksum of 16-bit input values (after shift and before decompression) for the most
recently completed frame.

Bits Name Description R/W Reset
3116 C1 Sum of sums mod 65535. R 0
150 CO Sum of pixel values mod 65535. R 0

Table 15: PISP_FE_DEBUG_CHECKSUM register definition.

PISP_FE_DEBUG_FIFO_FULLNESS 0x0024

Fullness of streaming input FIFO (for all versions). When MINOR_VERSION > 1, it also reports
Output FIFO fullness.

Bits Name Description R/W Reset
3116 FULLNESS_OUT OQutput FIFO fullness, in 16-byte beats. R 0
15:0 FULLNESS_IN Input FIFO fullness, in pixel-pairs. R 0

Table 16: PISP_FE_DEBUG_FIFO_FULLNESS register definition.

PISP_FE_DEBUG_FIFO_DEPTHS 0x0028

Reports depths of Input and Output FIFOs. Constant. This register exists only when
MINOR_VERSION > 1. (In minor version zero, Input FIFO depth is always 1023.)

Bits Name Description R/W Reset
3116 DEPTH_OUT . Output FIFO depth, in 16-byte beats. R 511
15:0 DEPTH_IN Input FIFQ depth, in pixel-pairs. R 1023

Table 17: PISP_FE_DEBUG_FIFO_DEPTHS register definition.

6 The PiSP Front End 28

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_DEBUG_STATUS2 0x002C
Additional status information. This register exists only when MINOR_VERSION > 1.

Bits Name Description R/W Reset

3116 DONE Frame ID of the frame most recently completed. Unlike in R 0
FRAME_STATUS, it is not latched.

158 SEQ Count of frames completed or aborted, modulo 256. R 0

7:3 - Reserved. - -

2 ACTIVE Reads as 1 when the Front End is actively processing pixels R 0
in a frame (is in the ACTIVE state).

1 WAITING Reads as 1T when the Front End is ready to process a frame R 0
but is waiting for the frame to arrive (isin the WAITING state).

0 QUEUED Reads as 1 when a job for the Front End is currently queued. ~ R 0

If this is the only bit set, the Front End is PREPARING. It
may also read as 1 during the WAITING or ACTIVE states if
firmware has programmed a new job since the current one
started.

Table 18: PISP_FE_DEBUG_STATUS?2 register definition.

6.4.3 Input/Output Configuration Registers

These registers define the memory addresses where 'the PiSP Front End writes output pixels and
statistics and reads pixels from (when not in streaming mode). They are typically updated by firmware

on every frame.

Addresses in the PiSP have 64 bits, but depending on the target chip some high bits may be ignored.
The address from which to read pixel data in memory must be aligned to a multiple of 4 bytes (8 bytes
if compressed), and for writing the address must be a multiple of 16 bytes. The address for writing
out statistics data must also be 16-byte aligned.

PISP_FE_IO_STATS_ADDR_LO 0x0040
Low 32 bits of the output address for statistics. Ignored if no statistics are enabled.
Bits Name Description R/W Reset
31:4 ADDRESS_MID Bits 31:4 of the memory address. RW 0
30 - Reserved. Do not write any non-zero value. - 0
Table 19: PISP_FE_IO_STATS_ADDR_LO register definition.
6 The PiSP Front End 29

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_IO_STATS_ADDR_HI 0x0044

High 32 bits of the output address for statistics. Ignored if no statistics are enabled.

Bits Name Description R/W Reset

31:0 ADRESSS_HI High 32 bits of output address. RW -

Table 20: PISP_FE_IO_STATS_ADDR_HI register definition.

PISP_FE_IO_OUTPUTO0_ADDR_LO 0x0048

Low 32 bits of the memory address to which Output block 0 writes pixel data. Ignored if Output
0 is not enabled.

Bits Name Description R/W Reset
31:4 ADDRESS_MID Bits 31:4 of the memory address. RW 0
30 - Reserved. Do not write any non-zero value. - 0

Table 21: PISP_FE_IO_OUTPUTO_ADDR_LO register definition.

PISP_FE_IO_OUTPUTO_ADDR_HI 0x004C

High 32 bits of the memory addressto which Output block 0 writes pixel data. Ignored if Output
0 is not enabled.

Bits Name Description R/W Reset

31:0 ADDRESS-HI High 32 bits of memory address. RW 0

Table 22: PISP_FE_IO_OUTPUTO_ADDR_HI register definition.

PISP_FE_IO_OUTPUT1_ADDR_LO 0x0050

Low 32 bits of the memory address to which Output block 1 writes pixel data. Ignored if Output
Tis not enabled.

Bits Name Description R/W Reset
31:4 ADDRESS_MID Bits 31:4 of the memory address. RW 0
30 - Reserved. Do not write any non-zero value. - 0

Table 23: PISP_FE_IO_OUTPUT1_ADDR_LO register definition.

6 The PiSP Front End 30

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_IO_OUTPUT1_ADDR_HI 0x0054

High 32 bits of the memory address to which Output block 1 writes pixel data. Ignored if Output
Tis not enabled.

Bits Name Description R/W Reset

31.0 ADDRESS_HI High 32 bits of memory address. RW 0

Table 24: PISP_FE_IO_OUTPUT1_ADDR_HI register definition.

PISP_FE_IO_INPUT_ADDR_LO 0x0058

Low 32 bits of the memory address from which the Input block reads pixel data. Ignored if the
Input block is receiving pixels from the camera peripheral.

Bits Name Description R/W Reset

31:.0 ADDRESS_LO Low 32 bits of the memory address, of which thetwo least RW 0
significant bits must be zero.

Table 25: PISP_FE_IO_INPUT_ADDR_LO register definition.

PISP_FE_IO_INPUT_ADDR_HI 0x005C

High 32 bits of the memory address from which the Input block reads pixel data. Ignored if the
Input block is receiving pixels from the camera peripheral.

Bits Name Description R/W Reset

31:0 ADDRESS_HI'" High 32 bits of memory address. RW 0

Table 26: PISP_FE_IO_INPUT_ADDR_HI register definition.

PISP_FE_IO_INPUT_ID 0x0060

16-bit frame ID for the frame that'is to be processed. Normally this is expected to be a simple
16-bit counter. Ignored if the Input block is receiving pixels from the camera peripheral.

Bits Name Description R/W Reset
3116 - Reserved. - -
150 ID 16-bit Frame ID. RW 0

Table 27: PISP_FE_IO_INPUT_ID register definition.

6 The PiSP Front End 31

Raspberry Pi Image Signal Processor (PiSP) Specification

6.4.4 Global Configuration Registers
These registers affect the global behaviour of the Front End pipeline.

Each Front End block can be enabled or disabled. Typically, a disabled block passes its input unmod-
ifled to its output if they are in the same format, otherwise a default conversion is performed. The

configuration registers for a disabled block remain accessible, but have no effect until the block is
re-enabled.

PISP_FE_GLOBAL_ENABLE 0x0064
Register containing enable bits for blocks in the Front End pipeline.

Bits Name Description R/W Reset
3124 - Reserved. -

23 OUTPUT1 Enable Output on output branch 1. RW 0
22 COMPRESST Enable Compression on output branch 1. RW 0
21 DOWNSCALET Enable Downscale on output branch 1. RW 0
20 CROP1 Enable Crop on output branch 1. RW 0
19 OUTPUTO Enable Output on output branch 0. RW 0
18 COMPRESSO Enable Compression.on output branch 0. RW 0
17 DOWNSCALEO Enable Downscale on output branch 0. RW 0
16 CROPO Enable Crop on output branch 0. RW 0
1513 - Reserved. - -
12 AGC_STATS Enable AGC/AEC Statistics. RW 0
1 LSC Enable LSC (Lens Shading Correction). RW 0
10 RGBY Enable RGB to Y conversion. RW 0
9 AWB_STATS Enable AWB Statistics. RW 0
8 CDAF_STATS Enable CDAF Statistics. RW 0
7 BLC Enable BLC (Black Level Correction). RW 0
6 DECIMATE Enable Statistics Decimation. RW 0
5 STATS_CROP Enable Statistics Cropping. RW 0
4 DPC Enable DPC (Defective Pixel Correction). RW 0
3 BLA Enable BLA (Black Level Alignment). RW 0
2 DECOMPAND Enable Decompand. RW 0
1 DECOMPRESS Enable Decompression. RW 0
0 INPUT Must be 1" for normal operation. RW 0

Table 28: PISP_FE_GLOBAL_ENABLE register definition.

6 The PiSP Front End

32

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_GLOBAL_BAYER_ORDER 0x0068
Register defining the Bayer Order used by all blocks in the Front End pipeline.

Bits Name Description R/W Reset

312 - Reserved. - -

1.0 ORDER Bayer order, either 0x0 (RGGB), 0x1 (GBRG), 0x2 (BGGR) or 0x3 RW 0

(GRBG).

Table 29: PISP_FE_GLOBAL_BAYER_ORDER register definition.

6.4.5 Input Configuration Registers

The Front End Input block accepts only three formats of pixel.

- 16-bit pixel values from the streaming interface. These pixels may optionally be left-shifted by

up to 8 bits.

- 16-bit pixel values from memory. The pixels are read in little-endian format and may optionally

be left shifted by up to 8 bits.

+ Compressed format from memory. This is the PiSP proprietary RAW compression format at 8
bits per pixel. These values are simply passed downstream to the Decompression block.

Its line-to-line stride (pitch) must be a non-negative multiple of 16 bytes. When reading from mem-
ory the address of the image is given by the PISP_FE_IO_INPUT_ADDR_LO and PISP_FE_IO_INPUT_-

ADDR_HI registers.

The registers below define the behaviour of the block.

PISP_FE_INPUT_SOURCE

0x006C

Register-defining whether pixels are received from the streaming input (camera peripheral) or

read from memory.

Bits Name Description R/W Reset
3116 - Reserved. - -
158 BURST This value indicates how many frame ends are to be ig- RW 0

nored when'receiving streaming input. If the value is zero,

the block outputs a frame for every frame received. When

non-zero, it will output BU RST + 1 input frames as a sin-

gle burstframe.
71 - Reserved. - -
0 STREAMING Set to 1 for streaming input, or 0 to read from memory. RW 0

Table 30: PISP_FE_INPUT_SOURCE register definition.

6 The PiSP Front End

33

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_INPUT_SIZE 0x0070

Dimensions of the input image.

Bits Name Description R/W Reset
3116 HEIGHT Height of the image being received. RW 0
150 WIDTH Width of the image being received. RW 0

Table 31: PISP_FE_INPUT_SIZE register definition.

PISP_FE_INPUT_FORMAT 0x0074

Format definition of the input image.

Bits Name Description R/W Reset
31.26 - Reserved. : -
25:24 COMPRESSION_MODE Set to a nonzero compression mode if the in- RW 0
put is compressed.
2320 - Reserved. - -
1916 SHIFT Pixel values are left-shifted by this amount, for . RW 0
0 < SHIFT < 8, when COMPRESSION_-
MODE is zero.
152 - Ignored. - -
1.0 BITS_PER_SAMPLE Number of bits in each sample (pixel). Valid RW 0

settings are: 0 (8 bps) if COMPRESSION_-
MODE is nonzero; otherwise 3 (16 bps).

Table 32: PISP_FE_INPUT_FORMAT register definition.

PISP_FE_INPUT_STRIDE 0x0078

Line to line stride of pixel data in.memory. Ignored if STREAMING is set to 1.

Bits Name Description R/W Reset
31:4 STRIDE_MID Bits 31:4 of the stride in bytes. RW 0
30 - Reserved. Do not write any non-zero value. - 0

Table 33: PISP_FE_INPUT_STRIDE register definition.

6 The PiSP Front End 34

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_INPUT_STRIDE2 0x007C

This register is ignored.

Bits Name Description R/W Reset

310 - Reserved. - -

Table 34: PISP_FE_INPUT_STRIDE? register definition.

PISP_FE_INPUT_AXI 0x0080

Configuration for AXI read bursts. Ignored if STREAMING is set to 1.

Bits Name Description R/W Reset
3120 - Reserved. -

1916 QOS Value for ARQOS field, where used. RW 0
15 - Reserved. -

1412 PROT Value for ARPROT field, where used. RW 0
11:8 CACHE Value for ARCACHE field, where used. RW 0
7 ALIGN When MAXLEN+1 is a power of two but address is not so RW 0

aligned, truncate burst at a 16*(MAXLEN+1) byte boundary,
to align following bursts.

6:4 - Reserved. -

3.0 MAXLEN Maximum AXI burst length minus one. RW 0

Table 35: PISP_FE_INPUT_AXI register definition.

PISP_FE_INPUT_HOLDOFF 0x0084

Configuration for input rate control. Ignored if STREAMING is set to 1.

Bits Name Description R/W Reset
318 - Reserved. - -
7.0 HOLDOFF Extra cycles to delay before each AXI read burst. RW 0

Table 36: PISP_FE_INPUT_HOLDOFF register definition.

The diagram below illustrates how the Input block operates and how it is controlled by the registers
defined above.

6 The PiSP Front End 35

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_INPUT_SOURCE.BURST
PISP_FE_INPUT_SIZE

l PISP_FE_INPUT_FORMAT.SHIFT

32 32

Streaming / Framing and /e

Input Burst Frames T

. Rest of downstream
Shift pipeline

128 A ¢ 32

AXl ———» npu >

Formatting

]

PISP_FE_INPUT_SIZE,
FORMAT, STRIDE, PISP_FE_INPUT_SOURCE.STREAMING
PISP_FE_IO_INPUT_ADDR_LO,HI
and PISP_FE_INPUT_AXI registers

Figure 7: PiSP Front End Input block

6.4.6 Decompression Configuration Registers

This block should be enabled only if compressed image data is being read from memory by the Input
block (so that block's COMPRESSED bit should be set).

PISP_FE_DECOMPRESS 0x0088

Parameters for decompression of PiSP compressed RAW image format data.

Bits Name Description R/W Reset
3126 - Reserved. - -
25:24 MODE Select decompression mode. Legal values are 1,2 and 3. The RW 0
normal compression scheme is mode 1.
23716 - Reserved. - -
15:0 « OFFSET Offsetvalue added to all pixels after decompression. Normally ~ RW 0
used to restore black level if compression was configured to
subtract it.

Table 37: PISP_FE_DECOMPRESS register definition.

6.4.7 Decompand Configuration Registers

When enabled, this block applies a piecewise linear function to pixel values; either to implement some
discrete companding scheme or to approximate a smooth curve (such as a power law).

There are 64 linear segments of fixed, equal width; defined by 65 look-up table entries packed into
33 registers. Each LUT entry may differ from the previous one by 0:32767 (FSD/2). The final entry is
specified modulo 65536.

6 The PiSP Front End 36

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_DECOMPAND_LUT[~] 0x008C-+4n
Look-up table entries [2n] and [2n + 1] forn = 0, ..., 31.
Bits Name Description R/W Reset
3116 LUT1T Output value for input 1024 x (2n + 1) RW 0
150 LUTO Output value for input 1024 x 2n RW 0
Table 38: PISP_FE_DECOMPAND_LUT[n] register definition.
PISP_FE_DECOMPAND_LUT[32] 0x010C
Final look-up table entry for decompand.
Bits Name Description R/W Reset
3116 - Reserved. - -
15:0 LUTO Limiting output value, modulo 65536 RW 0

Table 39: PISP_FE_DECOMPAND_LUT([32] register definition.

6.4.8 BLA (Black Level Alignment) Configuration Registers

The BLA block aligns the black levels of all the Bayer channels so that they are the same value (in
case they were slightly different). For each channel it subtracts the “current black level” and adds the

“‘output black level”, before clipping the output to 0..65535.

PISP_FE_BLA_INPUT_RED 0x0110
Input black levels for alignment.
Bits Name Description R/W Reset
3116 GR Current black level of green pixels on green-red rows. RW 0
150 R Current black level of red pixels. RW 0
Table 40: PISP_FE_BLA_INPUT_RED register definition.
PISP_FE_BLA_INPUT_BLUE 0x0114
Input black levels for alignment.
Bits Name Description R/W Reset
3116 B Current black level of blue pixels. RW 0
150 GB Current black level of green pixels on green-blue rows. RW 0
Table 41: PISP_FE_BLA_INPUT_BLUE register definition.
6 The PiSP Front End 37

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_BLA_OUTPUT 0x0118
Output black level after alignment.

Bits Name Description R/W Reset

3116 - Reserved. RW 0

150 LEVEL Output black level of all pixels after alignment. RW 0

Table 42: PISP_FE_BLA_OUTPUT register definition.

6.4.9 DPC (Defective Pixel Correction) Configuration Registers

The Front End contains a DPC block, to protect statistics and downscalers from the worst effects of
defective pixels. Front End DPC is slightly less effective thanBack End DPC, as it buffers fewer lines of
the image. It finds the MIN..MAX range of values of 4 or 7 nearby pixels inthe same Bayer channel, and
extends it by a “margin” which represents the largest acceptable excursion away from neighbouring
values. The margin is a function of the MIN and MAX—MIN of the neighbouring pixels (from the same
Bayer channel) and optionally the MAX—MIN of 4 pixels from the other Bayer channel in the same row.
The output is clipped to lie within this range.

PISP_FE_DPC 0x011C
Configuration register for Front End DPC block.

Bits Name Description R/W Reset

3126 - Reserved. -

25 VFLAG Normally set to one. When zero, DPC ignores pixels RW 0
from other scanlines. This allows it to work (though
less effectively) on images wider than 6144.

24 FOLDBACK Causes pixels well outside the acceptable excursion RW 0
to be corrected more aggressively.

2321 - Reserved. - -

20:16 COEFF_RANGE2 Coefficient for the range of pixels from the other Bayer RW 0
channel, used to compute the margin. All coefficients
arein ul.4 format.

1513 - Reserved. - -

12:8 COEFF_RANGE Coefficient for the range of pixels from this Bayer RW 0
channel, used to compute the margin.

7:5 - Reserved. - -

4:0 COEFF_LEVEL Coefficient for the darkest neighbouring pixel value, RW 0
used to compute the margin.

Table 43: PISP_FE_DPC register definition.
6 The PiSP Front End 38

Raspberry Pi Image Signal Processor (PiSP) Specification

6.4.10 Statistics Crop Configuration Registers

A portion of the image can optionally be cropped for the statistics pipeline. This can be helpful if the
image being processed is wider than the FE maximum-width parameter (currently 6144).

Only even offsets and dimensions can be specified; the bottom bit of each field will be ignored and
should be written as zero. When crop is enabled, WIDTH and HEIGHT must both be at least 2.

PISP_FE_STATS_CROP_OFFSET 0x0120
Offset of the crop window.

Bits Name Description R/W Reset

3116 OFFSET_Y Y offset of the crop window. Must be even. RW 0

150 OFFSET_X X offset of the crop window. Must be even. RW 0

Table 44: PISP_FE_STATS_CROP_OFFSET register definition.

PISP_FE_STATS_CROP_SIZE 0x0124
Size of the crop window.

Bits Name Description R/W Reset

3116 HEIGHT Height of the crop window. Must be even. RW 0

150 WIDTH Width of the crop window. Must be even. RW 0

Table 45: PISP_FE_STATS_CROP_SIZE register definition.

Note that when the Statistics Decimate block is enabled and the source dimensions are not both
multiples of 4, Statistics Crop must be enabled. When Statistics Crop and Statistics Decimate are

both enabled, the cropped width and height must be multiples of 4.

6.4.11 Statistics Decimation Configuration Registers

The current version of the Statistics Decimation block is not configurable; when enabled it decimates

by a factor of 2 in each axis.

PISP_FE_SPARE1 0x0128
This register is ignored.
Bits Name Description R/W Reset
31.0 - Reserved. - -
Table 46: PISP_FE_SPARET register definition.
6 The PiSP Front End 39

Raspberry Pi Image Signal Processor (PiSP) Specification

6.4.12 BLC (Black Level Correction) Configuration Registers

Functionally this block is identical to the BLA block. However, it is situated at the start of the Statistics
Cluster, therefore allowing the full black level to be subtracted before collecting statistics. All the input
black levels would normally be programmed to the same level as the output level of the BLA block,

and the output level here should be set to zero.

PISP_FE_BLC_INPUT_RED 0x012C
Input black levels for alignment.
Bits Name Description R/W Reset
3116 GR Current black level of green pixels on green-red rows. RW 0
150 R Current black level of red pixels. RW 0
Table 47: PISP_FE_BLC_INPUT_RED register definition.
PISP_FE_BLC_INPUT_BLUE 0x0130
Input black levels for alignment.
Bits Name Description R/W Reset
3116 B Current black level of blue pixels. RW 0
150 GB Current black level of green pixels on green-blue rows. RW 0
Table 48: PISP_FE_BLC_INPUT_BLUE register definition.
PISP_FE_BLC_OUTPUT 0x0134
Output black level after alignment.
Bits Name Description R/W Reset
3116 - Reserved. RW 0
150 LEVEL Output black level of all pixels after alignment. RW 0

Table 49: PISP_FE_BLC_OUTPUT register definition.

6 The PiSP Front End

40

Raspberry Pi Image Signal Processor (PiSP) Specification

6.4.13 RGBY (RGB to Luminance) Configuration Registers

This block forms either a sum or MAX of weighted R, G and B samples from each 2 x 2 "quad”, to
form a Luminance or Value image for AGC Statistics only. The lower of the two Green phases is
used. Coefficients are all in u4.10 format; they should be configured to anticipate any white balance
adjustments, digital gains or colourspace conversions applied by the Back End.

PISP_FE_RGBY_GAINS_RG 0x0138

Red and green gains.

Bits Name Description R/W Reset
31:30 - Reserved. - -
29716 GREEN Coefficient for green pixels. RW 0
1514 - Reserved. - -
13:0 RED Coefficient for red pixels. RW 0

Table 50: PISP_FE_RGBY_GAINS_RG register definition.

PISP_FE_RGBY_GAIN_B 0x013C

Blue gain and MAX flag.

Bits Name Description R/W Reset
3117 - Reserved. - -
16 MAXFLAG Compute MAX (Value) instead of sum (Luma). RW 0
1514 - Reserved. - -
13.0 _BLUE Coefficient for blue pixels. RW 0

Table 51: PISP_FE_RGBY_GAIN_B register definition.

Note: When AGC Statistics are enabled but RGBY is not, these registers are ignored but conversion is
still performed; R, G, B will be summed using default coefficients (0.25, 0.5, 0.25).

6.4.14 LSC (Lens Shading Correction) Configuration Registers

The Front End LSC block is used only to correct pixels prior to the AGC Statistics block. Its purpose is
to apply vignetting correction so that the outer edges of the image are not overly dark, which would
otherwise skew the AGC/AEC algorthm into undervaluing those regions.

For this purpose it is sufficient to apply a radial function to a single-component (luminance) image.
The gain is defined by a 15-segment PWL function of 72 where r is the distance in pixels from a central
point.

6 The PiSP Front End 41

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_LSC_SCALE 0x0140
Parameters for converting 2 values into the correct range for the PWL function.

Bits Name Description R/W Reset

3126 - Reserved. - -

25716 SCALE Fractional multiplier used to scale shifted r? values into the RW 0
range 0—960.

155 - Reserved. - -

4.0 SHIFT ~ Amount by which 72 values are shifted right. Maximum RW 0
r2 /25HIFT shoyld be not more than 4095.

Table 52: PISP_FE_LSC_SCALE register definition.
PISP_FE_LSC_CENTRE 0x0144

Central point for the Lens Shading function, at full resolution (or half resolution if the Statistics
Decimate block is enabled), relative to the start of the Statistics Crop region. It should be not

more than 46340 pel from any image corner.

Bits Name Description R/W Reset
3116 CENTRE_Y Central y coordinate. Must be even. RW 0
150 CENTRE_X Central x coordinate. Must be even. RW 0
Table 53: PISP_FE_LSC_CENTRE register definition.
PISP_FE_LSC_GAINSI[~] 0x0148-+4n
Gains for the LSC radial correction function, forn = 0, ..., 7.
Bits Name Description R/W Reset
3116 GAINT Gain number 2n + 1 for the radial function LUT. RW 0
150 GAINO Gain number 2n for the radial function LUT. RW 0

Table 54: PISP_FE_LSC_GAINS[n] register definition.

6 The PiSP Front End

42

Raspberry Pi Image Signal Processor (PiSP) Specification

6.4.15 AGC Statistics Configuration Registers

The AGC Statistics block gather statistics for the AGC/AEC algorithm. This consists of a 1024-bin
histogram of luminance values, and also some row sums for the detection of flicker caused by artifical

lighting. Additionally, luminance sums are collected within the floating regions.

