RP2040 A microcontroller by Raspberry Pi

RP2040 Datasheet
A microcontroller
by Raspberry P1

__|
Raspberry Pi Ltd

RP2040 Datasheet

Colophon

© 2020-2025 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND).
Portions Copyright © 2019 Synopsys, Inc.

All rights reserved. Used with permission. Synopsys & DesignWare are registered trademarks of Synopsys, Inc.
Portions Copyright © 2000-2001, 2005, 2007, 2009, 2011-2012, 2016 Arm Limited.

All rights reserved. Used with permission.

build-date: 2025-02-20
build-version: 3184e62-clean

Legal disclaimer notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME ("RESOURCES") ARE PROVIDED BY RASPBERRY PI LTD ("RPL") "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO
EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use
of the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage ("High Risk Activities"). RPL specifically disclaims any express or implied
warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPL's Standard Terms. RPL’s provision of the RESOURCES does not
expand or otherwise modify RPL's Standard Terms including but not limited to the disclaimers and warranties
expressed in them.

]
Legal disclaimer notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

RP2040 Datasheet

Table of contents

Colophon - oo 1
Legal disclaimer notice 1
ToIntroducCtion. « .. 8
1.1. Why is the chip called RP20407. 8
T.2.SUMMANY - oo 9
1.3, The Chip . 9
T4, Pinout Reference. oo 10
T4 PinLocationso 10
T.4.2. Pin Descriptions 11
T.4.3.GPIO FUNCLIONS 12
2.System DesCription oo 14
2.0 Bus Fabric .. 14
217 AHB-Lite Crossbar 15
2.1.2. Atomic Register ACCESSo 17
213 APB Bridge . . . 17
2.1.4. Narrow 10 Register Writes. i 17
2.1.5. Listof Registers 18
2.2, Address Map 24
2271 SUMMANY. oo 24
2.2.2.Detail .o 24
2.3. Processor subsystem 26
230, SI0 27
2.3.2.INTeITUPTS. « . i 60
2.3.3.BEvent Signals 61
2.3.4.DEbUQG - . 61
2.4.Cortex-MO+ .. 62
2470 Featureso 62
2.4.2. Functional Description 64
2.4.3. Programmer's model. 68
2.4.4.System CONTIOl.o 73
245 NVIC. | 74
2.4.6. MPU . 76
24.7.DEbUQ . 76
2.4.8. Listof Registers. 77
2.5, DM A 91
2.5.1. Configuring Channels 91
2.5.2. Starting Channels. 93
2.5.3. Data Request (DREQ). 95
2.5 4 INTeITUPTES. © . oo 96
2.5.5. Additional Features 96
2.5.6. Example Use Cases. 97
2.5.7. Listof Registers. 101
2.6. MEIMOTY . .o 120
2.6.T. ROM. 120
2.6.2. SRAM 121
2.6.3. Flash .. 122
2.7.B00tSEqQUENCE i 128
2.8. BOOMrOM oo 128
2.8.1. Processor Controlled Boot Sequence 129
2.8.2. Launching Code On Processor Core T i 131
2.8.3. Bootrom Contents 132
2.8.4.USB Mass Storage Interface 143
2.8.5.USB PICOBOOT Interface 144
2.9. Power Supplies . . . oo 150
2.9.1. Digital 10 Supply (IOVDD) 151

Table of contents

RP2040 Datasheet

Table of contents

2.9.2. Digital Core Supply (DVDD). 151
2.9.3. On-Chip Voltage Regulator Input Supply (VREG_VIN) 151
2.9.4.USB PHY Supply (USB_VDD) 151
2.9.5. ADC Supply (ADC_AVDD) 152
2.9.6. Power Supply Sequencing 152
2.9.7. Power Supply Schemes 152
2.10. Core Supply Regulator 155
2.10.7. Application Circuit. 155
2.10.2. Operating Modes 156
2.10.3. Output Voltage Select 157
2704, Status . . 157
2.10.5. Current Limit © .o 157
2.10.6. List of Registers. 157
2.10.7. Detailed Specifications 160
2171, Power Control 160
2.11.7. Top-level Clock Gates 160
2.11.2. SLEEP State 161
211.3. DORMANT State 161
2.171.4. Memory Power DOWN 161
2.11.5. Programmer's Model 162
2.12. Chip-Level Reset oo 163
20200 0VEIVIEW . .o 163
2.12.2. Power-on Reset 164
2.12.3. Brown-out Detection 165
2.12.4.Supply Monitor. 167
2125 External Reset 167
2.12.6. Rescue Debug Port Reset. 167
2.12.7.Source of Last Reset. 168
2.12.8. Listof Registers. 168
2.13. Power-On State Machine 168
2030 0VEIVIEW . - 168
2.13.2. Power ON SEqUENCE o 168
2.13.3. Register Control. 169
2.13.4. Interaction with Watchdog 169
2.13.5. Listof Registers. 169
2.14.Subsystem ReSEtS 172
2T4T.0VEIVIEW . - oo 172
2.14.2. Programmer's Model ... 173
2.14.3. Listof Registers. 175
2.5, ClOCKS . 178
2050 0VEIVIEW . - 178
2.15.2. ClOCK SOUMCES 179
2.15.3. Clock Generators. 183
2.15.4. Frequency COUNTEr 186
2055 RESUS oo 187
2.15.6. Programmer’'s Model 187
2.15.7. Listof Registers. 194
2.16. Crystal Oscillator (XOSC). 216
2761 OVEIVIEWo 216
2.716.2.USAge 217
2.16.3.Startup Delayo 217
2.16.4. XOSC Counter 217
2.16.5. DORMANT mMode 218
2.16.6. Programmer’'s Model 218
2.16.7. Listof Registers. 219
2.17.Ring Oscillator (ROSC) 221
2070 0VEIVIEW . - o 221
2.17.2. ROSC/XOSC trade-offs 222
2.17.3. Modifying the frequency 222
217.4.ROSCAivider 223

RP2040 Datasheet
]

2.17.5. Random Number Generator 223
2.17.6. ROSC Counter 223
2.17.7.DORMANT mode 223
2.17.8. Listof Registers. 224
208, PLL . oo 228
208 1. 0VEIVIEW . . 228
2.18.2. Calculating PLL parameters. 228
2.18.3. Configuration 232
2.18.4. Listof Registers. 234
279, GPIO . 236
2091 OVEIVIEW . - .o 236
2.19.2. Function Select 237
2.19.3.INterrupts « . oo 239
2.19.4.Pads .. . 240
2.19.5. Software Examples 241
2.19.6. List of Registers. 244
2.20. SYSINfOo 305
2.20.T. OVEIVIEW . . o 305
2.20.2. Listof Registers. 305
2,20, SYSCg i 306
2210 0VEIVIEW . . o 306
2.21.2. Listof Registers. 306
222 . TBMAN. | 309
2.22.7. Listof Registers. 309

B Pl i 311
BT OVEIVIEW 311
3.2. Programmer’'s Model 312
3.2.1.PIO Programs. . ..o 312
3.2.2.Control FIOW . . . 313
3.2.3 RegISterSo 314
324, Stalling - ..o 317
3.2.5. PINMapping . . - . 318
3.2.6. IRQFIAQS. - . . 318
3.2.7. Interactions Between State Machines 318
3.3. PIO Assembler (pioasm) 319
3.3 DireCtives .o 319
3.3.2.ValUeS . 320
3.3 3L EXPressioOns . .o 320
3.3.4.Comments ... 320
3.3.5. Labels . 320
3.3.6. INStrUCtioNS.o 321
3.3.7. Pseudoinstructions 321
34 Instruction Set. . .. 321
AT SUMMArY. © .o 321
B 2. IMP 322
A 3 WAIT 323
B A IN 324
3D OUT 325
3.4.6. PUSH . o 326
347, PULL 327
348 MOV . oo 328
340 IRQ . 329
3400, SET o 330
3.5. Functional Details 331
3.5, Side-set . .. 331
3.5.2. Program Wrapping 332
3.5 3. FIFO JOINING . . .o 334
3.5.4. Autopush and Autopull ... 335
3.5.5. Clock Dividers i 339
3.5.6. GPIO MapPINg -o 340

Table of contents 4

RP2040 Datasheet
]

3.5.7. Forced and EXEC’d Instructions. 342
3.6 Examples . 344
36,1, DUplex SPI i 344
3.6.2. WS28T12 LEDS. . . . o 348
3.6.3. UART TX oo 350
3.6. 4. UART RX . o 352
3.6.5. Manchester Serial TX and RX. 355
3.6.6. Differential Manchester (BMC) TX and RX 357
3.6, 7. 120 361
3.6.8. PWIM 364
3.6.9. Addition. 366
3.6.10. Further Examples. 367
3.7.Listof Registers 368
4. Peripherals . . oo 383
A USB . 383
AT T 0VEIVIEW - oo 383
A4.1.2. Architecture 384
4.1.3. Programmer’'s Model. 394
4.1.4. Listof Registers. 398
References 417
A2 UART 417
A.2.1.0VEIVIEW . . 417
4.2.2. Functional description. 418
4.2.3.0peration 420
4.2.4. UART hardware flow control 422
4.2.5.UART DMA Interface 424
4.2.6. INTerrupts . .. 425
4.2.7. Programmer’'s Model. 427
4.2.8. Listof Registers. 429
A3, 120, 440
431 Features . . . 440
4.3.2.IP Configuration. 441
4.3.3.12C OVeIVIEW. . .o 441
4.3.4.12C Terminology. 443
4.3.5.12C Behaviour. 444
4.3.6.12C Protocols 445
4.3.7. Tx FIFO Management and START, STOP and RESTART Generation. 448
4.3.8. Multiple Master Arbitration. 450
4.3.9. Clock Synchronization. 451
4.3.10. Operation MOdeSs 452
4.3.17. Spike SUPPressioN. 457
4.3.12. Fast Mode Plus Operation 458
4.313.Bus Clear Feature 458
4.3.14. IC_CLK Frequency Configuration. 459
4.3.15. DMA Controller Interface 463
4.3.16. Operation of Interrupt Registers 464
4.3.17. Listof RegiSters. 464
| 501
AAT.OVEIVIEW . .. 502
4.4.2. Functional Description 502
A.A4.3.0peration .« ... 505
444 Listof Registers. 515

A . PWIM 521
A.5.7.0VEIVIEW . . . 521
4.5.2. Programmer’'s Model. 522
4.5.3. Listof Registers. 529
4.6, TIMIEr 534
A.6.T.0VeIVIEW . . oo 534
4.6.2. COUNTEI . .. 535
A.6.3. Alarms. . 535

Table of contents 5

RP2040 Datasheet

4.6.4. Programmer's Model. 536
4.6.5. Listof Registers. 539
A7.Watchdog. 544
A7.7.0VEIVIEW . . o 544
4.7.2. Tick generation 544
4.7.3. Watchdog Counter. 545
4.7.4.Scratch Registers. 545
4.7.5. Programmer’'s Model. 545
4.7.6. Listof Registers. 547
A8 RT C . 548
4.8.1.Storage Format 548
4.8.2. Leapyearl 549
A.8.3.Interrupts ..o 549
4.8.4.Reference CloCK 549
4.8.5. Programmer’'s Model. 550
4.8.6. Listof Registers. 553
4.9. ADC and Temperature SENSOT. 557
4.9.1. ADC controller 558
4.9.2.SARADC 559
4.9.3. ADCENOB . .. 561
494 INLand DNL 562
4.9.5. Temperature SENSOT 563
4.9.6. Listof Registers. 564

A 0. SSl 567
AT0.T. OVEIVIEW . . 568
4702, Features 568
4.10.3. IP Modifications. 569
4.10.4. Clock Ratioso 570
4.10.5. Transmit and Receive FIFO Buffers. 571
4.10.6. 32-Bit Frame Size Support 572
A.10.7. SSHINTEITUPTS oo 572
4.10.8. Transfer Modes 573
4.10.9. Operation MOdes 574
4.10.10. Partner Connection Interfaces. 579
4.10.11. DMA Controller Interface 595
41072 APB INterface. 597
4.10.13. List of Registers. 598

5. Electrical and Mechanical. 607
ST Package . . . 607
5.1.1. Thermal characteristics 608
5.1.2. Recommended PCB Footprint 608
5.1.3. Package markings. 608
5.2. Storage conditions 609
5.3.S0lder profile 609
5.4.Compliance 611
5.8 PINOUL . 611
5.5. 1. PINLocations 611
5.5.2. Pin Definitions 612
5.5.3. Pin Specifications 614
5.6. Power SUPPlIES 622
5.7.Power Consumption. 622
5.7.1. Peripheral power consumption 622
5.7.2. Power consumption for typical usercases 623
Appendix A: Register Field Types. 625
Standard types 625
RN 625
RO 625
WO 625
Clear types - . . 625
SC 625

Table of contents

RP2040 Datasheet

W i 625
FIFO types . i 626
R 626

RE 626
W 626
Appendix B Errata 627
BOOtr oM. o i 627
RP2040-E9. . . oo 627
RP2040-ET4 627
CloCKS o o 628
RP2040-E7. . oo 628
RP2040-ET0 . . 628
DM A 629
RP2040-ET2 629
RP2040-E13 oo 629
GPIO/ ADC . 630
RP2040-E6. . . . 630
RP2040-ETT oo 630
USB 630
RP2040-E2. . . 630
RP2040-E3. . oo 631
RP2040-E4. . 631
RP2040-E5. . 631
RP2040-ET15 . 633
RP2040-ET6 . . . o 634
Watchdog - ... 634
RP2040-ET. . . 634
XIP Flash . oo 635
RP2040-E8. . . 635
Appendix C: Availability 636
SUPPOIt .« o 636
Ordering Code 636
Documentation Release History. 637
20 February 2025 . . 637
T50ctober 2024. . 637
02 May 2024 . . 637
02 February 2024 . . . 637
TAJdune 2023 . 637
03 March 2023 . . 637
01 December 2022, . . 637
30JUne 2022 oo 638
T7dune 2022 . 638
04 November 2027, 638
03 November 20270, . . . 638
30 September 20271 . . . 638
23.JUne 2027 - 638
07.June 2027 639
T3 APl 202 . 639
07 April 2027 . 639
05 March 2027 .. 639
23 February 20271 639
01 February 20271 . . . 639
26 January 2027, .. .o 639
21 Jdanuary 2027 . ..o 640

]
Table of contents 7

RP2040 Datasheet

Chapter 1. Introduction

Microcontrollers connect the world of software to the world of hardware. They allow developers to write software which
interacts with the physical world in the same deterministic, cycle-accurate manner as digital logic. They occupy the
bottom left corner of the price/performance space, outselling their more powerful brethren by a factor of ten to one.
They are the workhorses that power the digital transformation of our world.

RP2040 is the debut microcontroller from Raspberry Pi. It brings our signature values of high performance, low cost,
and ease of use to the microcontroller space.

With a large on-chip memory, symmetric dual-core processor complex, deterministic bus fabric, and rich peripheral set
augmented with our unique Programmable 1/0 (PIO) subsystem, it provides professional users with unrivalled power
and flexibility. With detailed documentation, a polished MicroPython port, and a UF2 bootloader in ROM, it has the
lowest possible barrier to entry for beginner and hobbyist users.

RP2040 is a stateless device, with support for cached execute-in-place from external QSPI memory. This design
decision allows you to choose the appropriate density of non-volatile storage for your application, and to benefit from
the low pricing of commodity Flash parts.

RP2040 is manufactured on a modern 40nm process node, delivering high performance, low dynamic power
consumption, and low leakage, with a variety of low-power modes to support extended-duration operation on battery
power.

Key features:

® Dual ARM Cortex-M0+ @ 133MHz

264kB on-chip SRAM in six independent banks

Support for up to 16MB of off-chip Flash memory via dedicated QSPI bus

DMA controller

Fully-connected AHB crossbar

Interpolator and integer divider peripherals

On-chip programmable LDO to generate core voltage

2 on-chip PLLs to generate USB and core clocks

® 30 GPIO pins, 4 of which can be used as analogue inputs

Peripherals
o 2UARTs
o 2 SPI controllers
o 212C controllers
o 16 PWM channels
o USB 1.1 controller and PHY, with host and device support
o 8 PIO state machines

Whatever your microcontroller application, from machine learning to motor control, from agriculture to audio, RP2040
has the performance, feature set, and support to make your product fly.

1.1. Why is the chip called RP2040?

The post-fix numeral on RP2040 comes from the following,

1.1. Why is the chip called RP2040? 8

RP2040 Datasheet
]

1. Number of processor cores (2)

2. Loosely which type of processor (M0+)

3. floor(log2(RAM / 16kB))

4. floor(log2(nonvolatile / 128kB)) or 0 if no onboard nonvolatile storage

see Figure 1.

Figure 1. An
explanation for the

name of the RP2040 D
chip.
—
A

A

T

floor(log2(nonvolatile / 128kB))
floor(log2(RAM / 16kB))

40
|

— 1O

Type of core (e.g. Cortex-M0+)

Number of cores

Raspberry Pi

1.2. Summary

RP2040 is a low-cost, high-performance microcontroller device with flexible digital interfaces. Key features:
® Dual Cortex MO+ processor cores, up to 133MHz (or 200MHz at 1.15V, see Section 2.15.3)
® 264kB of embedded SRAM in 6 banks
® 30 multifunction GPIO
® 6 dedicated IO for SPI Flash (supporting XIP)
® Dedicated hardware for commonly used peripherals
® Programmable 10 for extended peripheral support
® 4 channel ADC with internal temperature sensor, 500ksps, 12-bit conversion

® USB 1.1 Host/Device

1.3. The Chip

RP2040 has a dual MO+ processor cores, DMA, internal memory and peripheral blocks connected via AHB/APB bus
fabric.

1.2. Summary 9

RP2040 Datasheet

Figure 2. A system
overview of the
RP2040 chip

10s Clock RP2040
) Internal
generation)
oscillator
P > Crvetal PLL Interrupts
rysta
< > Y PLL
ProcO Proc1
<o e I
SIO DMA
' [
Peripherals
I SPI x2 | | Reset control |
— Bus Fabric
PWM Power on state
UART x2 machine
GPIO -
L N—{
< > [200] —1 I Timer | | Sysctrl | I I ! | ! !
| RIC | | sysinfo | Y
I 120 x2 | | Watchdog | PIO0|PIO1 Cache ROM| [SRAM SRAM| | |USB —>
ADC & TS [PIg SRAM (| HSRAM
I SRAMHYHSRAM
I —
Memory
< » QSPI
Core Supply Regulator =3

Code may be executed directly from external memory through a dedicated SPI, DSPI or QSPI interface. A small cache
improves performance for typical applications.

Debug is available via the SWD interface.

Internal SRAM can contain code or data. It is addressed as a single 264 kB region, but physically partitioned into 6
banks to allow simultaneous parallel access from different masters.

DMA bus masters are available to offload repetitive data transfer tasks from the processors.

GPIO pins can be driven directly, or from a variety of dedicated logic functions.

Dedicated hardware for fixed functions such as SPI, 12C, UART.

Flexible configurable PIO controllers can be used to provide a wide variety of |0 functions.

A USB controller with embedded PHY can be used to provide FS/LS Host or Device connectivity under software control.
Four ADC inputs which are shared with GPIO pins.

Two PLLs to provide a fixed 48MHz clock for USB or ADC, and a flexible system clock up to 133MHz.

An internal Voltage Regulator to supply the core voltage so the end product only needs supply the 10 voltage.

1.4. Pinout Reference

This section provides a quick reference for pinout and pin functions. Full details, including electrical specifications and
package drawings, can be found in Chapter 5.

1.4.1. Pin Locations

]
1.4. Pinout Reference 10

RP2040 Datasheet

Figure 3. RP2040

Pinout for QFN-56
7x7mm (reduced ePad
size) =
Zl - oS o a 3lzl8
21212121212 ala|Z|5]5(>
AL A A4 A all>alall - <|
=== = =] ella 1 || oo
alajafalafo|]a S|/ [S]
DDA |A|AD| N[>) 0l lnle|lel a
olo|e|oo|e|al=|23|2(3|=]|=]<<
56|55|54|53(52|51|50|49(48(47|46|45(44(43
10VDD | 1 O 42| I0VDD
GPIOO | 2 41| GP1029/ADC3
GPIO1 | 3 40(GP1028/ADC2
GPIO2 | 4 39(GP1027/ADC1
GPIO3 | 5 38| GP1026/ADCO
GPIO4 | 6 37| GP1025
GPIOS | 7 36| GP1024
GND
GPIO6 | 8 35| GP1023
GPIO7 | 9 34| GP1022
IovDD (10 33| IoVvDD
GPI08 (11 32| GPI021
GPIO9 (12 31| GP1020
GPIO10 |13 TOP VIEW. 30| GPI0O19
GPIO11 |14 29| GPIO18
15(16(17|18|19(20(21|22|23|24(25|26|27 |28

dieisivizl=z|Elala|x]o=] o/~
ARERRAHEEBERREEEIEE
oalala|f x|e|a|z|3 oo
o oo o|E 2 oo

1.4.2. Pin Descriptions

Table 1. The function
of each pin is briefly

dfsc”:be;’“e’e' Full | GPIOX General-purpose digital input and output. RP2040 can connect one of a number of internal
electrica

specifications can be peripherals to each GPIO, or control GPIOs directly from software.
found in Chapter 5.

Name Description

GPIOx/ADCy General-purpose digital input and output, with analogue-to-digital converter function. The RP2040
ADC has an analogue multiplexer which can select any one of these pins, and sample the voltage.

QSPIx Interface to a SPI, Dual-SPI or Quad-SPI flash device, with execute-in-place support. These pins can
also be used as software-controlled GPIOs, if they are not required for flash access.

USB_DM and USB controller, supporting Full Speed device and Full/Low Speed host. A 27Q series termination
USB_DP resistor is required on each pin, but bus pull-ups and pull-downs are provided internally.

XIN and XOUT Connect a crystal to RP2040’s crystal oscillator. XIN can also be used as a single-ended CMOS
clock input, with XOUT disconnected. The USB bootloader requires a 12MHz crystal or 12MHz
clock input. For recommended crystals, see Crystal Oscillator (Section 2.16).

RUN Global asynchronous reset pin. Reset when driven low, run when driven high. If no external reset is
required, this pin can be tied directly to IOVDD.

SWCLK and Access to the internal Serial Wire Debug multi-drop bus. Provides debug access to both

SWDIO processors, and can be used to download code.

TESTEN Factory test mode pin. Tie to GND.

GND Single external ground connection, bonded to a number of internal ground pads on the RP2040 die.
I0VDD Power supply for digital GPIOs, nominal voltage 1.8V to 3.3V

1.4. Pinout Reference 1

RP2040 Datasheet
]

Table 2. General
Purpose Input/Output
(GPIO) Bank 0
Functions

Name Description

USB_VDD Power supply for internal USB Full Speed PHY, nominal voltage 3.3V

ADC_AVDD Power supply for analogue-to-digital converter, nominal voltage 3.3V

VREG_VIN Power input for the internal core voltage regulator, nominal voltage 1.8V to 3.3V

VREG_VOUT Power output for the internal core voltage regulator, nominal voltage 1.1V, 1T00mA max current

DVDD Digital core power supply, nominal voltage 1.1V. Can be connected to VREG_VOUT, or to some
other board-level power supply.

1.4.3. GPIO Functions

Each individual GPIO pin can be connected to an internal peripheral via the GPIO functions defined below. Some internal
peripheral connections appear in multiple places to allow some system level flexibility. SIO, PIO0 and PIO1 can connect
to all GPIO pins and are controlled by software (or software controlled state machines) so can be used to implement
many functions.