The window in which the histogram is measured is divided into a 16x16 grid of evenly sized rectangles,
and 4-bit weights can be attached to these so that they have more influence on the output histogram.
Figure 8 illustrates the layout of the grid with respect to its offset and size parameters.

offset_x

size_x
offset_y &
Si ze_y]:

.. etc.

.. etc.

Image

Figure 8: Grid layout for AGC statistics (not all grid rectangles shown)

Only one luminance value is formed for each 2 x 2 “quad” of the Bayer image, but for convenience
these offsets and sizes are expressed in terms of the full-resolution image (or half resolution if the
Statistics Decimate block is enabled). All dimensions must be even. The bottom bit of each offset or

size field will be ignored and should be written as zero.

PISP_FE_AGC_OFFSET 0x0168
Offset of the window within which the histogram is measured.
Bits Name Description R/W Reset
3116 OFFSET_Y Y offset of the top of the region within which the histogram RW 0
is measured. Must be even.
150 OFFSET_X X offset of the left edge of the region within which the his- RW 0
togram is measured. Must be even.
Table 55: PISP_FE_AGC_OFFSET register definition.
6 The PiSP Front End 43

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_AGC_SIZE 0x016C

Width and height of the window within which the histogram is measured.

Bits Name Description R/W Reset

3116 SIZE_Y Height of each of the 16x16 regions defining the weights. Must RW 0
be even. The height of the window within which the histogram
is measured is 16*SIZE_Y.

150 SIZE_X Width of each of the 16x16 regions defining the weights. Must RW 0
be even. The width of the window within which the histogram is
measured is 16*SIZE_X.

Table 56: PISP_FE_AGC_SIZE register definition.

PISP_FE_AGC_WEIGHTS][~] 0x0170-+4n

Weights for AGC regions, forn =0, ...,31

Bits Name Description R/W Reset
31:28 WEIGHT7 Weight for region 8n + 7. RW 0
27:24 WEIGHT6 Weight for region 8n + 6. RW 0
23:20 WEIGHTS Weight for region 8n + 5. RW 0
1916 WEIGHT4 Weight for region 8n + 4. RW 0
1512 WEIGHT3 Weight for region 8n + 3. RW 0
11:8 WEIGHT2 Weight for region 8n + 2. RW 0
74 WEIGHT1 Weight for region 8n + 1. RW 0
3.0 WEIGHTO Weight for region 8n. RW 0

Table 57: PISP_FE_AGC_WEIGHTS[n] register definition.

PISP_FE_AGC_ROW_OFFSET 0x01FO0

Image offset for row sum accumulation.

Bits Name Description R/W Reset

3116 OFFSET_Y Y offset before row sum accumulation begins. Must be RW 0
even.

15:0 OFFSET_X X offset before row sum accumulation begins. Must be RW 0
even.

Table 58: PISP_FE_AGC_ROW_OFFSET register definition.

6 The PiSP Front End 44

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_AGC_ROW_SIZE 0x01F4

Size of rows which are accumulated.

Bits Name Description R/W Reset

3116 SIZE_Y Height of each bin for row sum accumulation. Mustbe evenand RW 0
nonzero. The total height of the region used for row sums will be
512 times this value, unless clipped at the bottom of the frame.

15:0 SIZE_X Width of the window within which row sums are accumulated. RW 0
Must be even.

Table 59: PISP_FE_AGC_ROW_SIZE register definition.

PISP_FE_AGC_SHIFT 0x01F8

Right shifts applied before row sum and floating zone accumulation.

Bits Name Description R/W Reset

3112 - Reserved. - -

11:8 FLOAT_SHIFT Value by which Y values are right-shifted before floating- RW 0
zone sums.

74 - Reserved. - -

3.0 ROW_SHIFT Value by which'Y values are right-shifted before row RW 0
sums.

Table 60: PISP_FE_AGC_SHIFT register definition.

6.4.16 AWB Statistics Configuration Registers

AWB statistics are gathered for the purposes of driving AWB (Auto White Balance) and ACLS (Auto
Colour Lens Shading) algorithms. They are collected for a 32x32 grid of equally sized rectangles within
a window of the image.

For each rectangle within this grid we accumulate sums of the red, green and blue pixel values in
each 2 x 2 Bayer "quad” (the lower green phase is used), along with a count of the number of “quads”
summed (this may be smaller than the area of the rectangle, as quads with especially low or high
R,G,B values may optionally be excluded).

The arrangement of the grid with respect to its offset and size parameters is identical to the AGC
statistics, except that the grid is 32x32, and not 16x16 in size (please see section 6.4.15).

As before, the offsets and sizes of the rectangles are in full-resolution units (or half resolution if the
Statistics Decimate block is enabled) and must all be even. The bottom bit of each field will be ignored
and should be written as zero.

AWB statistics are collected without any lens shading correction applied as they are also intended
for use by ACLS (Auto Colour Lens Shading) algorithms. AWB algorithms will need to apply the lens
shading colour gains before using them. For convenience, the 32 x 32 grid size matches that used in
the Back End LSC block.

6 The PiSP Front End 45

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_AWB_OFFSET 0x01FC
Offset of the window within which statistics are gathered.
Bits Name Description R/W Reset
3116 OFFSET_Y Y offset of the region within which statistics are gathered. RW 0
Must be even.
150 OFFSET_X X offset of the region within which statistics are gathered. RW 0
Must be even.
Table 61: PISP_FE_AWB_OFFSET register definition.
PISP_FE_AWB_SIZE 0x0200
Width and height of the window within which statistics are gathered.
Bits Name Description R/W Reset
3116 SIZE_Y Height of each of the grid cells defining the weights. Must be RW 0
even. The height of the window below OFFSET_Y within which
statistics are collected is 32*SIZE_Y.
150 SIZE_X Width of each of the grid cells defining the weights. Must be RW 0
even. The width of the window to the right of OFFSET_X within
which statistics are collected is 32*SIZE_X.
Table 62: PISP_FE_AWB_SIZE register definition.
PISP_FE_AWB_SHIFT 0x0204
Shift applied to pixel values before accumulation.
Bits Name Description R/W Reset
313 - Reserved. - -
2.0 SHIFT Right-shift value applied to pixels before being accumulated. RW 0
Table 63: PISP_FE_AWB_SHIFT register definition.
PISP_FE_AWB_RED 0x0208
Limits that red pixels must satisfy for accumulation.
Bits Name Description R/W Reset
3116 HI Pixels must be less than or equal to this value in order to be ac- RW 0
cumulated.

Continued on next page...

6 The PiSP Front End

46

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_AWB_RED (continued) 0x0208
Bits Name Description R/W Reset
150 LO Pixels must be greater than or equal to this value in order to be RW 0

accumulated.

Table 64: PISP_FE_AWB_RED register definition.

PISP_FE_AWB_GREEN 0x020C

Limits that green pixels must satisfy for accumulation.

Bits Name Description R/W Reset

3116 HI Pixels must be less than or equal to this value in order to be ac- = RW 0
cumulated.

150 LO Pixels must be greater than or equal to thisvalue in order to be RW 0

accumulated.

Table 65: PISP_FE_AWB_GREEN register definition.

PISP_FE_AWB_BLUE 0x0210

Limits that blue pixels must satisfy for accumulation.

Bits Name Description R/W Reset

3116 HI Pixels must be less than or equal to this value in order to be ac- RW 0
cumulated.

150 ~ LO Pixels must be greater than or equal to this value in order to be RW 0

accumulated.

Table 66: PISP_FE_AWB_BLUE register definition.

6.4.17 CDAF (Contrast Detect Autofocus) Configuration Registers

The CDAF block calculates contrast measures across the image, by summing the squares of hori-
zontal and vertical pixel differences within Bayer components. It operates on at most two of the four
components (R, Gr, G g, B). Before calculating differences, each component is smoothed by an IIR
(infinite impulse response) filter, to reduce the effects of noise.

The noise deviation that the filter needs to smooth out any pixel is estimated by noise_constant +
noise_slope x v/pizel_value. Increasing the noise parameters will cause increased smoothing, and
decreasing them will reduce the amount of smoothing applied.

Autofocus statistics are gathered for an 8 x 8 grid of equally sized rectangles spread across a window
within the image. Each region of this grid has size (size_x + skip_z) x (size_y + skip_y), but the
contrast measure is only collected within the top left size_x x size_y of the region. This is illustrated
in the diagram below.

6 The PiSP Front End 47

Raspberry Pi Image Signal Processor (PiSP) Specification

offset_x
skip_x
offset_y size x —
snze_y:[
skip_y$... etc.

.. etc.

Image

Figure 9: Grid layout for CDAF statistics (not all grid rectangles shown)

The offset and dimensions of the CDAF grid rectangles must all be even.

PISP_FE_CDAF_NOISE 0x0214
Noise model for the CDAF block.
Bits Name Description R/W Reset
3116 SLOPE Noise slope (u8.8 format). RW 0
15:0 CONSTANT Noise constant. RW 0
Table 67: PISP_FE_CDAF_NOISE register definition.
PISP_FE_CDAF_OFFSET 0x0218
Offset for CDAF window.
Bits Name Description R/W Reset
3116 OFFSET_Y Y offset before contrast measure accumulation begins. RW 0
Must be even.
15:0 OFFSET_X X offset before contrast measure accumulation begins. RW 0

Must be even.

Table 68: PISP_FE_CDAF_OFFSET register definition.

6 The PiSP Front End

48

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_CDAF_SIZE 0x021C
Size of CDAF regions.
Bits Name Description R/W Reset
3116 SIZE_Y Height of the CDAF regions. Must be even. RW 0
150 SIZE_X Width of the CDAF regions. Must be even. RW 0
Table 69: PISP_FE_CDAF_SIZE register definition.
PISP_FE_CDAF_SKIP 0x0220
Skip value between CDAF regions.
Bits Name Description R/W Reset
3116 SKIP_Y Number of pixels to skip vertically. Must be even. RW 0
150 SKIP_X Number of pixels to skip horizontally. Must be even. RW 0
Table 70: PISP_FE_CDAF_SKIP register definition.
PISP_FE_CDAF_MODE 0x0224

Bayer component selection and weighting for CDAF. Suitable values include 0xQ9, 0x15.

Bits Name Description R/W Reset

316 - Reserved. - -

54 CPTS Choice of Bayer components for CDAF statistics. 0: (R, Gg); RW 0
1. (Gr,Gp); 2. (R, B); 3: (GR, B).

32 WEIGHT_G Weight to be given to the Gg or B component, in therange RW 0
0..3. Weights should sum to < 4.

1.0 WEIGHT_R Weight to be given to the R or Gg component, in the range RW 0

0..3. Weights should sum to < 4.

Table 71: PISP_FE_CDAF_MODE register definition.

6.4.18 Floating Statistics Configuration Registers

In addition to their normal statistics, AGC, AWB and CDAF also gather statistics for up to four “floating”
regions, defined by rectangles within the Statistics Crop region. As before, the offsets and dimensions
of the floating regions must all be even. If Statistics Decimation is enabled, they should be configured

at half size. The floating regions may overlap one another.

The floating statistics regions cannot be disabled per se. If AGC statistics are enabled then AGC statis-
tics will be gathered for the floating regions, and so forth. If an application has no need for the floating
statistics regions they can simply be ignored; it is recommended to set their sizes to zero.

6 The PiSP Front End

49

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_FLOATING[n]_OFFSET 0x0228-8n

XY offset of floating rectangle n, forn = 0,1, 2, 3.

Bits Name Description R/W Reset
3116 OFFSET_Y Y offset of rectangle. Must be even. RW 0
15:0 OFFSET_X X offset of rectangle. Must be even. RW 0

Table 72: PISP_FE_FLOATING[n]_OFFSET register definition.

PISP_FE_FLOATING[~]_SIZE 0x022C+8n

Size of floating rectangle n, forn = 0,1, 2, 3.

Bits Name Description R/W Reset
3116 SIZE_Y Height of rectangle. Must be even. RW 0
150 SIZE_X Width of rectangle. Must be even. RW 0

Table 73: PISP_FE_FLOATING[n]_SIZE register definition.

6.4.19 Output AXI Configuration Registers

These registers control AX| write parameters. Unlike other PiSP AXI masters, FE output QOS can
vary dynamically with Input FIFO fullness, thus four QOS levels should be configured. When MINOR_-
VERSION > 1, QOS may also depend on Output FIFO fullness.

PISP_FE_OUTPUT_AXI 0x0248

Configuration for AXI write bursts.

Bits Name Description R/W Reset

31:28 QOS3 Value for AWQOS when input FIFO is > 75% full in non-panic RW 0
mode, or > 25% when panicking.

2724 QOS2 Value for AWQOS when input FIFO is 50%—75% full in non- RW 0
panic mode, or < 25% when panicking.

2320 QOS1 Value for AWQOS when input FIFO is 25%—50% full in non- RW 0
panic mode, or > 25% when not panicking.

1916 QOSO0 Value for AWQOS when input FIFO is below 25% and either RW 0
not in panic mode or not panicking.

15 - Reserved.

1412 PROT Value for AWPROT field, where used. RW 0

11:8 CACHE Value for AWCACHE field, where used. RW 0

Continued on next page. ..

6 The PiSP Front End 50

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_OUTPUT_AXI (continued) 0x0248
Bits Name Description R/W Reset
7 ALIGN When MAXLEN+1 is a power of two but address is not so RW 0

aligned, truncate burst at a 16*(MAXLEN+1) byte boundary,
to align following bursts.

6 PAD When ‘0, use WSTRB to mask valid pixels. When 1, append RW 0
junk bytes up to a 16-byte boundary.

5 PANIC Enable “panic mode”, which forces QOS2 or QOS3 whenever RW 0
the output FIFO fills above a threshold. Effective only when
MINOR_VERSION > 1and an Output FIFO is implemented.

4 - Reserved.

3.0 MAXLEN Maximum AXI burst length minus one. RW 0

Table 74: PISP_FE_OUTPUT_AXI register definition.

PISP_FE_OUTPUT_PANIC 0x024C

Panic thresholds, used when MINOR_VERSION > 1, Output FIFO depth is nonzero, and the
PANIC flag (above) is set.

Bits Name Description R/W Reset

31 EOF Panic 2048 cycles after Frame End, if there are data (such RW 0
as Statistics) still to be written.

30 SOF Panic if a new Frame Start is seem while writing out the RW 0
previous frame.

29:16 < THROTTLE Output FIFO level at which Statistics traffic is slowed to RW 0
avoid spurious panic.

150 THRESH Output FIFO level at which to panic. RW 0

Table 75: PISP_FE_OUTPUT_PANIC register definition.

6.4.20 Crop 0 Configuration Registers

This block crops the image on the first output branch of the pipeline. The offset and dimensions of
the crop rectangle must all be even; the bottom bits of each field are ignored and should be written as
zero. When crop is enabled, WIDTH and HEIGHT must both be at least 2.

6 The PiSP Front End 51

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_CROPO_OFFSET 0x0250
Offset of the crop window.

Bits Name Description R/W Reset

3116 OFFSET_Y Y offset of the crop window. Must be even. RW 0

15:0 OFFSET_X X offset of the crop window. Must be even. RW 0

Table 76: PISP_FE_CROPO_OFFSET register definition.

PISP_FE_CROPO_SIZE 0x0254
Size of the crop window.

Bits Name Description R/W Reset

3116 HEIGHT Height of the crop window. Must be even. RW 0

15:0 WIDTH Width of the crop window. Must be even. RW 0

Table 77: PISP_FE_CROPOQ_SIZE register definition.

6.4.21 Downscale 0 Configuration Registers

The Downscale block can shrink both Bayer and monochrome images. It uses a “trapezoidal” filter
which is capable of downscaling by any rational factor 1 < factor < 16, where factor can be ex-
pressed as IN/OUT forintegers L < OUT < IN < 31. WIDTH and HEIGHT must be nonzero even

values no greater than the proportionally scaled input dimensions, rounded down.

In Bayer mode, the block respects the Bayer pattern and maintains a regular sampling grid (unless a

Binning flag is set).

When MINOR_VERSION = 0, in Monochrome mode, the XOUT field should not exceed 16.

PISP_FE_DOWNSCALEO_RATIOS 0x0258
Downscaling ratios, where 1 < OUT < IN < 31.
Bits Name Description R/W Reset
3129 - Reserved. - -
28:24 YOUT Denominator of the vertical downscaling factor. RW 0
2321 - Reserved. - -
20:16 YIN Numerator of the vertical downscaling factor. RW 0
1513 - Reserved. - -
12:8 XOUT Denominator of the horizontal downscaling factor. RW 0
7:5 - Reserved. - -
Continued on next page. ..
6 The PiSP Front End 52

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_DOWNSCALEO_RATIOS (continued) 0x0258
Bits Name Description R/W Reset
4.0 XIN Numerator of the horizontal downscaling factor. RW 0

Table 78: PISP_FE_DOWNSCALEQ_RATIOS register definition.

PISP_FE_DOWNSCALEO_BAYER 0x025C

Bayer mode flags.

Bits Name Description R/W Reset
312 - Reserved. - -
1 BIN When BIN and BAYER are both set, scale all Bayer components W 0

identically, without offset correction.

0 BAYER Setto 1to select Bayer mode, or O to select monochrome mode. RW 0

Table 79: PISP_FE_DOWNSCALEQ_BAYER register definition.

PISP_FE_DOWNSCALEO_OUTPUT_SIZE 0x0260

Output image size.

Bits Name Description R/W Reset
3116 HEIGHT - Output height. Must be even. RW 0
15:0 WIDTH Output width. Must be even. RW 0

Table 80: PISP_FE_LDOWNSCALEOQ_OUTPUT_SIZE register definition.

6.4.22 Compression 0 Configuration Registers

If this block is enabled the COMPRESSED bit in the corresponding Output block should be set. This
will cause the output image to be compressed to 8 bits per pixel.

PISP_FE_COMPRESSO0 0x0264

Parameters for compression of PiSP compressed RAW image format data.

Bits Name Description R/W Reset
3126 - Reserved. - -
2524 MODE Select compression mode. Legal values are 1,2 and 3. The RW 0

normal compression scheme is mode 1.

Continued on next page. ..

6 The PiSP Front End 53

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_COMPRESSO (continued) 0x0264
Bits Name Description R/W Reset
2316 - Reserved. - -
150 OFFSET Offset subtracted from pixels before compression. This may RW 0

improve fidelity when there is a high black level; it is recom-
mended to set it to a multiple of 512 below the lowest expected
pixel value.

Table 81: PISP_FE_COMPRESSO register definition.

6.4.23 Output 0 Configuration Registers

When enabled, the Output 0 block writes final result of output branch 0 to memory. It supports two
image formats:

- 16-bit pixel values. The pixels are written in little-endian format and may optionally be right
shifted by up to 8 bits.

+ Compressed format. Thisis the PiSP proprietary RAW compression format, with 8 bits per pixel.

Addresses in PiSP have 64 bits, but depending on the target chip some high bits may be ignored. The
address at which to write pixel data in memory must be aligned to a multiple of 16 bytes. Its line to
line stride must also be a non-negative multiple of 16 bytes.

The output should match the dimensions of the input, crop or downscale (depending on enable flags)
stage. Output WIDTH and HEIGHT must both be nonzero.

PISP_FE_OUTPUTO_SIZE 0x0268

Dimensions of the output image.

Bits Name Description R/W Reset
3116 HEIGHT Height of the image being written. RW 0
150 WIDTH Width of the image being written. Must be even. RW 0

Table 82: PISP_FE_OUTPUTO_SIZE register definition.

PISP_FE_OUTPUTO_FORMAT 0x026C

Format definition of the output image.

Bits Name Description R/W Reset
3126 - Reserved. - -
2524 COMPRESSION_MODE Setto a nonzero compression mode if the out- RW 0

put is compressed.

Continued on next page. ..

6 The PiSP Front End 54

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_OUTPUTO_FORMAT (continued) 0x026C
Bits Name Description R/W Reset
2320 - Reserved. - -
1916 SHIFT Pixel values are right-shifted by this amount if RW 0
COMPRESSION_MODE is zero, for 0 <= SHIFT
<=8.
152 - Reserved. - -
1.0 BITS_PER_SAMPLE Set this to 0 (8 bps) if compressed, or 3 (16 RW 0
bps) if uncompressed.
Table 83: PISP_FE_OUTPUTO_FORMAT register definition.
PISP_FE_OUTPUTO_STRIDE 0x0270
Stride of pixel data in memory.
Bits Name Description R/W Reset
31:4 STRIDE_MID Bits 31:4 of the stride in bytes. RW 0
30 - Reserved. Do not write any non-zero value. - 0
Table 84: PISP_FE_OUTPUTO_STRIDE register definition.
PISP_FE_OUTPUTO_STRIDE2 0x0274
This register is ignored.
Bits Name Description R/W Reset
310 - Reserved. - -
Table 85: PISP_FE_OUTPUTO_STRIDEZ register definition.
PISP_FE_OUTPUTO_ILINES 0x0278
Line count for line-based interrupts.
Bits Name Description R/W Reset
3116 - Reserved. Reads as zero. - -
150 LINES When enabled, raise an interrupt for every LINES image output RW 0

lines that are written.

Table 86: PISP_FE_OUTPUTO_ILINES register definition.

6 The PiSP Front End

55

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_OUTPUTO_SPARE 0x027C
This register is ignored.
Bits Name Description R/W Reset
310 - Reserved. - -
Table 87: PISP_FE_OUTPUTO_SPARE register definition.
6.4.24 Crop 1 Configuration Registers
Functionally identical to the Crop 0 block, but for the second output branch of the pipeline.
PISP_FE_CROP1_OFFSET 0x0280
Offset of the crop window.
Bits Name Description R/W Reset
3116 OFFSET_Y Y offset of the crop window. Must be even. RW 0
150 OFFSET_X X offset of the crop window. Must be even. RW 0
Table 88: PISP_FE_CROP1_OFFSET register definition.
PISP_FE_CROP1_SIZE 0x0284
Size of the crop window.
Bits Name Description R/W Reset
3116 HEIGHT Height of the crop window. Must be even. RW 0
150 <~ WIDTH Width of the crop window. Must be even. RW 0
Table 89: PISP_FE_CROP1_SIZE register definition.
6.4.25 Downscale 1 Configuration Registers
Where present, Downscale 1 is similar to Downscale 0, but may have a smaller width limit.
PISP_FE_DOWNSCALE1_RATIOS 0x0288
Downscaling ratios, where 1 < OUT < IN < 31.
Bits = Name Description R/W Reset
3129 - Reserved. - -
28:24 YOUT Denominator of the vertical downscaling factor. RW 0

2321 - Reserved.

Continued on next page. ..

6 The PiSP Front End

56

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_DOWNSCALE1_RATIOS (continued) 0x0288
Bits Name Description R/W Reset
20:16 YIN Numerator of the vertical downscaling factor. RW 0
1513 - Reserved. - -
12:8 XOUT Denominator of the horizontal downscaling factor. RW 0
75 - Reserved. - -
4.0 XIN Numerator of the horizontal downscaling factor. RW 0
Table 90: PISP_FE_DOWNSCALET_RATIOS register definition.
PISP_FE_DOWNSCALE1_BAYER 0x028C
Bayer mode flags.
Bits Name Description R/W Reset
312 - Reserved. - -
1 BIN When BIN and BAYER are both set, scale all Bayer components . W 0
identically, without offset correction.
0 BAYER Setto 1to select Bayermode, or O to select monochrome mode. RW 0
Table 91: PISP_FE_DOWNSCALET_BAYER register definition.
PISP_FE_DOWNSCALE1_OUTPUT_SIZE 0x0290
Output image size.
Bits Name Description R/W Reset
3116 HEIGHT Output height. Must be even. RW 0
15:0 WIDTH OQutput width. Must be even. RW 0

Table 92: PISP_FE_DOWNSCALET_OUTPUT_SIZE register definition.

6.4.26 Compression 1 Configuration Registers

Functionally identical to the Compression 0 block, but for the second output branch of the pipeline.

6 The PiSP Front End

57

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_COMPRESST1 0x0294
Parameters for compression of PiSP compressed RAW image format data.
Bits Name Description R/W Reset
3126 - Reserved. - -
25:24 MODE Select compression mode. Legal values are 1, 2 and 3. The RW 0
normal compression scheme is mode 1.
2316 - Reserved. - -
150 OFFSET Offset subtracted from pixels before compression. This may RW 0

improve fidelity when there is a high black level.

Table 93: PISP_FE_COMPRESST register definition.

6.4.27 Output 1 Configuration Registers

Functionally identical to the Output 0 block, but for the second output branch of the pipeline.

PISP_FE_OUTPUT1_SIZE 0x0298
Dimensions of the output image.
Bits Name Description R/W Reset
3116 HEIGHT Height of the image being written. RW 0
150 WIDTH Width of the image being written. RW 0
Table 94: PISP_FE_OUTPUT1_SIZE register definition.
PISP_FE_OUTPUT1_FORMAT 0x029C
Format definition of the output image.
Bits Name Description R/W Reset
3126 - Reserved. - -
2524 COMPRESSION_MODE « Set to a nonzero compression mode if the out- RW 0
put is compressed.
2320 - Reserved. - -
1916 SHIFT Pixel values are right-shifted by this amount if RW 0
COMPRESSION_MODE is zero, for 0 <= SHIFT
<=8,
152 - Reserved. - -
1.0 BITS_PER_SAMPLE Set this to 0 (8 bps) if compressed, or 3 (16 RW 0

bps) if uncompressed.

Table 95: PISP_FE_OUTPUT1_FORMAT register definition.

6 The PiSP Front End

58

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_FE_OUTPUT1_STRIDE 0x02A0
Stride of pixel data in memory.
Bits Name Description R/W Reset
31:4 STRIDE_MID Bits 31:4 of the stride in bytes. RW 0
30 - Reserved. Do not write any non-zero value. - 0
Table 96: PISP_FE_OUTPUT1_STRIDE register definition.
PISP_FE_OUTPUT1_STRIDE2 0x02A4
This register is ignored.
Bits Name Description R/W Reset
310 - Reserved. - -
Table 97: PISP_FE_OUTPUT1_STRIDEZ register definition.
PISP_FE_OUTPUT1_ILINES 0x02A8
Line count for line-based interrupts.
Bits Name Description R/W Reset
3116 - Reserved. Reads as zero. - -
150 LINES When enabled, raise an interrupt for every LINES image output RW 0
lines that are written.
Table 98: PISP_FE_OUTPUTI_ILINES register definition.
PISP_FE_OUTPUT1_SPARE 0x02AC
This register is ignored.
Bits Name Description R/W Reset

31.0 - Reserved.

Table 99: PISP_FE_OUTPUT1_SPARE register definition.

6 The PiSP Front End

59

Raspberry Pi Image Signal Processor (PiSP) Specification

6.5 Statistics Output Definitions

The various statistics blocks write their results to memory via DMA. Here we define the format in
memory that these outputs take. The output statistics are written contiguously to the address defined
by PISP_FE_IO_STATS_ADDR_LO and PISP_FE_IO_STATS_ADDR_HI, in the order given below.

- AWB statistics, starting at the offset 0 bytes from the address that was specified.
- AGC statistics, starting at the offset 16448 bytes from the address that was specified.
- CDAF statistics, starting at the offset 22656 bytes from the address that was specified.

Note that there is a total of 23200 bytes of statistics data in total, and that the offsets given are
respected even when any of the statistics in question are not enabled.

6.5.1 AWB Statistics

For each of its 32x32 zones, AWB writes out red, green and blue sums, plus the number of pixels it
counted (that is, passed the inclusion criteria) in each zone. This latter value is the same for all the
colour sums. All values are 32-bit little-endian format; offsets and sizes are given in bytes.

Field Offset Size Description

Red Sum 0 0 4 Red pixel sum for zone 0.

Green Sum 0 4 4 Green pixel sum for zone 0.

Blue Sum 0 8 4 Blue pixel sum for zone Q.

Counted 0 12 4 Number of pixels counted in zone 0.
Red Sum 1 16 4 Red pixel sum for zone 1.

Green Sum 1 20 4 Green pixel sum for zone 1.

Blue Sum 1 24 4 Blue pixel sum for zone 1.

Counted 1 28 4 Number of pixels counted in zone 1.

Red Sum 1023 16368
Green Sum 1023 16372

Red pixel sum for zone 1023.

Green pixel sum for zone 1023.

4
4

Blue Sum 1023 16376 4 Blue pixel sum for zone 1023.
4

Counted 1023 16380 Number of pixels counted in zone 1023.

Table 100: Output format of AWB zones.

Field Offset Size Description

6 The PiSP Front End 60

Raspberry Pi Image Signal Processor (PiSP) Specification

Field Offset Size Description

Red Sum 0 0 4 Red pixel sum for floating zone 0.

Green Sum 0 4 4 Green pixel sum for floating zone 0.

Blue Sum 0 8 4 Blue pixel sum for floating zone 0.

Counted 0 12 4 Number of pixels counted in floating zone 0.
Red Sum 3 48 4 Red pixel sum for floating zone 3.

Green Sum 3 52 4 Green pixel sum for floating zone 3.

Blue Sum 3 56 4 Blue pixel sum for floating zone 3.

Counted 3 60 4 Number of pixels counted in floating zone 3.

Table 107 Output format of AWB floating zones.

Note that this makes a total of 16384 + 64 = 16448 bytes of AWB statistics data.

6.5.2 AGC Statistics

First of all, AGC writes 512 32-bit row sums to memory, as shown in the table below. The offset and
size values are in bytes, and all are output in little-endian format.

Field Offset Size Description
Row 0 Sum 0 4 Row 0O total.
Row 1 Sum 4 4 Row 1 total.

Row 511 Sum 2044 4 Row 511 total.

Table 102: Output format of AGC row sums.

Next, AGC writes its 1024-bin histogram of 32-bit values to memory in the order shown below, imme-
diately following the row sums.

Field Offset Size Description
Bin 0 0 4 Number of pixels in bin 0.
Bin 1 4 4 Number of pixels in bin 1.

Bin 1023 4092 4 Number of pixels in bin 1023.

Table 103: Output format of AGC histogram.

6 The PiSP Front End 61

Raspberry Pi Image Signal Processor (PiSP) Specification

Finally, AGC outputs Y sums and counts for the four floating zones, immediately following the his-
togram.

Field Offset Size Description

Zone 0 Sum 0 8 Sum of pixel Y values in floating zone 0.
Zone 0 Count 8 8 Count of pixels in floating zone 0.

Zone 3 Sum 48 8 Sum of pixel Y values in floating zone 3.
Zone 3 Count 56 8 Count of pixels in floating zone 3.

Table 104: Output format of AGC floating zones.

Note that this makes a total of 2048 + 4096 + 64 = 6208 bytes of AGC statistics data.

6.5.3 CDAF Statistics
The CDAF block stores a 64-bit FOM (figure of merit) value for each of the 64 zones.

Field Offset Size Description

FOM O 0 8 Contrast measure for zone 0.

FOM 1 8 8 Contrast measure for zone 1.

FOM 63 504 8 Contrast measure for zone 63.

Table 105: Output format of CDAF FOMSs.

The are four further FOMs for the floating zones immediately following those above.

Field Offset Size Description

FOMO 0 8 Contrast measure for floatingzone 0.

FOM 3 24 8 Contrast measure for floating zone 3.

Table 106: Output format of CDAF floating zone FOMs.

Note that this makes a total of 512 + 32 = 544 bytes of CDAF statistics data.

6 The PiSP Front End 62

Raspberry Pi Image Signal Processor (PiSP) Specification

7 The PiSP Back End

7.1 Back End Overview

The Back End reads pixels from DRAM in a variety of formats. It performs the bulk of the required
image processing on the pixels before writing up to two output images back to memory. These two
images are normally cropped to the same field of view but may be scaled differently. Just like the
Front End it supports both Bayer and greyscale images. It also supports the same compressed image
format as the Front End, meaning the two can cooperate to reduce memory bandwidth usage.

For convenience the Back End is sometimes thought of as consisting of a Bayer Pipe (everything up to
and including Demosaic) and an RGB Pipe (everything after Demosaic). Images are normally read from
memory into the Bayer Pipe though the RGB Pipe is capable of reading 3-channel images (such as YUV
or RGB) too. The RGB Pipe also includes stages where the pixels may not actually be represented in
the RGB colour space (such as YCbCr), and terminates in a pair of Output Pipes, responsible for writing
images out to memory. The two Output Pipes are very similar in their capabilities. This arrangement
is illustrated below.

Output

= Dind —» AXI
AX|—» Bayer Pipe g RGB Pipe Outp ot
8 TPUt L A
Pipe

IER

AXI

Figure 10: Back End divided into Bayer and RGB pipes

One of the chief differences between the Front and Back Ends, is that the Back End processes images
in tiles. Hardware imposes a maximum tile width (typically 640); otherwise the widths and heights
of tiles are determined by software. Because many of the filtering operations in the Back End require
pixel context, the source rectangles of neighbouring tiles will generally overlap; output tiles may be
cropped to remove this overlap.

Note alsothat it is possible for a tile to produce outputs on only some of the output branches even
though all the branches are enabled — the pipeline supports the notion that some branches may crop
the entire tile to nothing. This is useful when outputs are differently cropped, or when size and align-
ment constraints would make a common tiling difficult.

7.2 Back End Pipe in Detail

7.2.1 Bayer Pipe

The Bayer Pipe is shown below, reading image data from memory and passing it, after the Demosaic
block, to the RGB Pipe.

7 The PiSP Back End 63

Raspberry Pi Image Signal Processor (PiSP) Specification

adld
20y

Jlesowsq

(-

dewauo]

(-

uigag

o) o]

adid loAeg pu3 oeq dsid :LL 2inbi4

IXV

+

ndino
Yamis

»

IXV

+

indino

NaL

+

Na>

o8M

51

PMS -

J1d

Nas

A

NaL

039

2dd

ndu|

[— IXV

ndu)
ya111s

IXV

64

7 The PiSP Back End

Raspberry Pi Image Signal Processor (PiSP) Specification

Legend:
+ Input - Input block can read compressed and uncompressed Bayer pixel data.
- C~!-Decompression, only to be enabled when compressed pixel data is read.

« DPC - Defective Pixel Correction block. This version of the block, unlike the one in the Front End,
has no line length limit.

- GEQ - Green Equalisation. Corrects “imbalance” between the two types of green (on red rows
and on blue rows) in the Bayer pattern.

- TDN Input - Reads the previous LTA (Long Term Average) frame output by the TDN block when
the previous frame was processed.

« TDN - Temporal Denoise. Requires the current frame being processed, and the previous LTA
output of this block, to be supplied as inputs.

- (' - optional compression, to reduce memory traffic when using TDN.

- TDN Output - writes the output of TDN (the LTA frame) to memory, so that it can be read by the
TDN Input block when the next frame is processed.

+ SDN - Spatial Denoise.
+ BLC - Black Level Correction. Black levels are finally subtracted from the pixels here.

- Stich Output - outputs the current frame to memory so that it can be re-read next time round by
the Stitch Input block as the second input to the Stitch block.

- Stitch Input - reads the previous frame that is to be stitched with the frame currently being pro-
cessed by the pipeline. Normally the other frame is of a different exposure and must be read to
create HDR images.

- Stitch - stitches its two input frames together. Normally one‘is a short exposure image and the
otheris along exposure image, and the two are stitched to create an HDR (High Dynamic Range)
image.

+ LSC - Lens Shading Correction.

+ WBG - apply white balance gains to pixels.
+ CDN'- Colour Denoise.

+ CAC - Chromatic Aberration Correction.

+ Debin - applies filtering to pixels to reduce the “staircase” effects caused by standard camera
2x2 binning of pixels.

+ Tonemap - apply tonemapping to the image data. Usually used in conjunction with the Sitch
blocks to create HDR images.

+ Demosaic - Demosaic block.

Mostly the Bayer Pipe reads pixels, processes them straight through, and passes three-channel RGB
pixels to the RGB pipe. However, the reader’s attention is drawn to the following use cases.

1. Temporal Denoise. When using temporal denoise, the TDN Output block should be enabled so
that the output of TDN itself (which is the LTA, or Long Term Average, frame) can be written
out to memory. Similarly, the TDN Input block should be enabled and configured to read the
previous LTA frame that was produced by TDN. The TDN block combines the current frame,
and the previous LTA frame, to produce the new LTA frame.

7 The PiSP Back End 65

Raspberry Pi Image Signal Processor (PiSP) Specification

2. HDR. This will use both the Stitch and Tonemap blocks. The Stitch Output block should be
enabled to write the current frame to memory. Similarly, the Stitch Input block will be enabled
to read the frame previously written by Stitch Output. One of these frames should be a long
exposure image, and the other a short exposure image. The Stitch block itself combines them
to create an HDR image. Finally, the Tonemap block will normally be enabled so as to render the
different parts of the scene at a level of brightness more visible in (for example) an 8-bit final
output image.

3. Outputting Intermediate Bayer Images. Sometimes it may be desirable to obtain Bayer data
from the Back End pipeline. In this case, the Demosaic block should be disabled, which causes
it to duplicate the incoming Bayer pixel onto all three of the output channels. All the downstream
pipeline stages, except for the final output stage, should be disabled, resulting in the writing to
memory of the intermediate Bayer format image.

7.2.2 RGB Pipe

The RGB Pipe is shown below, receiving pixel data from the Bayer Pipe, and optionally writing multiple
output images to memory.

7 The PiSP Back End 66

Raspberry Pi Image Signal Processor (PiSP) Specification

adid g9y puz qoeg dsid ¢l 2nbi4

IXV -4— 90H
IXV -4— 3Indinp 9|dwesay |«¢— 9|eOSuMoQ let—— ISD douy
uad.ieys
IXV -4— 3ndino 9|dwesay -¢—djeosumoq — ISD dos) | BWED — [JOGDA
anojo)
as|e4

DA

|043Uu0D
1es

DD

indu|

—|XV

adid JoAeg

67

7 The PiSP Back End

Raspberry Pi Image Signal Processor (PiSP) Specification

Legend:

- Input - pixels can be read from memory instead of from the Bayer Pipe. This is useful for imple-
menting simple rescaling and format conversions of fully-sampled RGB or YUV images.

+ CCM - Colour Correction Matrix.

- Sat Control - Saturation Control block which prevents hue distortion as saturation of different
colour channels occurs.

« YCObC'r - conversion to YCbCr (or similar) colour space.
+ False Colour + Sharpen - reduction of false colours, and edge/texture sharpening.

- YCbCr~! - Inverse YCbCr conversion. Converts back to RGB colour space, and should be the
inverse transformation of the earlier YCbCr block.

+ Gamma - apply gamma.
+ CSC - colour space conversion to desired output colour space.

+ Downscale - downscale, allowed scale factors are scale_factor = 1, or 2 < scale_factor < 8.
Note that the downscale block is not available on both output branches in all hardware variants.

« Resample - resampling. Can be used to upscale an image, or to shift the sampling point of pixel
data (for example, for YUV420 output).

- Output - Output formatter writes image data to memory in a variety of formats, including planar
formats, interleaved formats, and so forth.

-+ HOG - Write out HOG (Histogram of Oriented Gradients) features for the image.
We note how the following use cases can be implemented:

1. Format Conversions. Simple image format conversions and image resizing are supported by
reading the image from memaory into the RGB Pipe and changing the output format and/or size
in the Output pipe(s). Half resolution image channels (such as in YUV420) are up-sampled by
pixel doubling. Depending on the output format, and whether resampling is performed, there
may be some very marginal sub-pixel sampling errors in certain of the output channels.

2. Image Scaling. The Downscalers do not support downscaling factors (strictly) between 1 and
2, so these cases must be implemented using the Resampling blocks. The Resamplers support
arbitrary scale factors (both up- and down-scaling), but are not recommended for downscal-
ing by factors larger than 2, for image quality reasons. Note that the two output branches are
free to produce images of completely different sizes. Some hardware variants do not have a
downscaler on both output branches.

3. Non-cosited Output Samples. Some image formats require some of the output channels to
be sampled in a slightly different spatial location to other channels, YUV420 being a case in
point. The Resampler blocks allow different pixel offsets to be specified for the three channels,
allowing this to achieved. (Note that if the Resampler is being used to downscale, then any such
pixel offsets must be scaled up accordingly.)

4. Computer Vision. Some versions of the Back End can expedite Computer Vision applications
by writing integral images (useful for Haar-based feature detectors, such as Viola-Jones type
algorithms) on some hardware variants, and a Histogram of Oriented Gradients (HOG) for each
8x8 cell of animage. Observe that the HOG block is distinct from the Output block on the second
branch, so both these outputs can be generated simultaneously (where supported).

7 The PiSP Back End 68

Raspberry Pi Image Signal Processor (PiSP) Specification

7.3 Programmer’s Model
7.3.1 Tiles, Tiles, Tiles

Whereas the jobs handled by the Front End consist of requests to process entire frames, a job submit-
ted to the Back End is a request to process one or more tiles. Generally more than one tile is submitted
at atime so as to be less reliant on the system’s main processor. Such a group of tiles is often referred
to as a batch of tiles.

Like the Front End, the Back End also operates a 1-deep request queue. This means that the next batch
of tiles and their required configuration can be programmed while the previous batch is still being
processed. The tiles themselves are calculated and stored by firmware in the processor's memory
and their address is supplied to the PiSP Back End which reads them as needed.

It is important to understand that the Back End requires two very different kinds of configuration:

+ Global configuration data. This describes how the pixels in a particular image are to be pro-
cessed and is therefore shared across all the tiles of the image. So for example, LSC (Lens
Shading Correction) or Denoise parameters would be common across all tiles from the same
frame.

- Tile parameters. Each set of tile parameters describes a single tile in the image that is being
processed, how many pixels of over-read are present, and how it may change size as it goes
through the pipeline. Ipso facto the tile parameters, unlike the global configuration data, change
from tile to tile. A single set of tile parameters consists of 160 bytes. A batch of tiles therefore
consists of several sets of tile parameters. When a new batch of tiles is submitted it may involve
achange of global context if the tiles are referring to a new frame, or it may not, when the tiles are
merely from further down the same frame. Note how a block such as LSC needs to know where
atileisintheimage in order to process it correctly, even when the global LSC configuration does
not change. For more information on tile parameters, please see section 7.4.

It should be evident that a batch of tiles does not need to constitute an entire frame, and indeed
would usually only be a part of the frame. Processing batches of tiles from different frames may
be interleaved; whenever there is a change of frame then there will normally be a change of (global)
configuration, though this lies under the control of firmware.

7.3.2 Tile Address Offsets and Sizes

Tiles have both an input address offset and output address offsets. The input address offset indicates
where the first pixel.in the tile lies relative to the buffer address specified in the Input block registers.
Forexample, whenthe entire image buffer is being processed, the top left tile will have an input address
offset of zero. There are no particular alignment requirements on the input address offset, although
the x and y pixel offsets of the first pixel in the tile relative to the top left image pixel at (0,0) should
both be even.

Note that the Input block, TDN (Temproal Denoise) Input block and Stitch Input block all share the
same input address offset and input pixel offsets.

Each Output branch of the pipeline has its own output address offsets, as the images being output
may be in different formats and scaled to different sizes. Each branch actually has up to two output
address offsets per tile, covering the use of both interleaved and planar output formats (the third plane,
if present, shares the same offset as the second). This time the output address offsets are relative to
the buffer addresses in the Output blocks (each Output block can have up to three buffer addresses,
when writing fully planar output formats). The output address offsets should always be aligned to 64
bytes whenever possible, and the width of the output tiles should also be aligned to an exact multiple
of 64 bytes as this makes the most efficient use of the memory subsystem.

7 The PiSP Back End 69

Raspberry Pi Image Signal Processor (PiSP) Specification

There are some occasions when this may not be achieveable. For example, if the output image is
simply not a multiple of 64 bytes wide then the final column of tiles will require some shorter length
writes. In these cases it is still required that the line-to-line stride of the output images is a multiple of
64 bytes.

In other cases where very large downscaling factors are being applied then it is again possible for
output tiles to be less than 64 bytes wides (especially the U and V planes of 8 bit per pixel 422 and
420 outputs), and subsequent adjacent tiles will also consequently not start at 64 byte aligned output
address offsets.

In all cases the supplied firmware will construct the appropriate tiling with the most compliant input
and output address offsets.

We note further that no tile passing through the system may be smaller than 16x16 pixels in size.
Consequently, the smallest image size that can be process by the PiSP Back End is also 16x16 pixels.

7.3.3 Registers and Interrupts

The Back End is controlled by writing to a number of 32-bit registers (where 64-bit addresses are
required, they are supplied as a pair of 32-bit values). These registers are divided into two principal
groups:

+ Control and Status Registers which can be written to to start the PiSP Back End so that it will
process another batch of tiles. The status registers can be read to determine what the PiSP has
done.

- Input/Output Configuration Registers (or just I/0 Registers) which define where the PiSP Back
End reads pixels from and where it writes them to.

- Processing Configuration Registers (or just Configuration Registers)which control what the PiSP
Back End does to pixels once it is running. These constitute the bulk of the registers and are
further grouped according to the functional blocks of the Back End pipeline.

Additionally, interrupts are signalled by the Back End which the processor can respond to in order to
cause the PiSP Back End to process more tiles, from the same or a different frame. Two kinds of
interrupts are generated:

- Start of Batch Interrupts or SOB interrupts, which are signalled when the Back End has started
processing a new batch of tiles (or job).

+ End of Batch Interrupts or EOB interrupts, which are signalled when the Back End has completed
a batch of tiles (or job), including writing all pixel data to memory.

7.3.4 Processing Queue

The Back End implements a similar scheme to the Front End, where the next job can be programmed
while the previous job is running. The mechanism is very similar to the Front End where firmware
writes to publicly addressable versions of registers and these are copied (latched) internally when a
job begins, so that the public versions of the registers can be overwritten while that job is in progress.
The only significant difference, as compared to the Front End, is the presence of an extra control bit
which stipulates whether a job needs to copy the public I/0 and configuration registers when it begins,
or whether to use the incumbent values. Thus the register copy can be avoided when the subsequent
job is merely another set of tiles from further down the same frame as the previous job (and which
should therefore share the same global configuration).

7 The PiSP Back End 70

Raspberry Pi Image Signal Processor (PiSP) Specification

Beyond this the behaviour remains much like the Front End. If the next job has been configured it will
start immediately if the Back End is idle. If the Back End was busy it will commence without further
intervention once the current job completes. In both cases the SOB interrupt will be triggered.

7.3.5 Back End States
The PiSP Back End state machine is simpler than the Front End, consisting only of two states:

1. IDLE - the Back End is idle and will do nothing unless a job is queued, whereupon it will move
straight to the ACTIVE state and signal the SOB interrupt.

2. ACTIVE - the Back End is actively processing a job. Once the job is complete it will signal the
EOB interrupt. If no further job has been queued, it will move spontaneously to the IDLE state,
or if a job has been queued while it was busy, it will signal the SOB interrupt but remain in the
ACTIVE state .

Like the Front End, the Back End processing can be stopped by signalling the abort command. Any
current processing will stop as soon as possible, and any queued job will be abandonned. However, if
the PiSP is not IDLE an interrupt will still be raised indicating that the active job, plus any queued job,
have fully completed (by the value of the Done count, which will also be the same as the Started count).
Note that firmware will not need to process any “intermediate”interrupts wherein these counters might
increase one at a time to their final values.

7.3.6 The Back End Status

Besides a status registers that returns the current state of the Back End (see section 7.3.5), there
is also a single 32-bit batch status register. There are no output status registers (as the Front End
has). Furthermore, the frame counter values are generated by the Back End itself; there is no need
to share values produced externally, as was the case with the Front End (sharing values from the
camera peripheral). The batch status register contains 32 bits, of which only 24 are used, and which
can therefore be read atomically, and consists of:

+ An 8-bit count of the number of jobs completed.
-+ An 8-bit count of the number of jobs started.
- An 8-bit count of the number of tiles completed in the current job.

Interrupts are only signalled when all the outputs of the tile have finished writing their pixels to memory,
so a single status register is sufficient. Counts of completed image lines can be deduced by firmware
from the tiling information.

7.4 Tile Parameters

The PiSP Back End processes an image in tiles where each tile is described by a set of tile parameters.
This is a 160-byte block of data which contains the values that different pipeline blocks need in order
to decide where to read pixels from, where write output pixels to, and in some cases exactly how to
process them. Each of these sets of tile parameters is referred to as a tile parameter structure, and
they are read one-by-one from a contiguous block of memory as the PiSP works its way through all
the tiles it was given.

The fields of the tile parameter structure are listed below. In each case we give the size of the field and
its offset from the start of the structure, in bytes. Multi-byte values are always stored in little-endian
format. Where a field contains multiple entries (for example, for different output branches), the size
given is the size of a single entry.

7 The PiSP Back End 71

Raspberry Pi Image Signal Processor (PiSP) Specification

Field

Offset

Size Description

edge

0

.