Function
GPIO |F1 F2 F3 F4 F5 |F6 F7 F8 F9
0 SPI0 RX UARTO TX 12CO SDA |[PWMOA |SIO |PIOO |PIO1 USB OVCUR DET
1 SPI0O CSn | UARTO RX 12CO0SCL |PWMOB |SIO [PIOO |[PIO1 USB VBUS DET
2 SPI0O SCK | UARTOCTS |[12C1SDA |PWM1A |SIO |PIOO |PIO1 USB VBUS EN
3 SPIO TX UARTORTS [I2C1SCL |PWM1B |[SIO |PIOO |PIO1 USB OVCUR DET
4 SPIO RX UART1 TX 12CO0 SDA |PWM2A |SIO |PIOO |PIO1 USB VBUS DET
5 SPI0O CSn | UART1 RX 12C0SCL |PWM2B |SIO |[PIOO |PIO1 USB VBUS EN
6 SPI0O SCK | UART1 CTS |[12C1SDA |PWM3 A |SIO |PIOO |PIO1 USB OVCUR DET
7 SPIO TX UART1RTS [I2C1SCL |PWM3B |[SIO |PIOO |PIO1 USB VBUS DET
8 SPIT RX UART1 TX 12CO SDA |PWM4 A |SIO |PIOO |PIO1 USB VBUS EN
9 SPIT CSn | UART1 RX 12CO0SCL |PWM4B |SIO [PIOO |PIO1 USB OVCUR DET
10 SPI1 SCK | UART1 CTS |I2C1 SDA |PWM5SA |[SIO |PIOO |PIO1 USB VBUS DET
11 SPIT TX UART1RTS [I2C1SCL |PWM5B |[SIO |PIOO |PIO1 USB VBUS EN
12 SPIT RX UARTO TX 12COSDA |PWM6 A |SIO |PIO0 |PIO1 USB OVCUR DET
13 SPIT CSn | UARTO RX 12CO0SCL |PWM6B |SIO [PIOO |[PIO1 USB VBUS DET
14 SPI1 SCK | UARTO CTS |12C1 SDA |PWM7 A [SIO |PIOO |PIO1 USB VBUS EN
15 SPIT TX UARTORTS [I2C1SCL |PWM7B |[SIO |PIOO |PIO1 USB OVCUR DET
16 SPI0 RX UARTO TX 12CO SDA |PWMOA |SIO |PIOO |PIO1 USB VBUS DET
17 SPI0O CSn | UARTO RX 12C0SCL |PWMOB |SIO [PIOO |[PIO1 USB VBUS EN
18 SPI0O SCK | UARTO CTS |12C1 SDA |PWM1A ([SIO |PIOO |PIO1 USB OVCUR DET
19 SPIO TX UARTORTS [I2C1SCL |PWM1B |[SIO |PIOO |PIO1 USB VBUS DET
20 SPI0 RX UART1 TX 12CO SDA |PWM2A |[SIO [PIO0 |PIOT |CLOCK GPINO USB VBUS EN
21 SPI0O CSn | UART1 RX 12C0SCL |PWM2B |[SIO |[PIO0 |PIOT |CLOCKGPOUTO |USBOVCURDET

1.4. Pinout Reference 12

RP2040 Datasheet

Function
22 SPI0O SCK |UART1CTS |[I2C1 SDA |PWM3 A |SIO |PIOO |PIOT |CLOCK GPINT USB VBUS DET
23 SPIO TX UART1RTS [I2C1SCL |PWM3B |SIO |PIOO |PIOT |CLOCKGPOUT1 |USB VBUSEN
24 SPIT RX UART1 TX I2CO SDA |PWM4 A |SIO |PIOO |PIOT |CLOCKGPOUT2 |USBOVCURDET
25 SPIT CSn | UART1 RX [2CO0SCL |PWM4B |SIO |PIOO |PIOT |CLOCKGPOUT3 |USBVBUSDET
26 SPIT SCK |UART1CTS |[I2C1SDA |PWM5A |SIO |PIOO |PIO1 USB VBUS EN
27 SPI1 TX UART1RTS |[I2C1SCL |PWM5B |[SIO |PIOO |PIO1 USB OVCUR DET
28 SPI1 RX UARTO TX I2CO SDA |PWM6 A |SIO |PIOO |PIO1 USB VBUS DET
29 SPIT CSn | UARTO RX [2CO0SCL |PWM6B |[SIO |PIOO |PIO1 USB VBUS EN
Table 3. GPIO bank 0 Function Name Description

function descriptions

SPIx Connect one of the internal PL022 SPI peripherals to GPIO

UARTX Connect one of the internal PLO11 UART peripherals to GPIO

12Cx Connect one of the internal DW 12C peripherals to GPIO

PWMx A/B Connect a PWM slice to GPIO. There are eight PWM slices, each with two output
channels (A/B). The B pin can also be used as an input, for frequency and duty cycle
measurement.

[e] Software control of GPIO, from the single-cycle 10 (SIO) block. The SIO function (F5)
must be selected for the processors to drive a GPIO, but the input is always connected,
so software can check the state of GPIOs at any time.

PIOx Connect one of the programmable 10 blocks (P10) to GPIO. PIO can implement a wide
variety of interfaces, and has its own internal pin mapping hardware, allowing flexible
placement of digital interfaces on bank 0 GPIOs. The PIO function (F6, F7) must be
selected for PIO to drive a GPIO, but the input is always connected, so the PIOs can
always see the state of all pins.

CLOCK GPINx General purpose clock inputs. Can be routed to a number of internal clock domains on
RP2040, e.g. to provide a THz clock for the RTC, or can be connected to an internal
frequency counter.

CLOCK GPOUTx General purpose clock outputs. Can drive a number of internal clocks (including PLL
outputs) onto GPIOs, with optional integer divide.

USB OVCUR DET/VBUS USB power control signals to/from the internal USB controller

DET/VBUS EN

1.4. Pinout Reference

13

RP2040 Datasheet

Chapter 2. System Description

This chapter describes the RP2040 key system features including processor, memory, how blocks are connected,
clocks, resets, power, and 10. Refer to Figure 2 for an overview diagram.

2.1. Bus Fabric

The RP2040 bus fabric routes addresses and data across the chip.

Figure 4 shows the high-level structure of the bus fabric. The main AHB-Lite crossbar routes addresses and data
between its 4 upstream ports and 10 downstream ports: up to four bus transfers can take place each cycle. All data
paths are 32 bits wide. Memory devices have dedicated ports on the main crossbar, to satisfy their high bandwidth
requirements. High-bandwidth AHB-Lite peripherals have a shared port on the crossbar, and an APB bridge provides bus
access to system control registers and lower-bandwidth peripherals.

Figure 4. RP2040 bus

Control
fabric overview. r
Cortex-M0+ Cortex-MO+ System DMA
Core 0 Core 1 1-Write 1-Read

| | -

AHB-Lite Crossbar 4:10

AHB-Lite Splitter

SN D R A

ROM SRAMO SRAM1 SRAM2 SRAM3 SRAM4 SRAMS APB Flash PI0O PIOT USB
16 kB 64 kB 64 kB 64 kB 64 kB 4kB 4kB Bridge XIP
APB Splitter
Watch- Other peripherals
UARTO UART1 SPIO SPI 12C0 12C1 ADC PWM Timer 4o RTC and system
9 control registers

The bus fabric connects 4 AHB-Lite masters, i.e. devices which generate addresses:
® Processor core 0
® Processor core 1
® DMA controller Read port
® DMA controller Write port
These are routed through to 10 downstream ports on the main crossbar:
* ROM
® Flash XIP
® SRAM 0 to 5 (one port each)
® Fast AHB-Lite peripherals: PIO0, PIO1, USB, DMA control registers, XIP aux (one shared port)
® Bridge to all APB peripherals, and system control registers
The four bus masters can access any four different crossbar ports simultaneously, the bus fabric does not add wait

]
2.1. Bus Fabric 14

RP2040 Datasheet
]

states to any AHB-Lite slave access. So at a system clock of 125MHz the maximum sustained bus bandwidth is
2.0GBps. The system address map has been arranged to make this parallel bandwidth available to as many software
use cases as possible — for example, the striped SRAM alias (Section 2.6.2) scatters main memory accesses across
four crossbar ports (SRAMO...3), so that more memory accesses can proceed in parallel.

2.1.1. AHB-Lite Crossbar

At the centre of the RP2040 bus fabric is a 4:10 fully-connected crossbar. Its 4 upstream ports are connected to the 4
system bus masters, and the 10 downstream ports connect to the highest-bandwidth AHB-Lite slaves (namely the
memory interfaces) and to lower layers of the fabric. Figure 5 shows the structure of a 2:3 AHB-Lite crossbar, arranged
identically to the 4:10 crossbar on RP2040, but easier to show in the diagram.

Figure 5. A 2:3 AHB-

) Upstream Upstream
Lite crosshar. Each Port 0 Port 1
upstream port
connects to a splitter, 1 t

which routes bus Splitter Splitter
requests toward one : :

1:3 1:3
of the 3 downstream
ports, and routes
responses back. Each
downstream port
21

connects to an arbiter,

. Arbiter Arbiter Arbiter
which safely manages 29 21
concurrent access to
the port. i i i

Downstream Downstream Downstream
Port 0 Port 1 Port 2

The crossbar is built from two components:

® Splitters
o Perform coarse address decode
o Route requests (addresses, write data) to the downstream port indicated by the initial address decode
o Route responses (read data, bus errors) from the correct arbiter back to the upstream port

® Arbiters
o Manage concurrent requests to a downstream port
o Route responses (read data, bus errors) to the correct splitter
o Implement bus priority rules

The main crossbar on RP2040 consists of 4 1:10 splitters and 10 4:1 arbiters, with a mesh of 40 AHB-Lite bus channels
between them. Note that, as AHB-Lite is a pipelined bus, the splitter may be routing back a response to an earlier
request from downstream port A, whilst a new request to downstream port B is already in progress. This does not incur
any cycle penalty.

2.1.1.1. Bus Priority

The arbiters in the main AHB-Lite crossbar implement a two-level bus priority scheme. Priority levels are configured per-
master, using the BUS_PRIORITY register in the BUSCTRL register block.

When there are multiple simultaneous accesses to same arbiter, any requests from high-priority masters (priority level
1) will be considered before any requests from low-priority masters (priority 0). If multiple masters of the same priority
level attempt to access the same slave simultaneously, a round-robin tie break is applied, i.e. the arbiter grants access
to each master in turn.

]
2.1. Bus Fabric 15

RP2040 Datasheet

© NOTE

Priority arbitration only applies to multiple masters attempting to access the same slave on the same cycle.
Accesses to different slaves, e.g. different SRAM banks, can proceed simultaneously.

When accessing a slave with zero wait states, such as SRAM (i.e. can be accessed once per system clock cycle), high-
priority masters will never observe any slowdown or other timing effects caused by accesses from low-priority masters.
This allows guaranteed latency and throughput for hard real time use cases; it does however mean a low-priority master
may get stalled until there is a free cycle.

2.1.1.2. Bus Performance Counters

The performance counters automatically count accesses to the main AHB-Lite crossbar arbiters. This can assist in
diagnosing performance issues, in high-traffic use cases.

There are four performance counters. Each is a 24-bit saturating counter. Counter values can be read from
BUSCTRL_PERFCTRx, and cleared by writing any value to BUSCTRL_PERFCTRx. Each counter can count one of the 20 available
events at a time, as selected by BUSCTRL_PERFSELx. The available bus events are:

PERFSEL | Event Description

X

0 APB access, Completion of an access to the APB arbiter (which is upstream of all APB
contested peripherals), which was previously delayed due to an access by another master.

1 APB access Completion of an access to the APB arbiter

2 FASTPERI access, Completion of an access to the FASTPERI arbiter (which is upstream of PIOs, DMA
contested config port, USB, XIP aux FIFO port), which was previously delayed due to an access

by another master.

3 FASTPERI access Completion of an access to the FASTPERI arbiter

4 SRAMS access, Completion of an access to the SRAMS5 arbiter, which was previously delayed due to
contested an access by another master.

5 SRAMS access Completion of an access to the SRAMS5 arbiter

6 SRAM4 access, Completion of an access to the SRAM4 arbiter, which was previously delayed due to
contested an access by another master.

7 SRAM4 access Completion of an access to the SRAM4 arbiter

8 SRAM3 access, Completion of an access to the SRAM3 arbiter, which was previously delayed due to
contested an access by another master.

9 SRAM3 access Completion of an access to the SRAM3 arbiter

10 SRAM2 access, Completion of an access to the SRAM2 arbiter, which was previously delayed due to
contested an access by another master.

11 SRAM2 access Completion of an access to the SRAM?2 arbiter

12 SRAM1 access, Completion of an access to the SRAM1 arbiter, which was previously delayed due to
contested an access by another master.

13 SRAM1 access Completion of an access to the SRAM1 arbiter

14 SRAMO access, Completion of an access to the SRAMO arbiter, which was previously delayed due to
contested an access by another master.

15 SRAMO access Completion of an access to the SRAMO arbiter

2.1. Bus Fabric

16

RP2040 Datasheet
]

PERFSEL | Event Description

X

16 XIP_MAIN access, Completion of an access to the XIP_MAIN arbiter, which was previously delayed due
contested to an access by another master.

17 XIP_MAIN access Completion of an access to the XIP_MAIN arbiter

18 ROM access, Completion of an access to the ROM arbiter, which was previously delayed due to an
contested access by another master.

19 ROM access Completion of an access to the ROM arbiter

2.1.2. Atomic Register Access
Each peripheral register block is allocated 4kB of address space, with registers accessed using one of 4 methods,
selected by address decode.

® Addr + 0x0000 : normal read write access

® Addr + 0x1000 : atomic XOR on write

® Addr + 0x2000 : atomic bitmask set on write

® Addr + 0x3000 : atomic bitmask clear on write

This allows individual fields of a control register to be modified without performing a read-modify-write sequence in
software: instead the changes are posted to the peripheral, and performed in-situ. Without this capability, it is difficult to
safely access |0 registers when an interrupt service routine is concurrent with code running in the foreground, or when
the two processors are running code in parallel.

The four atomic access aliases occupy a total of 16kB. Most peripherals on RP2040 provide this functionality natively,
and atomic writes have the same timing as normal read/write access. Some peripherals (12C, UART, SPI and SSI)
instead have this functionality added using a bus interposer, which translates upstream atomic writes into downstream
read-modify-write sequences, at the boundary of the peripheral. This extends the access time by two system clock
cycles.

The SIO (Section 2.3.1), a single-cycle 10 block attached directly to the cores' 10 ports, does not support atomic
accesses at the bus level, although some individual registers (e.g. GPI0) have set/clear/xor aliases.

2.1.3. APB Bridge
The APB bridge interfaces the high-speed main AHB-Lite interconnect to the lower-bandwidth peripherals. Whilst the
AHB-Lite fabric offers zero-wait-state access everywhere, APB accesses have a cycle penalty:

® APB bus accesses take two cycles minimum (setup phase and access phase)

* The bridge adds an additional cycle to read accesses, as the bus request and response are registered

® The bridge adds two additional cycles to write accesses, as the APB setup phase can not begin until the AHB-Lite
write data is valid

As a result, the throughput of the APB portion of the bus fabric is somewhat lower than the AHB-Lite portion. However,
there is more than sufficient bandwidth to saturate the APB serial peripherals.

2.1.4. Narrow IO Register Writes

Memory-mapped 10 registers on RP2040 ignore the width of bus read/write accesses. They treat all writes as though
they were 32 bits in size. This means software can not use byte or halfword writes to modify part of an |0 register: any
write to an address where the 30 address MSBs match the register address will affect the contents of the entire

2.1. Bus Fabric 17

RP2040 Datasheet
]

register.

To update part of an 10 register, without a read-modify-write sequence, the best solution on RP2040 is atomic
set/clear/XOR (see Section 2.1.2). Note that this is more flexible than byte or halfword writes, as any combination of
fields can be updated in one operation.

Upon a 8-bit or 16-bit write (such as a strb instruction on the Cortex-M0+), an 10 register will sample the entire 32-bit

write databus. The Cortex-M0+ and DMA on RP2040 will always replicate narrow data across the bus:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/system/narrow_io_write/narrow_io_write.c Lines 19 - 62

19 int main() {

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 }

stdio_init_all();

// We'll use WATCHDOG_SCRATCHO as a convenient 32 bit read/write register
// that we can assign arbitrary values to

io_rw_32 *scratch32 = &watchdog_hw->scratch[0];

// Alias the scratch register as two halfwords at offsets +0x0 and +0x2
volatile uint16_t *scratch16 = (volatile uint16_t *) scratch32;

// Alias the scratch register as four bytes at offsets +0x0, +0x1, +0x2, +0x3:

volatile uint8_t *scratch8 = (volatile uint8_t *) scratch32;

// Show that we can read/write the scratch register as normal:
printf("Writing 32 bit value\n");

*scratch32 = @xdeadbeef;

printf("Should be @xdeadbeef: Bx%08x\n", *scratch32);

// We can do narrow reads just fine -- IO registers treat this as a 32 bit
// read, and the processor/DMA will pick out the correct byte lanes based
// on transfer size and address LSBs

printf("\nReading back 1 byte at a time\n");

// Little-endian!

printf("Should be ef be ad de: %82x ", scratch8[@]);

printf("%02x ", scratch8[1]);

printf("%02x ", scratch8[2]);

printf("%02x\n", scratch8[3]);

// Byte writes are replicated four times across the 32-bit bus, and IO
// registers usually sample the entire write bus.

printf("\nWriting 8 bit value @xa5 at offset 0\n");

scratch8[@] = 0xa5;

// Read back the whole scratch register in one go

printf("Should be Bxa5a5a5a5: 8x%08x\n", *scratch32);

// The IO register ignores the address LSBs [1:0] as well as the transfer
// size, so it doesn't matter what byte offset we use

printf("\nWriting 8 bit value at offset 1\n");

scratch8[1] = 0x3c;

printf("Should be 8x3c3c3c3c: Bx%08x\n", *scratch32);

// Halfword writes are also replicated across the write data bus
printf("\nWriting 16 bit value at offset @\n");

scratch16[0] = oxfeed;

printf("Should be 6xf@edfeed: 6x%08x\n", *scratch32);

2.1.5. List of Registers

The Bus Fabric registers start at a base address of 0x40030000 (defined as BUSCTRL_BASE in SDK).

2.1. Bus Fabric

18

https://github.com/raspberrypi/pico-examples/blob/master/system/narrow_io_write/narrow_io_write.c#L19-L62

RP2040 Datasheet

;ZIZZ:I‘?LLZ;‘ZMS Offset Name Info
0x00 BUS_PRIORITY Set the priority of each master for bus arbitration.
0x04 BUS_PRIORITY_ACK Bus priority acknowledge
0x08 PERFCTRO Bus fabric performance counter 0
0x0c PERFSELO Bus fabric performance event select for PERFCTRO
0x10 PERFCTR1 Bus fabric performance counter 1
0x14 PERFSEL1 Bus fabric performance event select for PERFCTR1
0x18 PERFCTR2 Bus fabric performance counter 2
Ox1c PERFSEL2 Bus fabric performance event select for PERFCTR2
0x20 PERFCTR3 Bus fabric performance counter 3
0x24 PERFSEL3 Bus fabric performance event select for PERFCTR3
BUSCTRL: BUS_PRIORITY Register
Offset: 0x00
Description
Set the priority of each master for bus arbitration.
;Z?PilORITY Bits Description Type Reset
Register 31:13 | Reserved. - -
12 DMA_W: 0 - low priority, 1 - high priority RW 0x0
11:9 Reserved. = =
8 DMA_R: 0 - low priority, 1 - high priority RW 0x0
7:5 Reserved. = =
4 PROC1: 0 - low priority, 1 - high priority RW 0x0
3:1 Reserved. = =
0 PROCO: 0 - low priority, 1 - high priority RW 0x0
BUSCTRL: BUS_PRIORITY_ACK Register
Offset: 0x04
Description
Bus priority acknowledge
;ZL;I_‘EP;ORITUCK Bits Description Type Reset
Register 31:1 Reserved. - -
0 Goes to 1 once all arbiters have registered the new global priority levels. RO 0x0

Arbiters update their local priority when servicing a new nonsequential access.
In normal circumstances this will happen almost immediately.

BUSCTRL: PERFCTRO Register

Offset: 0x08

2.1. Bus Fabric

19

RP2040 Datasheet
]

Table 7. PERFCTRO
Register

Table 8. PERFSELO
Register

Description

Bus fabric performance counter 0

accesses, on a downstream port of the main crossbar.

Bits Description Type Reset
31:24 Reserved. = =
23:.0 Busfabric saturating performance counter 0 WC 0x000000
Count some event signal from the busfabric arbiters.
Write any value to clear. Select an event to count using PERFSELO
BUSCTRL: PERFSELO Register
Offset: 0x0c
Description
Bus fabric performance event select for PERFCTRO
Bits Description Type Reset
BIlES) Reserved. = =
4:0 Select an event for PERFCTRO. Count either contested accesses, or all RW 0x1f

Enumerated values:

0x00 — APB_CONTESTED

0x01 — APB

0x02 — FASTPERI_CONTESTED

0x03 — FASTPERI

0x04 — SRAM5_CONTESTED

0x05 — SRAMS

0x06 — SRAM4_CONTESTED

0x07 — SRAM4

0x08 — SRAM3_CONTESTED

0x09 — SRAM3

0x0a — SRAM2_CONTESTED

0x0b — SRAM2

0x0c — SRAM1_CONTESTED

0x0d — SRAM1

0x0e — SRAMO_CONTESTED

0x0f — SRAMO

0x10 — XIP_MAIN_CONTESTED

0x11 — XIP_MAIN

0x12 — ROM_CONTESTED

0x13 — ROM

BUSCTRL: PERFCTR1 Register

2.1. Bus Fabric

20

RP2040 Datasheet

Offset: 0x10

Description

Bus fabric performance counter 1

Table 9. PERFCTR1

) Bits Description Type Reset
Register
31:24 Reserved. = =
23:0 Busfabric saturating performance counter 1 WC 0x000000
Count some event signal from the busfabric arbiters.
Write any value to clear. Select an event to count using PERFSEL1
BUSCTRL: PERFSEL1 Register
Offset: 0x14
Description
Bus fabric performance event select for PERFCTR1
Tab{e 10. PERFSELT Bits Description Type Reset
Register
BilES! Reserved. - -
4:0 Select an event for PERFCTR1. Count either contested accesses, or all RW 0ox1f

accesses, on a downstream port of the main crossbar.

Enumerated values:

0x00 — APB_CONTESTED

0x01 — APB

0x02 — FASTPERI_CONTESTED

0x03 — FASTPERI

0x04 — SRAMS5_CONTESTED

0x05 — SRAM5

0x06 — SRAM4_CONTESTED

0x07 — SRAM4

0x08 — SRAM3_CONTESTED

0x09 — SRAM3

0x0a — SRAM2_CONTESTED

0x0b — SRAM2

0x0c — SRAM1_CONTESTED

0x0d — SRAM1

0x0e — SRAMO_CONTESTED

0x0f — SRAMO

0x10 — XIP_MAIN_CONTESTED

0x11 — XIP_MAIN

0x12 — ROM_CONTESTED

0x13 — ROM

2.1. Bus Fabric

21

RP2040 Datasheet

BUSCTRL: PERFCTR2 Register
Offset: 0x18

Description

Bus fabric performance counter 2

Tab{e 11. PERFCTR2 Bits Description Type Reset
Register
31:24 Reserved. - -
23:0 Busfabric saturating performance counter 2 WC 0x000000
Count some event signal from the busfabric arbiters.
Write any value to clear. Select an event to count using PERFSEL2
BUSCTRL: PERFSEL2 Register
Offset: Ox1c
Description
Bus fabric performance event select for PERFCTR2
Tab{e 12 PERFSEL2 Bits Description Type Reset
Register
31:5 Reserved. - -
4:0 Select an event for PERFCTR2. Count either contested accesses, or all RW 0x1f

accesses, on a downstream port of the main crossbar.

Enumerated values:

0x00 — APB_CONTESTED

0x01 — APB

0x02 — FASTPERI_CONTESTED

0x03 — FASTPERI

0x04 — SRAM5_CONTESTED

0x05 — SRAMS

0x06 — SRAM4_CONTESTED

0x07 — SRAM4

0x08 — SRAM3_CONTESTED

0x09 — SRAM3

0x0a — SRAM2_CONTESTED

0x0b — SRAM2

0x0c — SRAM1_CONTESTED

0x0d — SRAM1

0x0e — SRAMO_CONTESTED

0x0f — SRAMO

0x10 — XIP_MAIN_CONTESTED

0x11 — XIP_MAIN

0x12 — ROM_CONTESTED

2.1. Bus Fabric

22

RP2040 Datasheet
]

Table 13. PERFCTR3
Register

Table 14. PERFSEL3
Register

accesses, on a downstream port of the main crossbar.

Bits Description Type Reset
0x13 — ROM
BUSCTRL: PERFCTR3 Register
Offset: 0x20
Description
Bus fabric performance counter 3
Bits Description Type Reset
31:24 Reserved. = =
23:0 Busfabric saturating performance counter 3 WC 0x000000
Count some event signal from the busfabric arbiters.
Write any value to clear. Select an event to count using PERFSEL3
BUSCTRL: PERFSEL3 Register
Offset: 0x24
Description
Bus fabric performance event select for PERFCTR3
Bits Description Type Reset
BjlES) Reserved. = =
4:0 Select an event for PERFCTR3. Count either contested accesses, or all RW ox1f

Enumerated values:

0x00 — APB_CONTESTED

0x01 — APB

0x02 — FASTPERI_CONTESTED

0x03 — FASTPERI

0x04 — SRAM5_CONTESTED

0x05 — SRAM5

0x06 — SRAM4_CONTESTED

0x07 — SRAM4

0x08 — SRAM3_CONTESTED

0x09 — SRAM3

0x0a — SRAM2_CONTESTED

0x0b — SRAM2

0x0c — SRAM1_CONTESTED

0x0d — SRAM1

0x0e — SRAMO_CONTESTED

0x0f — SRAMO

0x10 — XIP_MAIN_CONTESTED

2.1. Bus Fabric

23

RP2040 Datasheet
]

Bits Description Type Reset

0x11 — XIP_MAIN

0x12 — ROM_CONTESTED

0x13 — ROM

2.2. Address Map

The address map for the device is split in to sections as shown in Table 15. Details are shown in the following sections.
Unmapped address ranges raise a bus error when accessed.