Bitfield indicating to the resample blocks whether this
tile is to be treated as being at the edge of an image.
Bit 0 = left edge, 1=right edge, 2 = top edge, 3 = bottom
edge. Multiple bits may be set, for example when a tile
is at a corner. Bits 4 to 7 are ignored.

padding

These bytes are ignored.

input_addr_offset

Offset in bytes into the input image from where the
top left pixel in the tile is read. This field is used by
the Input block both when reading into the Bayer pipe
and when reading into the RGB pipe. This value must
be at least 4-byte aligned (and may need to be larger
if compression or TDN/STITCH outputs are enabled),
but for best performance a 64-byte aligned value is
recommended.

input_addr_offset2

Offsetin bytesintothe 2nd and 3rd image planes from
where those planes are read. This value must be at
least 4-byte aligned (and may need to be larger - see
input_addr_offset), but for best performance a 64-byte
aligned value is recommended. It is used only when
reading into the RGB pipe, and only when the input im-
age has a planar (non-interleaved) format.

input_offset_x

12

Horizontal offset in pixels of this tile in the input im-
age.

input_offset_y

14

Vertical offset in pixels of this tile in the input image.

input_width

16

Width in pixels of this tile as it is read from the input
image.

input_height

18

Height in pixels of this tile as it is read from the input
image.

tdn_input_addr_offset

20

Offset in bytes into the TDN input image from where
the LTA (long term average) frame is read. This value
must be at least 16-byte aligned, but for best perfor-
mance a 64-byte aligned value is recommended.

tdn_output_addr_offset

24

Offset in bytes into the TDN output image where the
new LTA (long term average) frame is written. This
value must be at least 16-byte aligned, but for best per-
formance a 64-byte aligned value is recommended.

stitch_input_addr_offset

28

Offset in bytes into the Stitch input image from where
the other image is read. This value must be at least
16-byte aligned, but for best performance a 64-byte
aligned value is recommended.

7 The PiSP Back End

72

Raspberry Pi Image Signal Processor (PiSP) Specification

Field Offset Size Description

stitch_output_addr_offset 32 4

Offset in bytes into the Stitch output image where the
output frame is written. This value must be at least
16-byte aligned, but for best performance a 64-byte
aligned value is recommended.

Isc_grid_offset_x 36 4

Horizontal offset into the LSC table where this tile be-
gins. Thisis a U5.18 format number in units of the LSC
cell width.

Isc_grid_offset_y 40 4

Vertical offset into the LSC table where this tile begins.
This is a U5.18 format number in units of the LSC cell
height.

cac_grid_offset_x 44 4

Horizontal offset into the CAC table where this tile be-
gins. This is a U3.20 format number in units of the
CAC cell width.

cac_grid_offset_y 48 4

Vertical offset into the CAC table where this tile be-
gins. This is a'U3.20 format number in units of the
CAC cell height.

crop_x_start[n] 52 2

The number of pixels cropped from the left of the tile
when passing through the Crop block at the head of
output branch n, forn = 0, 1.

crop_x_end|[n] 56 2

The number of pixels cropped from the right of the tile
when passing through the Crop block at the head of
output branch n, forn =0, 1.

crop_y_start[n] 60 2

The number of pixels cropped from the top of the tile
when passing through the Crop block at the head of
output branch n, forn =0, 1.

crop_y_-end[n] 64 2

The number of pixels cropped from the bottom of the
tile when passing through the Crop block at the head
of output branch n, forn =0, 1.

downscale_phase_x[m][n] 68 2

Initial horizontal phase in pixels of colour channel m
(m = 0,1,2) for the Downscaler on output branch n
(n =0,1). Thisis a U0.12 format value.

downscale_phase_y[m][n] 80 2

Initial vertical phase in pixels of colour channel m
(m = 0,1,2) for the Downscaler on output branch n
(n = 0,1). Thisis a U0.12 format value.

resample_in_width[n] 92 2

Width in pixels of the tile entering the Resample block
on output branchn (n = 0, 1).

resample_in_height[n] 96 2

Height in pixels of the tile entering the Resample block
on output branch n (n = 0, 1).

resample_phase_x[m][n] 100 2

Initial horizontal phase in pixels of colour channel m
(m = 0,1,2) for the Resampler on output branch n
(n = 0,1). This parameter is in U1.12 format.

7 The PiSP Back End

73

Raspberry Pi Image Signal Processor (PiSP) Specification

Field Offset Size Description

resample_phase_y[m][n] 12 2 Initial vertical phase in pixels of colour channel m
(m = 0,1,2) for the Resampler on output branch n
(n = 0,1). This parameter is in U1.12 format.

output_offset_x[n] 124 2 Horizontal offset in pixels where this tile will be written
into the output image, for output branch n (n = 0, 1).

output_offset_y[n] 128 2 Vertical offset in pixels where this tile will be written
into the output image, for output branch n (n = 0, 1).

output_width[n] 132 2 Widthin pixels of this tile in the output image, for out-
put branchn (n = 0, 1).

output_height[n] 136 2 Height in pixels of this tile in the output image, for out-
put branch n (n = 0, 1).

output_addr_offset[n] 140 4 Offset in bytes into the output buffer where output
branchn (n = 0, 1) is to write this tile. This value must
be at least 16-byte aligned, but for best performance
a 64-byte aligned value is recommended.

output_addr_offset2[n] 148 4 Offset in bytes into the output buffer where planes 2
and 3 of this tile are to be written. This value must be
at/least 16-byte aligned, but for best performance a
64-byte aligned value is recommended. Ignored if the
output format is non-planar (interleaved).

output_hog_addr_offset 156 4 Offset in bytes into the HOG output buffer where the
results for this tile are to be written. This value must
be at least 16-byte aligned, but for best performance
a 64-byte aligned value is recommended.

Table 107: Tile parameter structure. Offsets and sizes are given in bytes.

Tile parameters are explained in more detail below in the discussion of the processing blocks that use
them.

7.4.1 Tile Alignment

Note how the tiles should be aligned such that all the addr_offset fields are aligned to at least a multiple
of 4 bytes. However, when compression is involved alignment will need to be at least 8 bytes, and if
any of TDN OUTPUT or STITCH OUTPUT is enabled, then alignment will have to be increased to 16
bytes. For most efficient use of the memory infrastructure, and therefore best performance, these
values should ideally be aligned to 64 bytes. This is similar to the restrictions on image buffer base
addresses and image strides, although with tiles there is no requirement for 128-byte alignment for
wallpaper format images.

Observe how 16-byte alignment corresponds to 16, 12 and 8 pixel alignment for, respectively, 8bpp,
10bpp and 16bpp images (recall that 10bpp images are written with 3 samples in every 4 byte word).
Similar numbers, mutatis mutandis, hold for 64-byte alignment.

Firmware is expected to calculate appropriate tilings of an image so as to satisfy these constraints.

7 The PiSP Back End 74

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5 Register Definitions and Tile Parameters

7.5.1 Control Registers

PISP_BE_VERSION

0x0000

PiSP Back End version. Note how the fields within this register indicate particular properties
and capabilities of this instantiation of the PiSP Back End.

Bits Name Description R/W Reset
3126 - Reserved. Reads as zero. R 0
25 HOG Reads as 1if the final output branch supports HOG R 1
output, or 0 if it does not.
24 INTEGRAL Reads as 1 if the output branches supportintegral R 0
image output format, or 0 if they do not.
23:20 DOWNSCALERS Bitfield that indicates with a 1in position i that out- = R 2
put branch 7 includes a Downscaler block.
1918 NUM_OUTPUTS One less than the number of output branches. R 1
17716 PIX_CLOCK Base 2 logarithm of the number of pixels per clock R 1
processed by the Back End.
158 TILE_WIDTH One less than the maximum supported tile with di- R 0x27
vided by 16. That is, max_tile_width /16 — 1.
74 MAJOR_VERSION PiSP Back End major version number, R 0
3.0 MINOR_VERSION PiSP Back End minor version number. R 1
Table 108: PISP_BE_VERSION register definition.
PISP_BE_CONTROL 0x0004
Control register for the PiSP Back End.
Bits Name Description R/W Reset
3124 - Reserved. - -
23716 TILES ~ Number of tiles to process, which are specified in contigu- W 0
ous memory at the PISP_BE_TILE_ADDR_LO/HI registers. This
value should be written at the same moment as the value 1 is
written to the QUEUE bit.
154 - Reserved. - -
3 RESET Sets PISP_BE_BATCH_STATUS register to zero. This bit should W 0

only be written to when the Back End is IDLE.

Continued on next page...

7 The PiSP Back End

75

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_CONTROL (continued) 0x0004
Bits Name Description R/W Reset
2 ABORT Write a 1to abort current PiSP Back End processing. Thebatch W 0

currently being processed (if any) and any queued jobs are all
abandonned as quickly as possible. If the Back End was not
IDLE, an interrupt will be raised to signal that all processing is
complete. Other registers are not affected.

1 COPY Write a 1 to cause the global configuration registers to be W 0
latched and updated internally when the job begins, otherwise
write a 0 to keep the same configuration as the previous job.
This bit needs to be written on the same operation that writes
a 1to the QUEUE bit.

0 QUEUE Write a 1to queue the new job that has been programmed into. W 0
the configuration registers.

Table 109: PISP_BE_CONTROL register definition.

PISP_BE_TILE_ADDR_LO 0x0008

Low 32 bits of the address where tile descriptors are read.

Bits Name Description R/W Reset

31:0 ADDRESS_LO Low 32 bits of address value. RW 0

Table 110: PISP_BE_TILE_ADDR_LO register definition.

PISP_BE_TILE_ADDR_HI 0x000C

High 32 bits of the address where tile descriptors are read.

Bits Name Description R/W Reset

31:0 ADDRESS_HI High 32 bitsof address value. RW 0

Table 111: PISP_BE_TILE_ADDR_HI register definition.

7 The PiSP Back End 76

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_STATUS 0x0010
Status register for the PiSP Back End. Can be polled to determine additional Back End status
information.

Bits Name Description R/W Reset

312 - Reserved. - -

1 ACTIVE Reads as 1 when the Back End is busy processing a request R 0

and 0 when it is idle (waiting for a new job to be queued).

0 QUEUED Reads as 1 when a new Back End job has been queued, and 0
when a new job can be queued.

Table 112: PISP_BE_STATUS register definition.

PISP_BE_BATCH_STATUS 0x0014

Status register for determining progress of the Back End. If necessary, this register can be
polled by software.

Bits Name Description R/W Reset
31.24 - Reserved. - -
2316 TILES Number of tiles of the most recently started job that have R 0

been completed (meaning that all output pixels have been
written to and arrived in memory).

158 STARTED Count of the number of jobs that have been started. The R 0
value here will always be the same as, or 1 larger than (taking
account of the modulo 28 arithmetic), the value in the DONE
field.

7.0 DONE Count of the number of jobs that have been completed. R 0

Table 113: PISP_.BE_BATCH_STATUS register definition.

PISP_BE_INTERRUPT_EN 0x0018

Interrupt enable register.

Bits Name Description R/W Reset
312 - Reserved. Reads as zero. - -
1 SOB Setto 1to enable start of batch (job) interrupts. RW 0
0 EOB Setto 1to enable end of batch (job) interrupts. RW 0

Table 114: PISP_BE_INTERRUPT_EN register definition.

7 The PiSP Back End 77

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_INTERRUPT_STATUS

0x001C

Interrupt status register. Writing a 1to a particular bit will clear the corresponding interrupt.

Writing 0 to any bit, even reserved ones, has no effect.

Bits Name Description R/W Reset

312 - Reserved. - -

1 SOB Clear start of batch (job) interrupt. RW 0

0 EOB Clear end of batch (job) interrupt. RW 0
Table 115: PISP_BE_INTERRUPT_STATUS register definition.

PISP_BE_AXI 0x0020

Configuration for AXI4 auxiliary fields. Controls AXI read/write requests for all tile parameters
and image buffers. Only AWQOS and ARQOS may be changed while PiSP Back End is active.
Note that the AWPROT and ARPROT fields may be masked by the hardware implemention.

Bits Name Description R/W Reset
31 Reserved -
30:28 AWPROT Value for write permissions, where used. RW 0
2724 AWCACHE Value for write cache flags, where used. RW 0
23 MODIFY_ARID Test bit; should always be clear in normal use. RW 0
22 ENABLE_BID Use BID to match responses (should always be set RW 0
when MINOR_VERSION = 1; ignored by other versions).
21 ENABLE_AWID Vary AWID by channel (should always be set when MI- RW 0
NOR_VERSION = T; ignored by other versions).
20 BURST_TRIM Use more efficient write bursts (should always be set RW 0
when MINOR_VERSION = 1; ignored by other versions).
1916 AWQOS Value for write QoS field, where used. RW 0
15 Reserved -
1412 ARPROT Value for read permissions, where used. RW 0
11:8 ARCACHE Value for read cache flags, where used. RW 0
74 Reserved -
30 ARQOS Value for read QoS field, where used. RW 0
Table 116: PISP_BE_AXI register definition.
7 The PiSP Back End 78

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.2 Input/Output Configuration Registers

These registers define the memory addresses where the PiSP Back End reads pixels from, and where
it writes output pixels. They are typically updated by firmware on every frame. The Back End does
not output any statistics, though it may generate some “intermediate” images which are fed back into
certain blocks on subsequent frames (for example, Temporal Denoise).

Addresses in the Back End are treated in the same way as in the Front End. That is, addresses for
reading pixel data in memory must be aligned to a multiple of 4 bytes, and for writing addresses must
be a multiple of 16 bytes.

PISP_BE_IO_INPUT_ADDRI»][m] 0x0040

Memory address from which the Input block (either at the head of the Bayer or RGB pipes)
reads pixel data. When m = 0 the register gives the low 32 bits of the address, and form =1
the high 32 bits. n takes the values 0, 1 or 2 for each plane of pixel data that may be read. When
the INPUT bit of PISP_BE_BAYER_ENABLE is set, the registers are ignored forn = 1, 2. When
the INPUT bit of PISP_BE_RGB_ENABLE is set, and a multi-planar format is specified, then data
will be read from these addressses.

Bits Name Description R/W Reset

31:0 ADDRESS 32 bits of the memory address, of which the two least signif- RW 0
icant bits must be zero when m = 0 (that is, the least signifi-
cant 32 bits of the address):

Table 117: PISP_BE_IO_INPUT_ADDR[n][m] register definition.

PISP_BE_IO_TDN_INPUT_ADDR_LO 0x0058

Low 32 bits of the memory address from which the Temporal Denoise block (TDN) reads pixel
data.

Bits Name Description R/W Reset

31:0 ADDRESS_LO Low 32 bits of the memory address, of which the low of RW 0
which the two least significant bits must be zero.

Table 118: PISP_BE_IO_TDN_INPUT_ADDR_LO register definition.

PISP_BE_IO_TDN_INPUT_ADDR_HI 0x005C

High 32 bits of the memory address from which the Temporal Denoise block (TDN) reads pixel
data.

Bits Name Description R/W Reset

31:.0 ADDRESS_HI High 32 bits of memory address. RW 0

Table 119: PISP_BE_IO_TDN_INPUT_ADDR_HI register definition.

7 The PiSP Back End 79

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_IO_STITCH_INPUT_ADDR_LO 0x0060

Low 32 bits of the memory address from which the Stitch block reads pixel data.

Bits Name Description R/W Reset

31:0 ADDRESS_LO Low 32 bits of the memory address, of which the low of RW 0
which the two least significant bits must be zero.

Table 120: PISP_BE_IO_STITCH_INPUT_ADDR_LO register definition.

PISP_BE_IO_STITCH_INPUT_ADDR_HI 0x0064

High 32 bits of the memory address from which the Stitch block reads pixel data.

Bits Name Description R/W Reset

31.0 ADDRESS_HI High 32 bits of memory address. RW 0

Table 1271: PISP_BE_IO_STITCH_INPUT_ADDR_HI register definition.

Note that images read directly into the RGB pipe (by-passing the Bayer pipe entirely) share their input
address registers with the Bayer input address registers PISP_BE_IO_INPUT_ADDR_HI/LO. Both inputs
cannot be active at once.

The output address registers can be set to zero to cause the output block in question to drop pixels
and not write them to memory. The rest of the pipeline, including signalling interrupts, all operates as
normal.

PISP_BE_IO_TDN_ADDR_LO 0x0068

Low 32 bits of the memory address to which the Temporal Denoise block (TDN) writes pixel
data.

Bits Name Description R/W Reset
31:0 ADDRESS_MID Bits 31:4 of the memory address. RW 0
30 - Reserved. Do not write any non-zero value. - 0

Table 122: PISP_BE_IO_TDN_ADDR_LO register definition.

PISP_BE_IO_TDN_ADDR_HI 0x006C

High 32 bits of the memory address to which the Temporal Denoise block (TDN) writes pixel
data.

Bits Name Description R/W Reset

31.0 ADDRESS_HI High 32 bits of memory address. RW 0

Table 123: PISP_BE_IO_TDN_ADDR_HI register definition.

7 The PiSP Back End 80

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_IO_STITCH_ADDR_LO 0x0070

Low 32 bits of the memory address to which the Stitch block writes pixel data.

Bits Name Description R/W Reset
31:0 ADDRESS_MID Bits 31:4 of the memory address. RW 0
30 - Reserved. Do not write any non-zero value. - 0

Table 124: PISP_BE_IO_STITCH_ADDR_LO register definition.

PISP_BE_IO_STITCH_ADDR_HI 0x0074

High 32 bits of the memory address to which the Stitch block writes pixel data.

Bits Name Description R/W Reset

31.0 ADDRESS_HI High 32 bits of memory address. RW 0

Table 125: PISP_BE_IO_STITCH_ADDR_HI register definition.

PISP_BE_IO_OUTPUTO_ADDR[~][m] 0x0078

Memory address to which Output block O writes pixel data. This value specifies the low 32 bits
of the address for m = 0, and the high 32 bits for m = 1. n can take the values 0, 1 or 2 in case
the output is to be written in multiple planes (otherwise the registers for higher n values are
ignored).

Bits Name Description R/W Reset

31.0 ADDRESS Memory address. Bits 3:0 should be zero when m = 0. RW 0

Table 126: PISP_BE_IO_OUTPUTO_ADDRI[n][m] register definition.

PISP_BE_IO_OUTPUT1_ADDR[~][] 0x0090

Memory address to which Output block 1 writes pixel data. This value specifies the low 32 bits
of the address for m = 0, and the high 32 bits for m = 1. n can take the values 0, Tor 2 in case
the output is to be written in multiple planes (otherwise the registers for higher n values are
ignored).

Bits Name Description R/W Reset

31:0 ADDRESS Memory address. Bits 3:0 should be zero when m = 0. RW 0

Table 127: PISP_BE_IO_OUTPUT1_ADDR[n][m] register definition.

7 The PiSP Back End 81

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_IO_HOG_ADDR_LO 0x00A8

Low 32 bits of the memory address to which the HOG block writes data.

Bits Name Description R/W Reset
31:.0 ADDRESS_MID Bits 31:4 of the memory address. RW 0
30 - Reserved. Do not write any non-zero value. - 0

Table 128: PISP_BE_IO_HOG_ADDR_LO register definition.

PISP_BE_IO_HOG_ADDR_HI 0x00AC

High 32 bits of the memory address to which the HOG block writes data.

Bits Name Description R/W Reset

31.0 ADDRESS_HI High 32 bits of memory address. RW 0

Table 129: PISP_BE_IO_HOG_ADDR_H]I register definition.

7.5.3 Global Configuration Registers

These registers affect the global behaviour of the Back End pipeline.

Each Back End block can be enabled or disabled. In general, a disabled block passes its input unmodi-
fled to its output, though the Demosaic block, if disabled, duplicates the input pixel to all three outputs.
The configuration registers for a disabled block remain accessible, but have no effect until the block
is re-enabled.

PISP_BE_GLOBAL_BAYER_ENABLE 0x00BO

Register containing enable bits for all the Bayer Pipeline blocks in the Back End.

Bits Name Description R/W Reset

3128 - Reserved. - -

22 DEMOSAIC Enable for Demosaic block. RW 0

21 DEBIN Enable for Debin block. RW 0

20 CAC Enable for CAC (Chromatic Aberration Correc- RW 0
tion) block.

19 TONEMAP Enable for Tonemap block. RW 0

18 LSC Enable for LSC (Lens Shading Correction) RW 0
block.

17 CDN Enable for CDN (Colour Denoise) block. RW 0

16 WBG Enable for WBG (White Balance Gain) block. RW 0

Continued on next page. ..

7 The PiSP Back End 82

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_GLOBAL_BAYER_ENABLE (continued) 0x00B0

Bits Name Description R/W Reset

15 STITCH_OUTPUT Enable for Stitch Ouptut block. RW 0

14 STITCH_COMPRESS Enable for Stitch Compress block. RW 0

13 STITCH Enable for Stitch block. RW 0

12 STITCH_DECOMPRESS Enable for Stitch Decompress block. RW 0

1 STITCH_INPUT Enable for Stitch Input block. RW 0

10 BLC Enable for BLC (Black Level Correction) block. RW 0

9 SDN Enable for SDN (Spatial Denoise) block. RW 0

8 TDN_OUTPUT Enable for TDN (Temporal Denoise) Output. RW 0
block.

7 TDN_COMPRESS Enable for TDN (Temporal Denoise) Compress ~ RW 0
block.

6 TDN Enable for TDN (Temporal Denoise) block. RW 0

5 TDN_DECOMPRESS Enable for the TDN (Temporal Denoise) De- RW 0
compress block.

4 TDN_INPUT Enable for TDN (Temporal Denoise) Input RW 0
block.

3 GEQ Enable for GEQ (Green Equalisation) block. RW 0

2 DPC Enable for DPC (Defective Pixel Correction) RW 0
block.

1 DECOMPRESS Enable for Decompression block. RW 0

0 INPUT Enable for Input block. RW 0

Table 130: PISP_BE_GLOBAL_BAYER_ENABLE register definition.
PISP_BE_GLOBAL_RGB_ENABLE 0x00B4

Register containing enable bits for all the RGB Pipeline blocks in the Back End. Note that the
downscale block is not available on both output branches in all hardware variants.

Bits Name Description R/W Reset
3122 - Reserved. - -
21 HOG Enable for HOG Ouptut block. RW 0
20 - Reserved. - -
19 OUTPUT1 Enable for Output block on output branch 1. RW 0
Continued on next page. ..

7 The PiSP Back End 83

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_GLOBAL_RGB_ENABLE (continued) 0x00B4
Bits Name Description R/W Reset
18 OUTPUTO Enable for Output block on output branch 0. RW 0
17 - Reserved. - -
16 RESAMPLET Enable for Resample block on output branch 1. RW 0
15 RESAMPLEOQ Enable for Resample block on output branch 0. RW 0
14 - Reserved. - -
13 DOWNSCALET Enable for Downscale block on output branch 1. RW 0
12 DOWNSCALEQ Enable for Downscale block on output branch 0. RW 0
11 - Reserved. - -
10 CSC1 Enable for CSC (Colour Space Conversion) block on ~ RW 0
output branch 1.
9 CSCO0 Enable for CSC (Colour Space Conversion) block on RW 0
output branch 0.

8 GAMMA Enable for Gamma block. RW 0
7 YCBCR_INVERSE Enable for YCbCr inverse conversion block. RW 0
6 - Reserved. -
5 SHARPEN Enable for the Sharpen block. RW 0
4 FALSE_COLOUR Enable for False Colour Suppression block. RW 0
3 YCBCR Enable for YCbCr conversion block. RW 0
2 SAT_CONTROL Enable for Saturation Control block. RW 0
1 CCM Enable for CCM (Colour Correction Matrix) block. RW 0
0 INPUT Enable for RGB Input block. RW 0

Table 131: PISP_BE_GLOBAL_RGB_ENABLE register definition.
PISP_BE_GLOBAL_BAYER_ORDER 0x00B8

Register defining the Bayer Order, and used by all blocks in the Back End pipeline.
Bits Name Description R/W Reset
31:2 Reserved. - -
1:0 ORDER Bayer order, either 0x0 (RGGB), 0x1 (GBRG), 0x2 (BGGR) or 0x3 RW 0
(GRBG).
Table 132: PISP_BE_GLOBAL_BAYER_ORDER register definition.
7 The PiSP Back End 84

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.4

Input Configuration Registers

The Back End Input block can pass pixels either to the start of the Bayer pipe (reading single channel
image formats), or it can pass them directly to the start of the RGB pipe, by-passing the Bayer pipe
altogether (and reading three channel image formats). The following pixel formats are accepted, and
they must be read from memory.

+ 16-bit pixel values from memory. The pixels are read in little-endian format and may optionally
be left shifted by up to 8 bits.

+ Compressed format from memory. This is the PiSP proprietary RAW compression format.
These values are simply passed downstream to the Decompression block.

+ When used for reading directly into the RGB pipe, various 3-channel image formats are sup-
ported (see Table 3).

Its line-to-line stride (pitch) must be a non-negative multiple of 16 bytes. The address of the image is
given by the PISP_BE_IO_INPUT_ADDR_LO and PISP_BE_IO_INPUT_ADDR_H]I registers.

The registers below define the behaviour of the block.

PISP_BE_INPUT_SIZE 0x00BC

Dimensions of the input image.

Bits Name Description R/W Reset
3116 HEIGHT Height of the image being received. This number must be RW 0
even when being used to read into the Bayer part of the pipe.

150 WIDTH Width of the image being received. This number mustbe even RW 0

when being used to read into the Bayer part of the pipe.

Table 133: PISP_BE_INPUT_SIZE register definition.

PISP_BE_INPUT_FORMAT 0x00CO

Format definition of the input image. Not all combinations are allowed; the value must
correspond to one of the formats listed in Table 2 or Table 3

Bits Name Description R/W Reset

31 - Reserved. - -

30 THREE_CHANNEL This bit must be 0 for Bayer input, or 1for RG- RW 0
B/YUV.

29 WALLPAPER Indicates a YUV image is in a 'Wallpaper' lay- RW 0
out in memory.

2826 - Reserved. - -

25:24 COMPRESSION_MODE. Indicates the compression mode used for - -
Bayer input.

2321 - Reserved. - -

Continued on next page. ..

7 The PiSP Back End 85

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_INPUT_FORMAT (continued) 0x00CO
Bits Name Description R/W Reset
20 BPP_32 Indicates that RGB pixels have been padded RW 0
to 32 bpp (only when MINOR_VERSION > 1).
1916 SHIFT Pixel values are to be left-shifted by this RW 0
amount, for0 < SHIFT < 8.
1514 - Reserved. - -
12 ORDER_SWAPPED Indicates that RGB or YUV components are in - -
an alternate order.
1110 - Reserved. -
9:8 SAMPLING 0=4:4:4sampling, 1=4:2:2 sampling,2=4:2.0 RW 0
sampling.
7:6 - Reserved. - -
54 PLANARITY 0 = fully interleaved, 1 = semi-planar (only the RW 0
first channel in a separate plane), 2 = fully pla-
nar.
3:2 - Reserved. - -
1.0 BITS_PER_SAMPLE Number of bits in each sample. Valid settings
are: 0 (8 bps), 1 (10'bps) and 3 (16 bps). The
value 2 is reserved and should not be used.
Table 134: PISP_BE_INPUT_FORMAT register definition.
PISP_BE_INPUT_STRIDE 0x00C4
Line to line stride of the first plane pixel data in memory.
Bits Name Description R/W Reset
31:4 STRIDE_MID * Bits 31:4 of the stride in bytes. RW 0
3.0 Reserved. Do not write any non-zero value. - 0
Table 135: PISP_BE_INPUT_STRIDE register definition.
7 The PiSP Back End 86

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_INPUT_STRIDE2 0x00C8

Line to line stride of the second and third planes of pixel data, if the image being read consists of
more than one plane of data. When there is only a single plane of data, this register is ignored.

Bits Name Description R/W Reset
31:4 STRIDE_MID Bits 31:4 of the stride in bytes. RW 0
30 - Reserved. Do not write any non-zero value. - 0

Table 136: PISP_BE_INPUT_STRIDE2 register definition.

Tile Parameters

The Input block uses the following tile parameters.

Field Offset Size Description

input_addr_offset 4 4 Offset in bytes into the input image from where the top left
pixel in the tile is read. This value must be at least 16-byte
aligned, but for best performance a 64-byte aligned value is
recommended. This field is used by the Input block both
when reading into the Bayer pipe and when reading into the
RGB pipe:

input_addr_offset2 8 4 Offsetinbytesinto the 2nd and 3rd image planes from where
those planes areread. This value must be at least 16-byte
aligned, but for best performance a 64-byte aligned value is
recommended. This field is.used only when reading into the
RGB pipe, and only when the input image has a planar (non-
interleaved) format.

input_offset_x 12 2 Horizontal offset in pixels of this tile in the input image.
input_offset_y 14 2 Vertical offset in pixels of this tile in the input image.
input_width 16 2 Width in pixels of this tile as it is read from the input image.
input_height 18 2 Height in pixels of this tile as it is read from the input image.

Table 137: Tile parameters for the Input block.

The input address offsets listed above are added to the memory address given by PISP_BE_IO_IN-
PUT_ADDRIn][m], where n indicates the colour channel for planar formats, and m indicates the high
(m = 1) or low (m = 0) 32 bits of the address. input_addr_offset is added to the address formed by
PISP_BE_IO_INPUT_ADDR[0], and input_addr_offset2 is added to the address formed by PISP_BE_IO_-
INPUT_ADDR[1] and PISP_BE_IO_INPUT_ADDR][2].

The input_width and input_height inform the Input block how many pixels it is expected to read. The
input_offset_x/y values are in fact not needed by the block, but are provided as a courtesy to help
debug any problems.

7 The PiSP Back End 87

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.5 Decompression Configuration Registers

This block should be enabled only if compressed image data is being read from memory by the Input
block (so that block's COMPRESSED bit should be set).

PISP_BE_DECOMPRESS 0x00CC

Parameters for decompression of PiSP compressed RAW image format data.

Bits Name Description R/W Reset

3126 - Reserved. - -

2524 MODE Select decompression mode. Legal valuesare1,2and 3. The RW 0
normal compression scheme is mode 1.

2316 - Reserved. - -

150 OFFSET Offset value added to all pixels after decompression. Nor- = RW 0

mally used to restore black level if compression was config-
ured to subtract it.

Table 138: PISP_BE_DECOMPRESS register definition.

Tile Parameters

The Decompression block has no tile parameters.

7.5.6 DPC (Defective Pixel Correction) Configuration Registers

Back End DPC can be slightly more effective than Front End DPC, as it buffers more lines of the image.
It finds the MIN..MAX range of values of 8 neighbouring pixels in the same Bayer channel, and extends
it by a “margin” which represents the largest acceptable excursion away from neighbouring values.
The marginis a function of the MIN and MAX=MIN of the neighbouring pixels. The output is clipped to
lie withinthis range.

PISP_BE_DPC 0x00DO0

Configuration register for Back End DPC block.

Bits Name Description R/W Reset

3125 - Reserved. - -

24 FOLDBACK Causes pixels well outside the acceptable excursionto RW 0
be corrected more aggressively.

2313 - Reserved. - -

12:8 COEFF_RANGE Coefficient for the range of pixels from this Bayer chan- RW 0

nel, used to compute the margin.

7:5 - Reserved. - -

Continued on next page. ..

7 The PiSP Back End 88

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_DPC (continued) 0x00DO0
Bits Name Description R/W Reset
4.0 COEFF_LEVEL Coefficient for the darkest neighbouring pixel value, RW 0

used to compute the margin.

Table 139: PISP_BE_DPC register definition.

Tile Parameters

The DPC block has no tile parameters.

7.5.7 GEQ (Green Equalisation) Configuration Registers

The GEQ block corrects imbalance between the two types of green pixel in a Bayer pattern - the greens
on red rows and the greens on blue rows. It does this by estimating the difference between a green
pixel and its immediate neighbours of the other green type, and then moves this pixel halfway towards

them.

This estimate is generated by one of two filters, a “sharper” version of the filter for normal or well-
lit environments, or a “softer” version of the filter for low-light environments, and which may cause
less amplification of noise. Finally the estimate is limited by a threshold calculated as threshold =
of fset + current_pizel_value x slope, where the of f set and slope are programmed into the block’s
configuration. Before limiting the estimate, the threshold itself is clipped to lie within given min and

max values.

PISP_BE_GEQ_CONFIG 0x00D4
Configuration for the GEQ block.
Bits Name Description R/W Reset
31 SHARPER Set to 1to use the sharper filter for green imbalance estima- RW 0
tion.
30:26 - Reserved. - -
2516 SLOPE Slope value for the threshold calculation. RW 0
150 OFFSET Offset value for the threshold calculation. RW 0
Table 140: PISP_BE_GEQ_CONFIG register definition.
7 The PiSP Back End 89

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_GEQ_MINMAX 0x00D8

Limits for the GEQ threshold value.

Bits Name Description R/W Reset
3116 MAX Maximum value the threshold may have RW 0
150 MIN Minimum value the threshold may have. RW 0

Table 147: PISP_BE_GEQ_MINMAX register definition.

Tile Parameters

The GEQ block has no tile parameters.

7.5.8 TDN (Temporal Denoise) Input Configuration Registers

The TDN Input block matches the formats of the Back End (Bayer) Input block, except that the image
it reads is passed to the TDN block as its LTA (Long Term Average) image.

Its line-to-line stride (pitch) must be a non-negative multiple of 16 bytes. The address of the image is
given by the PISP_BE_IO_TDN_INPUT_ADDR_LO and PISP_BE_IO_TDN_INPUT_ADDR_HI registers.

The registers below define the behaviour of the block.

PISP_BE_TDN_INPUT_SIZE 0x00DC

Dimensions of the TDN input image.

Bits Name Description R/W Reset
3116 HEIGHT _ Height of the image being received. RW 0
150 WIDTH Width of the image being received. RW 0

Table 142: PISP_BE_TDN_INPUT_SIZE register definition.

PISP_BE_TDN_INPUT_FORMAT 0x00EO

Format definition of the TDN input image.

Bits Name Description R/W Reset

3126 - Reserved. - -

25:24 COMPRESSION_MODE Set to a nonzero compression mode if the in- RW 0
put is compressed.

2320 - Reserved. - -

1916 SHIFT Pixel values are left-shifted by this amount, for ~ RW 0

0 < SHIFT <8 Normally zero.

15:2 - Reserved. - -

Continued on next page. ..

7 The PiSP Back End 90

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_TDN_INPUT_FORMAT (continued) 0x00EO
Bits Name Description R/W Reset
1.0 BITS_PER_SAMPLE Number of bits in each sample (pixel). Valid RW 0
settings are: 0 (8 bps) if COMPRESSION_-
MODE is nonzero; otherwise when not com-
pressed the value 3 (16 bps) should be used.
Table 143: PISP_BE_TDN_INPUT_FORMAT register definition.
PISP_BE_TDN_INPUT_STRIDE 0x00E4
Line to line stride of pixel data in memory.
Bits Name Description R/W Reset
31:4 STRIDE_MID Bits 31:4 of the stride in bytes. RW 0
30 - Reserved. Do not write any non-zero value. - 0
Table 144: PISP_BE_TDN_INPUT_STRIDE register definition.
PISP_BE_TDN_INPUT_STRIDE2 O0x00E8
This register is ignored.
Bits Name Description R/W Reset

310 - Reserved.

Table 145: PISP_BE_TDN_INPUT_STRIDE? register definition.

Tile Parameters

The TDN Input block uses the following tile parameters.

Field Offset ~Size Description

tdn_input_addr_offset 20 4 Offset in bytes into the TDN input image from where the
LTA (long term average) frame is read. This value must
be at least 16-byte aligned, but for best performance a 64-

byte aligned value is recommended.

Table 146: Tile parameters for the TDN Input block.

The tdn_input_addr_offset is added to the address formed by the PISP_BE_IO_TDN_INPUT_ADDR_-
LO/HI registers. There is only a single address offset because the TDN Input image is of necessity in

the Bayer format.

7 The PiSP Back End

91

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.9 TDN (Temporal Denoise) Decompression Configuration Registers

This block should be enabled only if compressed image data is being read from memory by the TDN
Input block (so that block's COMPRESSED bit should be set). The TDN Input and Output blocks can
cooperate by using compression to reduce the total amount of memory traffic.

PISP_BE_TDN_DECOMPRESS 0x00EC

Parameters for decompression of PiSP compressed RAW image format data for TDN input.

Bits Name Description R/W Reset

3126 - Reserved. - -

2524 MODE Select decompression mode. Legal values are 1,2and 3. The RW 0
normal compression scheme is mode 1.

2316 - Reserved. - -

15:0 OFFSET Offset value added to all pixels after decompression. Nor- RW 0

mally used to restore black level if compression was config-
ured to subtract it.

Table 147: PISP_BE_TDN_DECOMPRESS register definition.

Tile Parameters

The TDN Decompression block has no tile parameters.

7.5.10 TDN (Temporal Denoise) Configuration Registers

TDN implements a 1I-tap lIR temporal filter using the new input frame and the output frame that it
generated when it processed the previous input frame (read by the TDN Input block). This previous
output frame is referred to as the LTA, or Long Term Average, frame. Every time TDN runs it receives
both the new input frame and the previous LTA frame as its input, and outputs a new LTA frame.
Normally this new LTA frame is written back to memory (for reading next time) by the TDN Output
block.

The TDN filter operates mostly per-pixel, though spatial averaging is employed to get tighter noise
estimates, and in turn this reduces the amount of frame-to-frame ghosting. The noise estimate is
given by noise_constant + noise_slope * \/pizel_value.

TDN signals to the next downstream block (SDN, or Spatial Denoise) whether it applied any temporal
denoise using the bottom bit (the LSB) of each pixel. When TDN successfully applied temporal denoise
this bottom bit is set to 1, and when TDN had to back off because the pixel appears genuinely to be
changing, then this bit is set to 0. TDN marks this bit according to whether the amount of temporal
denoise applied, given by the blending factor between the new and previous LTA pixels, is greater than
athreshold. SDN is free to process temporally denoised pixels differently (typically, less aggressively)
than undenoised ones.

When the first frame passes through TDN, meaning also that there is no previous LTA frame to use,
then the block should be put into reset mode, by setting the RESET bit. This causes TDN to copy the
new frame pixels to the output whilst also clearing the bottom bit, thereby telling SDN that no temporal
denoise has been applied.

7 The PiSP Back End 92

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_TDN_CONFIG1 0x00FO0
TDN configuration parameters.
Bits Name Description R/W Reset
3116 RATIO The LTA input frame is multiplied by this U2.14 value so RW 0
that TDN can still operate even when there are (slight)
exposure changes happening.
15:0 BLACK_LEVEL Black level value that is subtracted from pixels purely RW 0
for the generation of a noise estimate (the output pixels
themselves do not have their black levels altered).
Table 148: PISP_BE_TDN_CONFIG1 register definition.
PISP_BE_TDN_CONFIG_NOISE O0x00F4
TDN noise estimation parameters.
Bits Name Description R/W Reset
3116 NOISE_SLOPE U8.8 value use in-the noise_constant + RW 0
noise_slope x v/pixel_value noise estimation.
150 NOISE_CONSTANT Constant offset value used in the noise estimation. RW 0
Table 149: PISP_BE_TDN_CONFIG_NOISE register definition.
PISP_BE_TDN_CONFIG2 Ox00F8
TDN configuration parameters.
Bits Name Description R/W Reset
3117 - Reserved. - -
16 RESET When this bitis set TDN does not do any temporal denocise RW 0
at all and clears the bottom bit of every output pixel.
15:0 THRESHOLD When TDN uses more than this threshold of the LTA pixel RW 0

(rather than the pixel in the new frame) then TDN marks
the bottom bit of the output pixel with a 1; otherwise it
marks it with a zero.

Table 150: PISP_BE_TDN_CONFIG2 register definition.

Tile Parameters

The TDN block has no tile parameters.

7 The PiSP Back End

93

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.11 TDN (Temporal Denoise) Compression Configuration Registers

The output of the TDN block, also known as the LTA (or Long Term Average) frame can be compressed
by the TDN Compression block before being written to memory.

If this block is enabled the COMPRESSED bit in the TDN Output block should be set. This will cause
the output image to be compressed to 8 bits per pixel.

PISP_BE_TDN_COMPRESS 0x00FC

Parameters for compression of PiSP compressed RAW image format data output by the TDN
Output block.

Bits Name Description R/W Reset

3126 - Reserved. - -

2524 MODE Select decompression mode. Legal values are 1,2 and 3. The RW 0
normal compression scheme is mode 1.

2316 - Reserved. = -

150 OFFSET Offset subtracted from pixels before compression. This may RW 0

improve fidelity when there is a high black level; it is recom-
mended to set it to a multiple of 512 below the lowest ex-
pected pixel value.

Table 151: PISP_BE_TDN_COMPRESS register definition.

Tile Parameters

The TDN Compression block has no tile parameters.

7.5.12 TDN (Temporal Denoise) Output Configuration Registers

The TDN Output block writes the TDN LTA frame to memory. It supports only two image formats.

- 16-bit pixel values. The pixels are written in little-endian format and may optionally be right
shifted by up to 8 bits.

- Compressed format. This is the PiSP proprietary RAW compression format.

Addresses in PiSP have 64 bits, but depending on the target chip some high bits may be ignored. The
address at which to write pixel data in memory must be aligned to a multiple of 16 bytes. Its line to
line stride must also be a non-negative multiple of 16 bytes.

If both output address registers (ADDR_LO and ADDR_HI) are set to zero, the block silently drops all
the pixels without writing them anywhere.

7 The PiSP Back End 94

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_TDN_OUTPUT_SIZE 0x0100
Dimensions of the output image.
Bits Name Description R/W Reset
3116 HEIGHT Height of the image being written. RW 0
150 WIDTH Width of the image being written. Must be even. RW 0
Table 152: PISP_BE_TDN_OUTPUT_SIZE register definition.
PISP_BE_TDN_OUTPUT_FORMAT 0x0104
Format definition of the output image.
Bits Name Description R/W Reset
31.26 - Reserved. . -
25:24 COMPRESSION_MODE Set to a nonzero compression mode if the out- RW 0
put is compressed.
2320 - Reserved. - -
1916 SHIFT Pixel values are right-shifted by this amount if RW 0
COMPRESSION_MODE is zero. Normally zero.
152 - Reserved. - -
1.0 BITS_PER_SAMPLE Set thisto 0 (8 bps) if compressedor 3 (16 bps) RW 0
if uncompressed.
Table 153: PISP_.BE_TDN_OUTPUT_FORMAT register definition.
PISP_BE_TDN_OUTPUT_STRIDE 0x0108
Stride of pixel data in memory.
Bits Name Description R/W Reset
31:4 STRIDE_MID Bits 31:4 of the stride in bytes. RW 0
30 - Reserved. Do not write any non-zero value. - 0

Table 154: PISP_BE_TDN_OUTPUT_STRIDE register definition.

7 The PiSP Back End

95

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_TDN_OUTPUT_STRIDE2 0x010C

This register is ignored.

Bits Name Description R/W Reset

310 - Reserved. - -

Table 155: PISP_BE_TDN_OUTPUT_STRIDE? register definition.

Tile Parameters

The TDN Output block uses the following tile parameters.

Field Offset Size Description

tdn_output_addr_offset 24 4 Offset in bytes into the TDN output image where the
new LTA (long term average) frame is written. This value
must be at least 16-byte aligned, but for best perfor-
mance a 64-byte aligned value is recommended.

Table 156: Tile parameters for the TDN Output block.

The tdn_output_addr_offset is added to the address formed by the PISP_BE_IO_TDN_OUTPUT_ADDR_-
LO/HI registers. There is only a single address offset because the TDN Output image is of necessity
in the Bayer format.

7.5.13 SDN(Spatial Denoise) Configuration Registers

The SDN block implements a simplified version of a non-local means (NLM) filter for which it requires
only a noise estimate for each pixel, calculated as noise_constant+mnoise_slopex+/pizel_value. SDN
actually hastwo pairs of noise_constant and noise_slope values, one pair is used for pixels with a 1
as the LSB, and a second pair for pixels with a zero as the LSB. This allows the block to interact better
with TDN. A second, usually higher, noise estimate can be used where TDN has failed to denoise pixels,
and this helps hide “noise trails” when there is motion between images. When TDN is not enabled, it
is usual to program both pairs to the same values.

Finally, SDN can mix a proportion of the original (undenoised) pixel back into the final result, and this
can be desirable when it is felt that images look more natural when not over-denoised.

PISP_BE_SDN_CONFIG 0x0110

SDN configuration parameters.

Bits Name Description R/W Reset
3124 - Reserved. - -
23716 LEAKAGE Proportion (out of 256) of the original undenoised value RW 0

to mix back into the denoised output pixel.

Continued on next page. ..

7 The PiSP Back End 96

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_SDN_CONFIG (continued) 0x0110
Bits Name Description R/W Reset
15:0 BLACK_LEVEL Blacklevel subtracted from pixelsin orer to calculatethe RW 0
noise estimate; the black levels of output pixels are not
altered.

Table 157: PISP_BE_SDN_CONFIG register definition.

PISP_BE_SDN_NOISE 0x0114

First pair of SDN noise estimation parameters, used for input pixels with LSB of 1.

Bits Name Description R/W Reset
3116 NOISE_SLOPE noise_slope value used for noise estimation. RW 0
150 NOISE_CONSTANT noise_contstant value used for noise estimation. RW 0

Table 158: PISP_BE_SDN_NOISE register definition.

PISP_BE_SDN_NOISE2 0x0118

Second pair of SDN noise estimation parameters, used for input pixels with LSB of 0.

Bits Name Description R/W Reset
3116 NOISE_SLOPE noise_slope value used for noise estimation. RW 0
150 NOISE_CONSTANT noise_contstant value used for noise estimation. RW 0

Table 159: PISP_BE_SDN_NOISE? register definition.

Tile Parameters

The SDN block has no tile parameters.

7.5.14 BLC (Black Level Correction) Configuration Registers

The BLC block aligns the black levels of all the Bayer channels so that they are the same value. In
normal usage, the desired output value is set to zero. In functional terms, the block is otherwise
identical to the Front End BLA block.

7 The PiSP Back End 97

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_BLC_INPUT_RED 0x011C
Input black levels for alignment.
Bits Name Description R/W Reset
3116 GR Current black level of green pixels on green-red rows. RW 0
150 R Current black level of red pixels. RW 0
Table 160: PISP_BE_BLC_INPUT_RED register definition.
PISP_BE_BLC_INPUT_BLUE 0x0120
Input black levels for alignment.
Bits Name Description R/W Reset
3116 B Current black level of blue pixels. RW 0
150 GB Current black level of green pixels on green-blue rows. RW 0
Table 167: PISP_BE_BLC_INPUT_BLUE register definition.
PISP_BE_BLC_OUTPUT 0x0124
Output black level after alignment.
Bits Name Description R/W Reset
3116 - Reserved. RW 0
150 LEVEL Output black level of all pixels after alignment. RW 0

Table 162: PISP_BE_BLC_OUTPUT register definition.

Tile Parameters

The BLC block has no tile parameters.

7.5.15 Stitch Compression Configuration Registers

The input to the Stitch can optionally be compressed before being written to memory:.

If this block is enabled the COMPRESSED bit in the Stitch Output block should be set. This will cause

the output image to be compressed to 8 bits per pixel.

7 The PiSP Back End

98

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_STITCH_COMPRESS 0x0128

Parameters for compression of PiSP compressed RAW image format data output by the Stitch
Output block.

Bits Name Description R/W Reset

3126 - Reserved. - -

2524 MODE Select compression mode. Legal values are 1, 2 and 3. The RW 0
normal compression scheme is mode 1.

2316 - Reserved. - -

15:0 OFFSET Offset subtracted from pixels before compression. This may RW 0

improve fidelity when there is a high black level; it is recom-
mended to set it to a multiple of 512 below the lowest expected
pixel value.

Table 163: PISP_BE_STITCH_COMPRESS register definition.

Tile Parameters

The Stitch Compression block has no tile parameters.

7.5.16 Stitch Output Configuration Registers

The Stitch Output block writes the input frame to the Stitch Block to memory. It supports only two
image formats.

- 16-bit pixel values. The pixels are written in little-endian format and may optionally be right
shifted by up to 8 bits.

+ Compressed format. This is the PiSP proprietary RAW compression format.

Addresses in PiSP have 64 bits, but depending on the target chip some high bits may be ignored. The
address at which to write pixel data in memory must be aligned to a multiple of 16 bytes. Its line to
line stride must also be a non-negative multiple of 16 bytes.

If both output address registers (ADDR_LO and ADDR_HI) are set to zero, the block silently drops all
the pixels without writing them anywhere.

PISP_BE_STITCH_OUTPUT_SIZE 0x012C

Dimensions of the output image.

Bits Name Description R/W Reset
3116 HEIGHT Height of the image being written. RW 0
150 WIDTH Width of the image being written. Must be even. RW 0

Table 164: PISP_BE_STITCH_OUTPUT_SIZE register definition.

7 The PiSP Back End 99

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_STITCH_OUTPUT_FORMAT 0x0130

Format definition of the output image.

Bits Name Description R/W Reset

3126 - Reserved. - -

2524 COMPRESSION_MODE Set to a nonzero compression mode if the out- RW 0
put is compressed.

2320 - Reserved. - -

1916 SHIFT Pixel values are right-shifted by this amount if RW 0

COMPRESSION_MODE is zero, for 0 <= SHIFT
<= 8. Normally zero.