2.2.1. Summary

Table 15. Address ROM 0x00000000

Map Summary
XIP 0x10000000
SRAM 0x20000000
APB Peripherals 0x40000000
AHB-Lite Peripherals 0x50000000
IOPORT Registers 0xd0000000
Cortex-MO+ internal registers 0xe0000000

2.2.2. Detail

ROM:
ROM_BASE 0x00000000
XIP:
XIP_BASE 0x10000000
XIP_NOALLOC_BASE 0x11000000
XIP_NOCACHE_BASE 0x12000000
XIP_NOCACHE_NOALLOC_BASE 0x13000000
XIP_CTRL_BASE 0x14000000
XIP_SRAM_BASE 0x15000000
XIP_SRAM_END 0x15004000
XIP_SSI_BASE 0x18000000

SRAM. SRAMO-3 striped:

SRAM_BASE 0x20000000

SRAM_STRIPED_BASE 0x20000000

]
2.2. Address Map 24

RP2040 Datasheet
|

SRAM_STRIPED_END 0x20040000

SRAM 4-5 are always non-striped:

SRAM4_BASE 0x20040000
SRAMS5_BASE 0x20041000
SRAM_END 0x20042000

Non-striped aliases of SRAMO-3:

SRAMO_BASE 0x21000000
SRAM1_BASE 0x21010000
SRAM2_BASE 0x21020000
SRAM3_BASE 0x21030000
APB Peripherals:
SYSINFO_BASE 0x40000000
SYSCFG_BASE 0x40004000
CLOCKS_BASE 0x40008000
RESETS_BASE 0x4000c000
PSM_BASE 0x40010000
I0_BANKO_BASE 0x40014000
I0_QSPI_BASE 0x40018000
PADS_BANKO_BASE 0x4001c000
PADS_QSPI_BASE 0x40020000
XOSC_BASE 0x40024000
PLL_SYS_BASE 0x40028000
PLL_USB_BASE 0x4002c000
BUSCTRL_BASE 0x40030000
UARTO_BASE 0x40034000
UART1_BASE 0x40038000
SPI0_BASE 0x4003c000
SPIT1_BASE 0x40040000
12CO_BASE 0x40044000
12C1_BASE 0x40048000
ADC_BASE 0x4004c000
PWM_BASE 0x40050000
TIMER_BASE 0x40054000
WATCHDOG_BASE 0x40058000
RTC_BASE 0x4005c000

]
2.2. Address Map 25

RP2040 Datasheet
]

ROSC_BASE 0x40060000
VREG_AND_CHIP_RESET_BASE 0x40064000
TBMAN_BASE 0x4006c000

AHB-Lite peripherals:

DMA_BASE 0x50000000

USB has a DPRAM at its base followed by registers:

USBCTRL_BASE 0x50100000
USBCTRL_DPRAM_BASE 0x50100000
USBCTRL_REGS_BASE 0x50110000

Remaining AHB-Lite peripherals:

PIO0_BASE 0x50200000
PIO1_BASE 0x50300000
XIP_AUX_BASE 0x50400000
IOPORT Peripherals:

SIO_BASE 0xd0000000

Cortex-MO+ Internal Peripherals:

PPB_BASE 0xe0000000

2.3. Processor subsystem

The RP2040 processor subsystem consists of two Arm Cortex-M0+ processors — each with its standard internal Arm
CPU peripherals — alongside external peripherals for GPIO access and inter-core communication. Details of the Arm
Cortex-MO+ processors, including the specific feature configuration used on RP2040, can be found in Section 2.4.

|
2.3. Processor subsystem 26

RP2040 Datasheet
]

Figure 6. Two Cortex-
MO+ processors, each
with a dedicated 32-bit
AHB-Lite bus port, for
code fetch, loads and
stores. The SIO is
connected to the
single-cycle IOPORT
bus of each processor,
and provides GPIO
access, two-way
communications, and
other core-local
peripherals. Both
processors can be
debugged via a single
multi-drop Serial Wire
Debug bus. 26
interrupts (plus NMI)
are routed to the NVIC
and WIC on each
processor.

From peripherals From external debugger

Interrupts Serial Wire Debug

Y + Y +

NVIC | DAP NVIC | DAP
Core 0 Core 1
Events
Cortex-M0+ Cortex-MO+

Bus Interface Bus Interface

<€— IOPORT <— IOPORT —»

GPIO x36

AHB-Lite

AHB-Lite

To bus fabric To GPIO Muxing To bus fabric

O NoOTE

The terms core0 and core, proc0 and proc1 are used interchangeably in RP2040’s registers and documentation to
refer to processor 0, and processor 1 respectively.

The processors use a number of interfaces to communicate with the rest of the system:

® Each processor uses its own independent 32-bit AHB-Lite bus to access memory and memory-mapped peripherals
(more detail in Section 2.1)

® The single-cycle 10 block provides high-speed, deterministic access to GPIOs via each processor's IOPORT
® 26 system-level interrupts are routed to both processors

® A multi-drop Serial Wire Debug bus provides debug access to both processors from an external debug host

2.3.1.SI0

The Single-cycle 10 block (SIO) contains several peripherals that require low-latency, deterministic access from the
processors. It is accessed via each processor's IOPORT: this is an auxiliary bus port on the Cortex-M0+ which can
perform rapid 32-bit reads and writes. The SIO has a dedicated bus interface for each processor’'s IOPORT, as shown in
Figure 7. Processors access their IOPORT with normal load and store instructions, directed to the special IOPORT
address segment, 0xd0000000---0xdfffffff. The SIO appears as memory-mapped hardware within the IOPORT space.

O NOTE

The SIO is not connected to the main system bus due to its tight timing requirements. It can only be accessed by the
processors, or by the debugger via the processor debug ports.

2.3. Processor subsystem

27

RP2040 Datasheet
]

Figure 7. The single-
cycle 10 block
contains memory-
mapped hardware
which the processors
must be able to
access quickly. The
FIFOs and spinlocks
support message
passing and
synchronisation
between the two
cores. The shared
GPIO registers provide
fast and concurrency-
safe direct access to
GPIO-capable pins.
Some core-local
arithmetic hardware
can be used to
accelerate common
tasks on the
processors.

Core 0 Core 1
Single-cycle 10
—— IOPORT IOPORT ——
< CPUID 0 CPUID 1 >
> FIFOOto 1 >
< FIFO1to 0 <
Bus . Bus
<> Hardware Spinlock x32 <>
Interface Interface
<> Integer Divider Integer Divider <€
<—>»| Interpolator 0 Interpolator 0 <€
<—>» |Interpolator 1 Interpolator 1 <€
y y
A A
GPIO Registers Shared, atomic
set/clear/xor
GPIO x36
To GPIO Muxing

All IOPORT reads and writes (and therefore all SIO accesses) take place in exactly one cycle, unlike the main AHB-Lite
system bus, where the Cortex-M0+ requires two cycles for a load or store, and may have to wait longer due to
contention from other system bus masters. This is vital for interfaces such as GPIO, which have tight timing
requirements.

SIO registers are mapped to word-aligned addresses in the range 0xd0000000---0xd000017c. The remainder of the IOPORT
space is reserved for future use.

The SIO peripherals are described in more detail in the following sections.

2.3.1.1. CPUID

The register CPUID is the first register in the IOPORT space. Core 0 reads a value of 0 when accessing this address, and
core 1 reads a value of 1. This is a convenient method for software to determine on which core it is running. This is
checked during the initial boot sequence: both cores start running simultaneously, core 1 goes into a deep sleep state,
and core 0 continues with the main boot sequence.

© IMPORTANT

CPUID should not be confused with the Cortex-M0+ CPUID register (Section 2.4.4.1.1) on each processor’s internal
Private Peripheral Bus, which lists the processor’s part number and version.

2.3.1.2. GPIO Control

The processors have access to GPIO registers for fast and direct control of pins with GPIO functionality. There are two
identical sets of registers:

2.3. Processor subsystem

28

RP2040 Datasheet

® GP10_x for direct control of 10 bank 0 (user GPIOs 0 to 29, starting at the LSB)

® GPIO_HI x for direct control of the QSPI 10 bank (in the order SCLK, SSn, SDO, SD1, SD2, SD3, starting at the LSB)

© NoTE

To drive a pin with the SIO’s GPIO registers, the GPIO multiplexer for this pin must first be configured to select the
SIO GPIO function. See Table 279.

These GPIO registers are shared between the two cores, and both cores can access them simultaneously. There are
three registers for each bank:

® Qutput registers, GPIO_OUT and GPIO_HI_OUT, are used to set the output level of the GPIO (1/0 for high/low)

® Qutput enable registers, GPIO_OE and GPIO_HI_OE, are used to enable the output driver. 0 for high-impedance, 1
for drive high/low based on GPIO_OUT and GPIO_HI_OUT.

® |nput registers, GPIO_IN and GPIO_HI_IN, allow the processor to sample the current state of the GPIOs

Reading GPIO_IN returns all 30 GPIO values (or 6 for GPIO_HI_IN) in a single read. Software can then mask out
individual pins it is interested in.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 859 - 869

859 static inline bool gpio_get(uint gpio) {
860 #ifdef NUM_BANKO_GPIOS <= 32

861 return sio_hw->gpio_in & (1u << gpio);

862 #else

863 if (gpio < 32) {

864 return sio_hw->gpio_in & (1u << gpio);

865 } else {

866 return sio_hw->gpio_hi_in & (1u << (gpio - 32));
867 }

868 #endif

869 }

The 0UT and OF registers also have atomic SET, CLR, and XOR aliases, which allows software to update a subset of the
pins in one operation. This is vital not only for safe parallel GPIO access between the two cores, but also safe
concurrent GPIO access in an interrupt handler and foreground code running on one core.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 908 - 914

908 static inline void gpio_set_mask(uint32_t mask) {
909 #ifdef PICO_USE_GPIO_COPROCESSOR

910 gpioc_lo_out_set(mask) ;
911 #else

912 sio_hw->gpio_set = mask;
913 #endif

914 }

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 955 - 961

955 static inline void gpio_clr_mask(uint32_t mask) {
956 #ifdef PICO_USE_GPIO_COPROCESSOR

957 gpioc_lo_out_clr(mask);
958 #else

959 sio_hw->gpio_clr = mask;
960 #endif

961 }

|
2.3. Processor subsystem 29

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L859-L869
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L908-L914
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L955-L961

RP2040 Datasheet
]

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 1145 - 1170

1145 static inline void gpio_put(uint gpio, bool value) {
1146 #ifdef PICO_USE_GPIO_COPROCESSOR

1147 gpioc_bit_out_put(gpio, value);
1148 #elif NUM_BANKO_GPIOS <= 32

1149 uint32_t mask = 1ul << gpio;

1150 if (value)

1151 gpio_set_mask(mask) ;

1152 else

1153 gpio_clr_mask(mask) ;

1154 #else

1155 uint32_t mask = Tul << (gpio & @x1fu);
1156 if (gpio < 32) {

1157 if (value) {

1158 sio_hw->gpio_set = mask;
1159 } else {

1160 sio_hw->gpio_clr = mask;
1161 }

1162 } else {

1163 if (value) {

1164 sio_hw->gpio_hi_set = mask;
1165 } else {

1166 sio_hw->gpio_hi_clr = mask;
1167 }

1168 }

1169 #endif

1170 }

If both processors write to an 0UT or OE register (or any of its SET/CLR/XOR aliases) on the same clock cycle, the result is
as though core 0 wrote first, and core 1 wrote immediately afterward. For example, if core 0 SETs a bit, and core 1
simultaneously XORs it, the bit will be set to 0, irrespective of it original value.

O NoTE

This is a conceptual model for the result that is produced when two cores write to a GPIO register simultaneously.
The register does not actually contain this intermediate value at any point. In the previous example, if the pin is
initially 0, and core 0 performs a SET while core 1 performs a XOR, the GPIO output remains low without any positive
glitch.

2.3.1.3. Hardware Spinlocks

The SIO provides 32 hardware spinlocks, which can be used to manage mutually-exclusive access to shared software
resources. Each spinlock is a one-bit flag, mapped to a different address (from SPINLOCKO to SPINLOCK31). Software
interacts with each spinlock with one of the following operations:

® Read: attempt to claim the lock. Read value is nonzero if the lock was successfully claimed, or zero if the lock had
already been claimed by a previous read.

® Write (any value): release the lock. The next attempt to claim the lock will be successful.
If both cores try to claim the same lock on the same clock cycle, core 0 succeeds.

Generally software will acquire a lock by repeatedly polling the lock bit ("spinning” on the lock) until it is successfully
claimed. This is inefficient if the lock is held for long periods, so generally the spinlocks should be used to protect the
short critical sections of higher-level primitives such as mutexes, semaphores and queues.

For debugging purposes, the current state of all 32 spinlocks can be observed via SPINLOCK_ST.

|
2.3. Processor subsystem 30

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L1145-L1170

RP2040 Datasheet
]

2.3.1.4. Inter-processor FIFOs (Mailboxes)

The SIO contains two FIFOs for passing data, messages or ordered events between the two cores. Each FIFO is 32 bits
wide, and eight entries deep. One of the FIFOs can only be written by core 0, and read by core 1. The other can only be
written by core 1, and read by core 0.

Each core writes to its outgoing FIFO by writing to FIFO_WR, and reads from its incoming FIFO by reading from FIFO_RD.
A status register, FIFO_ST, provides the following status signals:

® Incoming FIFO contains data (VLD)

e QOutgoing FIFO has room for more data (RDY)

® The incoming FIFO was read from while empty at some point in the past (ROE)
® The outgoing FIFO was written to while full at some point in the past (W0F)

Writing to the outgoing FIFO while full, or reading from the incoming FIFO while empty, does not affect the FIFO state.
The current contents and level of the FIFO is preserved. However, this does represent some loss of data or reception of
invalid data by the software accessing the FIFO, so a sticky error flag is raised (ROE or WOF).

The SIO has a FIFO IRQ output for each core, mapped to system IRQ numbers 15 and 16. Each IRQ output is the logical
OR of the VLD, ROE and WOF bits in that core’s FIFO_ST register: that is, the IRQ is asserted if any of these three bits is high,
and clears again when they are all low. The ROE and WOF flags are cleared by writing any value to FIFO_ST, and the VLD flag
is cleared by reading data from the FIFO until empty.

If the corresponding interrupt line is enabled in the Cortex-M0+ NVIC, then the processor will take an interrupt each time
data appears in its FIFO, or if it has performed some invalid FIFO operation (read on empty, write on full). Typically Core
0 will use IRQ15 and core 1 will use IRQ16. If the IRQs are used the other way round then it is difficult for the core that
has been interrupted to correctly identify the reason for the interrupt as the core doesn’t have access to the other core’s
FIFO status register.

O NoTE

ROE and WOF only become set if software misbehaves in some way. Generally, the interrupt handler will trigger when
data appears in the FIFO (raising the VLD flag), and the interrupt handler clears the IRQ by reading data from the FIFO
until VLD goes low once more.

The inter-processor FIFOs and the Cortex-M0+ Event signals are used by the bootrom (Section 2.8) wait_for_vector
routine, where core 1 remains in a sleep state until it is woken, and provided with its initial stack pointer, entry point and
vector table through the FIFO.

2.3.1.5. Integer Divider

The SIO provides one 8-cycle signed/unsigned divide/modulo module to each of the cores. Calculation is started by
writing a dividend and divisor to the two argument registers, DIVIDEND and DIVISOR. The divider calculates the quotient /
and remainder % of this division over the next 8 cycles, and on the 9th cycle the results can be read from the two result
registers DIV_QUOTIENT and DIV_REMAINDER. A 'ready' bit in register DIV_CSR can be polled to wait for the calculation
to complete, or software can insert a fixed 8-cycle delay.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/divider.S Lines 12 - 16

12 regular_func_with_section hw_divider_divmod_s32

13 1dr r3, =(SIO_BASE)

14 str r@, [r3, #SIO_DIV_SDIVIDEND_OFFSET]
15 str r1, [r3, #SIO_DIV_SDIVISOR_OFFSET]
16 b hw_divider_divmod_return

|
2.3. Processor subsystem 31

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/divider.S#L12-L16

RP2040 Datasheet

© NOTE

Software is free to perform other non-divider operations during these 8 cycles.

There are two aliases of the operand registers: writing to the signed alias (DIV_SDIVIDEND and DIV_SDIVISOR) will
initiate a signed calculation, and the other (DIV_UDIVIDEND and DIV_UDIVISOR) will initiate an unsigned calculation.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/divider.S Lines 20 - 24

20 regular_func_with_section hw_divider_divmod_u32

21 1dr r3, =(SIO_BASE)
22 str r@, [r3, #SIO_DIV_UDIVIDEND_OFFSET]
23 str r1, [r3, #SIO_DIV_UDIVISOR_OFFSET]
24 b hw_divider_divmod_return

© NOTE

A new calculation begins immediately with every write to an operand register, and a new operand write immediately
squashes any calculation currently in progress. For example, when dividing many numbers by the same divisor, only
xDIVISOR needs to be written, and the signedness of each calculation is determined by whether SDIVIDEND or UDIVIDEND
is written.

To support save and restore on interrupt handler entry/exit (or on e.g. an RTOS context switch), the result registers are
also writable. Writing to a result register will cancel any operation in progress at the time. The DIV_CSR.DIRTY flag can
help make save/restore more efficient: this flag is set when any divider register (operand or result) is written to, and
cleared when the quotient is read.

O NoOTE

When enabled, the default divider AEABI support maps C level / and % to the hardware divider. When building
software using the SDK and using the divider directly, it is important to read the quotient register last. This ensures
the partial divider state will be correctly saved and restored by any interrupt code that uses the divider. You should
read the quotient register whether you need the value or not.

The SDK module pico_divider https://github.com/raspberrypi/pico-sdk/blob/master/src/common/
pico_divider_headers/include/pico/divider.h provides both the AEABI implementation needed to hook the C / and %
operators for both 32-bit and 64-bit integer division, as well as some additional C functions that return quotients and
remainders at the same time. All of these functions correctly save and restore the hardware divider state (when dirty) so
that they can be used in either user or IRQ handler code.

The SDK module hardware_divider https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/
hardware_divider/include/hardware/divider.h provides lower level macros and helper functions for accessing the
hardware_divider, but these do not save and restore the hardware divider state (although this header does provide
separate functions to do so).

2.3.1.6. Interpolator

Each core is equipped with two interpolators (INTERPG and INTERP1) which can accelerate tasks by combining certain pre-
configured operations into a single processor cycle. Intended for cases where the pre-configured operation is repeated
many times, this results in code which uses both fewer CPU cycles and fewer CPU registers in the time-critical sections
of the code.

The interpolators are used to accelerate audio operations within the SDK, but their flexible configuration makes it
possible to optimise many other tasks such as quantization and dithering, table lookup address generation, affine
texture mapping, decompression and linear feedback.

2.3. Processor subsystem 32

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/divider.S#L20-L24
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_divider_headers/include/pico/divider.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_divider_headers/include/pico/divider.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/include/hardware/divider.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/include/hardware/divider.h

RP2040 Datasheet

Figure 8. An
interpolator. The two
accumulator registers
and three base
registers have single-
cycle read/write
access from the
processor. The
interpolator is
organised into two
lanes, which perform
masking, shifting and
sign-extension
operations on the two
accumulators. This
produces three
possible results, by
adding the
intermediate
shift/mask values to
the three base
registers. From left to
right, the multiplexers
on each lane are
controlled by the
following flags in the
CTRL registers:
CROSS_RESULT,
CROSS_INPUT,
SIGNED, ADD_RAW.

Base 0
Result 0 0 Si]
Accumulator 0 Right Shift ——» Mask 'gr-exten Result 0
fromMask
Result 1 1
Accumulator 1
Base 2 Result 2
Accumulator 0
Result 0 1 si -
Accumulator 1 Right Shift ——» Mask 'gn-exten Result 1
fromMask
Result 1 0
Base 1

The processor can write or read any interpolator register in one cycle, and the results are ready on the next cycle. The
processor can also perform an addition on one of the two accumulators ACCUM@ or ACCUMT by writing to the corresponding
ACCUMx_ADD register.

The three results are available in the read-only locations PEEK®, PEEK1, PEEK2. Reading from these locations does not
change the state of the interpolator. The results are also aliased at the locations P0OPe, POP1, POP2; reading from a POPx alias
returns the same result as the corresponding PEEKx, and simultaneously writes back the lane results to the
accumulators. This can be used to advance the state of interpolator each time a result is read.

Additionally the interpolator supports simple fractional blending between two values as well as clamping values such
that they lie within a given range.

The following example shows a trivial example of popping a lane result to produce simple iterative feedback.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 11 - 23

11 void times_table() {

12 puts("9 times table:");
13
14 // Initialise lane @ on interp@ on this core
15 interp_config cfg = interp_default_config();
16 interp_set_config(interp@, 0, &cfg);
17
18 interp@->accum[0] = @;
19 interp@->base[B8] = 9;
20
21 for (int i = @; i < 10; ++i)
22 printf("%d\n", interp@->pop[@]);
23 }
© NoTE

By sheer coincidence, the interpolators are extremely well suited to SNES MODE7-style graphics routines. For
example, on each core, INTERPO can provide a stream of tile lookups for some affine transform, and INTERP1 can
provide offsets into the tiles for the same transform.

2.3.1.6.1. Lane Operations

2.3. Processor subsystem 33

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L11-L23

RP2040 Datasheet

Figure 9. Each lane of
each interpolator can
be configured to
perform mask, shift
and sign-extension on
one of the
accumulators. This is
fed into adders which
produces final results,
which may optionally
be fed back into the
accumulators with
each read. The
datapath can be
configured using a
handful of 32-bit
multiplexers. From left
to right, these are
controlled by the
following CTRL flags:
CROSS_RESULT,
CROSS_INPUT,
SIGNED, ADD_RAW.

Result 0
Accumulator 0

Result 1

Accumulator 1

» Right Shift

—»

Mask

Add to BASE1
(for PEEKO/POPO)

Sign-extend
fromMask

Each lane performs these three operations, in sequence:

e Aright shift by CTRL_LANEx_SHIFT (O to 31 bits)

Add to BASE2
(forms part of
PEEK2/POP2)

® A mask of bits from CTRL_LANEx_MASK_LSB to CTRL_LANEx_MASK_MSB inclusive (each ranging from bit 0 to bit 31)

* A sign extension from the top of the mask, i.e. take bit CTRL_LANEx_MASK_MSB and OR it into all more-significant bits, if

CTRL_LANEx_SIGNED is set
For example, if:
® ACCUMO = Oxdeadbeef
® CTRL_LANEQ_SHIFT =8
® CTRL_LANE@_MASK_LSB = 4
® CTRL_LANE@_MASK_MSB =7

® (TRL_SIGNED =1

Then lane 0 would produce the following results at each stage:

® Right shift by 8 to produce 0x00deadbe

® Mask bits 7 to 4 to produce 0x00deadbe & 0x000000f0 = 0x000000b0

® Sign-extend up from bit 7 to produce oxffffffbo

In software:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 25 - 46

25 void moving_mask() {

26 interp_config cfg = interp_default_config();

27 interp@->accum[@] = 0x1234abcd;

28

29 puts("Masking:");

30 printf("ACCUMB = %08x\n", interp@->accum[0]);

31 for (int i = @; i < 8; ++i) {

32 // LSB, then MSB. These are inclusive, so 0,31 means "the entire 32 bit register"”

33 interp_config_set_mask(&cfg, i * 4, i * 4 + 3);

34 interp_set_config(interp®, 0, &cfg);

85} // Reading from ACCUMx_ADD returns the raw lane shift and mask value, without BASEx
added

36 printf("Nibble %d: %@8x\n", i, interp®@->add_raw[@]);

37 }

38

39 puts("Masking with sign extension:");

40 interp_config_set_signed(&cfg, true);

41 for (int i = @; i < 8; ++i) {

42 interp_config_set_mask(&cfg, i * 4, i * 4 + 3);

43 interp_set_config(interp@, 0, &cfg);

44 printf("Nibble %d: %@8x\n", i, interp@->add_raw[@]);

45 }

46 }

The above example should print:

|
2.3. Processor subsystem

34

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L25-L46

RP2040 Datasheet

ACCUMO = 1234abcd
Nibble ©: ©000000d
Nibble 1: 600000CO
Nibble 2: 00000b0O
Nibble 3: 00002000
Nibble 4: 00040000
Nibble 5: 063060000
Nibble 6: 62000000
Nibble 7: 10000000
Masking with sign extension:
Nibble @: fffffffd
Nibble 1: ffffffce
Nibble 2: fffffbeo
Nibble 3: ffffa000
Nibble 4: 00040000
Nibble 5: 663060000
Nibble 6: 02000000
Nibble 7: 10000000

Changing the result and input multiplexers can create feedback between the accumulators

dithering.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 48 - 66

48 void cross_lanes() {

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66 }

interp_config cfg = interp_default_config();
interp_config_set_cross_result(&cfg, true);
// ACCUMO gets lane 1 result:
interp_set_config(interp®, 0, &cfg);

// ACCUM1 gets lane 0 result:
interp_set_config(interp®, 1, &cfg);

interp@->accum[0]
interp@->accum[1]

123;
456 ;

interp@->base[B8] = 1;
interp@->base[1] = 0;
puts("Lane result crossover:");
for (int i = @; i < 10; ++i) {

uint32_t peek@
uint32_t pop1l

interp@->peek[0];
interp@->pop[1];

printf("PEEK®, POP1: %d, %d\n", peek®, popl);

This should print:

PEEKO,
PEEKO,
PEEK®,
PEEKO,
PEEK®,
PEEKO,
PEEK®,
PEEKO,
PEEKO,
PEEKO,

POP1:
POP1:
POP1:
POP1:
POP1:
POP1:
POP1:
POP1:
POP1:
POP1:

124,
457,
125,
458,
126,
459,
127,
460,
128,
461,

456
124
457
125
458
126
459
127
460
128

. This is useful e.g. for audio

2.3. Processor subsystem

35

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L48-L66

RP2040 Datasheet
]

2.3.1.6.2. Blend Mode

Blend mode is available on INTERPO on each core, and is enabled by the CTRL_LANE@_BLEND control flag. It performs linear
interpolation, which we define as follows:

x = x9+ a(x; — xq), for0 < a<1

Where Xq is the register BASE®, X1 is the register BASE1, and a is a fractional value formed from the least significant 8 bits
of the lane 1 shift and mask value.

Blend mode has the following differences from normal mode:

® PEEKQ, POPO return the 8-bit alpha value (the 8 LSBs of the lane 1 shift and mask value), with zeroes in result bits 31
down to 24.