15:2 - Reserved. - -

1.0 BITS_PER_SAMPLE Set thisto 0 (8 bps) if compressedor 3 (16 bps) -~ RW 0
if uncompressed.

Table 165: PISP_BE_STITCH_OUTPUT_FORMAT register definition.

PISP_BE_STITCH_OUTPUT_STRIDE 0x0134

Stride of pixel data in memory.

Bits Name Description R/W Reset
31:4 STRIDE_MID Bits 31:4 of the stride in bytes. RW 0
30 - Reserved. Do not write any non-zero value. - 0

Table 166: PISP_BE_STITCH_OUTPUT_STRIDE register definition.

PISP_BE_STITCH_OUTPUT_STRIDE2 0x0138

This registeris ignored.

Bits Name Description R/W Reset

31.0 - Reserved. - -

Table 167: PISP_BE_STITCH_OUTPUT_STRIDE? register definition.

Tile Parameters

The Stitch Output block uses the following tile parameters.

7 The PiSP Back End 100

Raspberry Pi Image Signal Processor (PiSP) Specification

Field Offset Size Description

stitch_output_addr_offset 24

4 Offsetin bytes into the Stitch output image where the
other frame is written. This value must be at least
16-byte aligned, but for best performance a 64-byte

aligned value is recommended.

Table 168: Tile parameters for the Stitch Output block.

The stitch_output_addr_offset is added to the address formed by the PISP_BE_IO_STITCH_OUTPUT_-
ADDR_LO/HI registers. There is only a single address offset because the Stitch Output image is of

necessity in the Bayer format.

7.5.17 Stitch Input Configuration Registers

The Stitch Input block matches the formats of the Back End (Bayer) Input block, except that the image

it reads is passed to the Stitch block.

Its line-to-line stride (pitch) must be a non-negative multiple of 16 bytes. The address of the image is
given by the PISP_BE_IO_STITCH_INPUT_ADDR_LO and PISP_BE_IO_STITCH_INPUT_ADDR_HI regis-

ters.

The registers below define the behaviour of the block.

PISP_BE_STITCH_INPUT_SIZE 0x013C
Dimensions of the Stitch input image.

Bits Name Description R/W Reset

3116 HEIGHT Height of the image being received. RW 0

150 WIDTH Width of the image being received. RW 0

Table 169: PISP_BE_STITCH_INPUT_SIZE register definition.

PISP_BE_STITCH_INPUT_FORMAT 0x0140
Format definition of the Stitch input image.

Bits Name Description R/W Reset

3126 - Reserved. - -

25:24 COMPRESSION_MODE Set to a nonzero compression mode if the out- RW 0

put is compressed.
2320 - Reserved. - -
1916 SHIFT Pixel values are left-shifted by this amount, for RW 0

0 < SHIFT < 8. Normally zero.

15:2 - Reserved.

Continued on next page. ..

7 The PiSP Back End

101

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_STITCH_INPUT_FORMAT (continued) 0x0140
Bits Name Description R/W Reset
1.0 BITS_PER_SAMPLE Number of bits in each sample (pixel). Valid RW 0
settings are: 0 (8 bps) if COMPRESSION_-
MODE is nonzero; otherwise when not com-
pressed the value 3 (16 bps) should be used.
Table 170: PISP_BE_STITCH_INPUT_FORMAT register definition.
PISP_BE_STITCH_INPUT_STRIDE 0x0144
Line to line stride of pixel data in memory.
Bits Name Description R/W Reset
31:4 STRIDE_MID Bits 31:4 of the stride in bytes. RW 0
30 - Reserved. Do not write any non-zero value. - 0
Table 171: PISP_BE_STITCH_INPUT_STRIDE register definition.
PISP_BE_STITCH_INPUT_STRIDE2 0x0148
This register is ignored.
Bits Name Description R/W Reset
310 - Reserved. - -
Table 172: PISP_BE_STITCH_INPUT_STRIDE? register definition.
Tile Parameters
The Stitch Input block uses the following tile parameters.
Field Offset Size Description
stitch_input_addr_offset 24 4 Offset in bytes into the Stitch input image where the

other image is read. This value must be at least 16-
byte aligned, but for best performance a 64-byte aligned

value is recommended.

Table 173: Tile parameters for the Stitch Input block.

The stitch_output_addr_offset is added to the address formed by the PISP_BE_IO_STITCH_OUTPUT_-
ADDR_LO/HI registers. There is only a single address offset because the Stitch Output image is of

necessity in the Bayer format.

7 The PiSP Back End

102

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.18 Stitch Decompression Configuration Registers

This block should be enabled only if compressed image data is being read from memory by the Stitch
Input block (so that block's COMPRESSED bit should be set). The Stitch Input and Output blocks can
cooperate by using compression to reduce the total amount of memory traffic.

PISP_BE_STITCH_DECOMPRESS 0x014C

Parameters for decompression of PiSP compressed RAW image format data for Stitch input.

Bits Name Description R/W Reset
3126 - Reserved. - -
2524 MODE Select decompression mode. Legal values are 1,2and 3. The RW 0
normal compression scheme is mode 1.
2316 - Reserved. - -
15:0 OFFSET Offset value added to all pixels after decompression. Normally =~ RW 0
used to restore black level if compression was configured to
subtract it.

Table 174: PISP_BE_STITCH_DECOMPRESS register definition.

Tile Parameters

The Stitch Decompression block has no tile parameters.

7.5.19 Stitch Configuration Registers

The Stitch block merges, or “stitches’, together two images of different exposures, and is used in
conjunction with the subsequent Tonmap block for generating HDR images.

The block takes two input images. One is the current frame that is travelling down the pipeline, and
the other is normally the previous frame, of a different exposure, that has been read by the Stitch
Input block. As well as merging these two frames, the Stitch Output block writes the current frame
to memory so that it can be re-read by the Stitch Input block on the next frame as the next “previous
frame of a different exposure”.

Pixels in the long exposure image can, if they are below a low threshold value, be used in the stitched
output image. If they are above a high threshold value then the value from the short exposure image
must be used instead, and between these two thresholds the pixels are blended together proportion-
ately. Pixel values from the long exposure image must be multiplied by the exposure ratio, so that they
match the dynamic range of the short exposure pixels.

One additional problem when stitching images is that of motion. If the (exposure corrected) long
and short pixels differ by more than a motion threshold then the short pixel will be used instead. This
limits the extent to which objects in motion can be suddently “chopped off” if the image there is getting
brighter.

7 The PiSP Back End 103

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_STITCH_THRESHOLD 0x0150
Thresholds for deciding when to use long or short exposure pixels.
Bits Name Description R/W Reset
3120 - Reserved. - -
1916 DIFF_POWER The low and high thresholds must be separated by a RW 0
number that is an exact power of 2, given in these bits.
When long exposure pixels lie at or above the value LO +
(1«DIFF_POWER) then the short exposure pixels are used
instead.
150 LO Low threshold value. When long exposure pixels are be- RW 0
low this value then they are used in place of short expo-
sure pixels.
Table 175: PISP_BE_STITCH_THRESHOLD register definition.
PISP_BE_STITCH_CONFIG 0x0154
Configuration parameter for the Stitch block.
Bits Name Description R/W Reset
31:24 MOTION_THRESHOLD_RECIP Reciprocal of the MOTION_THRESH- RW 0
OLD_256 value. It should not be
set larger than 255/MOTION_THRESH-
OLD_256 + 1 (or 255 if MOTION_-
THRESHOLD_256 is zero).
2316 MOTION_THRESHOLD_256 Motion threshold above which shortex- RW 0
posure pixels are always used, given in
units of 256.
15 STREAMING_LONG Set to one if the “streaming input” (the RW 0
pixels travelling down the pipeline) is the
long exposure image. Set to zero if the
image read by the Stitch Input block is
the long exposure image.
140 EXPOSURE_RATIO U0.15 multiplier that will convert long RW 0
exposure pixels into the same dynamic
range as short exposure pixels.
Table 176: PISP_BE_STITCH_CONFIG register definition.
Tile Parameters
The Stitch block has no tile parameters.
7 The PiSP Back End 104

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.20 LSC (Lens Shading Correction) Configuration Registers

The LSC block divides the entire image into a 32x32 grid, and at each vertex of the grid defines separate
gains for the red, green and blue channels of the Bayer image. Each of the 32x32 rectangles is referred
to as a cell.

Pixels passing through this block have the correct gain applied, depending on which of the Bayer
channels they are. Where pixels do not lie exactly on a vertex of the grid, bilinear interpolation is used
to generate the necessary gains.

PISP_BE_LSC_GRID 0x0158

Reciprocals of the cell size.

Bits Name Description R/W Reset

3116 GRID_STEP_Y (1 << 18)/cell_height. Note that the value 0'is disal- RW 0
lowed here.

15:0 GRID_STEP_X (1 << 18)/cell_width. Note that the value 0 is disal- =~ RW 0
lowed here.

Table 177: PISP_BE_LSC_GRID register definition.

PISP_BE_LSC_GAINS[~] 0x015C+4n

Jointly-coded RGB gains for each LSC grid vertex, forn = 0, ..., 1088.

Bits Name Description R/W Reset

31:30 RANGE Range containing all R,G,B gains for this vertex. This se- RW 0
lects one of [0.5-1.5), [0-2), [0-4), [0-8).

29:20 BLUE Blue gain expressed as a fractional position within the RW 0
above range.

1910 GREEN Green gain expressed as a fractional position within the RW 0
above range.

9:0 RED Red gain expressed as a fractional position within the RW 0
above range.

Table 178: PISP_BE_LSC_GAINS[n] register definition.

Tile Parameters

The LSC block uses the following tile parameters.

Field Offset Size Description

Isc_grid_offset_x 36 4 Horizontal offset into the LSC table where this tile begins. This
is a U5.18 format number in units of the LSC cell width.

7 The PiSP Back End 105

Raspberry Pi Image Signal Processor (PiSP) Specification

Field Offset Size Description

Isc_grid_offset_y 40 4 Vertical offset into the LSC table where this tile begins. This is
a U5.18 format number in units of the LSC cell height.

Table 179: Tile parameters for the LSC block.

Both values are given as U5.18 format numbers in units of the LSC cell size. So a value of (1«19) would
indicate that the first pixel of this tile starts at exactly the beginning of the 2nd cell (out of the 32

available cells).

7.5.21 WBG (White Balance Gain) Configuration Registers

This block applies a fixed gain to each pixel of the Bayer image depending on which of the channels

(R,GorB)itis.
PISP_BE_WBG_GAINSO 0x1260
Reciprocals of the cell size.
Bits Name Description R/W Reset
31:.30 - Reserved. - -
2916 GAIN_G U4.10 gain applied to green pixels. RW 0
1514 - Reserved. - -
13:0 GAIN_R U4.10 gain applied to red pixels. RW 0
Table 180: PISP_BE_WBG_GAINSO register definition.
PISP_BE_WBG_GAINS1 0x1264
Reciprocals of the cell size.
Bits Name Description R/W Reset
3114 - Reserved. - -
13:0 GAIN_B U4.10 gain applied to blue pixels. RW 0
Table 181: PISP_BE_WBG_GAINST register definition.
Tile Parameters
The WBG block has no tile parameters.
7 The PiSP Back End 106

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.22 CDN (Colour Denoise) Configuration Registers

CDN works on the Bayerimage and denoises both R-G and B-G. It uses a wide bilateral filter horizontally
and an IIR filter vertically. For simplicity, the noise estimate is taken to be constant, and the strength
of the lIR filter relative to the FIR bilateral filter can be adjusted. Finally, the result of denoising R-G and
B-G is normally used to modify the R and B channels, though optionally some of the change can be
assigned into the G channel, should this prove beneficial.

PISP_BE_CDN_CONFIG 0x1268

CDN configuration.

Bits Name Description R/W Reset

3124 G_ADJUST The proportion of the change thatis assignedtothe G RW 0
rather than the R/B channels.

23716 IIR_STRENGTH Relative strength, out of 256, of the IIR part of the filter. RW 0

150 THRESH Constant noise estimate. RW 0

Table 182: PISP_BE_CDN_CONFIG register definition.

Tile Parameters

The CDN block has no tile parameters.

7.5.23 CAC (Chromatic Aberration Correction) Configuration Registers

The PiSP Back End can correct (lateral) chromatic aberration up.to about £2 pixels vertically and
horizontally by resampling the red and blue components. Not unlike LSC, the frame is divided into an
8 x 8 grid, and at each of the 9 x 9 vertices horizontal and vertical shifts are specified for both red and
blue. In between the vertices, bilinear interpolation is used to construct the necessary shift values. As
before, each rectangle within the grid is referred to as a cell. Cell size must exceed 16 x 16 pixels.

Shifts are signed, in units of 1/32 full pixel (1/64 sample of the appropriate component).

PISP_BE_CAC_GRID 0x126C

Reciprocals of the cell size.

Bits Name Description R/W Reset

3116 GRID_STEP_Y (1 << 20)/cell_height. Note that the value 0 is disal- RW 0
lowed here.

15:0 GRID_STEP_X (1 << 20)/cell_width. Note that the value O is disal- RW 0
lowed here.

Table 183: PISP_BE_CAC_GRID register definition.

7 The PiSP Back End 107

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_CAC_SHIFTS|n] 0x1270+4n

Pixel shifts for the CAC grid, forn = 0, ..., 80.

Bits Name Description R/W Reset
31 - Reserved. - -
30:24 BY Vertical shift for the blue channel. RW 0
23 - Reserved. - -
22716 BX Horizontal shift for the blue channel. RW 0
15 - Reserved. - -
14:8 RY Vertical shift for the red channel. RW 0
7 - Reserved. - -
6:0 RX Horizontal shift for the red channel. RW 0

Table 184: PISP_BE_CAC_SHIFTS[n] register definition.

Tile Parameters

The CAC block uses the following tile parameters.

Field Offset Size Description

cac_grid_offset_x 44 4 Horizontal offset into the CAC table where this tile begins. This
is a U3.20 format number in units of the CAC cell width.

cac_grid_offset_y 48 4 Vertical offset into the CAC table where this tile begins. This is
a U3.20 format number in units of the CAC cell height.

Table 185: Tile parameters for the CAC block.

Both values are given as U3.20 format numbers in units of the CAC cell size. So a value of (1«21)
would indicate that the first pixel of this tile starts at exactly the beginning of the 2nd cell (out of the 8
available cells).

Note: It would be quite usual to program the CAC cell size to be exactly 4 times the LSC cell size (CAC
has 8 cells across the image; LSC has 32). In these circumstances the Isc_grid_offset_x/y and cac_-
grid_offset_x/y values would be (respectively) identical, notwithstanding the differing interpretations
of which bits are fractional.

7 The PiSP Back End 108

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.24 Debin Configuration Registers

The Debin block is provided for camera modes that produce binned camera data. Often this is 2x2
binning, meaning that pixels in the same Bayer channel are taken in 2x2 blocks and averaged to pro-
duce a single output pixel. Repeating this for each Bayer channel means that every 4x4 set of pixels
in the original image is reduced to a single 2x2 Bayer quad. Observe that within this new Bayer quad
the pixels are still only one (original) pixel apart; but between the new quads there are now an extra 2
pixels of spatial separation.

Figure 13: 2x2 binning: every 4x4 input block is converted to a single Bayer quad

When binned camera data like this is passed through a standard demosaicking algorithm - which
assumes equal spatial separation between all the pixels - diagonal lines have a tendency to become
“jlagged”. The job of the Debin block is to resample the odd rows and the odd columns to reduce this
effect. This is accomplished with a 4-tap FIR filter.

The debinning process can be enabled separately for rows and columns, in case a particular sensor
is only binning in one direction.

PISP_BE_DEBIN_COEFFS 0x13B4
Filter coefficients for debinning.
Bits Name Description R/W Reset
31:24 COEFF3 Fourth filter coefficient in S.7 format. RW 0
23:16 COEFF2 Third filter coefficient in S.7 format. RW 0
15:8 COEFF1 Second filter coefficient in S.7 format. RW 0
7:0 COEFFO First filter coefficient in S.7 format. RW 0
Table 186: PISP_BE_DEBIN_COEFFS register definition.
7 The PiSP Back End 109

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_DEBIN_ENABLE 0x13B8

Horizontal and vertical enables for debinning.

Bits Name Description R/W Reset
319 - Reserved. - -
8 V_ENABLE Vertical enable. RW 0
71 - Reserved. - -
0 H_ENABLE Horizontal enable. RW 0

Table 187: PISP_BE_DEBIN_ENABLE register definition.

Note: cubic filter coefficients (in this case [-7, 105, 35, -5]) might seem a reasonable choice, but in
practice a slightly sharper filter (such as [-13, 111, 41, -11]) can work better.

Tile Parameters

The Debin block has no tile parameters.

7.5.25 Tonemap Configuration Registers

The Tonemap block performs tonemapping on an image. Before doing so, however, it generates a Y
(luminance) image Y from the Bayer image B, and separates this into:

1. Alow pass Y image, Y p, using a bilateral filter on Y.
2. Ahigh pass Y signal,givenby Ygp =Y — Y7 p.
3. Acoloursignal, givenbyC =B -Y.

Next we have a tonemapping operator T" which we apply to Y7, p to get T'(Yz p). Finally we reconstruct
the output image pixel-wise as

Bout = T(Yrp) +T(YLp)/Yrp * (C + strength * Y p)

where strength is a parameter that can be parameter that can be increased to make the HDR effect
look stronger. Note how the way we add back a high pass signal is reminiscent of the standard unsharp
mask procedure; the use of the bilateral filter (rather than, for example, a plain Gaussian blur) prevents
halo-ing at high contrast edges in the final reconstruction.

Thethreshold for the bilateral filter that generates Y7 p is calculated as detail_constant+detail_slopex
V/(Y), and the filter includes an IIR term vertically. The tone mapping curve is defined by 64 points
spaced in the same manner as the Gamma block (qg.v.), therefore with points concentrated towards
the lower end of the range.

7 The PiSP Back End 10

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_TONEMAP_DETAIL 0x13BC

Coefficients for estimating bilateral filter thresholds.

Bits Name Description R/W Reset
3116 DETAIL_SLOPE U8.8 slope value for the threshold calculation. - -
150 DETAIL_.CONSTANT Constant term for threshold calculation. RW 0

Table 188: PISP_BE_TONEMAP_DETAIL register definition.

PISP_BE_TONEMAP_STRENGTHS 0x13C0

Tonemap configuration strengths.

Bits Name Description R/W Reset

31.28 - Reserved. b -

2716 STRENGTH U4.8 strength factor. - -

1512 - Reserved. - -

11:.0 [IR_.STRENGTH Relative strength of thevertical lIR filter contributionin ~ RW 0
U8.4 format.

Table 189: PISP_BE_TONEMAP_STRENGTHS register definition.

PISP_BE_TONEMAP_LUTI[~] 0x13C4+4n

Look-up table for tonemap curve, forn = 0, ..., 63.

Bits Name Description R/W Reset

3116 SLOPE Slope of this segment of the tonemap curve. RW 0

15:0 POSITION y (output) position of tonemap curve for this = (input) RW 0
value.

Table 190: PISP_BE_TONEMAP_LUT[n] register definition.

Note: the x value of point n inthe tonemap curve is given by:
«ifn <32, n*x512
+ otherwise if n < 48, (n — 32) * 1024 + 16384
+ otherwise (n — 48) x 2048 + 32768)

Tile Parameters

The Tonemap block has no tile parameters.

7 The PiSP Back End 111

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.26 Demosaic Configuration Registers

The Demosaic block performs an edge-sensitive adaptive demosaicking operation, with built-in false
colour suppression (which is additional to the False Colour block in the RGB pipe).

The algorithm will attempt to sharpen the resulting image using information from other Bayer chan-
nels, though this behaviour can be limited where necessary (for example, in very noisy conditions, or
where chromatic aberration destroys the correlation between colour channels).

PISP_BE_DEMOSAIC_CONFIG 0x14C4

Demosaic configuration.

Bits Name Description R/W Reset
3110 - Reserved. - -
9:8 FC_MODE Built-in false colour suppression mode. 0 = none, 1 = RW 0

medium, 2 = stronger, 3 = behaviour undefined.

70 SHARPER Use other Bayer channels to increase sharpness. 0 = disable RW. 0
this effect, larger values incease sharpness.

Table 191: PISP_BE_DEMOSAIC_CONFIG register definition.

Tile Parameters

The Demosaic block has no tile parameters.

7.5.27 RGB Input Configuration Registers

The RGB Input block is shared with the (Bayer) Input block, and its use in this mode is signalled by
setting the INPUT bit in the PISP_BE_GLOBAL_RGB_ENABLE register. It has no separate registers in
its own right.

7.5.28 CCM (Colour Correction Matrix) Configuration Registers

For an RGB triple z, this block calculates the output triple y as
y=Mx+C

for a 3x3 matrix M and a triple of offsets C.

Note that when MINOR_VERSION = 0, the maximum offset range is [-F'SD,+FSD). For later ver-
sions, it is extended to [-4F'SD, +4FSD). In all versions, the coefficient range is just below £8.0.

7 The PiSP Back End 112

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_CCM_MATRIX[n] 0x14C8-+4n

Matrix coefficients 2n and 2n + 1 forn =0,1,2, 3,4

Bits Name Description R/W Reset
31:30 - Reserved. - 0
2916 COEFF1 Coefficient 2n+1 of the matrix in S4.10 format. Forn =4 RW 0

this field is ignored.

1514

Reserved. - 0

13:0

COEFFQ Coefficient 2n of the matrix in S4.10 format. RW 0

Table 192: PISP_BE_CCM_MATRIX[n] register definition.

PISP_BE_CCM_OFFSETS[r] 0x14DC+4n

Offsets n forn = 0,1, 2

Bits Name Description R/W Reset
31:29 - Reserved. - -
280 OFFSET Offsetin $19.10 format. When MINOR_VERSION = 0, bits =~ RW 0

28:27 are ignored and should match the sign bit 26.

Table 193: PISP_BE_CCM_OFFSETSIn] register definition.

Tile Parameters

The CCM block has no tile parameters.

7.5.29 - Saturation Control Configuration Registers

The colour gains in an imaging pipeline can cause the different colour channels to saturate at different
places in the image. When these clip it causes the hue of the colour to change. If this is undesirable
the dynamic range of the pixel values in the pipeline can be reduced by 1 or 2 bits, and then scaled
up again in the Saturation Control block. This block performs this scaling in such a way that all the
colours are scaled down proportionately when they may clip. In this way, the hue of the original colour
is preserved, though at a lesser level of colour saturation.

PISP_BE_RGB_SAT_CONTROL_SHIFT Ox14E8

Left-shift to apply to colour channels.

Bits Name Description R/W Reset
3118 - Reserved. - -
1716 B_SHIFT Left-shift to apply to blue pixels, taking the value O, 1 or 2. RW 0
1510 - Reserved. - -

Continued on next page. ..

7 The PiSP Back End 113

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_RGB_SAT_CONTROL_SHIFT (continued) Ox14E8
Bits Name Description R/W Reset
9:8 G_SHIFT Left-shift to apply to green pixels, taking the value 0, 1 or 2. RW 0
72 - Reserved. - -
1.0 R_SHIFT Left-shift to apply to red pixels, taking the value 0, 1 or 2. RW 0

Table 194: PISP_BE_RGB_SAT_CONTROL_SHIFT register definition.

Tile Parameters

The Saturation Control block has no tile parameters.

7.5.30 YCbCr Conversion Configuration Registers

This block converts the RGB pixels into a YCbCr colour space, using a standard 3x3 matrix. Func-
tionally it is identical to the CCM block. Further down the pipeline, the YCbCr Inverse block should be
programmed to the inverse transform.

PISP_BE_YCBCR_MATRIX][n] O0x14EC+4n

Matrix coefficients 2n and 2n + 1 forn = 0,1, 2, 3,4

Bits Name Description R/W Reset

31:30 - Reserved. - 0

29116 COEFF1 Coefficient 2n+1 of the matrix in S4.10 format. Forn =4 RW 0
this field is ignored.

1514 - Reserved. - 0

13.0 ~COEFFO Coefficient 2n of the matrix in S4.10 format. RW 0

Table 195: PISP_BE_YCBCR_MATRIX[n] register definition.

PISP_BE_YCBCR_OFFSETS|n] 0x1500+4n

Offsetsnforn =0,1,2

Bits Name Description R/W Reset
31:29 - Reserved. - -
28:0 OFFSET Offsetin S19.10 format. When MINOR_VERSION = 0, bits RW 0

28:27 are ignored and should match the sign bit 26.

Table 196: PISP_BE_YCBCR_OFFSETS[n] register definition.

Tile Parameters

The YCbCr Conversion block has no tile parameters.