® PEEK1, POP1 return the linear interpolation between BASE® and BASE1
® PEEK2, POP2 do not include lane 1 result in the addition (i.e. it is BASE2 + lane 0 shift and mask value)

The result of the linear interpolation is equal to BASE@ when the alpha value is 0, and equal to BASE® + 255/256 * (BASE1 -
BASE0) when the alpha value is all-ones.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 68 - 87

68 void simple_blend1() {

69 puts("Simple blend 1:");

70

71 interp_config cfg = interp_default_config();
72 interp_config_set_blend(&cfg, true);

73 interp_set_config(interp®, 0, &cfg);

74

75 cfg = interp_default_config();

76 interp_set_config(interp@, 1, &cfg);

77

78 interp@->base[08] = 500;

79 interp@->base[1] = 1000;

80

81 for (int i = @; i <= 6; i++) {

82 // set fraction to value between 6 and 255
83 interp@->accum[1] = 255 * i / 6;

84 // =~ 560 + (1000 - 500) * i / 6;

85 printf("%d\n", (int) interp®->peek[1]);
86 }

87 }

This should print (note the 255/256 resulting in 998 not 1000):

500
582
666
748
832
914
998

CTRL_LANET_SIGNED controls whether BASE@ and BASE1 are sign-extended for this interpolation (this sign extension is required
because the interpolation produces an intermediate product value 40 bits in size). CTRL_LANE@_SIGNED continues to control
the sign extension of the lane 0 intermediate result in PEEK2, POP2 as normal.

|
2.3. Processor subsystem 36

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L68-L87

RP2040 Datasheet
]

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 90 - 121

90 void print_simple_blend2_results(bool is_signed) {

91 // lane 1 signed flag controls whether base 6/1 are treated as signed or unsigned
92 interp_config cfg = interp_default_config();
93 interp_config_set_signed(&cfg, is_signed);
94 interp_set_config(interp®, 1, &cfg);

95

96 for (int i = @; 1 <= 6; i++) {

97 interp@->accum[1] = 255 * i / 6;

98 if (is_signed) {

99 printf("%d\n", (int) interp®->peek[1]);
100 } else {

101 printf("@x%@8x\n", (uint) interp®@->peek[1]);
102 }

103 }

104 }

105

106 void simple_blend2() {

107 puts("Simple blend 2:");

108

109 interp_config cfg = interp_default_config();
110 interp_config_set_blend(&cfg, true);

111 interp_set_config(interp8, 0, &cfg);

112

113 interp@->base[B8] = (uint32_t) -1000;

114 interp@->base[1] = 1000;

115

116 puts("signed:");

117 print_simple_blend2_results(true);

118

119 puts("unsigned:");

120 print_simple_blend2_results(false);

121 }

This should print:

signed:
-1000

-672

-336

-8

328

656

992
unsigned:
oxfffffc18
oxd5fffd6e
Oxaafffebd
ox80fffff8
0x56000148
0x2c000290
0x010003e0

Finally, in blend mode when using the BASE_1AND® register to send a 16-bit value to each of BASE@ and BASE1 with a single
32-bit write, the sign-extension of these 16-bit values to full 32-bit values during the write is controlled by
CTRL_LANET_SIGNED for both bases, as opposed to non-blend-mode operation, where CTRL_LANE@_SIGNED affects extension
into BASE@ and CTRL_LANE1_SIGNED affects extension into BASE1.

|
2.3. Processor subsystem 37

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L90-L121

RP2040 Datasheet

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 124 - 145

124 void simple_blend3() {

125 puts("Simple blend 3:");

126

127 interp_config cfg = interp_default_config();
128 interp_config_set_blend(&cfg, true);

129 interp_set_config(interp@, 0, &cfg);

130

131 cfg = interp_default_config();

132 interp_set_config(interp®, 1, &cfg);

133

134 interp@->accum[1] = 128;

135 interp@->base@1 = 0x30005000;

136 printf("0x%08x\n", (int) interp@->peek[1]);
137 interp@->based1 = 0xe000f000;

138 printf("0x%08x\n", (int) interp@->peek[1]);
139

140 interp_config_set_signed(&cfg, true);

141 interp_set_config(interp®, 1, &cfg);

142

143 interp@->base@1 = 0xe000f000;

144 printf("0x%08x\n", (int) interp@->peek[1]);
145 }

This should print:

0x00004000
0x0000e800
oxffffe800

2.3.1.6.3. Clamp Mode

Clamp mode is available on INTERP1 on each core, and is enabled by the CTRL_LANE@_CLAMP control flag. In clamp mode, the
PEEKO/POPO result is the lane value (shifted, masked, sign-extended Accume) clamped between BASE@ and BASET. In other
words, if the lane value is greater than BASE1, a value of BASE1 is produced; if less than BASE®, a value of BASE® is produced;
otherwise, the value passes through. No addition is performed. The signedness of these comparisons is controlled by

the CTRL_LANE@_SIGNED flag.

Other than this, the interpolator behaves the same as in normal mode.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 193 - 211

193 void clamp() {

194 puts("“Clamp:");

195 interp_config cfg = interp_default_config();

196 interp_config_set_clamp(&cfg, true);

197 interp_config_set_shift(&cfg, 2);

198 // set mask according to new position of sign bit..
199 interp_config_set_mask(&cfg, 0, 29);

200 // ...so that the shifted value is correctly sign extended
201 interp_config_set_signed(&cfg, true);

202 interp_set_config(interp1, 0, &cfg);

203

204 interpl->base[8] = 0;

205 interpl->base[1] = 255;

206

207 for (int i = -1024; i <= 1024; i += 256) {

2.3. Processor subsystem

38

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L124-L145
https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L193-L211

RP2040 Datasheet

208
209
210
211 }

interpl->accum[0] = i;
printf("%d\t%d\n", i, (int) interpl->peek[8]);

This should print:

-1024
-768
=312
-256

256
512
768
1024

0o 0 0 ®

128
192
255

2.3.1.6.4. Sample Use Case: Linear Interpolation

Linear interpolation is a more complete example of using blend mode in conjunction with other interpolator
functionality:

In this example, AccUMe is used to track a fixed point (integer/fraction) position within a list of values to be interpolated.
Lane 0 is used to produce an address into the value array for the integer part of the position. The fractional part of the
position is shifted to produce a value from 0-255 for the blend. The blend is performed between two consecutive values

in the array.

Finally the fractional position is updated via a single write to ACCUMO_ADD_RAW.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 147 - 191

147 void linear_interpolation() {

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

puts("Linear interpolation:");
const int uv_fractional_bits = 12;

// for lane @

// shift and mask XXXX XXXX XXXX XXXX XXXX FFFF FFFF FFFF (accum 9)
// to 0000 0000 BOOX XXXX XXXX XXXX XXXX XXXO

// i.e. non fractional part times 2 (for uintl6_t)

interp_config cfg = interp_default_config();
interp_config_set_shift(&cfg, uv_fractional_bits - 1);
interp_config_set_mask(&cfg, 1, 32 - uv_fractional_bits);
interp_config_set_blend(&cfg, true);

interp_set_config(interp®, 0, &cfg);

// for lane 1
// shift XXXX XXXX XXXX XXXX XXXX FFFF FFFF FFFF (accum @ via cross input)
// to 0000 XXXX XXXX XXXX XXXX FFFF FFFF FFFF

cfg = interp_default_config();

interp_config_set_shift(&cfg, uv_fractional_bits - 8);
interp_config_set_signed(&cfg, true);
interp_config_set_cross_input(&cfg, true); // signed blending
interp_set_config(interp®, 1, &cfg);

int16_t samples[] = {@, 10, -20, -1008, 500};

// step is 1/4 in our fractional representation

2.3. Processor subsystem

39

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L147-L191

RP2040 Datasheet
]

174 uint step = (1 << uv_fractional_bits) / 4;

175

176 interp@->accum[@] = @; // initial sample_offset;

177 interp@->base[2] = (uintptr_t) samples;

178 for (int i = @; 1 < 16; i++) {

179 // result2 = samples + (lane@ raw result)

180 // i.e. ptr to the first of two samples to blend between
181 int16_t *sample_pair = (int16_t *) interp@->peek[2];
182 interp@->base[@] = sample_pair[0];

183 interp@->base[1] = sample_pair[1];

184 uint32_t peekl = interp@->peek[1];

185 uint32_t add_rawl = interp@->add_raw[1];

186 printf("%d\t(%d%% between %d and %d)\n", (int) peekT,
187 100 * (add_rawl & Oxff) / Oxff,

188 sample_pair[@], sample_pair[1]);

189 interp@->add_raw[0] = step;

190 }

191 }

This should print:

(0% between @ and 10)

(25% between @ and 10)

(50% between @ and 10)

(75% between @ and 10)
0 (8% between 10 and -20)

(25% between 10 and -20)
-5 (50% between 10 and -20)
-13 (75% between 10 and -20)
-20 (8% between -20 and -1000)
-265 (25% between -206 and -1000)
-510 (50% between -206 and -1000)
-755 (75% between -20 and -1000)
-16080 (0% between -10008 and 5600)
-625 (25% between -1000 and 5600)
-250 (50% between -1000 and 5600)
125 (75% between -1000 and 500)

N =2 N o N

This method is used for fast approximate audio upscaling in the SDK

2.3.1.6.5. Sample Use Case: Simple Affine Texture Mapping

Simple affine texture mapping can be implemented by using fixed point arithmetic for texture coordinates, and stepping
a fixed amount in each coordinate for every pixel in a scanline. The integer part of the texture coordinates are used to
form an address within the texture to lookup a pixel colour.

By using two lanes, all three base values and the CTRL_LANEx_ADD_RAW flag, it is possible to reduce what would be quite an
expensive CPU operation to a single cycle iteration using the interpolator.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 214 - 272

214 void texture_mapping_setup(uint8_t *texture, uint texture_width_bits, uint
texture_height_bits,

215 uint uv_fractional_bits) {

216 interp_config cfg = interp_default_config();

217 // set add_raw flag to use raw (un-shifted and un-masked) lane accumulator value when
adding

218 // it to the lane base to make the lane result

|
2.3. Processor subsystem 40

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L214-L272

RP2040 Datasheet
]

219 interp_config_set_add_raw(&cfg, true);

220 interp_config_set_shift(&cfg, uv_fractional_bits);

221 interp_config_set_mask(&cfg, 0, texture_width_bits - 1);

222 interp_set_config(interp®, 0, &cfg);

223

224 interp_config_set_shift(&cfg, uv_fractional_bits - texture_width_bits);

225 interp_config_set_mask(&cfg, texture_width_bits, texture_width_bits +
texture_height_bits - 1);

226 interp_set_config(interp®, 1, &cfg);

227

228 interp@->base[2] = (uintptr_t) texture;

229 }

230

231 void texture_mapped_span(uint8_t *output, uint32_t u, uint32_t v, uint32_t du, uint32_t dv,
uint count) {

232 // u, v are texture coordinates in fixed point with uv_fractional_bits fractional bits

233 // du, dv are texture coordinate steps across the span in same fixed point.

234 interp@->accum[@] = u;

235 interp@->base[08] = du;

236 interp@->accum[1] = v;

237 interp@->base[1] = dv;

238 for (uint i = @; i < count; i++) {

239 // equivalent to

240 // uint32_t sm_result® = (accum@ >> uv_fractional_bits) & (1 << (texture_width_bits -
1);

241 // uint32_t sm_result1 = (accuml >> uv_fractional_bits) & (1 << (texture_height_bits -
1);

242 // uint8_t *address = texture + sm_result@ + (sm_resultl << texture_width_bits);

243 // output[i] = *address;

244 // accum@ = du + accum@;

245 // accuml = dv + accuml;

246

247 // result2 is the texture address for the current pixel;

248 // popping the result advances to the next iteration

249 output[i] = *(uint8_t *) interp@->pop[2];

250 }

251 }

252

253 void texture_mapping() {

254 puts("Affine Texture mapping (with texture wrap):");

255

256 uint8_t texture[] = {

257 0x00, 0x01, 0x02, 0x03,

258 0x10, Ox11, 6x12, 0x13,

259 0x20, 0x21, Ox22, Ox23,

260 0x30, 0x31, 0x32, 0x33,

261 };

262 // 4x4 texture

263 texture_mapping_setup(texture, 2, 2, 16);

264 uint8_t output[12];

265 uint32_t du = 65536 / 2; // step of 1/2

266 uint32_t dv = 65536 / 3; // step of 1/3

267 texture_mapped_span(output, 0, @, du, dv, 12);

268

269 for (uint i = 0; i < 12; i++) {

270 printf("ex%@2x\n", output[i]);

271 }

272 }

This should print:

|
2.3. Processor subsystem 41

RP2040 Datasheet

0x00
0x00
0x01
0x01
0x12
0x12
0x13
0x23
0x20
0x20
0x31
0x31

2.3.1.7. List of Registers

The SIO registers start at a base address of 0xd0000000 (defined as SIO_BASE in SDK).

Table 16. List of SIO

registers Offset Name Info
0x000 CPUID Processor core identifier
0x004 GPIO_IN Input value for GPIO pins
0x008 GPIO_HI_IN Input value for QSPI pins
0x010 GPIO_OUT GPIO output value
0x014 GPIO_OUT_SET GPIO output value set
0x018 GPIO_OUT_CLR GPIO output value clear
0x01c GPIO_OUT_XOR GPIO output value XOR
0x020 GPIO_OE GPIO output enable
0x024 GPIO_OE_SET GPIO output enable set
0x028 GPIO_OE_CLR GPIO output enable clear
0x02c GPIO_OE_XOR GPIO output enable XOR
0x030 GPIO_HI_OUT QSPI output value
0x034 GPIO_HI_OUT_SET QSPI output value set
0x038 GPIO_HI_OUT_CLR QSPI output value clear
0x03c GPIO_HI_OUT_XOR QSPI output value XOR
0x040 GPIO_HI_OE QSPI output enable
0x044 GPIO_HI_OE_SET QSPI output enable set
0x048 GPIO_HI_OE_CLR QSPI output enable clear
0x04c GPIO_HI_OE_XOR QSPI output enable XOR
0x050 FIFO_ST Status register for inter-core FIFOs (mailboxes).
0x054 FIFO_WR Write access to this core’s TX FIFO
0x058 FIFO_RD Read access to this core’s RX FIFO
0x05¢ SPINLOCK_ST Spinlock state
0x060 DIV_UDIVIDEND Divider unsigned dividend

2.3. Processor subsystem

42

RP2040 Datasheet

Offset Name Info

0x064 DIV_UDIVISOR Divider unsigned divisor

0x068 DIV_SDIVIDEND Divider signed dividend

0x06¢ DIV_SDIVISOR Divider signed divisor

0x070 DIV_QUOTIENT Divider result quotient

0x074 DIV_REMAINDER Divider result remainder

0x078 DIV_CSR Control and status register for divider.

0x080 INTERPO_ACCUMO Read/write access to accumulator 0

0x084 INTERPO_ACCUM!1 Read/write access to accumulator 1

0x088 INTERPO_BASEO Read/write access to BASEQ register.

0x08c INTERPO_BASE1 Read/write access to BASET register.

0x090 INTERPO_BASE2 Read/write access to BASE2 register.

0x094 INTERPO_POP_LANEO Read LANEQO result, and simultaneously write lane results to both
accumulators (POP).

0x098 INTERPO_POP_LANE1 Read LANE1 result, and simultaneously write lane results to both
accumulators (POP).

0x09¢c INTERPO_POP_FULL Read FULL result, and simultaneously write lane results to both
accumulators (POP).

0x0a0 INTERPO_PEEK_LANEO Read LANEQO result, without altering any internal state (PEEK).

0x0a4 INTERPO_PEEK_LANE1 Read LANET1 result, without altering any internal state (PEEK).

0x0a8 INTERPO_PEEK_FULL Read FULL result, without altering any internal state (PEEK).

Ox0ac INTERPO_CTRL_LANEO Control register for lane 0

0x0b0 INTERPO_CTRL_LANE1 Control register for lane 1

0x0b4 INTERPO_ACCUMO_ADD Values written here are atomically added to ACCUMO

0x0b8 INTERPO_ACCUM1_ADD Values written here are atomically added to ACCUM1

0x0bc INTERPO_BASE_TANDO On write, the lower 16 bits go to BASEO, upper bits to BASE1
simultaneously.

0x0c0 INTERP1_ACCUMO Read/write access to accumulator 0

0x0c4 INTERP1_ACCUM1 Read/write access to accumulator 1

0x0c8 INTERP1_BASEO Read/write access to BASEQ register.

0x0cc INTERP1_BASE1 Read/write access to BASET register.

0x0d0 INTERP1_BASE2 Read/write access to BASE2 register.

0x0d4 INTERP1_POP_LANEO Read LANEDO result, and simultaneously write lane results to both
accumulators (POP).

0x0d8 INTERP1_POP_LANE1 Read LANET1 result, and simultaneously write lane results to both
accumulators (POP).

0x0dc INTERP1_POP_FULL Read FULL result, and simultaneously write lane results to both
accumulators (POP).

0x0e0 INTERP1_PEEK_LANEOQ Read LANEQ result, without altering any internal state (PEEK).

2.3. Processor subsystem

43

RP2040 Datasheet

Offset Name Info

0x0e4 INTERP1_PEEK_LANE1 Read LANET1 result, without altering any internal state (PEEK).

0x0e8 INTERP1_PEEK_FULL Read FULL result, without altering any internal state (PEEK).

0x0ec INTERP1_CTRL_LANEO Control register for lane 0

0x0f0 INTERP1_CTRL_LANE1 Control register for lane 1

0x0f4 INTERP1_ACCUMO_ADD Values written here are atomically added to ACCUMO

0x0f8 INTERP1_ACCUM1_ADD Values written here are atomically added to ACCUM1

0x0fc INTERP1_BASE_TANDO On write, the lower 16 bits go to BASEO, upper bits to BASE1
simultaneously.

0x100 SPINLOCKO Spinlock register 0

0x104 SPINLOCK1 Spinlock register 1

0x108 SPINLOCK2 Spinlock register 2

0x10c SPINLOCK3 Spinlock register 3

0x110 SPINLOCK4 Spinlock register 4

0x114 SPINLOCKS5 Spinlock register 5

0x118 SPINLOCK6 Spinlock register 6

Ox11c SPINLOCK? Spinlock register 7

0x120 SPINLOCKS8 Spinlock register 8

0x124 SPINLOCK9 Spinlock register 9

0x128 SPINLOCK10 Spinlock register 10

0x12c SPINLOCK11 Spinlock register 11

0x130 SPINLOCK12 Spinlock register 12

0x134 SPINLOCK13 Spinlock register 13

0x138 SPINLOCK14 Spinlock register 14

0x13c SPINLOCK15 Spinlock register 15

0x140 SPINLOCK16 Spinlock register 16

0x144 SPINLOCK17 Spinlock register 17

0x148 SPINLOCK18 Spinlock register 18

0x14c SPINLOCK19 Spinlock register 19

0x150 SPINLOCK20 Spinlock register 20

0x154 SPINLOCK21 Spinlock register 21

0x158 SPINLOCK22 Spinlock register 22

0x15¢ SPINLOCK23 Spinlock register 23

0x160 SPINLOCK?24 Spinlock register 24

0x164 SPINLOCK25 Spinlock register 25

0x168 SPINLOCK26 Spinlock register 26

Ox16¢ SPINLOCK27 Spinlock register 27

2.3. Processor subsystem

44

RP2040 Datasheet

Table 17. CPUID
Register

Table 18. GPIO_IN
Register

Table 19. GPIO_HI_IN
Register

Table 20. GPIO_OUT
Register

0x170 SPINLOCK?28 Spinlock register 28

0x174 SPINLOCK29 Spinlock register 29

0x178 SPINLOCK30 Spinlock register 30

0x17¢c SPINLOCK31 Spinlock register 31
SI0: CPUID Register

Offset: 0x000

Description

Processor core identifier

31:0 Value is 0 when read from processor core 0, and 1 when read from processor | RO -
core 1.

SI0: GPIO_IN Register
Offset: 0x004

Description

Input value for GPIO pins

31:30 Reserved. - -

29:0 Input value for GPI00...29 RO 0x00000000

SI10: GPIO_HI_IN Register
Offset: 0x008

Description

Input value for QSPI pins

31:6 Reserved. - -

5:0 Input value on QSPI 10 in order 0..5: SCLK, SSn, SDO, SD1, SD2, SD3 RO 0x00

SI0: GPIO_OUT Register
Offset: 0x010

Description

GPIO output value

31:30 Reserved. = =

. __|
2.3. Processor subsystem 45

RP2040 Datasheet
]

Bits Description Type Reset

29:0 Set output level (1/0 — high/low) for GPI00...29. RW 0x00000000
Reading back gives the last value written, NOT the input value from the pins.
If core 0 and core 1 both write to GPIO_OUT simultaneously (or to a
SET/CLR/XOR alias),

the result is as though the write from core 0 took place first,

and the write from core 1 was then applied to that intermediate result.

SI10: GPIO_OUT_SET Register
Offset: 0x014

Description

GPIO output value set

Table 21. Bits Description Type Reset
GPIO_OUT_SET
Register 31:30 | Reserved. - -
29:0 Perform an atomic bit-set on GPIO_OUT, i.e. GPI0_OUT |= wdata WO 0x00000000
SI10: GPIO_OUT_CLR Register
Offset: 0x018
Description
GPIO output value clear
Table 22. A S
GPIO.OUT OLR Bits Description Type Reset
Register 31:30 | Reserved. - -
29:0 Perform an atomic bit-clear on GPIO_OUT, i.e. GPI0_0UT &= ~wdata WO 0x00000000
SIO: GPIO_OUT_XOR Register
Offset: 0x01c
Description
GPIO output value XOR
Table 23. Bits Description Type Reset
GPIO_OUT_XOR
Register 31:30 | Reserved. - -
29:0 Perform an atomic bitwise XOR on GPIO_OUT, i.e. GPI0_0UT /= wdata WO 0x00000000

SI0: GPIO_OE Register
Offset: 0x020

Description

GPIO output enable

Table 24. GPIO_OE

) Bits Description Type Reset
Register

31:30 Reserved. - -

|
2.3. Processor subsystem 46

RP2040 Datasheet
]

Bits Description Type Reset

29:0 Set output enable (1/0 — output/input) for GPI00...29. RW 0x00000000
Reading back gives the last value written.

If core 0 and core 1 both write to GPIO_OE simultaneously (or to a
SET/CLR/XOR alias),

the result is as though the write from core 0 took place first,

and the write from core 1 was then applied to that intermediate result.

SI10: GPIO_OE_SET Register
Offset: 0x024

Description

GPIO output enable set

Table 25.

) Bits Description Type Reset
GPIO_OE_SET Register

31:30 Reserved. - -

29:0 Perform an atomic bit-set on GPIO_OE, i.e. GPI0_0E |= wdata WO 0x00000000

SI10: GPIO_OE_CLR Register
Offset: 0x028

Description

GPIO output enable clear

Table 26.

_ Bits Description Type Reset
GPIO_OE_CLR Register

31:30 Reserved. - -

29:0 Perform an atomic bit-clear on GPIO_OE, i.e. GPI0_OF &= ~wdata WO 0x00000000

SIO: GPIO_OE_XOR Register
Offset: 0x02c

Description

GPIO output enable XOR

Table 27.
GPIO_OE_XOR

Register 31:30 | Reserved. - -

Bits Description Type Reset

29:0 Perform an atomic bitwise XOR on GPIO_OE, i.e. GPI0_OF A= wdata WO 0x00000000

SI0: GPIO_HI_OUT Register
Offset: 0x030

Description

QSPI output value

Table 28.

) Bits Description Type Reset
GPIO_HI_OUT Register

31:6 Reserved. - -

|
2.3. Processor subsystem 47

RP2040 Datasheet
]

Bits Description Type Reset

5.0 Set output level (1/0 — high/low) for QSPI'100...5. RW 0x00
Reading back gives the last value written, NOT the input value from the pins.
If core 0 and core 1 both write to GPIO_HI_OUT simultaneously (or to a
SET/CLR/XOR alias),

the result is as though the write from core 0 took place first,

and the write from core 1 was then applied to that intermediate result.

SI10: GPIO_HI_OUT_SET Register
Offset: 0x034

Description

QSPI output value set

Table 29. Bits Description Type Reset
GPIO_HI_OUT_SET
Register 31:6 Reserved. - -
5:0 Perform an atomic bit-set on GPIO_HI_OUT, i.e. GPI0_HI_OUT |= wdata WO 0x00
SI10: GPIO_HI_OUT_CLR Register
Offset: 0x038
Description
QSPI output value clear
Table 50. Bits Description Type Reset
GPIO_HI_OUT_CLR
Register 31:6 Reserved. - -
5:0 Perform an atomic bit-clear on GPIO_HI_OUT, i.e. GPI0_HI_OUT &= ~wdata WO 0x00
SI0: GPIO_HI_OUT_XOR Register
Offset: 0x03c
Description
QSPI output value XOR
Table 31. Bits Description Type Reset
GPIO_HI_OUT_XOR
Register 31:6 Reserved. - -
5:0 Perform an atomic bitwise XOR on GPIO_HI_OUT, i.e. GPI0_HI_OUT A= wdata WO 0x00

SI0: GPIO_HI_OE Register
Offset: 0x040

Description

QSPI output enable

Table 32. GPIO_HI_OE

) Bits Description Type Reset
Register

31:6 Reserved. - -

|
2.3. Processor subsystem 48

RP2040 Datasheet

Bits Description Type Reset
5:0 Set output enable (1/0 — output/input) for QSPI 100...5. RW 0x00
Reading back gives the last value written.
If core 0 and core 1 both write to GPIO_HI_OE simultaneously (or to a
SET/CLR/XOR alias),
the result is as though the write from core 0 took place first,
and the write from core 1 was then applied to that intermediate result.
SI10: GPIO_HI_OE_SET Register
Offset: 0x044
Description
QSPI output enable set
Table 33. Bits Description Type Reset
GPIO_HI_OE_SET
Register 31:6 Reserved. - -
5:0 Perform an atomic bit-set on GPIO_HI_OE, i.e. GPI0_HI_OE |= wdata WO 0x00
SI10: GPIO_HI_OE_CLR Register
Offset: 0x048
Description
QSPI output enable clear
Table 54. Bits Description Type Reset
GPIO_HI_OE_CLR
Register 31:6 Reserved. - -
5:0 Perform an atomic bit-clear on GPIO_HI_OE, i.e. GPI0_HI_OF &= ~wdata WO 0x00
SI0: GPIO_HI_OE_XOR Register
Offset: 0x04c
Description
QSPI output enable XOR
Table 35. Bits Description Type Reset
GPIO_HI_OE_XOR
Register 31:6 Reserved. - -
5:0 Perform an atomic bitwise XOR on GPIO_HI_OE, i.e. GPI0_HI_OE A= wdata WO 0x00

SIO: FIFO_ST Register
Offset: 0x050

Description

Status register for inter-core FIFOs (mailboxes).