7 The PiSP Back End 114

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.31 Sharpening Configuration Registers

The Sharpening block applies high pass 5x5 FIR filters to the image in order to calculate a value that
can be added back to the initial pixel values to sharpen them. It operates only on the first image
channel (which represents luminance, being after the YCbCr Conversion block). Five distinct filters
are applied. The first four are usually programmed to detect horizontal, vertical and both orientations
of diagonal edges, and final filter is programmed to be isotropic, responding to “speckle” rather than
edge detail.

The filter coefficients are numbers in S6 format, therefore lying from -32 to 31 (inclusive). The coef-
ficients must obey the rule that the sum of the positive filter coefficients must be no greater than 31,
and that the sum of the negative filter coefficients must be no less than -32.

The filter results are thresholded (to avoid picking up image noise), scaled and combined before being
added back to the image.

The Sharpening block does not actually apply the calculated delta value directly to the image. Instead
it passes the value, along with the original pixel, to the Sharpen and False Colour Combining block to
do this after some further processing.

The sharpening filters are relatively difficult to tune so the block contains masks that can be set to
force the output pixels to black or white depending on which of the directional filters responded (other
pixels are output as grey).

PISP_BE_SHARPEN_FILTERO[~] 0x150C+4n

Coefficients for filter 0, forn = 0,1, ...,6

Bits Name Description R/W Reset

31:30 - Reserved. - -

29:24 COEFF3 Coefficient 4n +3 in S6 format. This fieldis unused when RW 0
n = 6.

2322 - Reserved. - -

21160 COEFF2 Coefficient 4n+2in S6 format. This field is unused when ~ RW 0
n = 6.

1514 - Reserved. - -

13:8 COEFF1 Coefficient 4n +1 in S6 format. This field is unused when RW 0
n = 6.

7:6 - Reserved. - -

5:0 COEFFO Coefficient 4n in S6 format. RW 0

Table 197: PISP_BE_SHARPEN_FILTERO[n] register definition.

7 The PiSP Back End 115

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_SHARPEN_FILTER1[n] 0x1528-+4n
Coefficients for filter 1, forn = 0,1, ...,6

Bits Name Description R/W Reset

3130 - Reserved. - -

29:24 COEFF3 Coefficient 4n + 3 in S6 format. This field is unused when ~ RW 0
n =06.

2322 - Reserved. - -

21116 COEFF2 Coefficient 4n + 2 in S6 format. This field is unused when ~ RW 0
n ==6.

1514 - Reserved. - -

13:8 COEFF1 Coefficient 4n+ 1in Sé format. This field is unused when — RW 0
n =06.

7:6 - Reserved. - -

5.0 COEFFO Coefficient 4n in S6 format. RW 0

Table 198: PISP_BE_SHARPEN_FILTER1[n] register definition.
PISP_BE_SHARPEN_FILTER2[~] 0x1544-+4n
Coefficients for filter 2, forn =0, 1, ..., 6

Bits Name Description R/W Reset

31:30 - Reserved. - -

29:24 COEFF3 Coefficient4n + 3 in S6 format. This field is unused when ~ RW 0
n =06.

2322 - Reserved. - -

2116 COEFF2 Coefficient 4n + 2in S6 format. This field is unused when ~ RW 0
n =06.

1514 - Reserved. - -

13.8 COEFF1 Coefficient4n + 1in S6 format. This field is unused when ~ RW 0
n =06.

7:6 - Reserved. - -

5.0 COEFFO Coefficient 4n in S6 format. RW 0

Table 199: PISP_BE_SHARPEN_FILTER2[n] register definition.

7 The PiSP Back End

116

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_SHARPEN_FILTER3[] 0x1560-+4n
Coefficients for filter 3, forn = 0,1, ..., 6

Bits Name Description R/W Reset

3130 - Reserved. - -

29:24 COEFF3 Coefficient 4n + 3 in S6 format. This field is unused when ~ RW 0
n =06.

2322 - Reserved. - -

21116 COEFF2 Coefficient 4n + 2 in S6 format. This field is unused when ~ RW 0
n =06.

1514 - Reserved. - -

13:8 COEFF1 Coefficient 4n+1in S6 format. This field is unused when RW 0
n =06.

7:6 - Reserved. - -

5.0 COEFFO Coefficient 4n in S6 format. RW 0

Table 200: PISP_BE_SHARPEN_FILTERS[n] register definition.
PISP_BE_SHARPEN_FILTER4[~] 0x157C+4n
Coefficients for filter 4, forn =0, 1, ..., 6

Bits Name Description R/W Reset

31:30 - Reserved. - -

29:24 COEFF3 Coefficient4n + 3 in S6 format. This field is unused when ~ RW 0
n =06.

2322 - Reserved. - -

2116 COEFF2 Coefficient 4n+ 2in S6 format. This field is unused when ~ RW 0
n = 6.

1514 - Reserved. - -

13:.8 COEFF1 Coefficient4n + 1in S6 format. This field is unused when ~ RW 0
n =06.

7:6 - Reserved. - -

5.0 COEFFO Coefficient 4n in S6 format. RW 0

Table 201: PISP_BE_SHARPEN_FILTERA4[n] register definition.

7 The PiSP Back End

117

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_SHARPEN_THRESHOLDO

0x1598

Thresholds for filter O.

Bits Name Description

R/W

Reset

31:28 - Reserved.

27716 SLOPE Slopein U1.11 format for multiplying the current pixel to calcu-
late filter response threshold.

150 OFFSET Offset used for calculating filter response threshold.

RW

Table 202: PISP_BE_SHARPEN_THRESHOLDO register definition.

PISP_BE_SHARPEN_SCALEO

0x159C

Scale for filter 0 response.

Bits Name Description

R/W

Reset

3112 - Reserved.

11:0 SCALE Scale factor in U3.9 format for multiplying the thresholded filter
response.

RW

0

Table 203: PISP_BE_SHARPEN_SCALEO register definition.

PISP_BE_SHARPEN_THRESHOLD1

O0x15A0

Thresholds for filter 1.

Bits Name Description

R/W

Reset

31:28 - Reserved.

2716 SLOPE Slopein U1.11 format for multiplying the current pixel to calcu-
late filter response threshold.

15:0 OFFSET . Offset used for calculating filter response threshold.

RW

Table 204: PISP_BE_SHARPEN_THRESHOLD1 register definition.

PISP_BE_SHARPEN_SCALE1

0x15A4

Scale for filter 1 response.

Bits Name Description

R/W

Reset

3112 - Reserved.

11:0 SCALE Scale factor in U3.9 format for multiplying the thresholded filter
response.

RW

0

Table 205: PISP_BE_SHARPEN_SCALET register definition.

7 The PiSP Back End

118

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_SHARPEN_THRESHOLD2

Ox15A8

Thresholds for filter 2.

Bits Name Description

R/W

Reset

31:28 - Reserved.

27716 SLOPE Slopein U1.11 format for multiplying the current pixel to calcu-
late filter response threshold.

150 OFFSET Offset used for calculating filter response threshold.

RW

Table 206: PISP_BE_SHARPEN_THRESHOLD? register definition.

PISP_BE_SHARPEN_SCALE?2

Ox15AC

Scale for filter 2 response.

Bits Name Description

R/W

Reset

3112 - Reserved.

11:0 SCALE Scale factor in U3.9 format for multiplying the thresholded filter
response.

RW

0

Table 207: PISP_BE_SHARPEN_SCALE?2 register definition.

PISP_BE_SHARPEN_THRESHOLD3

0x15B0

Thresholds for filter 3.

Bits Name Description

R/W

Reset

31:28 - Reserved.

27716 SLOPE Slopein U1.11 format for multiplying the current pixel to calcu-
late filter response threshold.

15:0 OFFSET . Offset used for calculating filter response threshold.

RW

Table 208: PISP_BE_SHARPEN_THRESHOLD3 register definition.

PISP_BE_SHARPEN_SCALE3

0x15B4

Scale for filter 3 response.

Bits Name Description

R/W

Reset

3112 - Reserved.

11:0 SCALE Scale factor in U3.9 format for multiplying the thresholded filter
response.

RW

Table 209: PISP_BE_SHARPEN_SCALES register definition.

7 The PiSP Back End

119

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_SHARPEN_THRESHOLD4 0x15B8

Thresholds for filter 4.

Bits Name Description R/W Reset

31:28 - Reserved. - -

2716 SLOPE Slopein U1.11 format for multiplying the current pixel to calcu- - -
late filter response threshold.

150 OFFSET Offset used for calculating filter response threshold. RW 0

Table 210: PISP_BE_SHARPEN_THRESHOLD4 register definition.

PISP_BE_SHARPEN_SCALE4 0x15BC

Scale for filter 4 response.

Bits Name Description R/W Reset

3112 - Reserved. - -

11:0 SCALE Scale factor in U3.9 format for multiplying the thresholded filter ~ RW 0
response.

Table 211: PISP_BE_SHARPEN_SCALE4 register definition.

PISP_BE_SHARPEN_POSITIVE_CONFIG 0x15C0

Strength and limit value for positive sharpening.

Bits Name Description R/W Reset

3116 LIMIT Maximum allowed possible sharpening value (prior to ap- RW 0
plying positive transfer function).

1512 - Reserved. - -

11:0 STRENGTH Factor in U3.9 format to scale sharpening strength. RW 0

Table 212: PISP_BE_SHARPEN_POSITIVE_CONFIG register definition.

PISP_BE_SHARPEN_POSITIVE_FUNC|~] 0x15C4-+4n

Gain factor applied to positive sharpening response derived from pixel value, forn = 0,1, 2, 3.

Bits Name Description R/W Reset
3116 GAINT Gain 2n + 1in U6.10 format. RW 0
15:0 GAINO Gain 2n in U6.10 format. RW 0

Table 213: PISP_BE_SHARPEN_POSITIVE_FUNCIn] register definition.

7 The PiSP Back End 120

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_SHARPEN_POSITIVE_FUNC[4] 0x15D4

Final gain factor applied to positive sharpening response derived from pixel value and final limit.

Bits Name Description R/W Reset
3116 LIMIT Limit for sharpening response after application of gain factor. RW 0
150 GAINO Gain 8in U6.10 format. RW 0

Table 214: PISP_BE_SHARPEN_POSITIVE_FUNCI4] register definition.

PISP_BE_SHARPEN_NEGATIVE_CONFIG 0x15D8

Strength and limit value for negative sharpening.

Bits Name Description R/W Reset

3116 LIMIT Maximum allowed possible sharpening value (prior to ap- ~ RW 0
plying negative transfer function).

1512 - Reserved. - -

11:0 STRENGTH Factor in U3.9 format to scale sharpening strength. RW 0

Table 215: PISP_BE_SHARPEN_NEGATIVE_CONFIG register definition.

PISP_BE_SHARPEN_NEGATIVE_FUNC|~] 0x15DC+-4n

Gain factor applied to negative sharpening response derived from pixel value, forn = 0,1, 2, 3.

Bits Name Description R/W Reset
3116 GAINT Gain 2n + 1in U6.10 format. RW 0
15:0 GAINO Gain 2n in U6.10 format. RW 0

Table 216: PISP_BE_SHARPEN_NEGATIVE_FUNC[n] register definition.

PISP_BE_SHARPEN_NEGATIVE_FUNCI4] Ox15EC

Final gain factor applied to negative sharpening response derived from pixel value and final limit.

Bits Name Description R/W Reset
3116 LIMIT Limit for sharpening response after application of gain factor. RW 0
150 GAINO Gain 8in U6.10 format. RW 0

Table 217: PISP_BE_SHARPEN_NEGATIVE_FUNCI4] register definition.

7 The PiSP Back End 121

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_SHARPEN_MASKS 0x15F0

Masks to allow tuning of sharpen filters.

Bits Name Description R/W Reset

31:24 GREY When any bits of BLACK or WHITE are set, and no filter ex- RW 0
ceeds its threshold value, then pixels are output with this grey
level (out of 255).

2321 - Reserved. - -

20:16 BLACK Output pixel is set to black when the strongest filter response RW 0
7 has bit 7 set to 1in this mask.

1513 - Reserved. - -

12:8 WHITE Output pixel is set to white when the strongest filter response RW 0
7 has bit 7 set to 1in this mask.

7:5 - Reserved. - -

4:0 ENABLE Set bit 7 to 1to enable filter ¢, and zero to disable it. RW 0

Table 218: PISP_BE_SHARPEN_MASKS register definition.

Tile Parameters

The Sharpening block has no tile parameters.

7.5.32 False Colour Configuration Registers

The False Colour block provides additional false colour filtering, over and above what is already avail-
able in the Demosaic block. It performs a type of 3x3 median filtering operation, where the neighbour-
ing pixels are actually 1, 2 or 3 pixels distant from the central pixel.

This block works only on the Cb and Cr channels and, rather like the Sharpening block, doesnt make
any changes to the values but passes them on to the Sharpening and False Colour Combining block.

PISP_BE_FALSE_COLOUR_CONFIG O0x15F4

False colour configuration

Bits Name Description R/W Reset
312 - Reserved. - -
1.0 DISTANCE Distance of neighbouring pixels, either 1 or 2. RW 0

Table 219: PISP_BE_FALSE_COLOUR_CONFIG register definition.

Tile Parameters

The False Colour block has no tile parameters.

7 The PiSP Back End 122

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.33 Sharpening and False Colour Combining Configuration Registers

This block receives “recommendations” as to the changes that the Sharpening and False Colour block
wish to make. It performs a small amount of extra processing and then applies the changes:

+ When False Colour is desaturating a pixel, it can increase Y a little so that the pixel does not get
quite so dark.

- When a pixel is being darkened (being on the dark side of an edge being sharpened), the Cb and
Cr signals can be reduced to prevent the pixels from becoming more “colourful”.

PISP_BE_SH_FC_COMBINE_CONFIG Ox15F8

Sharpening and False Colour combine configuration

Bits Name Description R/W Reset
3124 - Reserved. - -
2316 C2_FACTOR Controls amount of brightening of a pixel when the Cr RW 0
channel is being desaturated. 0 = no effect, 255 = maxi-
mum effect.
158 C1_FACTOR Controls amount of brightening of a pixel when the Cb RW 0
channel is being desaturated. 0 = no effect, 255 = maxi-
mum effect.
7:0 Y_FACTOR Controls amount of desaturation of pixels being darkened. . RW 0

0 = no effect, 255 = maximum effect.

Table 220: PISP_BE_SH_FC_COMBINE_CONFIG register definition.

7.5.34 YCbCr Inverse Conversion Configuration Registers

This block converts the pixel data back into the RGB colour space. It should be programmed with the
inverse transform to the one used in the YCbCr Conversion block.

Note that when MINOR_VERSION = 0, the offset range is sufficient to invert ‘full-range’ YCbCr, but may
be insufficient for some reduced-range’ representations.

PISP_BE_YCBCR_INV_MATRIX[~] 0x15FC+4n

Matrix coefficients 2n.and 2n + 1 forn =0,1,2,3,4

Bits Name Description R/W Reset

31:30 - Reserved. - 0

2916 COEFF1 Coefficient 2n+1 of the matrix in S4.10 format. Forn =4 RW 0
this field is ignored.

1514 - Reserved. - 0

13:0 COEFFO Coefficient 2n of the matrix in S4.10 format. RW 0

Table 221: PISP_BE_YCBCR_INV_MATRIX[n] register definition.

7 The PiSP Back End 123

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_YCBCR_INV_OFFSETS][~] 0x1610+4n
Offsets n forn =0,1,2

Bits Name Description R/W Reset

3129 - Reserved. - -

28:0 OFFSET Offsetin S19.10 format. When MINOR_VERSION = 0, bits RW 0

28:27 are ignored and should match the sign bit 26.

Table 222: PISP_BE_YCBCR_INV_OFFSETS[n] register definition.

Tile Parameters

The YCbCr Inverse Conversion block has no tile parameters:

7.5.35 Gamma Configuration Registers

The Gamma block applies the same piecewise linear transfer function to all the pixel values. The look-

up table that defines this function is denser towards the bottom of the range where more accuracy is
required.

PISP_BE_GAMMA_LUT[~] 0x161C+4n
Look-up table for gamma curve, forn = 0, ..., 63.
Bits Name Description R/W Reset
31:30 - Reserved. - 0
2916 SLOPE Slope of this segment of the gamma curve. RW 0
15:0 POSITION 1y (output) position of gamma curve for this x (input) RW 0
value.

Table 223: PISP_BE_GAMMA_LUTIn] register definition.

Note: the z value of point n in the tonemap curve is given by:
< ifn <32, nx*x512
- otherwise if n < 48, (n —32) % 1024 + 16384
« otherwise (n — 48) % 2048 + 32768)

7 The PiSP Back End 124

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.36 Crop 0 Configuration Registers
The Crop block on output branch 0 has no global configuration registers.
Tile Parameters

The Crop block on output branch 0 uses the following tile parameters.

Field Offset Size Description

crop_x_start[0] 52 2 Thenumber of pixels cropped from the left of the tile when pass-
ing through the Crop block at the head of output branch 0.

crop_x_end[0] 56 2 Thenumber of pixels cropped from the right of the tile when pass-
ing through the Crop block at the head of output branch 0.

crop_y_start[0] 60 2 The number of pixels cropped from the top of the tile when pass-
ing through the Crop block at the head of output branch 0.

crop_y_end[0] 64 2 The number of pixels cropped from the bottom of the tile when
passing through the Crop block at the head of output branch 0.

Table 224 Tile parameters for the Crop block on output branch 0.

The indicated numbers of pixels are cropped, respectively, from the left, right, top and bottom of the
tile. The width of the tile leaving the block is reduced by a total of crop_z_start[0] + crop_z_end|0]
pixels, and its height is reduced by crop_y_start[0] + crop_y_end|0] pixels.

7.5.37 Crop 1 Configuration Registers

The Crop block on output branch Thas no global configuration registers.
Tile Parameters

The Crop block on output branch 1 uses the following tile parameters.

Field Offset Size Description

crop_x_start[1] 54 2 The number of pixels cropped from the left of the tile when pass-
ing through the Crop block at the head of output branch 1.

crop_x_end(1] 58 2 Thenumber of pixels cropped from the right of the tile when pass-
ing through the Crop block at the head of output branch 1.

crop_y_start[T] 62 2 The number of pixels cropped from the top of the tile when pass-
ing through the Crop block at the head of output branch 1.

crop_y_end[T] 66 2 The number of pixels cropped from the bottom of the tile when
passing through the Crop block at the head of output branch 1.

Table 225: Tile parameters for the Crop block on output branch 1.

The indicated numbers of pixels are cropped, respectively, from the left, right, top and bottom of the
tile. The width of the tile leaving the block is reduced by a total of crop_z_start[1] + crop_z_end|[1]
pixels, and its height is reduced by crop_y_start[1] + crop_y_end|[1] pixels.

7 The PiSP Back End 125

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.38 CSC (Colour Space Conversion) 0 Configuration Registers

The CSC block on output branch 0 is functionally identical to the CCM block, implementing a colour
space conversion with a 3x3 matrix.

PISP_BE_CSCO_MATRIX][n] 0x171C+-4n

Matrix coefficients 2n and 2n + 1 forn =0,1,2, 3,4

Bits Name Description R/W Reset

31:30 - Reserved. - 0

29116 COEFF1 Coefficient 2n+ 1 of the matrix in S4.10 format. Forn =4 RW 0
this field is ignored.

1514 - Reserved. - 0

13.0 COEFFO Coefficient 2n of the matrix in S4.10 format. RW 0

Table 226: PISP_BE_CSCO_MATRIX[n] register definition.

PISP_BE_CSCO_OFFSETS|»] 0x1730+4n
Offsetsnforn =0,1,2

Bits Name Description R/W Reset
3129 - Reserved. - -
28:0 OFFSET Offsetin S19.10 format. When MINOR_VERSION = 0, bits RW 0

28:27 are ignored and should match the sign bit 26.

Table 227: PISP_BE_CSCO_OFFSETS[n] register definition.

Tile Parameters

The CSC blocks have no tile parameters.

7.5.39 CSC (Colour Space Conversion) 1 Configuration Registers

The CSC block on output branch 1'is functionally identical to the CCM block, implementing a colour
space conversion with a 3x3 matrix.

PISP_BE_CSC1_MATRIX|n] 0x173C+4n

Matrix coefficients 2n and 2n + 1 forn =0,1,2, 3,4

Bits Name Description R/W Reset

31:30 - Reserved. - 0

Continued on next page. ..

7 The PiSP Back End 126

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_CSC1_MATRIX[] (continued) 0x173C+4n

Bits Name Description R/W Reset

29116 COEFF1 Coefficient 2n+1 of the matrixin S4.10 format. Forn =4 RW 0
this field is ignored.

1514 - Reserved. - 0

13:.0 COEFFQ Coefficient 2n of the matrix in S4.10 format. RW 0

Table 228: PISP_BE_CSC1_MATRIX[n] register definition.

PISP_BE_CSC1_OFFSETS[r] 0x1750+-4n

Offsetsnforn =0,1,2

Bits Name Description R/W Reset
31:29 - Reserved. - -
28:0 OFFSET Offsetin S19.10 format. When MINOR_VERSION =0, bits RW 0

28:27 are ignored and should match the sign bit 26.

Table 229: PISP_BE_CSC1_OFFSETS[n] register definition.

Tile Parameters

The CSC blocks have no tile parameters.

7.5.40 Downscale 0 Configuration Registers

The Downscale block on output branch 0 performs downscaling using a “trapezoidal” filter, with inde-
pendentdownscaling factors in the x and y directions. It can downscale by a factor f satisfying f =1
or 2 < f < 8 (downscaling by a factor of 1is useful when downscaling in only one direction).

In the description below, input_width and input_height refer to the dimensions of the whole image
(not just a tile) prior to downscaling, and output_width and output_height again refer to the dimen-
sions of the whole image after downscaling.

Note that the downscale block on.output branch 0 is not available in all hardware variants.

PISP_BE_DOWNSCALEO_SCALE 0x175C

Downscale factors.

Bits Name Description R/W Reset

3116 SCALE_FACTOR_V \Vertical scale factor. Should be set to (4096 * RW 0
input_height) /output_height.

15:0 SCALE_FACTOR_H Horizontal scale factor. Should be set to (4096 * RW 0
input_width)/output_width.

Table 230: PISP_BE_DOWNSCALEQ_SCALE register definition.

7 The PiSP Back End 127

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_DOWNSCALEO_RECIP 0x1760

Downscale reciprocals.

Bits Name Description R/W Reset

3129 - Reserved. - -

2816 SCALE_RECIP_V Vertical reciprocal factor. Should be set to (4096 * RW 0
output_height) /input_height.

1513 - Reserved. - -

12:.0 SCALE_RECIP_H Horizontal reciprocal factor. Should be set to (4096 * RW 0

output_width)/input_width.

Table 231: PISP_BE_DOWNSCALEQ_RECIP register definition.

Tile Parameters

The Downscale block on output branch 0 uses the following tile parameters.

Field Offset Size Description

downscale_phase_x[0][m] 68 2 Initial horizontal phase in pixels of colour channel m
(m =0, 1, 2) for the Downscaler on output branch 0.
This is a U0.12 format value.

downscale_phase_y[0][m] 80 2 Initial vertical phase in pixels of colour channel m
(m = 0,1, 2) for the Downscaler on output branch 0.
This is a U0.12 format value.

Table 232: Tile parameters for the Downscale block on output branch 0.

The initial phases need to be programmed correctly for each tile to avoid slight discontinuities or
“‘creases” in the output image where tiles fail to join accurately. When the downscaling factor is exactly
1, then the phase corresponding to that direction must be set to zero.

7.5.41 Downscale 1 Configuration Registers

The Downscale block on output branch 1is functionally identical to the one on output branch 0.

PISP_BE_DOWNSCALE1_SCALE 0x1764

Downscale factors.

Bits Name Description R/W Reset

3116 SCALE_FACTOR_V \Vertical scale factor. Should be set to (4096 * RW 0
input_height) /output_height.

15:0 SCALE_FACTOR_H Horizontal scale factor. Should be set to (4096 * RW 0
input_width)/output_width.

Table 233: PISP_LBE_DOWNSCALET_SCALE register definition.

7 The PiSP Back End 128

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_DOWNSCALE1_RECIP 0x1768

Downscale reciprocals.

Bits Name Description R/W Reset

3129 - Reserved. - -

2816 SCALE_RECIP_V Vertical reciprocal factor. Should be set to (4096 * RW 0
output_height) /input_height.

1513 - Reserved. - -

12:.0 SCALE_RECIP_H Horizontal reciprocal factor. Should be set to (4096 « RW 0

output_width)/input_width.

Table 234: PISP_BE_DOWNSCALET_RECIP register definition.

Tile Parameters

The Downscale block on output branch 1 uses the following tile parameters.