There is one FIFO in the core 0 — core 1 direction, and one core 1 — core 0. Both are 32 bits wide and 8 words
deep.

Core 0 can see the read side of the 1—0 FIFO (RX), and the write side of 0— 1 FIFO (TX).

Core 1 can see the read side of the 0— 1 FIFO (RX), and the write side of 1—0 FIFO (TX).

The SIO IRQ for each core is the logical OR of the VLD, WOF and ROE fields of its FIFO_ST register.

|
2.3. Processor subsystem 49

RP2040 Datasheet
]

Table 36. FIFO_ST

) Bits Description Type Reset
Register

31:4 Reserved. - -

3 ROE: Sticky flag indicating the RX FIFO was read when empty. This read was | WC 0x0
ignored by the FIFO.

2 WOF: Sticky flag indicating the TX FIFO was written when full. This write was | WC 0x0
ignored by the FIFO.

1 RDY: Value is 1 if this core’s TX FIFO is not full (i.e. if FIFO_WR is ready for RO 0x1
more data)

0 VLD: Value is 1 if this core’s RX FIFO is not empty (i.e. if FIFO_RD is valid) RO 0x0

SI10: FIFO_WR Register

Offset: 0x054

Table 37. FIFO_WR

) Bits Description Type Reset
Register

31:0 Write access to this core’s TX FIFO WF 0x00000000

SI0: FIFO_RD Register

Offset: 0x058

Table 38. FIFO_RD Bits Description Type Reset
Register
31:0 Read access to this core’s RX FIFO RF -
SIO: SPINLOCK_ST Register
Offset: 0x05c
Table 39. Bits Description Type Reset
SPINLOCK_ST
Register 31:0 Spinlock state RO 0x00000000
A bitmap containing the state of all 32 spinlocks (1=locked).
Mainly intended for debugging.
S10: DIV_UDIVIDEND Register
Offset: 0x060
Table 40. Bits Description Type Reset
DIV_UDIVIDEND
Register 31:0 Divider unsigned dividend RW 0x00000000

Write to the DIVIDEND operand of the divider, i.e. thepinp / g.

Any operand write starts a new calculation. The results appear in QUOTIENT,
REMAINDER.

UDIVIDEND/SDIVIDEND are aliases of the same internal register. The U alias
starts an

unsigned calculation, and the S alias starts a signed calculation.

SIO: DIV_UDIVISOR Register

Offset: 0x064

|
2.3. Processor subsystem 50

RP2040 Datasheet

Table 41.

Bits Description Type Reset
DIV_UDIVISOR
Register 31:0 Divider unsigned divisor RW 0x00000000
Write to the DIVISOR operand of the divider, i.e. theqinp / q.
Any operand write starts a new calculation. The results appear in QUOTIENT,
REMAINDER.
UDIVISOR/SDIVISOR are aliases of the same internal register. The U alias
starts an
unsigned calculation, and the S alias starts a signed calculation.
SI0: DIV_SDIVIDEND Register
Offset: 0x068
Table 42. Bits Description Type Reset
DIV_SDIVIDEND
Register 31:0 Divider signed dividend RW 0x00000000
The same as UDIVIDEND, but starts a signed calculation, rather than unsigned.
SIO: DIV_SDIVISOR Register
Offset: 0x06¢c
Table 43. o -
DIV SDIVISOR Bits Description Type Reset
Register 31:0 Divider signed divisor RW 0x00000000
The same as UDIVISOR, but starts a signed calculation, rather than unsigned.
SI10: DIV_QUOTIENT Register
Offset: 0x070
Table 44 Bits Description Type Reset
DIV_QUOTIENT
Register 31:0 Divider result quotient RW 0x00000000

The result of DIVIDEND / DIVISOR (division). Contents undefined while
CSR_READY is low.

For signed calculations, QUOTIENT is negative when the signs of DIVIDEND
and DIVISOR differ.

This register can be written to directly, for context save/restore purposes. This
halts any

in-progress calculation and sets the CSR_READY and CSR_DIRTY flags.
Reading from QUOTIENT clears the CSR_DIRTY flag, so should read results in
the order

REMAINDER, QUOTIENT if CSR_DIRTY is used.

SIO: DIV_REMAINDER Register

Offset: 0x074

2.3. Processor subsystem 51

RP2040 Datasheet
]

Table 45. Bits Description Type st
DIV_REMAINDER
Register 31:0 Divider result remainder RwW 0x00000000

The result of DIVIDEND % DIVISOR (modulo). Contents undefined while
CSR_READY is low.

For signed calculations, REMAINDER is negative only when DIVIDEND is
negative.

This register can be written to directly, for context save/restore purposes. This
halts any

in-progress calculation and sets the CSR_READY and CSR_DIRTY flags.

SIO: DIV_CSR Register
Offset: 0x078

Description

Control and status register for divider.

Tab"e 46. DIV-CSR Bits Description Type Reset
Register
31:2 Reserved. = =
1 DIRTY: Changes to 1 when any register is written, and back to 0 when RO 0x0
QUOTIENT is read.
Software can use this flag to make save/restore more efficient (skip if not
DIRTY).
If the flag is used in this way, it's recommended to either read QUOTIENT only,
or REMAINDER and then QUOTIENT, to prevent data loss on context switch.
0 READY: Reads as 0 when a calculation is in progress, 1 otherwise. RO 0x1
Writing an operand (xDIVIDEND, xDIVISOR) will immediately start a new
calculation, no
matter if one is already in progress.
Writing to a result register will immediately terminate any in-progress
calculation
and set the READY and DIRTY flags.
SIO: INTERPO_ACCUMO Register
Offset: 0x080
Table 47 Bits Description Type Reset
INTERPO_ACCUMO
Register 31:0 Read/write access to accumulator 0 RW 0x00000000
SIO: INTERPO_ACCUMT1 Register
Offset: 0x084
Table 48. Bits Description Type Reset
INTERPO_ACCUM1T
Register 31:0 Read/write access to accumulator 1 RW 0x00000000

SIO: INTERPO_BASEO Register

Offset: 0x088

2.3. Processor subsystem 52

RP2040 Datasheet
]

Table 49.
INTERPO_BASEQ
Register

Table 50.
INTERPO_BASET
Register

Table 51.
INTERPO_BASE2
Register

Table 52.
INTERPO_POP_LANEO
Register

Table 53.
INTERPO_POP_LANET
Register

Table 54.
INTERPO_POP_FULL
Register

Table 55.
INTERPO_PEEK_LANE
0 Register

Bits Description Type Reset
31:0 Read/write access to BASEOQ register. RW 0x00000000
SIO: INTERPO_BASET1 Register
Offset: 0x08¢c
Bits Description Type Reset
31:0 Read/write access to BASE1 register. RW 0x00000000
SIO: INTERPO_BASE?2 Register
Offset: 0x090
Bits Description Type Reset
31:0 Read/write access to BASE2 register. RW 0x00000000
SIO: INTERPO_POP_LANEO Register
Offset: 0x094
Bits Description Type Reset
31:0 Read LANEDO result, and simultaneously write lane results to both RO 0x00000000
accumulators (POP).
SIO: INTERPO_POP_LANE1 Register
Offset: 0x098
Bits Description Type Reset
31:0 Read LANE1 result, and simultaneously write lane results to both RO 0x00000000
accumulators (POP).
SIO: INTERPO_POP_FULL Register
Offset: 0x09¢c
Bits Description Type Reset
31:0 Read FULL result, and simultaneously write lane results to both accumulators | RO 0x00000000
(POP).
SIO: INTERPO_PEEK_LANEO Register
Offset: 0x0a0
Bits Description Type Reset
31:0 Read LANEQ result, without altering any internal state (PEEK). RO 0x00000000

SI0: INTERPO_PEEK_LANE1 Register

Offset: 0x0a4

2.3. Processor subsystem

53

RP2040 Datasheet

Table 56.
INTERPO_PEEK_LANE
1 Register

Table 57.
INTERPO_PEEK_FULL
Register

Table 58.
INTERPO_CTRL_LANE
0 Register

Bits Description Type Reset
31:0 Read LANET result, without altering any internal state (PEEK). RO 0x00000000
SIO: INTERPO_PEEK_FULL Register
Offset: 0x0a8
Bits Description Type Reset
31:0 Read FULL result, without altering any internal state (PEEK). RO 0x00000000
SI0: INTERPO_CTRL_LANEO Register
Offset: 0x0ac
Description
Control register for lane 0
Bits Description Type Reset
31:26 Reserved. - -
25 OVERF: Set if either OVERFO or OVERF1 is set. RO 0x0
24 OVERF1: Indicates if any masked-off MSBs in ACCUM1 are set. RO 0x0
23 OVERFO: Indicates if any masked-off MSBs in ACCUMO are set. RO 0x0
22 Reserved. = =
21 BLEND: Only present on INTERPO on each core. If BLEND mode is enabled: RW 0x0
- LANET result is a linear interpolation between BASEQ and BASE1, controlled
by the 8 LSBs of lane 1 shift and mask value (a fractional number between
0 and 255/256ths)
- LANEQO result does not have BASEOQ added (yields only the 8 LSBs of lane 1
shift+mask value)
- FULL result does not have lane 1 shift+mask value added (BASE2 + lane 0
shift+mask)
LANE1 SIGNED flag controls whether the interpolation is signed or unsigned.
20:19 FORCE_MSB: ORed into bits 29:28 of the lane result presented to the RW 0x0
processor on the bus.
No effect on the internal 32-bit datapath. Handy for using a lane to generate
sequence
of pointers into flash or SRAM.
18 ADD_RAW: If 1, mask + shift is bypassed for LANEO result. This does not RW 0x0
affect FULL result.
17 CROSS_RESULT: If 1, feed the opposite lane’s result into this lane’s RW 0x0
accumulator on POP.
16 CROSS_INPUT: If 1, feed the opposite lane’s accumulator into this lane’s shift | RW 0x0
+ mask hardware.
Takes effect even if ADD_RAW is set (the CROSS_INPUT mux is before the
shift+mask bypass)
15 SIGNED: If SIGNED is set, the shifted and masked accumulator value is sign- | RW 0x0

extended to 32 bits
before adding to BASEO, and LANEQO PEEK/POP appear extended to 32 bits
when read by processor.

2.3. Processor subsystem

54

RP2040 Datasheet
]

Bits Description Type Reset

14:10 MASK_MSB: The most-significant bit allowed to pass by the mask (inclusive) |RW 0x00
Setting MSB < LSB may cause chip to turn inside-out

9:5 MASK_LSB: The least-significant bit allowed to pass by the mask (inclusive) | RW 0x00

4:0 SHIFT: Logical right-shift applied to accumulator before masking RW 0x00

SI0: INTERPO_CTRL_LANE1 Register
Offset: 0x0b0

Description

Control register for lane 1

Table 55. Bits Description Type Reset
INTERPO_CTRL_LANE
1 Register 31:21 | Reserved. - -
20:19 FORCE_MSB: ORed into bits 29:28 of the lane result presented to the RW 0x0
processor on the bus.
No effect on the internal 32-bit datapath. Handy for using a lane to generate
sequence
of pointers into flash or SRAM.
18 ADD_RAW: If 1, mask + shift is bypassed for LANET result. This does not RW 0x0
affect FULL result.
17 CROSS_RESULT: If 1, feed the opposite lane’s result into this lane’s RW 0x0
accumulator on POP.
16 CROSS_INPUT: If 1, feed the opposite lane’s accumulator into this lane’s shift | RW 0x0
+ mask hardware.
Takes effect even if ADD_RAW is set (the CROSS_INPUT mux is before the
shift+mask bypass)
15 SIGNED: If SIGNED is set, the shifted and masked accumulator value is sign- | RW 0x0
extended to 32 bits
before adding to BASE1, and LANE1 PEEK/POP appear extended to 32 bits
when read by processor.
14:10 MASK_MSB: The most-significant bit allowed to pass by the mask (inclusive) |RW 0x00
Setting MSB < LSB may cause chip to turn inside-out
9:5 MASK_LSB: The least-significant bit allowed to pass by the mask (inclusive) | RW 0x00
4:0 SHIFT: Logical right-shift applied to accumulator before masking RW 0x00
SI10: INTERPO_ACCUMO_ADD Register
Offset: 0x0b4
Table 60. Bits Description Type Reset
INTERPO_ACCUMO_AD
D Register 31:24 | Reserved. - -
23:0 Values written here are atomically added to ACCUMO RW 0x000000
Reading yields lane 0’s raw shift and mask value (BASEO not added).

SIO: INTERPO_ACCUM1_ADD Register

Offset: 0x0b8

2.3. Processor subsystem 55

RP2040 Datasheet
]

Table 61.
INTERPO_ACCUM1_AD
D Register

Table 62.
INTERPO_BASE_TAND
0 Register

Table 63.
INTERPT_ACCUMO
Register

Table 64.
INTERPT_ACCUM1
Register

Table 65.
INTERPT1_BASEO
Register

Table 66.
INTERPT_BASE1
Register

Table 67.
INTERP1_BASE2
Register

Bits Description Type Reset

31:24 | Reserved. = =

23:0 Values written here are atomically added to ACCUM1 RW 0x000000

Reading yields lane 1’s raw shift and mask value (BASE1 not added).

SIO: INTERPO_BASE_1ANDO Register
Offset: 0xObc

Bits Description Type Reset

31:0 On write, the lower 16 bits go to BASEOQ, upper bits to BASE1 simultaneously. | WO 0x00000000

Each half is sign-extended to 32 bits if that lane’s SIGNED flag is set.

SIO: INTERP1_ACCUMO Register
Offset: 0x0c0

Bits Description Type Reset

31:0 Read/write access to accumulator 0 RW 0x00000000
SIO: INTERP1_ACCUMT1 Register
Offset: 0x0c4

Bits Description Type Reset

31:0 Read/write access to accumulator 1 RW 0x00000000
SIO: INTERP1_BASEO Register
Offset: 0x0c8

Bits Description Type Reset

31:0 Read/write access to BASEOQ register. RW 0x00000000
SIO: INTERP1_BASET1 Register
Offset: 0x0Occ

Bits Description Type Reset

31:0 Read/write access to BASET register. RW 0x00000000
SIO: INTERP1_BASE2 Register
Offset: 0x0d0

Bits Description Type Reset

31:0 Read/write access to BASE2 register. RW 0x00000000

SIO: INTERP1_POP_LANEO Register

Offset: 0x0d4

2.3. Processor subsystem

56

RP2040 Datasheet

Table 66. Bits Description Type Reset
INTERP1_POP_LANEO
Register 31:0 Read LANEO result, and simultaneously write lane results to both RO 0x00000000
accumulators (POP).
SI0: INTERP1_POP_LANE1 Register
Offset: 0x0d8
Table 69 Bits Description Type Reset
INTERPT_POP_LANET
Register 31:0 Read LANET result, and simultaneously write lane results to both RO 0x00000000
accumulators (POP).
SI10: INTERP1_POP_FULL Register
Offset: 0x0dc
Table 70. Bits Description Type Reset
INTERP1_POP_FULL
Register 31:0 Read FULL result, and simultaneously write lane results to both accumulators | RO 0x00000000
(POP).
SIO: INTERP1_PEEK_LANEO Register
Offset: 0x0e0
Table 71. Bits Description Type Reset
INTERPT_PEEK_LANE
0 Register 31:0 Read LANEO result, without altering any internal state (PEEK). RO 0x00000000
SIO: INTERP1_PEEK_LANE1 Register
Offset: 0x0e4
Table 72. Bits Description Type Reset
INTERP1_PEEK_LANE
1 Register 31:0 Read LANET result, without altering any internal state (PEEK). RO 0x00000000
SI10: INTERP1_PEEK_FULL Register
Offset: 0x0e8
Table 73. Bits Description Type Reset
INTERP1_PEEK_FULL
Register 31:0 Read FULL result, without altering any internal state (PEEK). RO 0x00000000
SI0: INTERP1_CTRL_LANEO Register
Offset: 0xOec
Description
Control register for lane 0
Table 74. Bits Description Type Reset
INTERPT_CTRL_LANE
0 Register 31:26 |Reserved. - -
25 OVERF: Set if either OVERFO or OVERF1 is set. RO 0x0
24 OVERF1: Indicates if any masked-off MSBs in ACCUM1 are set. RO 0x0
23 OVERFO: Indicates if any masked-off MSBs in ACCUMO are set. RO 0x0

|
2.3. Processor subsystem

RP2040 Datasheet
]

Bits Description Type Reset
22 CLAMP: Only present on INTERP1 on each core. If CLAMP mode is enabled: RW 0x0
- LANEQO result is shifted and masked ACCUMO, clamped by a lower bound of
BASEO and an upper bound of BASE1.
- Signedness of these comparisons is determined by LANEO_CTRL_SIGNED
21 Reserved. = =
20:19 FORCE_MSB: ORed into bits 29:28 of the lane result presented to the RW 0x0
processor on the bus.
No effect on the internal 32-bit datapath. Handy for using a lane to generate
sequence
of pointers into flash or SRAM.
18 ADD_RAW: If 1, mask + shift is bypassed for LANEO result. This does not RW 0x0
affect FULL result.
17 CROSS_RESULT: If 1, feed the opposite lane’s result into this lane’s RW 0x0
accumulator on POP.
16 CROSS_INPUT: If 1, feed the opposite lane’s accumulator into this lane’s shift | RW 0x0
+ mask hardware.
Takes effect even if ADD_RAW is set (the CROSS_INPUT mux is before the
shift+mask bypass)
15 SIGNED: If SIGNED is set, the shifted and masked accumulator value is sign- | RW 0x0
extended to 32 bits
before adding to BASEO, and LANEO PEEK/POP appear extended to 32 bits
when read by processor.
14:10 MASK_MSB: The most-significant bit allowed to pass by the mask (inclusive) |RW 0x00
Setting MSB < LSB may cause chip to turn inside-out
9:5 MASK_LSB: The least-significant bit allowed to pass by the mask (inclusive) RW 0x00
4:0 SHIFT: Logical right-shift applied to accumulator before masking RW 0x00
SI0: INTERP1_CTRL_LANE1 Register
Offset: 0x0f0
Description
Control register for lane 1
Table 75. Bits Description Type Reset
INTERP1_CTRL_LANE
1 Register 31:21 | Reserved. - -
20:19 FORCE_MSB: ORed into bits 29:28 of the lane result presented to the RW 0x0
processor on the bus.
No effect on the internal 32-bit datapath. Handy for using a lane to generate
sequence
of pointers into flash or SRAM.
18 ADD_RAW: If 1, mask + shift is bypassed for LANE1 result. This does not RW 0x0
affect FULL result.
17 CROSS_RESULT: If 1, feed the opposite lane’s result into this lane’s RW 0x0
accumulator on POP.

2.3. Processor subsystem

58

RP2040 Datasheet
]

Table 76.
INTERP1_ACCUMO_AD
D Register

Table 77.
INTERP1_ACCUM1_AD
D Register

Table 78.
INTERP1_BASE_TAND
0 Register

Table 79. SPINLOCKO,
SPINLOCKT, ...,
SPINLOCK30,
SPINLOCK31
Registers

Bits Description Type Reset
16 CROSS_INPUT: If 1, feed the opposite lane’s accumulator into this lane’s shift | RW 0x0
+ mask hardware.
Takes effect even if ADD_RAW is set (the CROSS_INPUT mux is before the
shift+mask bypass)
15 SIGNED: If SIGNED is set, the shifted and masked accumulator value is sign- | RW 0x0
extended to 32 bits
before adding to BASE1, and LANE1 PEEK/POP appear extended to 32 bits
when read by processor.
14:10 MASK_MSB: The most-significant bit allowed to pass by the mask (inclusive) |RW 0x00
Setting MSB < LSB may cause chip to turn inside-out
9:5 MASK_LSB: The least-significant bit allowed to pass by the mask (inclusive) RW 0x00
4:0 SHIFT: Logical right-shift applied to accumulator before masking RW 0x00
SIO: INTERP1_ACCUMO_ADD Register
Offset: 0x0f4
Bits Description Type Reset
31:24 Reserved. = =
23:0 Values written here are atomically added to ACCUMO RW 0x000000
Reading yields lane 0’s raw shift and mask value (BASEOQ not added).
SI0: INTERP1_ACCUM1_ADD Register
Offset: 0x0f8
Bits Description Type Reset
31:24 Reserved. = =
23:0 Values written here are atomically added to ACCUM1 RW 0x000000
Reading yields lane 1’s raw shift and mask value (BASE1 not added).
SI10: INTERP1_BASE_1ANDO Register
Offset: 0x0fc
Bits Description Type Reset
31:0 On write, the lower 16 bits go to BASEQ, upper bits to BASE1 simultaneously. | WO 0x00000000

Each half is sign-extended to 32 bits if that lane’s SIGNED flag is set.

SIO: SPINLOCKO, SPINLOCKT, ..., SPINLOCK30, SPINLOCK31 Registers

Offsets: 0x100, 0x104, ..., 0x178, 0x17¢c

|
2.3. Processor subsystem

59

RP2040 Datasheet
]

Table 80. Interrupts

Bits Description Reset

Type

31:0 Reading from a spinlock address will: RW 0x00000000
- Return 0 if lock is already locked

- Otherwise return nonzero, and simultaneously claim the lock

Writing (any value) releases the lock.

If core 0 and core 1 attempt to claim the same lock simultaneously, core 0
wins.

The value returned on success is 0x1 << lock number.

2.3.2. Interrupts

Each core is equipped with a standard ARM Nested Vectored Interrupt Controller (NVIC) which has 32 interrupt inputs.
Each NVIC has the same interrupts routed to it, with the exception of the GPIO interrupts: there is one GPIO interrupt per
bank, per core. These are completely independent, so e.g. core 0 can be interrupted by GPIO 0 in bank 0, and core 1 by
GPIO 1 in the same bank.

On RP2040, only the lower 26 IRQ signals are connected on the NVIC, and IRQs 26 to 31 are tied to zero (never firing).
The core can still be forced to enter the relevant interrupt handler by writing bits 26 to 31 in the NVIC ISPR register.

IRQ | Interrupt Source IRQ | Interrupt Source IRQ | Interrupt Source IRQ | Interrupt Source IRQ | Interrupt Source
0 | TIMER_IRQ_O 6 XIP_IRQ 12 | DMA_IRQ_1 18 | SPI0_IRQ 24 | 1201_IRQ
1 TIMER_IRQ_1 7 PI00_IRQ 0 13 | I0_IRQ_BANK® 19 | SPI1_IRQ 25 | RTC_IRQ
2 TIMER_IRQ_2 8 PI00_IRQ_1 14 | 10_IRQ_QSPI 20 | UART@_IRQ
3 TIMER_IRQ_3 9 PI01_IRQ_0 15 | SIO_IRQ_PROCO 21 | UARTT_IRQ
4 | PWM_IRQ_WRAP 10 | PIO1_IRQ1 16 | SIO_IRQ_PROC1 22 | ADC_IRQ_FIFO
5 USBCTRL_IRQ 11 | DMA_IRQ_@ 17 | CLOCKS_IRQ 23 | 1200_IRQ
© NoTE

XIP_IRQ is from the SSI block that makes up part of the XIP block. It could be used in a configuration where code is
running from SRAM instead of flash. In this configuration, the XIP block could be used as a normal SSI peripheral.

Nested interrupts are supported in hardware: a lower-priority interrupt can be preempted by a higher-priority interrupt (or
another exception e.g. HardFault), and the lower-priority interrupt will resume once higher-priority exceptions have
completed. The priority order is determined by:

® First, the dynamic priority level configured per interrupt by the NVIC_IPR0-7 registers. The Cortex-M0+ implements
the two most significant bits of an 8-bit priority field, so four priority levels are available, and the numerically-lowest
level (level 0) is the highest priority.

® Second, for interrupts with the same dynamic priority level, the lower-numbered IRQ has higher priority (using the
IRQ numbers given in the table above).

Some care has gone into arranging the RP2040 interrupt table to give a sensible default priority ordering, but individual
interrupts can be raised or lowered in priority, using NVIC_IPRO through NVIC_IPR7, to suit a particular use case.

The 26 system IRQ signals are masked (NMI mask) and then ORed together creating the NMI signal for the core. The
NMI mask for each core can be configured using PROCO_NMI_MASK and PROCT_NMI_MASK in the Syscfg register
block. Each of these registers has one bit for each system interrupt, and the each core’s NMI is asserted if a system
interrupt is asserted and the corresponding NMI mask bit is set for that core.

|
2.3. Processor subsystem 60

RP2040 Datasheet

A CAUTION

If the watchdog is armed, and some bits are set on the core 1 NMI mask, the RESETS block (and hence Syscfg)
should be included in the watchdog reset list. Otherwise, following a watchdog event, core 1 NMI may be asserted
when the core enter the bootrom. It is safe for core 0 to take an NMI when entering the bootrom (the handler will
clear the NMI mask).

2.3.3. Event Signals

The Cortex-MO0+ can enter a sleep state until an "event” (or interrupt) takes place, using the WFE instruction. It can also
generate events, using the SEV instruction. On RP2040 the event signals are cross-wired between the two processors, so
that an event sent by one processor will be received on the other.

O NoTE

The event flag is "sticky", so if both processors send an event (SEV) simultaneously, and then both go to sleep (WFE),
they will both wake immediately, rather than getting stuck in a sleep state.

While in a WFE (or WFI) sleep state, the processor can shut off its internal clock gates, consuming much less power. When
both processors are sleeping, and the DMA is inactive, RP2040 as a whole can enter a sleep state, disabling clocks on
unused infrastructure such as the busfabric, and waking automatically when one of the processors wakes. See Section
2.11.2.

2.3.4. Debug

The 2-wire Serial Wire Debug (SWD) port provides access to hardware and software debug features including:
® Loading firmware into SRAM or external flash memory
® Control of processor execution: run/halt, step, set breakpoints, other standard Arm debug functionality
® Access to processor architectural state
® Access to memory and memory-mapped 10 via the system bus

The SWD bus is exposed on two dedicated pins and is immediately available after power-on.

© NOTE

We recommend a max SWD frequency of 24MHz. This depends heavily on your setup. You may need to run much
slower (1MHz) depending on the quality and length of your cables.

Debug access is via independent DAPs (one per core) attached to a shared multidrop SWD bus (SWD v2). Each DAP will
only respond to debug commands if correctly addressed by a SWD TARGETSEL command; all others tristate their outputs.
Additionally, a Rescue DP (see Section 2.3.4.2) is available which is connected to system control features. Default
addresses of each debug port are given below:

® Core 0: 0x01002927
® Core 1: 0x11002927
® Rescue DP: 0xf1002927

The Instance IDs (top 4 bits of ID above) can be changed via a sysconfig register which may be useful in a multichip
application. However note that ID=0xf is reserved for the internal Rescue DP (see Section 2.3.4.2).

|
2.3. Processor subsystem 61

RP2040 Datasheet

Figure 10. RP2040
Debugging

sys.cfg proc0._dap.instid

Processors
i =" £
N N swo [oPo[AP]

«—— swoio MD—[{E— s
arbiter DAP_1
[core?

4
SWo

pam._restart sys.cfg proc1_dap_instid

2.3.4.1. Software control of SWD pins

The SWD pins for Core 0 and Core 1 can be bit-banged via registers in syscfg (see DBGFORCE). This means that Core 1
could run a USB application that allows debug of Core 0, or similar.

2.3.4.2. Rescue DP

The Rescue DP (debug port) is available over the SWD bus and is only intended for use in the specific case where the
chip has locked up, for example if code has been programmed into flash which permanently halts the system clock: in
such a case, the normal debugger can not communicate with the processors to return the system to a working state, so
more drastic action is needed. A rescue is invoked by setting the CDBGPWRUPREQ bit in the Rescue DP’s CTRL/STAT
register.

This causes a hard reset of the chip (functionally similar to a power-on-reset), and sets a flag in the Chip Level Reset
block to indicate that a rescue reset took place. The bootrom checks this flag almost immediately in the initial boot
process (before watchdog, flash or USB boot), acknowledges by clearing the bit, then halts the processor. This leaves
the system in a safe state, with the system clock running, so that the debugger can reattach to the cores and load fresh
code.

For a practical example of using the Rescue DP, see the Hardware design with RP2040 book.

2.4. Cortex-MO+

ARM Documentation

Excerpted from the Cortex-M0+ Technical Reference Manual. Used with permission.

The ARM Cortex-MO0+ processor is a very low gate count, highly energy efficient processor that is intended for
microcontroller and deeply embedded applications that require an area optimized, low-power processor.

2.4.1. Features

The ARM Cortex-M0+ processor features and benefits are:
® Tight integration of system peripherals reduces area and development costs.
® Thumb instruction set combines high code density with 32-bit performance.
® Support for single-cycle /0 access.
® Power control optimization of system components.
* |ntegrated sleep modes for low-power consumption.

® Fast code execution enables running the processor with a slower clock or increasing sleep mode time.

|
2.4. Cortex-MO+ 62

https://developer.arm.com/documentation/dgi0012/d/Implementation/Debug-and-system-power-up
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf
https://developer.arm.com/documentation/ddi0484/latest

RP2040 Datasheet
]

® Optimized code fetching for reduced flash and ROM power consumption.

® Hardware multiplier.

® Deterministic, high-performance interrupt handling for time-critical applications.
® Deterministic instruction cycle timing.

® Support for system level debug authentication.

® Serial Wire Debug reduces the number of pins required for debugging.

2.4.1.1. Interfaces

The interfaces included in the processor for external access include:
® External AHB-Lite interface to busfabric
® Debug Access Port (DAP)

* Single-cycle I/0 Port to SIO peripherals

2.4.1.2. Configuration

Each processor is configured with the following features:
® Architectural clock gating (for power saving)
® Little Endian bus access
® Four Breakpoints
® Debug support (via 2-wire debug pins SWD/SWCLK)
® 32-bit instruction fetch (to match 32-bit data bus)
® |OPORT (for low latency access to local peripherals (see SIO)
® 26 interrupts
® 8 MPU regions
® All registers reset on powerup
® Fast multiplier (MULS 32x32 single cycle)
® SysTick timer
® Vector Table Offset Register (VTOR)
® 34 WIC (Wake-up Interrupt Controller) lines (32 IRQ and NMI, RXEV)
® DAP feature: Halt event support
* DAP feature: SerialWire debug interface (protocol 2 with multidrop support)
® DAP feature: Micro Trace Buffer (MTB) is not implemented

Architectural clock gating allows the processor core to support SLEEP and DEEPSLEEP power states by disabling the
clock to parts of the processor core. Note that power gating is not supported.

Each MO0+ core has its own interrupt controller which can individually mask out interrupt sources as required. The same
interrupts are routed to both M0+ cores.

2.4.1.3. ARM architecture
The processor implements the ARMv6-M architecture profile. See the ARMv6-M Architecture Reference Manual, and for

|
2.4. Cortex-MO+ 63

https://developer.arm.com/documentation/ddi0419/latest/

RP2040 Datasheet

further details refer to the ARM Cortex MO+ Technical Reference Manual.

2.4.2. Functional Description

2.4.2.1. Overview

The Cortex-M0+ processor is a configurable, multistage, 32-bit RISC processor. It has an AMBA AHB-Lite interface and
includes an NVIC component. It also has hardware debug, single-cycle 1/0 interfacing, and memory-protection
functionality. The processor can execute Thumb code and is compatible with other Cortex-M profile processors.

Figure 11 shows the functional blocks of the processor and surrounding blocks.

Figure 11. Cortex M0+
Functional block Cortex-MO0+ subsystem

diagram AHB-Lite Master,
Clock

Single cycle 10 Port.

Cortex MO+ Core | MPU | |uu Interface)

Reset

Breakpoint and Debugger
watchpoint unit interface

A 4

Interrupts Serial Wire Debug
wic DAP

2.4.2.2. Features

The MO+ features:
® The ARMv6-M Thumb® instruction set.
® Thumb-2 technology.
® An ARMv6-M compliant 24-bit SysTick timer.
® A 32-bit hardware multiplier. This is the standard single-cycle multiplier
® The ability to have deterministic, fixed-latency, interrupt handling.
® |oad/store multiple instructions that can be abandoned and restarted to facilitate rapid interrupt handling.

® C Application Binary Interface compliant exception model. This is the ARMv6-M, C Application Binary Interface (C-
ABI) compliant exception model that enables the use of pure C functions as interrupt handlers.

® |ow power sleep-mode entry using Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or the return from
interrupt sleep-on-exit feature.

2.4.2.3. NVIC features

The Nested Vectored Interrupt Controller (NVIC) features are:
® 26 external interrupt inputs, each with four levels of priority.
® Dedicated Non-Maskable Interrupt (NMI) input (which can be driven from any standard interrupt source)
® Support for both level-sensitive and pulse-sensitive interrupt lines.
® Wake-up Interrupt Controller (WIC), providing ultra-low power sleep mode support.
® Relocatable vector table.

2.4. Cortex-MO+ 64

https://developer.arm.com/documentation/ddi0484/latest/

RP2040 Datasheet

O NoTE

The NVIC supports hardware nesting of exceptions, e.g. an interrupt handler may itself be interrupted if a higher-
priority interrupt request arrives whilst the handler is running.

Further details available in Section 2.4.5.

2.4.2.4. Debug features

Debug features are:

® Four hardware breakpoints.

Two watchpoints.

Program Counter Sampling Register (PCSR) for non-intrusive code profiling.

Single step and vector catch capabilities.

® Support for unlimited software breakpoints using BKPT instruction.

Non-intrusive access to core peripherals and zero-waitstate system slaves through a compact bus matrix. A
debugger can access these devices, including memory, even when the processor is running.

Full access to core registers when the processor is halted.

CoreSight compliant debug access through a Debug Access Port (DAP) supporting Serial Wire debug connections.

2.4.2.4.1. Debug Access Port

The processor is implemented with a low gate count Debug Access Port (DAP). The low gate count Debug Access Port
(DAP) provides a Serial Wire debug-port, and connects to the processor slave port to provide full system-level debug
access. For more information on DAP, see the ADI v5.1 version of the ARM Debug Interface v5, Architecture
Specification

2.4.2.5. MPU features

Memory Protection Unit (MPU) features are:
® Eight user-configurable memory regions.
® Eight sub-region disables per region.
® Execute never (XN) support.
® Default memory map support.

Further details available in Section 2.4.6.

2.4.2.6. AHB-Lite interface

Transactions on the AHB-Lite interface are always marked as non-sequential. Processor accesses and debug accesses
share the external interface to external AHB peripherals. The processor accesses take priority over debug accesses.
Any vendor-specific components can populate this bus.

2.4. Cortex-MO+

65

RP2040 Datasheet

O NoTE

Instructions are only fetched using the AHB-Lite interface. To optimize performance, the Cortex-M0+ processor
fetches ahead of the instruction it is executing. To minimize power consumption, the fetch ahead is limited to a
maximum of 32 bits.

2.4.2.7. Single-cycle 1/0 port

The processor implements a single-cycle /0 port that provides high speed access to tightly-coupled peripherals, such
as general-purpose-I/0 (GPIO). The port is accessible both by loads and stores from either the processor or the
debugger. You cannot execute code from the 1/0 port.

2.4.2.8. Power Management Unit

Each processor has its own Power Management Unit (PMU) which allows power saving by turning off clocks to parts of
the processor core. There are no separate power domains on RP2040.

The PMU runs from the processor clock which is controlled from the chip level clocks block. The PMU can control the
following clock domains within the processor:

® A debug clock containing the processor debug resources and the rest of the DAP.
® A system clock containing the NVIC.
® A processor clock containing the core and associated interfaces
Control is limited to clock enable/disable. When enabled, all domains run at the same clock speed.

The PMU also interfaces with the WIC, to ensure that power-down and wake-up behaviours are transparent to software
and work with clocking and sleeping requirements. This includes SLEEP or DEEPSLEEP support as controlled in SCR
register.

2.4.2.8.1. Power Management

RP2040 ARM Cortex MO+ uses ARMv6-M which supports the use of Wait For Interrupt (WFI) and Wait For Event (WFE)
instructions as part of system power management:

WFI provides a mechanism for hardware support of entry to one or more sleep states. Hardware can suspend execution
until a wakeup event occurs.

WFE provides a mechanism for software to suspend program execution until a wakeup condition occurs with minimal or
no impact on wakeup latency. Both WFI and WFE are hint instructions that might have no effect on program execution.
Normally, they are used in software idle loops that resume program execution only after an interrupt or event of interest
occurs.

NOTE

Code using WFE and WFI must handle any spurious wakeup events caused by a debug halt or other reasons.

Refer to the SDK and ARMv6-M guide for further information.

2.4.2.8.2. Wait For Event and Send Event

RP2040 can support software-based synchronization to system events using the Send-Event (SEV) and WFE hint
instructions. Software can:

® use the WWFE instruction to indicate that it is able to suspend execution of a process or thread until an event occurs,

permitting hardware to enter a low power state.

|
2.4. Cortex-MO+ 66

RP2040 Datasheet

* rely on a mechanism that is transparent to software and provides low latency wakeup.

The WFE mechanism relies on hardware and software working together to achieve energy saving. For example, stalling
execution of a processor until a device or another processor has set a flag:

® the hardware provides the mechanism to enter the WFE low-power state.
® software enters a polling loop to determine when the flag is set:
* the polling processor issues a WFE instruction as part of a polling loop if the flag is clear.
® anevent is generated (hardware interrupt or Send-Event instruction from another processor) when the flag is set.
WFE wake up events
The following events are WFE wake up events:
® the execution of an SEV instruction on the other processor
® any exception entering the pending state if SEVONPEND in the System Control Register is set to 1.
® an asynchronous exception at a priority that preempts any currently active exceptions.
® a debug event with debug enabled.
The Event Register

The Event Register is a single bit register. When set, an Event Register indicates that an event has occurred, since the
register was last cleared, that might prevent the processor having to suspend operation on issuing a WFE instruction. The
following conditions apply to the Event Register:

® Areset clears the Event Register.
* Any WFE wakeup event, or the execution of an exception return instruction, sets the Event Register.
® AFE instruction clears the Event Register.
® Software cannot read or write the value of the Event Register directly.
The Send-Event instruction

The Send-Event (SEV) instruction causes an event to be signalled to the other processor. The Send-Event instruction
generates a wakeup event.

The Wait For Event instruction
The action of the WFE instruction depends on the state of the Event Register:
¢ |f the Event Register is set, the instruction clears the register and returns immediately.

¢ |f the Event Register is clear the processor can suspend execution and enter a low-power state. It can remain in
that state until the processor detects a WFE wakeup event or a reset. When the processor detects a WFE wakeup
event, the WFE instruction completes.

WFE wakeup events can occur before a WFE instruction is issued. Software using the WFE mechanism must tolerate
spurious wake up events, including multiple wakeups.

2.4.2.8.3. Wait For Interrupt

RP2040 supports Wait For Interrupt through the hint instruction, WFI.

When a processor issues a WFI instruction it can suspend execution and enter a low-power state. It can remain in that
state until the processor detects one of the following WFI wake up events:

® Areset.

® An asynchronous exception at a priority that, if PRIMASK.PM was set to 0, would preempt any currently active
exceptions.

2.4. Cortex-MO+ 67

RP2040 Datasheet
]

Note

If PRIMASK.PM is set to 1, an asynchronous exception that has a higher group priority than any active exception
results in a WFI instruction exit. If the group priority of the exception is less than or equal to the execution group
priority, the exception is ignored.

® |f debug is enabled, a debug event.
® AWFI wakeup event.
The WFI instruction completes when the hardware detects a WFI wake up event.

The processor recognizes WFI wake up events only after issuing the WFI instruction.

2.4.2.8.4. Wakeup Interrupt Controller

The Wakeup Interrupt Controller (WIC) is used to wake the processor from a DEEPSLEEP state as controlled by the SCR
register. In a DEEPSLEEP state clocks to the processor core and NVIC are not running. It can take a few cycles to wake
from a DEEPSLEEP state.

The WIC takes inputs from the receive event signal (from the other processor), 32 interrupts lines, and NMI.

For more power saving, RP2040 supports system level power saving modes as defined in Section 2.11 which also
includes code examples.

2.4.2.9. Reset Control

The Cortex MO+ Reset Control block controls the following resets:
® Debug reset
® MO+ core reset
® PMU reset

After power up, both processors are released from reset (see details in Section 2.13.2). This releases reset to Debug,
MO+ core and PMU.

Once running, resets can be triggered from the Debugger, NVIC (using AIRCR.SYSRESETREQ), or the RP2040 Power On State
Machine controller (see details in Section 2.13). The NVIC only resets the Cortex-M0+ processor core (not the Debug or
PMU), whereas the Power On State Machine controller can reset the processor subsystem which asserts all resets in
the subsystem (Debug, M0+ core, PMU).

2.4.3. Programmer’s model

2.4.3.1. About the programmer’s model

The ARMv6-M Architecture Reference Manual provides a complete description of the programmer’s model. This chapter
gives an overview of the Cortex-MO+ programmer’s model that describes the implementation-defined options. It also
contains the ARMv6-M Thumb instructions it uses and their cycle counts for the processor. Additional details are in
following chapters

® Section 2.4.4 summarizes the system control features of the programmer’s model.
® Section 2.4.5 summarizes the NVIC features of the programmer’s model.

® Section 2.3.4 summarizes the Debug features of the programmer’s model.

|
2.4. Cortex-MO+ 68

RP2040 Datasheet
]

2.4.3.2. Modes of operation and execution

See the ARMv6-M Architecture Reference Manual for information about the modes of operation and execution.

2.4.3.3. Instruction set summary

The processor implements the ARMv6-M Thumb instruction set, including a number of 32-bit instructions that use
Thumb-2 technology. The ARMv6-M instruction set comprises:

® All of the 16-bit Thumb instructions from ARMv7-M excluding CBZ, CBNZ and IT.
® The 32-bit Thumb instructions BL, DMB, DSB, ISB, MRS and MSR.

Table 81 shows the Cortex-MO0+ instructions and their cycle counts. The cycle counts are based on a system with zero

wait-states.

Table B?' Cortex-MO+ Operation Description Assembler Cycles
instruction summary
Move 8-bit immediate MOVS Rd, #<imm> 1
Loto Lo MOVS Rd, Rm 1
Any to Any MOV Rd, Rm 1
Any to PC MOV PC, Rm 2
Add 3-bit immediate ADDS Rd, Rn, f<imm> 1
All registers Lo ADDS Rd, Rn, Rm 1
Any to Any ADD Rd, Rd, Rm 1
Any to PC ADD PC, PC, Rm 2
8-bit immediate ADDS Rd, Rd, #<imm> 1
With carry ADCS Rd, Rd, Rm 1
Immediate to SP ADD SP, SP, f<imm> 1
Form address from SP ADD Rd, SP, #<imm> 1
Form address from PC ADR Rd, <label> 1
Subtract Lo and Lo SUBS Rd, Rn, Rm 1
3-bit immediate SUBS Rd, Rn, #<imm> 1
8-bit immediate SUBS Rd, Rd, #<imm> 1
With carry SBCS Rd, Rd, Rm 1
Immediate from SP SUB SP, SP, #<imm> 1
Negate RSBS Rd, Rn, #0 1
Multiply Multiply MULS Rd, Rm, Rd 1
Compare Compare CMP Rn, Rm 1
Negative CMN Rn, Rm 1
Immediate CMP Rn, #<imm> 1
Logical AND ANDS Rd, Rd, Rm 1
Exclusive OR EORS Rd, Rd, Rm 1
OR ORRS Rd, Rd, Rm 1

2.4. Cortex-MO+

69

RP2040 Datasheet
]

Operation Description Assembler Cycles
Bit clear BICS Rd, Rd, Rm 1
Move NOT MVNS Rd, Rm 1
AND test TST Rn, Rm 1
Shift Logical shift left by immediate LSLS Rd, Rm, #<shift> 1
Logical shift left by register LSLS Rd, Rd, Rs 1
Logical shift right by immediate LSRS Rd, Rm, #<shift> 1
Logical shift right by register LSRS Rd, Rd, Rs 1
Arithmetic shift right ASRS Rd, Rm, #<shift> 1
Arithmetic shift right by register ASRS Rd, Rd, Rs 1
Rotate Rotate right by register RORS Rd, Rd, Rs 1
Load Word, immediate offset LDR Rd, [Rn, #<imm>] 2o0r1°
Halfword, immediate offset LDRH Rd, [Rn, #<imm>] 2or1°
Byte, immediate offset LDRB Rd, [Rn, #<imm>] 2o0r1°
Word, register offset LDR Rd, [Rn, Rm] 2or1°
Halfword, register offset LDRH Rd, [Rn, Rm] 2or1°
Signed halfword, register offset LDRSH Rd, [Rn, Rm] 2o0r1°
Byte, register offset LDRB Rd, [Rn, Rm] 2o0r1°
Signed byte, register offset LDRSB Rd, [Rn, Rm] 2or12
PC-relative LDR Rd, <label> 2or1°
SP-relative LDR Rd, [SP, #<imm>] 2or1°
Multiple, excluding base LDM Rn!, {<loreglist>} T+NP
Multiple, including base LDM Rn, {<loreglist>} T+NP
Store Word, immediate offset STR Rd, [Rn, #<imm>] 2or1°
Halfword, immediate offset STRH Rd, [Rn, #<imm>] 2or1°
Byte, immediate offset STRB Rd, [Rn, #<imm>] 2or1?
Word, register offset STR Rd, [Rn, Rm] 2or1°
Halfword, register offset STRH Rd, [Rn, Rm] 2o0r1°
Byte, register offset STRB Rd, [Rn, Rm] 2o0r1°
SP-relative STR Rd, [SP, f#<imm>] 2or1?
Multiple STM Rn!, {<loreglist>} T+NP
Push Push PUSH {<loreglist>} T+NP
Push with link register PUSH {<loreglist>, LR} T+Ne©
Pop Pop POP {<loreglist>} T+NP
Pop and return POP {<loreglist>, PC} 3+N°
Branch Conditional B<cc> <label> 1or2¢
Unconditional B <label> 2

2.4. Cortex-MO+

70

RP2040 Datasheet

Operation Description Assembler Cycles
With link BL <label> 3
With exchange BX Rm 2
With link and exchange BLX Rm 2
Extend Signed halfword to word SXTH Rd, Rm 1
Signed byte to word SXTB Rd, Rm 1
Unsigned halfword UXTH Rd, Rm 1
Unsigned byte UXTB Rd, Rm 1
Reverse Bytes in word REV Rd, Rm 1
Bytes in both halfwords REV16 Rd, Rm 1
Signed bottom half word REVSH Rd, Rm 1
State change Supervisor Call SVC #i<imm> -
Disable interrupts CPSID i 1
Enable interrupts CPSIE i 1
Read special register MRS Rd, <specreg> 3
Write special register MSR <specreg>, Rn 3
Breakpoint BKPT #<imm> -
Hint Send-Event SEV 1
Wait For Event WFE 2f
Wait For Interrupt WFI 2f
Yield YIELD 1"
No operation NOP 1
Barriers Instruction synchronization ISB 3
Data memory DMB 3
Data synchronization DSB 3
Table Notes

22 if to AHB interface or SCS, 1 if to single-cycle 1/0 port.

® N is the number of elements in the list.

N is the number of elements in the list including PC or LR.

42 if taken, 1 if not-taken.

¢ Cycle count depends on processor and debug configuration.
f Excludes time spent waiting for an interrupt or event.
9 Executes as NOP.

See the ARMv6-M Architecture Reference Manual for more information about the ARMv6-M Thumb instructions.

2.4.3.4. Memory model

The processor contains a bus matrix that arbitrates the processor core and Debug Access Port (DAP) memory

accesses to both the external memory system and to the internal NVIC and debug components.

Priority is always given to the processor to ensure that any debug accesses are as non-intrusive as possible. For a zero

2.4. Cortex-MO+

71

RP2040 Datasheet
]

Table 82. M0+ Default
memory map usage

Table 83. MO+
processor core
register set summary

wait-state system, all debug accesses to system memory, NVIC, and debug resources are completely non-intrusive for
typical code execution.

The system memory map is ARMv6-M architecture compliant, and is common both to the debugger and processor
accesses. Transactions are routed as follows:

® All accesses below 0xd0000000 or above 0xefffffff appear as AHB-Lite transactions on the AHB-Lite master port of
the processor.

® Accesses in the range 0xd0000000 to oxdfffffff are handled by the SIO.

® Accesses in the range 0xe0000000 to oxefffffff are handled within the processor and do not appear on the AHB-Lite
master port of the processor.

The processor supports only word size accesses in the range 0xd0000000 - Oxefffffff.

Table 82 shows the code, data, and device suitability for each region of the default memory map. This is the memory
map used by implementations when the MPU is disabled. The attributes and permissions of all regions, except that
targeting the Cortex-M0+ NVIC and debug components, can be modified using an implemented MPU.

Address range Code Data Device
0x0000000 - Oxffffffff No No Yes
0xe0000000 - Oxefffffff No No No?®
0xa0000000 - Oxdfffffff No No Yes
0x60000000 - Ox9f ff{ff Yes Yes No
0x40000000 - Ox5ffffff No No Yes
0x20000000 - Ox3fffffff Yes Yes No
0x00000000 - Ox1fffffff Yes Yes No

2. Space reserved for Cortex-M0+ NVIC and debug components.

Note

Regions not marked as suitable for code behave as eXecute-Never (XN) and generate a HardFault exception if code
attempts to execute from this location.

See the ARMv6-M Architecture Reference Manual for more information about the memory model.

2.4.3.5. Processor core registers summary

Table 83 shows the processor core register set summary. Each of these registers is 32 bits wide.

Name Description
RO-R12 R0-R12 are general-purpose registers for data operations.
MSP/PSP (R13) The Stack Pointer (SP) is register R13. In Thread mode,

the CONTROL register indicates the stack pointer to use,
Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

LR (R14) The Link Register (LR) is register R14. It stores the return
information for subroutines, function calls, and
exceptions.

PC (R15) The Program Counter (PC) is register R15. It contains the

current program address.

|
2.4. Cortex-MO+ 72

RP2040 Datasheet
]

Name Description

PSR The Program Status Register (PSR) combines:

® Application Program Status Register (APSR).
® Interrupt Program Status Register (IPSR).

® Execution Program Status Register (EPSR).

These registers provide different views of the PSR.

PRIMASK The PRIMASK register prevents activation of all
exceptions with configurable priority.

CONTROL The CONTROL register controls the stack used, the code
privilege level, when the processor is in Thread mode.

Note

See the ARMv6-M Architecture Reference Manual for information about the processor core registers and their
addresses, access types, and reset values.

2.4.3.6. Exceptions

This section describes the exception model of the processor.

2.4.3.6.1. Exception handling

The processor implements advanced exception and interrupt handling, as described in the ARMv6-M Architecture
Reference Manual. To minimize interrupt latency, the processor abandons any load-multiple or store-multiple instruction
to take any pending interrupt. On return from the interrupt handler, the processor restarts the load-multiple or store-
multiple instruction from the beginning.

This means that software must not use load-multiple or store-multiple instructions when a device is accessed in a
memory region that is read-sensitive or sensitive to repeated writes. The software must not use these instructions in
any case where repeated reads or writes might cause inconsistent results or unwanted side-effects.