Field Offset Size Description

downscale_phase_x[1][m] 74 2 Initial horizontal phase in pixels of colour channel m
(m = 0,1,2) for the Downscaler on output branch n
(n = 0,1). Thisis a U0.12 format value.

downscale_phase_y[1][m] 86 2 Initial vertical phase in pixels of colour channel m
(m = 0,1, 2) for the Downscaler on output branch n
(n =0, 1). This is a U0.12 format value.

Table 235: Tile parameters for the Downscale block on output branch 1.

These parameters are functionally identical to the ones for the Downscale block on output branch 0.

7.5.42 Resample 0 Configuration Registers

The Resample block on output branch 0 resamples the image to a different output size with a 6-tap FIR
polyphase filter using 16 phases. The filter can resample an image to a smaller size (useful when the
scale factor is between 1and 2 which disallows the Downscale block), or to a larger size. Downscaling
is recommended not to exceeda factor of 4x, and upscaling is recommended not to exceed a factor
of 16x.

In the description below, input_width and input_height refer to the dimensions of the whole image
(not just atile) prior to resampling, and output_width and output_height again refer to the dimensions
of the whole image after resampling.

7 The PiSP Back End 129

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_RESAMPLEO_SCALE 0x176C
Resample scale factors.
Bits Name Description R/W Reset
3116 SCALE_FACTOR_V Vertical scale factor. Should be set to RW 0
(input_height — 1) x 4096/ (output_height — 1).
150 SCALE_FACTOR_H Horizontal scale factor. Should be set to RW 0
(input_width — 1) x 4096/ (output_width — 1).
Table 236: PISP_BE_RESAMPLEO_SCALE register definition.
PISP_BE_RESAMPLEO_COEFFS[n][m] 0x1770-+12n + 4m
Resample filter coefficients, forn = 0,1, ...,15and m = 0,1, 2.
Bits Name Description R/W Reset
3128 - Reserved. RW 0
2716 COEFF1 Coefficient 2m + 1 for the filter with phase n. For- ~RW 0
mat is S2.10.
1512 - Reserved. RW 0
1.0 COEFFO Coefficient 2m for the filter with phase n. Format = RW 0
is S2.10.

Table 237: PISP_BE_RESAMPLEO_COEFFS[n][m] register definition.

Tile Parameters

The Resample block on output branch 0 uses the following tile parameters.

Field Offset Size Description

resample_in_width[0] 92 2 Width in pixels of the tile entering the Resample block
on output branch 0.

resample_in_height[0] 96 2 Height in pixels of the tile entering the Resample block
on output branch 0.

resample_phase_x[0][m] 100 2 Initial horizontal phase in pixels of colour channel m
(m = 0,1,2) for the Resampler on output branch 0.
This parameter is in U1.12 format, thereby permitting
negative values.

resample_phase_y[0]lm] 112 2 Initial vertical phase in pixels of colour channel m (m =

0,1, 2) for the Resampler on output branch 0. This pa-
rameter is in U1.12 format, thereby permitting negative
values.

7 The PiSP Back End

130

Raspberry Pi Image Signal Processor (PiSP) Specification

Field Offset Size Description

output_width[0] 132 2 Widthin pixels of this tile in the output image, for output
branch 0.

output_height[0] 136 2 Height in pixels of this tile in the output image, for out-

put branch 0.

Table 238: Tile parameters for the Resample block on output branch 0.

Like the Downscaler blocks, the Resampler needs to know the initial phases of the first output sample
in each tile to prevent slight discontinuities or “creases”. Additionally, an initial phase value greater
than 4095 will instruct the Resampler to start one sample to the right and use an initial phase of
(resample_phase_[x|y] - 4096).

The Resample block also needs to know the exact size of the input tile it is expecting, and of the output
tile it is to produce. Note that the dimensions of the tile that is output by the Resampler is the same
as the size that is output by the downstream Output block.

7.5.43 Resample 1 Configuration Registers

The Resample block on output branch 1 is functionally identical to the Resample block on output
branch 1.

PISP_BE_RESAMPLE1_SCALE 0x1830

Resample scale factors.

Bits Name Description R/W Reset

3116 SCALE_FACTOR.V Vertical scale factor. Should be set to RW 0
(input_height — 1) % 4096/ (output_height — 1).

15:0 SCALE_FACTOR_H Horizontal scale factor. Should be set to RW 0
(input_width — 1) % 4096/ (output_width — 1).

Table 239: PISP_BE_RESAMPLE1_SCALE register definition.

PISP_BE_RESAMPLE1_COEFFSI[n][m] 0x1834-+12n + 4m

Resample filter coefficients, forn = 0,1,...,15andm = 0,1, 2.

Bits Name Description R/W Reset

3128 - Reserved. RW 0

27116 COEFF1 Coefficient 2m + 1 for the filter with phase n. For- RW 0
mat is S2.10.

1512 - Reserved. RW 0

Continued on next page. ..

7 The PiSP Back End 131

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_RESAMPLE1_COEFFS[n][m] (continued) 0x1834+12n + 4m
Bits Name Description R/W Reset
11.0 COEFFO Coefficient 2m for the filter with phase n. Format RW 0

is S2.10.

Table 240: PISP_BE_RESAMPLE1_COEFFS[n][m] register definition.

Tile Parameters

The Resample block on output branch 1 uses the following tile parameters.

Field Offset Size Description

resample_in_width[T] 94 2 Width in pixels of the tile entering the Resample block
on output branch 1.

resample_in_height[1] 98 2 Height in pixels of the tile entering the Resample block
on output branch 1.

resample_phase_x[1][m] 106 2 Initial horizontal phase in pixels of colour channel m
(m = 0,1, 2) forthe Resampleron output branch 1. This
parameter is in U1.12 format, thereby permitting nega-
tive values.

resample_phase_y[1][m] 118 2 Initial vertical phase in pixels of colour channel m (m =
0,1, 2) for the Resampler on output branch 1. This pa-
rameter is in U1.12 format, thereby permitting negative
values.

output_width[1] 134 2 Width in pixels of this tile in the output image, for output
branch 1.

output_height[1] 138 2 Heightin pixels of this tile in the output image, for output

branch 1.

Table 247: Tile parameters for the Resample block on output branch 1.

Like the Downscaler blocks, the Resampler needs to know the initial phases of the first output sample
in each tile to prevent slight discontinuities or “creases”. Additionally, an initial phase value greater
than 4095 will instruct the Resampler to start one sample to the right and use an initial phase of

(resample_phase_[x|y] - 4096).

The Resample block also needs to know the exact size of the input tile it is expecting, and of the output
tile it is to produce. Note that the dimensions of the tile that is output by the Resampler is the same
as the size that is output by the downstream Output block.

7 The PiSP Back End

132

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.44 Output 0 Configuration Registers

The Output blocks write the results of PiSP processing to the memory address given by the PISP_-
BE_IO_OUTPUTO_ADDR_LO/HI registers. The block is able to flip the output image horizontally or
vertically, and the output format is controlled by the registers below.

PISP_BE_OUTPUTO_SIZE Ox18F4

Dimensions of the output image.

Bits Name Description R/W Reset
3116 HEIGHT Height of the image. RW 0
150 WIDTH Width of the image. RW 0

Table 242: PISP_BE_OUTPUTO_SIZE register definition.

PISP_BE_OUTPUTO_FORMAT Ox18F8

Format definition of the output image.

Bits Name Description R/W Reset
31 - Reserved. - -
30 THREE_CHANNEL Write a 1 to output a three channel image, other- RW 0
wise only the first channel is output.
29 WALLPAPER Setto 1to write the image in “wallpaper roll” foramt. RW 0
28 INTEGRAL Placeholder for integral image. As no existing PiSP RW 0
version supports integral images, this bit should be
ZEero.
2722 - Reserved. - -
21 X_VALUE When BPP_32 is set, set this bit to 1to fill padding RW 0

bytes with the value OxFF.

20 BPP_32 Setto1to pad RGB 444 pixels to 32 bpp (only when ~ RW 0
MINOR_VERSION > 1).

1916 SHIFT Pixel values are right-shifted by this amount, for RW 0
0 < SHIFT < 8 (only if BITS_.PER_SAMPLE in-
diciates 16 bps).

1513 - Reserved. - -

Continued on next page. ..

7 The PiSP Back End 133

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_OUTPUTO_FORMAT (continued) Ox18F8
Bits Name Description R/W Reset
12 ORDER Only when PLANARITY is fully interleaved: When RW 0
SAMPLING indicates 422, this bit causes the im-
age to be written out as UYVY (i.e. the first channel
always written second) rather than as YUYV. When
SAMPLING indicates 444 and BPP_32 is set, it in-
serts pading at the lowest byte address rather than
the highest.
1110 - Reserved. - -
9:8 SAMPLING 0 = 444 sampling (like YUV444),1 = 422 sampling, RW 0
2 =420 sampling.
7:6 - Reserved. - -
54 PLANARITY 0 = fully interleaved, 1 = semi-planar (only the first RW 0
channel in a separate plane), 2 = fully planar.
1.0 BITS_.PER_SAMPLE Number of bits in each sample. Valid settings are:
0 (8 bps), 1 (10 bps).and 3 (16 bps). The value 2 is
unused.
Table 243: PISP_BE_OUTPUTO_FORMAT register definition.
PISP_BE_OUTPUTO_STRIDE Ox18FC
Line to line stride of the first plane.
Bits Name Description R/W Reset
31:4 STRIDE_MID Bits 31:4 of the stride in bytes. RW 0
30 - Reserved. Do not write any non-zero value. - 0
Table 244: PISP_BE_OUTPUTO_STRIDE register definition.
PISP_BE_OUTPUTO_STRIDE2 0x1900

Line to line stride of planes other than the first (ignored when the format is fully interleaved).

Bits Name Description R/W Reset
31:4 STRIDE_MID Bits 31:4 of the stride in bytes. RW 0
30 - Reserved. Do not write any non-zero value. - 0
Table 245: PISP_BE_OUTPUTO_STRIDE? register definition.
7 The PiSP Back End 134

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_OUTPUTO_TRANSFORM 0x1904

Output transform specification.

Bits Name Description R/W Reset
312 - Reseverd. - -
T VFLIP Vertically mirror the output image. RW 0
0 HFLIP Horizontally mirror the output image. - 0

Table 246: PISP_BE_OUTPUTO_TRANSFORM register definition.

PISP_BE_OUTPUTO_CLIP 0x1908

Clip output values from the first channel to the given range.

Bits Name Description R/W Reset
3116 HI Upper limit. RW 0
150 LO Lower limit. - 0

Table 247: PISP_BE_OUTPUTO_CLIP register definition.

PISP_BE_OUTPUTO_CLIP2 0x190C

Clip output values from the second and third channels to the given range.

Bits Name Description R/W Reset
3116 HI Upper limit. RW 0
150 LO Lower limit. - 0

Table 248: PISP_BE_OUTPUTO_CLIP? register definition.

Tile Parameters

The Output block on branch 0 uses the following tile parameters.

Field Offset Size Description

output_offset_x[0] 124 2 Horizontal offset in pixels where this tile will be written
into the output image, for output branch 0.

output_offset_y[0] 128 2 Vertical offset in pixels where this tile will be written into
the output image, for output branch 0.

output_width[0] 132 2 Width in pixels of this tile in the output image, for output
branch 0.

7 The PiSP Back End 135

Raspberry Pi Image Signal Processor (PiSP) Specification

Field Offset Size Description
output_height[0] 136 2 Heightin pixels of this tile in the output image, for output
branch Q.

output_addr_offset[0] 140 4 Offsetin bytesinto the output buffer where output branch
0 is to write this tile. This value must be at least 16-byte
aligned, but for best performance a 64-byte aligned value
is recommended.

output_addr_offset2[0] 148 4 Offsetin bytes into the output buffer where planes 2 and
3 of this tile are to be written. This value must be at
least 16-byte aligned, but for best performance a 64-byte
aligned value is recommended. Ignored if the output for-
mat is non-planar (interleaved).

Table 249: Tile parameters for the Output block on branch 0.

The output address offsets listed above are added to the memory address given by PISP_BE_IO_-
OUTPUTO_ADDR([n][m], where n indicates the colour channel for planar formats, and m indicates the
high (m = 1) or low (m = 0) 32 bits of the address. output_addr_offset is added to the address
formed by PISP_BE_IO_OUTPUTO_ADDR[0], and output_addr_offset2 is added to the address formed
by PISP_BE_IO_OUTPUTO_ADDR[1] and PISP_BE_IO_OUTPUTO_ADDRI[2].

The output_width and output_height inform the Input block how many pixels it is expected to read. The
output_offset_x/y values are in fact not needed by the block, but are provided as a courtesy to help
debug any problems.

7.5.45 Output 1 Configuration Registers

The Output block on branch 1.is functionally identical to the Output block on branch 0.

PISP_BE_OUTPUT1_SIZE 0x1910

Dimensions of the output image.

Bits Name Description R/W Reset
3116 HEIGHT Height of the image. RW 0
150 WIDTH Width of the image. RW 0

Table 250: PISP_BE_OUTPUT1_SIZE register definition.

7 The PiSP Back End 136

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_OUTPUT1_FORMAT 0x1914
Format definition of the output image.
Bits Name Description R/W Reset
31 - Reserved. - -
30 THREE_CHANNEL Write a 1 to output a three channel image, other- RW 0
wise only the first channel is output.
29 WALLPAPER Setto 1towritetheimagein “wallpaper roll" foramt. RW 0
28 INTEGRAL Placeholder for integral image. As no existing PiSP RW 0
version supports integral images, this bit should be
zero.
2722 - Reserved. - -
21 X_VALUE When BPP_32 is set, set this bit to 1 to fill padding = RW 0
bytes with the value OxFF.
20 BPP_32 Set to 1to pad RGB 444 pixelsto 32 bpp (only when ~ RW. 0
MINOR_VERSION > 7).
1916 SHIFT Pixel values are right-shifted by this amount, for RW 0
0<SHIFT <8.
1513 - Reserved. - -
12 ORDER Only when PLANARITY is fully interleaved: When RW 0
SAMPLING indicates 422, this bit causes the im-
age to be written out as UYVY (i.e. the first channel
always written second) rather than as YUYV. When
SAMPLING indicates 444 and BPP_32 is set, this
inserts padding at the lowest byte address rather
than the highest.
11100 - Reserved. - -
9:8 SAMPLING 0 = 444 sampling (like YUV444), 1 = 422 sampling, RW 0
2 =420 sampling.
7:6 - Reserved. - -
54 PLANARITY 0 = fully interleaved, 1 = semi-planar (only the first ~ RW 0
channel in a separate plane), 2 = fully planar.
1.0 BITS_.PER_SAMPLE Number of bits in each sample. Valid settings are:

0 (8 bps), 1 (10 bps) and 3 (16 bps). The value 2 is
unused.

Table 257: PISP_BE_OUTPUT1_FORMAT register definition.

7 The PiSP Back End

137

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_OUTPUT1_STRIDE 0x1918
Line to line stride of the first plane.
Bits Name Description R/W Reset
31:4 STRIDE_MID Bits 31:4 of the stride in bytes. RW 0
30 - Reserved. Do not write any non-zero value. - 0
Table 252: PISP_BE_OUTPUT1_STRIDE register definition.
PISP_BE_OUTPUT1_STRIDE2 0x191C

Line to line stride of planes other than the first (ignored when the format is fully interleaved).

Bits Name Description R/W Reset
314 STRIDE_MID Bits 31:4 of the stride in bytes. RW 0
30 - Reserved. Do not write any non-zero value. - 0
Table 253: PISP_BE_OUTPUT1_STRIDEZ register definition.
PISP_BE_OUTPUT1_TRANSFORM 0x1920
Output transform specification.
Bits Name Description R/W Reset
312 - Reseverd. - -
1 VFLIP Vertically mirror the output image. RW 0
0 HFELIP Horizontally mirror the output image. - 0
Table 254: PISP_BE_OUTPUT1_TRANSFORM register definition.
PISP_BE_OUTPUT1_CLIP 0x1924
Clip output values from the first channel to the given range.
Bits Name Description R/W Reset
3116 HI Upper limit. RW 0
150 LO Lower limit. - 0

Table 255: PISP_BE_OUTPUT1_CLIP register definition.

7 The PiSP Back End

138

Raspberry Pi Image Signal Processor (PiSP) Specification

PISP_BE_OUTPUT1_CLIP2 0x1928
Clip output values from the second and third channels to the given range.

Bits Name Description R/W Reset

3116 HI Upper limit. RW 0

150 LO Lower limit. - 0

Table 256: PISP_BE_OUTPUT1_CLIP2 register definition.

Tile Parameters

The Output block on branch 1 uses the following tile parameters.

Field Offset Size Description

output_offset_x[1] 126 2 Horizontal offset in pixels where this tile will be written
into the output image, for output branch 1.

output_offset_y[1] 130 2 Vertical offset in pixels where this tile will be written into
the output image, for output branch 1.

output_width[1] 134 2 Width in pixels of this tile in the output image, for output
branch 1.

output_height[1] 138 2 Height in pixels of this tile in the output image, for output
branch 1.

output_addr_offset[1] 144 4 Offsetin bytes into the output buffer where output branch
1is to write this tile. This value must be at least 16-byte
aligned, but for best performance a 64-byte aligned value
is recommended.

output_addr_offset2[1] 152 4 Offsetin bytes into the output buffer where planes 2 and 3

of thistile are to be written. This value must be at least 16-
byte aligned, but for best performance a 64-byte aligned
value is recommended. Ignored if the output format is
non-planar (interleaved).

Table 257: Tile parameters for the Output block on branch 1.

The output address offsets listed above are added to the memory address given by PISP_BE_IO_-
OUTPUTI1_ADDR[n|[m], where n indicates the colour channel for planar formats, and m indicates the
high (m = 1) or low (m = 0) 32 bits of the address. output_addr_offset is added to the address
formed by PISP_BE_IO_OUTPUT1_ADDRI[0], and output_addr_offset2 is added to the address formed
by PISP_BE_IO_OUTPUT1_ADDR([1] and PISP_BE_IO_OUTPUT1_ADDR[2].

The output_width and output_height inform the Input block how many pixels it is expected to read. The
output_offset_x/y values are in fact not needed by the block, but are provided as a courtesy to help

debug any problems.

7 The PiSP Back End

139

Raspberry Pi Image Signal Processor (PiSP) Specification

7.5.46 HOG (Histogram of Oriented Gradients) Output Configuration Registers

The HOG block converts the image into the “histogram of oriented gradients” form. The image is
divided into 8x8 cells, and from each of these cells it creates a histogram of gradients of either 9 or
18 bins, depending on whether signed or unsigned gradients are required (as is the convention, every
bin contains a spread of angles of 20 degrees).

The histograms are written to memory in raster scan order. The histogram normalisation step, con-
ventionally performed by HOG algorithms upon the histograms, is not carried out by the block. It may
be performed subsequently by software, if required.

The histogram is constructed only for a single channel. The three incoming channels can be mixed if
necessary.

PISP_BE_HOG_CONFIG 0x192C

HOG configuration. Note that the channel mixing is performed as follows:

mix0 = mix0? mixO+1:0
mixl = mixl ?mixl +1:0
mix2 = mix2? mixz2+1:0

out = (mix0 - ing + mizl - ing + miz2 - ing) > 8

and miz0 + mixzl + miz2 < 256.

Bits Name Description R/W Reset
31:24 CHANNEL_MIX2 U0.8 proportion of the third channel to use. RW 0
23716 CHANNEL_MIX1 UO0.8 proportion of the second channel to use. RW 0
15:8 CHANNEL_MIX0 UO0.8 proportion of the first channel to use. RW 0
71 - Reserved. - -
0 SIGNED Setto 0 for unsigned gradients, 1for signed gradients. - 0

Table 258: PISP_BE_HOG_CONFIG register definition.

PISP_BE_HOG_STRIDE 0x1930
Stride in bytes between an 8x8 feature block and the 8x8 feature block directly below it in the
image.

Bits Name Description R/W Reset

31:4 STRIDE_MID Bits 31:4 of the stride in bytes. RW 0

30 - Reserved. Do not write any non-zero value. - 0

Table 259: PISP_BE_HOG_STRIDE register definition.

Tile Parameters

The HOG Output block uses the following tile parameters.

7 The PiSP Back End 140

Raspberry Pi Image Signal Processor (PiSP) Specification

Field Offset Size Description

output_hog_addr_offset 156 4 Offsetin bytes into the HOG output buffer where the re-
sults for this tile are to be written. This value must be
at least 16-byte aligned, but for best performance a 64-
byte aligned value is recommended.

Table 260: Tile parameters for the HOG Output block.

The output address offset listed above is added to the memory address given by PISP_BE_IO_HOG_-
ADDR_LO/HIL.

7 The PiSP Back End 141

	Introduction
	Overview
	Front End
	Back End

	Chip and Camera Peripheral Integration
	Pixel Data
	Control Signals

	PiSP Compressed Raw Format
	Outline of the delta-based scheme
	Companding

	Image Format Specifications
	Image Formats
	Image Format Flags
	Image Dimensions
	Image Address Alignment

	The PiSP Front End
	Front End Overview
	Programmer's Model
	Registers and Interrupts
	Proccessing Queue
	Front End States
	The Front End Status
	Frames and Burstframes

	Frame Size Limits
	Register Definitions
	Control Registers
	Debug Registers
	Input/Output Configuration Registers
	Global Configuration Registers
	Input Configuration Registers
	Decompression Configuration Registers
	Decompand Configuration Registers
	BLA (Black Level Alignment) Configuration Registers
	DPC (Defective Pixel Correction) Configuration Registers
	Statistics Crop Configuration Registers
	Statistics Decimation Configuration Registers
	BLC (Black Level Correction) Configuration Registers
	RGBY (RGB to Luminance) Configuration Registers
	LSC (Lens Shading Correction) Configuration Registers
	AGC Statistics Configuration Registers
	AWB Statistics Configuration Registers
	CDAF (Contrast Detect Autofocus) Configuration Registers
	Floating Statistics Configuration Registers
	Output AXI Configuration Registers
	Crop 0 Configuration Registers
	Downscale 0 Configuration Registers
	Compression 0 Configuration Registers
	Output 0 Configuration Registers
	Crop 1 Configuration Registers
	Downscale 1 Configuration Registers
	Compression 1 Configuration Registers
	Output 1 Configuration Registers

	Statistics Output Definitions
	AWB Statistics
	AGC Statistics
	CDAF Statistics

	The PiSP Back End
	Back End Overview
	Back End Pipe in Detail
	Bayer Pipe
	RGB Pipe

	Programmer's Model
	Tiles, Tiles, Tiles
	Tile Address Offsets and Sizes
	Registers and Interrupts
	Processing Queue
	Back End States
	The Back End Status

	Tile Parameters
	Tile Alignment

	Register Definitions and Tile Parameters
	Control Registers
	Input/Output Configuration Registers
	Global Configuration Registers
	Input Configuration Registers
	Decompression Configuration Registers
	DPC (Defective Pixel Correction) Configuration Registers
	GEQ (Green Equalisation) Configuration Registers
	TDN (Temporal Denoise) Input Configuration Registers
	TDN (Temporal Denoise) Decompression Configuration Registers
	TDN (Temporal Denoise) Configuration Registers
	TDN (Temporal Denoise) Compression Configuration Registers
	TDN (Temporal Denoise) Output Configuration Registers
	SDN(Spatial Denoise) Configuration Registers
	BLC (Black Level Correction) Configuration Registers
	Stitch Compression Configuration Registers
	Stitch Output Configuration Registers
	Stitch Input Configuration Registers
	Stitch Decompression Configuration Registers
	Stitch Configuration Registers
	LSC (Lens Shading Correction) Configuration Registers
	WBG (White Balance Gain) Configuration Registers
	CDN (Colour Denoise) Configuration Registers
	CAC (Chromatic Aberration Correction) Configuration Registers
	Debin Configuration Registers
	Tonemap Configuration Registers
	Demosaic Configuration Registers
	RGB Input Configuration Registers
	CCM (Colour Correction Matrix) Configuration Registers
	Saturation Control Configuration Registers
	YCbCr Conversion Configuration Registers
	Sharpening Configuration Registers
	False Colour Configuration Registers
	Sharpening and False Colour Combining Configuration Registers
	YCbCr Inverse Conversion Configuration Registers
	Gamma Configuration Registers
	Crop 0 Configuration Registers
	Crop 1 Configuration Registers
	CSC (Colour Space Conversion) 0 Configuration Registers
	CSC (Colour Space Conversion) 1 Configuration Registers
	Downscale 0 Configuration Registers
	Downscale 1 Configuration Registers
	Resample 0 Configuration Registers
	Resample 1 Configuration Registers
	Output 0 Configuration Registers
	Output 1 Configuration Registers
	HOG (Histogram of Oriented Gradients) Output Configuration Registers