The processor implementation can ensure that a fixed number of cycles are required for the NVIC to detect an interrupt
signal and the processor fetch the first instruction of the associated interrupt handler. If this is done, the highest priority
interrupt is jitter-free. This will depend on where the interrupt handler is located and if another higher priority master is
accessing that memory. SRAM4 and SRAMS5 are provided that may be allocated to interrupt handlers for each processor
so this is jitter-free.

To reduce interrupt latency and jitter, the Cortex-M0+ processor implements both interrupt late-arrival and interrupt tail-
chaining mechanisms, as defined by the ARMv6-M architecture. The worst case interrupt latency, for the highest priority
active interrupt in a zero wait-state system not using jitter suppression, is 15 cycles.

The processor exception model has the following implementation-defined behaviour in addition to the architecture
specified behaviour:

® Exceptions on stacking from HardFault to NMI lockup at NMI priority.

® Exceptions on unstacking from NMI to HardFault lockup at HardFault priority.

2.4.4. System control

|
2.4. Cortex-MO+ 73

RP2040 Datasheet

2.4.4.1. System control register summary

Table 84 gives the system control registers. Each of these registers is 32 bits wide.

Table 84. M0+ System
control registers

Name

Description

SYST_CSR

SysTick Control and Status Register

SYST_RVR

SysTick Reload Value Register

SYST_CVR

SysTick Current Value Register

SYST_CALIB

SysTick Calibration value Register

CPUID

See CPUID Register

ICSR

Interrupt Control State Register

AIRCR

Application Interrupt and Reset Control Register

CCR

Configuration and Control Register

SHPR2

System Handler Priority Register

SHPR3

System Handler Priority Register

SHCSR

System Handler Control and State Register

VTOR

Vector table Offset Register

ACTLR

Auxiliary Control Register

Note

® All system control registers are only accessible using word transfers. Any attempt to read or write a halfword
or byte is Unpredictable.

® See the List of Registers or ARMv6-M Architecture Reference Manual for more information about the system
control registers, and their addresses and access types, and reset values.

2.4.4.1.1. CPUID Register

The CPUID contains the part number, version, and implementation information that is specific to the processor.

© IMPORTANT

This standard internal Arm register contains information about the type of processor. It should not be confused with
CPUID (Section 2.3.1.1), an RP2040 SIO register which reads as 0 on core 0 and 1 on core 1.

2.4.5.NVIC

2.4.5.1. About the NVIC

External interrupt signals connect to the Nested Vectored Interrupt Controller (NVIC), and the NVIC prioritizes the
interrupts. Software can set the priority of each interrupt. The NVIC and the Cortex-M0+ processor core are closely
coupled, providing low latency interrupt processing and efficient processing of late arriving interrupts.

2.4. Cortex-MO+

74

RP2040 Datasheet

© NOTE

"Nested" refers to the fact that interrupts can themselves be interrupted, by higher-priority interrupts. "Vectored"
refers to the hardware dispatching each interrupt to a distinct handler routine, specified by the vector table. Details
of nesting and vectoring behaviour are given in the ARMv6-M Architecture Reference Manual.

All NVIC registers are only accessible using word transfers. Any attempt to read or write a halfword or byte individually
is unpredictable.

NVIC registers are always little-endian.

Processor exception handling is described in Exceptions section.

2.4.5.1.1. SysTick timer

A 24-bit SysTick system timer, extends the functionality of both the processor and the NVIC and provides:
® A 24-bit system timer (SysTick).
* Additional configurable priority SysTick interrupt.

The SysTick timer uses a Tps pulse as a clock enable. This is generated in the watchdog block as timer_tick. Accuracy
of SysTick timing depends upon accuracy of this timer_tick. The SysTick timer can also run from the system clock (see
SYST_CALIB).

See the ARMv6-M Architecture Reference Manual for more information.

2.4.5.1.2. Low power modes

The implementation includes a WIC. This enables the processor and NVIC to be put into a very low-power sleep mode
leaving the WIC to identify and prioritize interrupts.

The processor fully implements the Wait For Interrupt (WFI), Wait For Event (WFE) and the Send Event (SEV)
instructions. In addition, the processor also supports the use of SLEEPONEXIT, that causes the processor core to enter
sleep mode when it returns from an exception handler to Thread mode. See the ARMv6-M Architecture Reference
Manual for more information.

2.4.5.2. NVIC register summary

Table 85 shows the NVIC registers. Each of these registers is 32 bits wide.

Taéle 85. M0+ NVIC Name Description

registers
NVIC_ISER Interrupt Set-Enable Register.
NVIC_ICER Interrupt Clear-Enable Register.
NVIC_ISPR Interrupt Set-Pending Register.
NVIC_ICPR Interrupt Clear-Pending Register.
NVIC_IPRO - NVIC_IPR7 Interrupt Priority Registers.

Note

See the List of Registers or ARMv6-M Architecture Reference Manual for more information about the NVIC registers
and their addresses, access types, and reset values.

2.4. Cortex-MO+ 75

RP2040 Datasheet

2.4.6. MPU

2.4.6.1. About the MPU

The MPU is a component for memory protection which allows the processor to support the ARMv6 Protected Memory
System Architecture model. The MPU provides full support for:

® FEight unified protection regions.

® Qverlapping protection regions, with ascending region priority:
o 7 = highest priority.
o 0 =lowest priority.

® Access permissions.

® Exporting memory attributes to the system.

MPU mismatches and permission violations invoke the HardFault handler. See the ARMv6-M Architecture Reference
Manual for more information.

You can use the MPU to:
® Enforce privilege rules.
® Separate processes.

* Manage memory attributes.

2.4.6.2. MPU register summary

Table 86 shows the MPU registers. Each of these registers is 32 bits wide.

Tabk 86. MO+ MPU Name Description

registers
MPU_TYPE MPU Type Register.
MPU_CTRL MPU Control Register.
MPU_RNR MPU Region Number Register.
MPU_RBAR MPU Region Base Address Register.
MPU_RASR MPU Region Attribute and Size Register.

Note

® See the ARMv6-M Architecture Reference Manual for more information about the MPU registers and their
addresses, access types, and reset values.

® The MPU supports region sizes from 256-bytes to 4Gb, with 8-sub regions per region.

2.4.7. Debug

Basic debug functionality includes processor halt, single-step, processor core register access, Reset and HardFault
Vector Catch, unlimited software breakpoints, and full system memory access. See the ARMv6-M Architecture
Reference Manual.

The debug features for this device are:

® A breakpoint unit supporting 4 hardware breakpoints.

|
2.4. Cortex-MO+ 76

RP2040 Datasheet
]

* A watchpoint unit supporting 2 watchpoints.

2.4.8. List of Registers

The ARM Cortex-MO0+ registers start at a base address of 0xe0000000 (defined as PPB_BASE in SDK).

Table 87. List of
MOPLUS registers

Offset Name Info

0xe010 SYST_CSR SysTick Control and Status Register
0xe014 SYST_RVR SysTick Reload Value Register
0xe018 SYST_CVR SysTick Current Value Register
0xe01c SYST_CALIB SysTick Calibration Value Register
0xe100 NVIC_ISER Interrupt Set-Enable Register
0xe180 NVIC_ICER Interrupt Clear-Enable Register
0xe200 NVIC_ISPR Interrupt Set-Pending Register
0xe280 NVIC_ICPR Interrupt Clear-Pending Register
0xe400 NVIC_IPRO Interrupt Priority Register 0

Oxe404 NVIC_IPR1 Interrupt Priority Register 1

0xe408 NVIC_IPR2 Interrupt Priority Register 2

Oxe40c NVIC_IPR3 Interrupt Priority Register 3

0xe410 NVIC_IPR4 Interrupt Priority Register 4

Oxe414 NVIC_IPR5 Interrupt Priority Register 5

0xe418 NVIC_IPR6 Interrupt Priority Register 6

Oxedl1c NVIC_IPR7 Interrupt Priority Register 7

0xed00 CPUID CPUID Base Register

Oxed04 ICSR Interrupt Control and State Register
0xed08 VTOR Vector Table Offset Register
OxedOc AIRCR Application Interrupt and Reset Control Register
Oxed10 SCR System Control Register

Oxed14 CCR Configuration and Control Register
Oxedlc SHPR2 System Handler Priority Register 2
Oxed20 SHPR3 System Handler Priority Register 3
Oxed24 SHCSR System Handler Control and State Register
0xed90 MPU_TYPE MPU Type Register

Oxed94 MPU_CTRL MPU Control Register

0xed98 MPU_RNR MPU Region Number Register
Oxed9c MPU_RBAR MPU Region Base Address Register
Oxeda0 MPU_RASR MPU Region Attribute and Size Register

MOPLUS: SYST_CSR Register

2.4. Cortex-MO+

7

RP2040 Datasheet
]

Offset: 0xe010

Description

Use the SysTick Control and Status Register to enable the SysTick features.

Table 88. SYST_CSR
Register

Bits

Description

Type

Reset

31:17

Reserved.

16

COUNTFLAG: Returns 1 if timer counted to 0 since last time this was read.

Clears on read by application or debugger.

RO

0x0

15:3

Reserved.

CLKSOURCE: SysTick clock source. Always reads as one if SYST_CALIB

RW

0x0

reports NOREF.

Selects the SysTick timer clock source:
0 = External reference clock.

1 = Processor clock.

1 TICKINT: Enables SysTick exception request: RW 0x0
0 = Counting down to zero does not assert the SysTick exception request.
1 = Counting down to zero to asserts the SysTick exception request.

0 ENABLE: Enable SysTick counter: RW 0x0
0 = Counter disabled.
1 = Counter enabled.

MOPLUS: SYST_RVR Register
Offset: 0xe014

Description

Use the SysTick Reload Value Register to specify the start value to load into the current value register when the
counter reaches 0. It can be any value between 0 and 0xO0FFFFFF. A start value of 0 is possible, but has no effect
because the SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0. The reset value of this
register is UNKNOWN.

To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of N-1. For example,
if the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

Tabl_e 89. SYSTRVR Bits Description Type Reset
Register
31:24 Reserved. = =
23:0 RELOAD: Value to load into the SysTick Current Value Register when the RW 0x000000
counter reaches 0.

MOPLUS: SYST_CVR Register
Offset: 0xe018

Description

Use the SysTick Current Value Register to find the current value in the register. The reset value of this register is

UNKNOWN.
Table 90. SYST.CVR | pipe Description Type Reset
Register
31:24 Reserved. B B

|
2.4. Cortex-MO+ 78

RP2040 Datasheet

Bits Description Type Reset

23:0 CURRENT: Reads return the current value of the SysTick counter. This register | RW 0x000000
is write-clear. Writing to it with any value clears the register to 0. Clearing this
register also clears the COUNTFLAG bit of the SysTick Control and Status
Register.

MOPLUS: SYST_CALIB Register
Offset: Oxe01c

Description

Use the SysTick Calibration Value Register to enable software to scale to any required speed using divide and
multiply.

Table 91. SYST_CALIB

) Bits Description Type Reset
Register

31 NOREF: If reads as 1, the Reference clock is not provided - the CLKSOURCE bit | RO 0x0
of the SysTick Control and Status register will be forced to 1 and cannot be
cleared to 0.

30 SKEW: If reads as 1, the calibration value for 10ms is inexact (due to clock RO 0x0
frequency).

29:24 Reserved. - -

23:0 TENMS: An optional Reload value to be used for 10ms (100Hz) timing, subject | RO 0x000000
to system clock skew errors. If the value reads as 0, the calibration value is not
known.

MOPLUS: NVIC_ISER Register
Offset: 0xe100

Description

Use the Interrupt Set-Enable Register to enable interrupts and determine which interrupts are currently enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled,
asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt,
regardless of its priority.

Table 92. NVIC_ISER

) Bits Description Type Reset
Register

31:0 SETENA: Interrupt set-enable bits. RW 0x00000000
Write:

0 = No effect.

1 = Enable interrupt.
Read:

0 = Interrupt disabled.
1 = Interrupt enabled.

MOPLUS: NVIC_ICER Register
Offset: 0xe180

Description

Use the Interrupt Clear-Enable Registers to disable interrupts and determine which interrupts are currently enabled.

2.4. Cortex-MO+ 79

RP2040 Datasheet

Table 93. NVIC_ICER

) Bits Description Type Reset
Register

31:0 CLRENA: Interrupt clear-enable bits. RW 0x00000000
Write:

0 = No effect.

1 = Disable interrupt.

Read:

0 = Interrupt disabled.
1 = Interrupt enabled.

MOPLUS: NVIC_ISPR Register
Offset: 0xe200

Description

The NVIC_ISPR forces interrupts into the pending state, and shows which interrupts are pending.

Table 94. NVIC_ISPR

) Bits Description Type Reset
Register

31:0 SETPEND: Interrupt set-pending bits. RW 0x00000000
Write:

0 = No effect.

1 = Changes interrupt state to pending.

Read:

0 = Interrupt is not pending.

1 = Interrupt is pending.

Note: Writing 1 to the NVIC_ISPR bit corresponding to:

An interrupt that is pending has no effect.

A disabled interrupt sets the state of that interrupt to pending.

MOPLUS: NVIC_ICPR Register
Offset: 0xe280

Description

Use the Interrupt Clear-Pending Register to clear pending interrupts and determine which interrupts are currently
pending.

Tabl.e 95. NVIC_ICPR Bits Description Type Reset
Register

31:0 CLRPEND: Interrupt clear-pending bits. RW 0x00000000
Write:

0 = No effect.

1 = Removes pending state and interrupt.
Read:

0 = Interrupt is not pending.

1 = Interrupt is pending.

MOPLUS: NVIC_IPRO Register
Offset: 0xe400

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest
priority, and 3 is the lowest.

Note: Writing 1 to an NVIC_ICPR bit does not affect the active state of the corresponding interrupt.

These registers are only word-accessible

2.4. Cortex-MO+ 80

RP2040 Datasheet

;ZZ;;Z?‘ NVIC_IPRO Bits Description Type Reset
31:30 IP_3: Priority of interrupt 3 RW 0x0
29:24 Reserved. = =
23:22 IP_2: Priority of interrupt 2 RW 0x0
21:16 Reserved. = =
15:14 IP_1: Priority of interrupt 1 RW 0x0
13:8 Reserved. = S
7:6 IP_0: Priority of interrupt 0 RW 0x0
5:0 Reserved. = =

MOPLUS: NVIC_IPR1 Register
Offset: Oxe404

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest
priority, and 3 is the lowest.

;:Z::rz NVICIPRT | Bitg Description Type Reset
31:30 IP_7: Priority of interrupt 7 RW 0x0
29:24 | Reserved. = =
23:22 IP_6: Priority of interrupt 6 RW 0x0
21:16 Reserved. = =
15:14 IP_5: Priority of interrupt 5 RW 0x0
13:8 Reserved. = =
7:6 IP_4: Priority of interrupt 4 RW 0x0
5:0 Reserved. = =

MOPLUS: NVIC_IPR2 Register
Offset: 0xe408

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest
priority, and 3 is the lowest.

Table 98. NVIC_IPR2

) Bits Description Type Reset
Register

31:30 IP_11: Priority of interrupt 11 RW 0x0

29:24 Reserved. - -

23:22 IP_10: Priority of interrupt 10 RW 0x0

21:16 Reserved. - -

15:14 | IP_9: Priority of interrupt 9 RW 0x0

13:8 Reserved. - -

|
2.4. Cortex-MO+ 81

RP2040 Datasheet

Bits Description Type Reset
7:6 IP_8: Priority of interrupt 8 RW 0x0
5:0 Reserved. = =

MOPLUS: NVIC_IPR3 Register
Offset: Oxe40c

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

;Zzitzrg‘ NVIC_IPRS Bits Description Type Reset
31:30 IP_15: Priority of interrupt 15 RW 0x0
29:24 Reserved. = =
23:22 IP_14: Priority of interrupt 14 RW 0x0
21:16 Reserved. = =
15:14 IP_13: Priority of interrupt 13 RW 0x0
13:8 Reserved. = =
7:6 IP_12: Priority of interrupt 12 RW 0x0
5:0 Reserved. = =

MOPLUS: NVIC_IPR4 Register
Offset: 0xe410

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

;ZZ:;L?O‘ NVICIPR4 | Bitg Description Type Reset
31:30 IP_19: Priority of interrupt 19 RW 0x0
29:24 | Reserved. = =
23:22 IP_18: Priority of interrupt 18 RW 0x0
21:16 Reserved. = =
15:14 IP_17: Priority of interrupt 17 RW 0x0
13:8 Reserved. = =
7:6 IP_16: Priority of interrupt 16 RW 0x0
5:0 Reserved. = =

MOPLUS: NVIC_IPRS Register

Offset: Oxe414

2.4. Cortex-MO+ 82

RP2040 Datasheet
]

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

;:S::IT' NVICIPRS | Bitg Description Type Reset
31:30 IP_23: Priority of interrupt 23 RW 0x0
29:24 | Reserved. = =
23:22 IP_22: Priority of interrupt 22 RW 0x0
21:16 Reserved. = =
15114 IP_21: Priority of interrupt 21 RW 0x0
13:8 Reserved. = =
7:6 IP_20: Priority of interrupt 20 RW 0x0
5:0 Reserved. = =

MOPLUS: NVIC_IPR6 Register
Offset: 0xe418

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

Table 102. NVIC_IPR6

priority, and 3 is the lowest.

Register Bits Description Type Reset
31:30 IP_27: Priority of interrupt 27 RW 0x0
29:24 Reserved. = =
23:22 IP_26: Priority of interrupt 26 RW 0x0
21:16 Reserved. = =
15:14 IP_25: Priority of interrupt 25 RW 0x0
13:8 Reserved. = =
7:6 IP_24: Priority of interrupt 24 RW 0x0
5:0 Reserved. = =

MOPLUS: NVIC_IPR7 Register
Offset: Oxed1c

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

Tabl_e 103. NVIC_IPR7 | Bite Description Type Reset
Register
31:30 IP_31: Priority of interrupt 31 RW 0x0
29:24 Reserved. = =
23:22 IP_30: Priority of interrupt 30 RW 0x0
21:16 Reserved. = =

2.4. Cortex-MO+

83

RP2040 Datasheet

Bits Description Type Reset
15:14 IP_29: Priority of interrupt 29 RW 0x0
13:8 Reserved. = =

7:6 IP_28: Priority of interrupt 28 RW 0x0
5:0 Reserved. = =

MOPLUS: CPUID Register
Offset: Oxed00

Description

Read the CPU ID Base Register to determine: the ID number of the processor core, the version number of the
processor core, the implementation details of the processor core.

Table 104. CPUID

) Bits Description Type Reset
Register
31:24 IMPLEMENTER: Implementor code: 0x41 = ARM RO 0x41
23:20 VARIANT: Major revision number n in the rnpm revision status: RO 0x0
0x0 = Revision 0.
19:16 ARCHITECTURE: Constant that defines the architecture of the processor: RO Oxc
0xC = ARMv6-M architecture.
15:4 PARTNO: Number of processor within family: 0xC60 = Cortex-M0+ RO 0xc60
3:0 REVISION: Minor revision number m in the rnpm revision status: RO 0x1
0x1 = Patch 1.
MOPLUS: ICSR Register
Offset: Oxed04
Description
Use the Interrupt Control State Register to set a pending Non-Maskable Interrupt (NMI), set or clear a pending
PendSV, set or clear a pending SysTick, check for pending exceptions, check the vector number of the highest
priority pended exception, check the vector number of the active exception.
TabI‘e 105. 1CSR Bits Description Type Reset
Register
31 NMIPENDSET: Setting this bit will activate an NMI. Since NMl is the highest RW 0x0

priority exception, it will activate as soon as it is registered.

NMI set-pending bit.

Write:

0 = No effect.

1 = Changes NMI exception state to pending.

Read:

0 = NMI exception is not pending.

1 = NMI exception is pending.

Because NMI is the highest-priority exception, normally the processor enters
the NMI

exception handler as soon as it detects a write of 1 to this bit. Entering the
handler then clears

this bit to 0. This means a read of this bit by the NMI exception handler returns
1 only if the

NMI signal is reasserted while the processor is executing that handler.

2.4. Cortex-MO+

84

RP2040 Datasheet

Bits

Description

Type

Reset

30:29

Reserved.

28

PENDSVSET: PendSV set-pending bit.

Write:

0 = No effect.

1 = Changes PendSV exception state to pending.

Read:

0 = PendSV exception is not pending.

1 =PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to
pending.

RW

0x0

27

PENDSVCLR: PendSV clear-pending bit.

Write:

0 = No effect.

1 = Removes the pending state from the PendSV exception.

RW

0x0

26

PENDSTSET: SysTick exception set-pending bit.
Write:

0 = No effect.

1 = Changes SysTick exception state to pending.
Read:

0 = SysTick exception is not pending.

1 = SysTick exception is pending.

RW

0x0

25

PENDSTCLR: SysTick exception clear-pending bit.

Write:

0 = No effect.

1 = Removes the pending state from the SysTick exception.
This bit is WO. On a register read its value is Unknown.

RW

0x0

24

Reserved.

23

ISRPREEMPT: The system can only access this bit when the core is halted. It
indicates that a pending interrupt is to be taken in the next running cycle. If
C_MASKINTS is clear in the Debug Halting Control and Status Register, the
interrupt is serviced.

RO

0x0

22

ISRPENDING: External interrupt pending flag

RO

0x0

21

Reserved.

20:12

VECTPENDING: Indicates the exception number for the highest priority
pending exception: 0 = no pending exceptions. Non zero = The pending state
includes the effect of memory-mapped enable and mask registers. It does not
include the PRIMASK special-purpose register qualifier.

RO

0x000

Reserved.

8.0

VECTACTIVE: Active exception number field. Reset clears the VECTACTIVE
field.

RO

0x000

MOPLUS: VTOR Register

Offset: Oxed08

Description

The VTOR holds the vector table offset address.

2.4. Cortex-MO+

RP2040 Datasheet

Tab"e 106. VIOR Bits Description Type Reset
Register
31:8 TBLOFF: Bits [31:8] of the indicate the vector table offset address. RW 0x000000
7:0 Reserved. - -

MOPLUS: AIRCR Register
Offset: OxedOc

Description

Use the Application Interrupt and Reset Control Register to: determine data endianness, clear all active state

Table 107. AIRCR

information from debug halt mode, request a system reset.

) Bits Description Type Reset
Register
31:16 VECTKEY: Register key: RW 0x0000
Reads as Unknown
On writes, write 0xO5FA to VECTKEY, otherwise the write is ignored.
15 ENDIANESS: Data endianness implemented: RO 0x0
0 = Little-endian.
14:3 Reserved. = =
2 SYSRESETREQ: Writing 1 to this bit causes the SYSRESETREQ signal to the RW 0x0
outer system to be asserted to request a reset. The intention is to force a large
system reset of all major components except for debug. The C_HALT bit in the
DHCSR is cleared as a result of the system reset requested. The debugger
does not lose contact with the device.
1 VECTCLRACTIVE: Clears all active state information for fixed and RW 0x0
configurable exceptions. This bit: is self-clearing, can only be set by the DAP
when the core is halted. When set: clears all active exception status of the
processor, forces a return to Thread mode, forces an IPSR of 0. A debugger
must re-initialize the stack.
0 Reserved. - -
MOPLUS: SCR Register
Offset: Oxed10
Description
System Control Register. Use the System Control Register for power-management functions: signal to the system
when the processor can enter a low power state, control how the processor enters and exits low power states.
Table 108. SCR Bits Description Type Reset
Register
BilES Reserved. - -

|
2.4. Cortex-MO+ 86

RP2040 Datasheet

Bits

Description

Type

Reset

SEVONPEND: Send Event on Pending bit:

0 = Only enabled interrupts or events can wakeup the processor, disabled
interrupts are excluded.

1 = Enabled events and all interrupts, including disabled interrupts, can
wakeup the processor.

When an event or interrupt becomes pending, the event signal wakes up the
processor from WFE. If the

processor is not waiting for an event, the event is registered and affects the
next WFE.

The processor also wakes up on execution of an SEV instruction or an external
event.

RW

0x0

Reserved.

SLEEPDEEP: Controls whether the processor uses sleep or deep sleep as its
low power mode:

0 = Sleep.

1 = Deep sleep.

RW

0x0

SLEEPONEXIT: Indicates sleep-on-exit when returning from Handler mode to
Thread mode:

0 = Do not sleep when returning to Thread mode.

1 = Enter sleep, or deep sleep, on return from an ISR to Thread mode.

Setting this bit to 1 enables an interrupt driven application to avoid returning to
an empty main application.

RW

0x0

Reserved.

MOPLUS: CCR Register

Offset: Oxed14

Description

The Configuration and Control Register permanently enables stack alignment and causes unaligned accesses to
result in a Hard Fault.

Tab{e 109. CCR Bits Description Type Reset
Register
31:10 Reserved. = =
9 STKALIGN: Always reads as one, indicates 8-byte stack alignment on RO 0x0
exception entry. On exception entry, the processor uses bit[9] of the stacked
PSR to indicate the stack alignment. On return from the exception it uses this
stacked bit to restore the correct stack alignment.
8:4 Reserved. - -
3 UNALIGN_TRP: Always reads as one, indicates that all unaligned accesses RO 0x0
generate a HardFault.
2:0 Reserved. - -

MOPLUS: SHPR2 Register
Offset: Oxed1c

Description

System handlers are a special class of exception handler that can have their priority set to any of the priority levels.

2.4. Cortex-MO+ 87

RP2040 Datasheet

Use the System Handler Priority Register 2 to set the priority of SVCall.

Table 110. SHPR2

) Bits Description Type Reset
Register

31:30 PRI_11: Priority of system handler 11, SVCall RW 0x0

29:0 Reserved. - -

MOPLUS: SHPR3 Register
Offset: Oxed20

Description

System handlers are a special class of exception handler that can have their priority set to any of the priority levels.
Use the System Handler Priority Register 3 to set the priority of PendSV and SysTick.

Table 111. SHPR3

) Bits Description Type Reset
Register

31:30 PRI_15: Priority of system handler 15, SysTick RW 0x0

29:24 Reserved. - -

23:22 PRI_14: Priority of system handler 14, PendSV RW 0x0

21:0 Reserved. - -

MOPLUS: SHCSR Register
Offset: Oxed24

Description

Use the System Handler Control and State Register to determine or clear the pending status of SVCall.

Table 112. SHCSR

) Bits Description Type Reset
Register

31:16 Reserved. - -

15 SVCALLPENDED: Reads as 1 if SVCall is Pending. Write 1 to set pending RW 0x0
SVCall, write 0 to clear pending SVCall.

14:0 Reserved. - -

MOPLUS: MPU_TYPE Register
Offset: 0xed90

Description

Read the MPU Type Register to determine if the processor implements an MPU, and how many regions the MPU
supports.

Table 113. MPU_TYPE

) Bits Description Type Reset
Register

31:24 Reserved. - -

23:16 IREGION: Instruction region. Reads as zero as ARMv6-M only supports a RO 0x00
unified MPU.

15:8 DREGION: Number of regions supported by the MPU. RO 0x08

7:1 Reserved. = =

2.4. Cortex-MO+ 88

RP2040 Datasheet

Bits Description Type Reset

0 SEPARATE: Indicates support for separate instruction and data address RO 0x0
maps. Reads as 0 as ARMv6-M only supports a unified MPU.

MOPLUS: MPU_CTRL Register
Offset: Oxed94

Description

Use the MPU Control Register to enable and disable the MPU, and to control whether the default memory map is
enabled as a background region for privileged accesses, and whether the MPU is enabled for HardFaults and NMis.

Table 114. MPU_CTRL

) Bits Description Type Reset
Register

31:3 Reserved. - -

2 PRIVDEFENA: Controls whether the default memory map is enabled as a RW 0x0
background region for privileged accesses. This bit is ignored when ENABLE is
clear.

0 = If the MPU is enabled, disables use of the default memory map. Any
memory access to a location not

covered by any enabled region causes a fault.

1 = If the MPU is enabled, enables use of the default memory map as a
background region for privileged software accesses.

When enabled, the background region acts as if it is region number -1. Any
region that is defined and enabled has priority over this default map.

1 HFNMIENA: Controls the use of the MPU for HardFaults and NMls. Setting this | RW 0x0
bit when ENABLE is clear results in UNPREDICTABLE behaviour.

When the MPU is enabled:

0 = MPU is disabled during HardFault and NMI handlers, regardless of the
value of the ENABLE bit.

1 = the MPU is enabled during HardFault and NMI handlers.

0 ENABLE: Enables the MPU. If the MPU is disabled, privileged and unprivileged | RW 0x0
accesses use the default memory map.
0 = MPU disabled.
1=MPU enabled.

MOPLUS: MPU_RNR Register
Offset: 0xed98

Description

Use the MPU Region Number Register to select the region currently accessed by MPU_RBAR and MPU_RASR.

Table 115. MPU_.RNR

) Bits Description Type Reset
Register

31:4 Reserved. - -

3:0 REGION: Indicates the MPU region referenced by the MPU_RBAR and RW 0x0
MPU_RASR registers.

The MPU supports 8 memory regions, so the permitted values of this field are
0-7.

MOPLUS: MPU_RBAR Register

Offset: Oxed9c

2.4. Cortex-MO+ 89

RP2040 Datasheet

be updated.
;ZZ:;L:G‘ MPURBAR | Bits Description Type Reset
31:8 ADDR: Base address of the region. RW 0x000000
7:5 Reserved. = =
4 VALID: On writes, indicates whether the write must update the base address of | RW 0x0
the region identified by the REGION field, updating the MPU_RNR to indicate
this new region.
Write:
0 = MPU_RNR not changed, and the processor:
Updates the base address for the region specified in the MPU_RNR.
Ignores the value of the REGION field.
1 = The processor:
Updates the value of the MPU_RNR to the value of the REGION field.
Updates the base address for the region specified in the REGION field.
Always reads as zero.

3:0 REGION: On writes, specifies the number of the region whose base address to | RW 0x0
update provided VALID is set written as 1. On reads, returns bits [3:0] of
MPU_RNR.

Description

Read the MPU Region Base Address Register to determine the base address of the region identified by MPU_RNR.
Write to update the base address of said region or that of a specified region, with whose number MPU_RNR will also

MOPLUS: MPU_RASR Register
Offset: Oxeda0

Description

Use the MPU Region Attribute and Size Register to define the size, access behaviour and memory type of the region
identified by MPU_RNR, and enable that region.

Tab’_e 117. MPURASR | Bitg Description Type Reset
Register
31:16 ATTRS: The MPU Region Attribute field. Use to define the region attribute RW 0x0000
control.
28 = XN: Instruction access disable bit:
0 = Instruction fetches enabled.
1 = Instruction fetches disabled.
26:24 = AP: Access permission field
18 = S: Shareable bit
17 = C: Cacheable bit
16 = B: Bufferable bit
15:8 SRD: Subregion Disable. For regions of 256 bytes or larger, each bit of this RW 0x00
field controls whether one of the eight equal subregions is enabled.
7:6 Reserved. - -
5:1 SIZE: Indicates the region size. Region size in bytes = 2*(SIZE+1). The RW 0x00
minimum permitted value is 7 (b00111) = 256Bytes
0 ENABLE: Enables the region. RW 0x0

2.4. Cortex-MO+

90

RP2040 Datasheet

Figure 12. DMA
Architecture Overview.
The read master can
read data from some
address every clock
cycle. Likewise, the
write master can write
to another address.
The address generator
produces matched
pairs of read and write
addresses, which the
masters consume
through the address
FIFOs. Up to 12
transfer sequences
may be in progress
simultaneously,
supervised by
software via the
control and status
registers.

2.5.DMA

2.5. DMA

The RP2040 Direct Memory Access (DMA) controller has separate read and write master connections to the bus fabric,
and performs bulk data transfers on a processor’s behalf. This leaves processors free to attend to other tasks, or enter
low-power sleep states. The data throughput of the DMA is also significantly higher than one of RP2040’s processors.

fom AHB e Read «—— Read Address FIFO
System Master
Transfer Data FIFO Address Gererator le—s{ COTTOVStatUS AHB-lite
Registers Slave Interface
To AHB-lite
System T R | Write Address FIFO

The DMA can perform one read access and one write access, up to 32 bits in size, every clock cycle. There are 12
independent channels, each which supervise a sequence of bus transfers, usually in one of the following scenarios:

® Memory-to-peripheral: a peripheral signals the DMA when it needs more data to transmit. The DMA reads data from
an array in RAM or flash, and writes to the peripheral’s data FIFO.

® Peripheral-to-memory: a peripheral signals the DMA when it has received data. The DMA reads this data from the
peripheral’s data FIFO, and writes it to an array in RAM.

* Memory-to-memory: the DMA transfers data between two buffers in RAM, as fast as possible.

Each channel has its own control and status registers (CSRs), with which software can program and monitor the
channel’s progress. When multiple channels are active at the same time, the DMA shares bandwidth evenly between the
channels, with round-robin over all channels which are currently requesting data transfers.

The transfer size can be either 32, 16, or 8 bits. This is configured once per channel: source transfer size and
destination transfer size are the same. The DMA performs standard byte lane replication on narrow writes, so byte data
is available in all 4 bytes of the databus, and halfword data in both halfwords.

Channels can be combined in varied ways for more sophisticated behaviour and greater autonomy. For example, one
channel can configure another, loading configuration data from a sequence of control blocks in memory, and the
second can then call back to the first via the CHAIN_T0 option, when it needs to be reconfigured.

Making the DMA more autonomous means that much less processor supervision is required: overall this allows the
system to do more at once, or to dissipate less power.

2.5.1. Configuring Channels

Each channel has four control/status registers:
® READ_ADDR is a pointer to the next address to be read from
® \IRITE_ADDR is a pointer to the next address to be written to

® TRANS_COUNT shows the number of transfers remaining in the current transfer sequence, and is used to program the
number of transfers in the next transfer sequence (see Section 2.5.1.2).

® (TRL is used to configure all other aspects of the channel’s behaviour, to enable/disable it, and to check for
completion.

These are live registers: they update continuously as the channel progresses.

91

RP2040 Datasheet
]

2.5.1.1. Read and Write Addresses

READ_ADDR and WRITE_ADDR contain the address the channel will next read from, and write to, respectively. These registers
update automatically after each read/write access. They increment by 1, 2 or 4 bytes at a time, depending on the
transfer size configured in CTRL.

Software should generally program these registers with new start addresses each time a new transfer sequence starts.
If READ_ADDR and WRITE_ADDR are not reprogrammed, the DMA will use the current values as start addresses for the next
transfer. For example:

e |f the address does not increment (e.g. it is the address of a peripheral FIFO), and the next transfer sequence is
to/from that same address, there is no need to write to the register again.

® When transferring to/from a consecutive series of buffers in memory (e.g. scattering and gathering), an address
register will already have incremented to the start of the next buffer at the completion of a transfer.

By not programming all four CSRs for each transfer sequence, software can use shorter interrupt handlers, and more
compact control block formats when used with channel chaining (see register aliases in Section 2.5.2.1, chaining in
Section 2.5.2.2).

A CAUTION

READ_ADDR and WRITE_ADDR must always be aligned to the current transfer size, as specified in CTRL.DATA_SIZE. It is up to
software to ensure the initial values are correctly aligned.

2.5.1.2. Transfer Count

Reading from TRANS_COUNT yields the number of transfers remaining in the current transfer sequence. This value updates
continuously as the channel progresses. Writing to TRANS_COUNT sets the length of the next transfer sequence. Up to 2%%-1
transfers can be performed in one sequence.

Each time the channel starts a new transfer sequence, the most recent value written to TRANS_COUNT is copied to the live
transfer counter, which will then start to decrement again as the new transfer sequence makes progress. For debugging
purposes, the last value written can be read from the DBG_TCR (TRANS_COUNT reload value) register.

If the channel is triggered multiple times without intervening writes to TRANS_COUNT, it performs the same number of
transfers each time. For example, when chained to, one channel might load a fixed-size control block into another
channel’'s CSRs. TRANS_COUNT would be programmed once by software, and then reload automatically every time.

Alternatively, TRANS_COUNT can be written with a new value before starting each transfer sequence. If TRANS_COUNT is the
channel trigger (see Section 2.5.2.1), the channel will start immediately, and the value just written will be used, not the
value currently in the reload register.

O NoTE

The TRANS_COUNT is the number of transfers to be performed. The total number of bytes transferred is TRANS_COUNT
times the size of each transfer in bytes, given by CTRL.DATA_SIZE.

2.5.1.3. Control/Status
The CTRL register has more, smaller fields than the other 3 registers, and full details of these are given in the CTRL register
listings. Among other things, CTRL is used to:

® Configure the size of this channel’s data transfers, via CTRL.DATA_SIZE. Reads and writes are the same size.

® Configure if and how READ_ADDR and WRITE_ADDR increment after each read or write, via CTRL. INCR_WRITE, CTRL.INCR_READ,
CTRL.RING_SEL, CTRL.RING_SIZE. Ring transfers are available, where one of the address pointers wraps at some power-
of-2 boundary.

2.5.DMA 92

RP2040 Datasheet

® Select another channel (or none) to be triggered when this channel completes, via CTRL.CHAIN_TO.
® Select a peripheral data request (DREQ) signal to pace this channel's transfers, via CTRL.TREQ_SEL.
® See when the channel is idle, via CTRL.BUSY.

® See if the channel has encountered a bus error, e.g. due to a faulty address being accessed, via CTRL.AHB_ERROR,
CTRL.READ_ERROR, Or CTRL.WRITE_ERROR.

2.5.2. Starting Channels

There are three ways to start a channel:
® Writing to a channel trigger register
® A chain trigger from another channel which has just completed, and has its CHAIN_T0 field configured
® The MULTI_CHAN_TRIGGER register, which can start multiple channels at once

Each of these covers different use cases. For example, trigger registers are simple and efficient when configuring and
starting a channel in an interrupt service routine, and CHAIN_TO allows one channel to callback to another channel,
which can then reconfigure the first channel.

O NoOTE

Triggering a channel which is already running has no effect.

2.5.2.1. Aliases and Triggers

Table 118. Control -

register aliases. Each Offset +0x0 +0x4 +0x8 +0xC (Trlgger)

channel has four 0x00 (Alias 0) READ_ADDR WRITE_ADDR TRANS_COUNT CTRL_TRIG

control/status

registers. Each 0x10 (Alias 1) CTRL READ_ADDR WRITE_ADDR TRANS_COUNT_TRIG

register can be

e TP | 0x20 (Alias 2) CTRL TRANS_COUNT READ_ADDR WRITE_ADDR_TRIG
‘erent addresses. In

each naturally-aligned .

o affous allfour | 0X30 (Alias 3) CTRL WRITE_ADDR TRANS_COUNT READ_ADD_TRIG

registers appear, in
different orders.

2.5.DMA

The four CSRs are aliased multiple times in memory. Each alias — of which there are four — exposes the same four
physical registers, but in a different order. The final register in each alias (at offset +ox¢, highlighted) is a trigger register.
Writing to the trigger register starts the channel.

Often, only alias 0 is used, and aliases 1-3 can be ignored. The channel is configured and started by writing READ_ADDR,
WRITE_ADDR, TRANS_COUNT and finally CTRL. Since CTRL is the trigger register in alias 0, this starts the channel.

The other aliases allow more compact control block lists when using one channel to configure another, and more
efficient reconfiguration and launch in interrupt handlers:

® Each CSRis a trigger register in one of the aliases:

o When gathering fixed-size buffers into a peripheral, the DMA channel can be configured and launched by
writing only READ_ADDR_TRIG.

o When scattering from a peripheral to fixed-size buffers, the channel can be configured and launched by
writing only WRITE_ADDR_TRIG.

® Useful combinations of registers appear as naturally-aligned tuples which contain a trigger register. In conjunction
with channel chaining and address wrapping, these implement compressed control block formats, e.qg.:

o (WRITE_ADDR, TRANS_COUNT_TRIG) for peripheral scatter operations

93

RP2040 Datasheet
]

o (TRANS_COUNT, READ_ADDR_TRIG) for peripheral gather operations, or calculating CRCs on a list of buffers
o (READ_ADDR, WRITE_ADDR_TRIG) for manipulating fixed-size buffers in memory
Trigger registers do not start the channel if:

® The channel is disabled via CTRL.EN. (If the trigger is CTRL, the just-written value of EN is used, not the value currently
in the CTRL register.)

® The channel is already running

® The value 0 is written to the trigger register. (This is useful for ending control block chains. See null triggers,
Section 2.5.2.3)

2.5.2.2. Chaining

When a channel completes, it can name a different channel to immediately be triggered. This can be used as a callback
for the second channel to reconfigure and restart the first.

This feature is configured through the CHAIN_TO field in the channel CTRL register. This 4-bit value selects a channel that
will start when this one finishes. A channel can not chain to itself. Setting CHAIN_T0 to a channel’'s own index means no
chaining will take place.

Chain triggers behave the same as triggers from other sources, such as trigger registers. For example, they cause
TRANS_COUNT to reload, and they are ignored if the targeted channel is already running.

One application for CHAIN_T0 is for a channel to request reconfiguration by another channel, from a sequence of control
blocks in memory. Channel A is configured to perform a wrapped transfer from memory to channel B's control registers
(including a trigger register), and channel B is configured to chain back to channel A when it completes each transfer
sequence. This is shown more explicitly in the DMA control blocks example (Section 2.5.6.2).

Use of the register aliases (Section 2.5.2.1) enables compact formats for DMA control blocks: as little as one word in
some cases.

Another use of chaining is a "ping-pong" configuration, where two channels each trigger one another. The processor can
respond to the channel completion interrupts, and reconfigure each channel after it completes; however, the chained
channel, which has already been configured, starts immediately. In other words, channel configuration and channel
operation are pipelined. Performance can improve dramatically where many short transfer sequences are required.

The Section 2.5.6 goes into more detail on the possibilities of chain triggers, in the real world.

2.5.2.3. Null Triggers and Chain Interrupts

As mentioned in Section 2.5.2.1, writing all-zeroes to a trigger register does not start the channel. This is called a null
trigger, and it has two purposes:

® Cause a halt at the end of an array of control blocks, by appending an all-zeroes block
® Reduce the number of interrupts generated when control blocks are used

By default, a channel will generate an interrupt each time it finishes a transfer sequence, unless that channel’s IRQ is
masked in INTE@ or INTE1. The rate of interrupts can be excessive, particularly as processor attention is generally not
required while a sequence of control blocks are in progress; however, processor attention is required at the end of a
chain.

The channel CTRL register has a field called IRQ_QUIET. Its default value is 0. When this set to 1, channels generate an
interrupt when they receive a null trigger, and at no other time. The interrupt is generated by the channel which receives
the trigger.

2.5.DMA 94

RP2040 Datasheet
]

Table 119. DREQs

2.5.DMA

2.5.3. Data Request (DREQ)

Peripherals produce or consume data at their own pace. If the DMA simply transferred data as fast as possible, loss or
corruption of data would ensue. DREQs are a communication channel between peripherals and the DMA, which enables
the DMA to pace transfers according to the needs of the peripheral.

The CTRL.TREQ_SEL (transfer request) field selects an external DREQ. It can also be used to select one of the internal
pacing timers, or select no TREQ at all (the transfer proceeds as fast as possible), e.g. for memory-to-memory transfers.

2.5.3.1. System DREQ Table

There is a global assignment of DREQ numbers to peripheral DREQ channels.

DREQ | DREQ Channel |DREQ |DREQ Channel |DREQ | DREQ Channel |DREQ | DREQ Channel
0 DREQ_PI0@_TX0 10 DREQ_PIO1_TX2 20 DREQ_UARTO_TX 30 DREQ_PWM_WRAP6
1 DREQ_PI00_TX1 |11 DREQ_PIOT_TX3 |21 DREQ_UARTO_RX |31 DREQ_PWM_WRAP7
2 DREQ_PI00_TX2 |12 DREQ_PIO1_RXe |22 DREQ_UARTT_TX |32 DREQ_I2C0_TX

3 DREQ_PI00_TX3 |13 DREQ_PIO1_RX1 23 DREQ_UARTT_RX |33 DREQ_I2C@_RX

4 DREQ_PI0@_RX0 14 DREQ_PIO1_RX2 24 DREQ_PWM_WRAPO® | 34 DREQ_I2C1_TX

5 DREQ_PI00_RX1 15 DREQ_PIO1_RX3 |25 DREQ_PWM_WRAP1 |35 DREQ_I2C1_RX

6 DREQ_PI0O_RX2 |16 DREQ_SPIO_TX 26 DREQ_PWM_WRAP2 | 36 DREQ_ADC

7 DREQ_PI0@_RX3 17 DREQ_SPI@_RX 27 DREQ_PWM_WRAP3 |37 DREQ_XIP_STREAM
8 DREQ_PIO1_TX@ 18 DREQ_SPIT_TX 28 DREQ_PWM_WRAP4 | 38 DREQ_XIP_SSITX
9 DREQ_PIO1_TX1 19 DREQ_SPI1T_RX 29 DREQ_PWM_WRAP5 | 39 DREQ_XIP_SSIRX

2.5.3.2. Credit-based DREQ Scheme

The RP2040 DMA is designed for systems where:
® The area and power cost of large peripheral data FIFOs is prohibitive
® The bandwidth demands of individual peripherals may be high, e.g. >50% bus injection rate for short periods
® Bus latency is low, but multiple masters may be competing for bus access

In addition, the DMA's transfer FIFOs and dual-master structure permit multiple accesses to the same peripheral to be in
flight at once, to improve gross throughput. Choice of DREQ mechanism is therefore critical:

® The traditional "turn on the tap" method can cause overflow if multiple writes are backed up in the TDF. Some
systems solve this by overprovisioning peripheral FIFOs and setting the DREQ threshold below the full level, but
this wastes precious area and power

* The ARM-style single and burst handshake does not permit additional requests to be registered while the current
request is being served. This limits performance when FIFOs are very shallow.

The RP2040 DMA uses a credit-based DREQ mechanism. For each peripheral, the DMA attempts to keep as many
transfers in flight as the peripheral has capacity for. This enables full bus throughput (1 word per clock) through an 8-
deep peripheral FIFO with no possibility of overflow or underflow, in the absence of fabric latency or contention.

For each channel, the DMA maintains a counter. Each 1-clock pulse on the dreq signal will increment this counter
(saturating). When nonzero, the channel requests a transfer from the DMA’s internal arbiter, and the counter is
decremented when the transfer is issued to the address FIFOs. At this point the transfer is in flight, but has not yet
necessarily completed.

95

RP2040 Datasheet

Figure 13. DREQ

counting TR I I I) I B O I O
dreq /_ \ /
chan count 0 X 0) S O
chan issue /_ \ /_

The effect is to upper bound the number of in-flight transfers based on the amount of room or data available in the
peripheral FIFO. In the steady state, this gives maximum throughput, but can’t underflow or underflow.

One caveat is that the user must not access a FIFO which is currently being serviced by the DMA. This causes the
channel and peripheral to become desynchronised, and can cause corruption or loss of data.

Another caveat is that multiple channels should not be connected to the same DREQ.

2.5.4. Interrupts
Each channel can generate interrupts; these can be masked on a per-channel basis using the INTE@ or INTE1 registers.
There are two circumstances where a channel raises an interrupt request:

® On the completion of each transfer sequence, if CTRL.IRQ_QUIET is disabled

® On receiving a null trigger, if CTRL.IRQ_QUIET is enabled

The masked interrupt status is visible in the INTS registers; there is one bit for each channel. Interrupts are cleared by
writing a bit mask to INTS. One idiom for acknowledging interrupts is to read INTS and then write the same value back,
so only enabled interrupts are cleared.

The RP2040 DMA provides two system IRQs, with independent masking and status registers (e.g. INTE®, INTE1). Any
combination of channel interrupt requests can be routed to either system IRQ. For example:

® Some channels can be given a higher priority in the system interrupt controller, if they have particularly tight timing
requirements

* |n multiprocessor systems, different channel interrupts can be routed independently to different cores

For debugging purposes, the INTF registers can force either IRQ to be asserted.

2.5.5. Additional Features

2.5.5.1. Pacing Timers

These allow transfer of data roughly once every n clk_sys clocks instead of using external peripheral DREQ to trigger
transfers. A fractional (X/Y) divider is used, and will generate a maximum of 1 request per clk_sys cycle.

There are 4 timers available in RP2040. Each DMA is able to select any of these in CTRL.TREQ_SEL.

2.5.5.2. CRC Calculation

The DMA can watch data from a given channel passing through the data FIFO, and calculate checksums based on this
data. This a purely passive affair: the data is not altered by this hardware, only observed.

The feature is controlled via the SNIFF_CTRL and SNIFF_DATA registers, and can be enabled/disabled per DMA transfer via
the CTRL.SNIFF_EN field.

As this hardware cannot place backpressure on the FIFO, it must keep up with the DMA’s maximum transfer rate of 32
bits per clock.

The supported checksums are:

2.5.DMA 96

RP2040 Datasheet
]

® CRC-32, MSB-first and LSB-first

® CRC-16-CCITT, MSB-first and LSB-first

® Simple summation (add to 32-bit accumulator)

® Even parity
The result register is both readable and writable, so that the initial seed value can be set.
Bit/byte manipulations are available on the result which may aid specific use cases:

® Bitinversion

® Bitreversal

® Byte swap

These manipulations do not affect the CRC calculation, just how the data is presented in the result register.

2.5.5.3. Channel Abort

It is possible for a channel to get into an irrecoverable state: e.g. if commanded to transfer more data than a peripheral
will ever request, it will never complete. Clearing the CTRL.EN bit merely pauses the channel, and does not solve the
problem. This should not occur under normal circumstances, but it is important that there is a mechanism to recover
without simply hard-resetting the entire DMA block.

The CHAN_ABORT register forces channels to complete early. There is one bit for each channel, and writing a 1
terminates that channel. This clears the transfer counter and forces the channel into an inactive state.

A cAuTION

Due to RP2040-E13, aborting a DMA channel that is making progress (i.e. not stalled on an inactive DREQ) may
cause a completion IRQ to assert. The channel interrupt enable should be cleared before performing the abort, and
the interrupt should be checked and cleared after the abort.

At the time an abort is triggered, a channel may have bus transfers currently in flight between the read and write master,
and these transfers cannot be revoked. The CTRL.BUSY flag stays high until these transfers complete, and the channel
reaches a safe state, which generally takes only a few cycles. The channel must not be restarted until its CTRL.BUSY flag
deasserts. Starting a new sequence of transfers whilst transfers from an old sequence are still in flight can lead to
unpredictable behaviour.

2.5.5.4. Debug

Debug registers are available for each DMA channel to show the dreq counter DBG_CTDREQ and next transfer count DBG_TCR.
These can also be used to reset a DMA channel if required.

2.5.6. Example Use Cases

2.5.6.1. Using Interrupts to Reconfigure a Channel

When a channel finishes a block of transfers, it becomes available for making more transfers. Software detects that the
channel is no longer busy, and reconfigures and restarts the channel. One approach is to poll the CTRL_BUSY bit until the
channel is done, but this loses one of the key advantages of the DMA, namely that it does not have to operate in
lockstep with a processor. By setting the correct bit in INTE@ or INTET, we can instruct the DMA to raise one of its two
interrupt request lines when a given channel completes. Rather than repeatedly asking if a channel is done, we are told.

2.5.DMA 97

RP2040 Datasheet

O NoTE

Having two system interrupt lines allows different channel completion interrupts to be routed to different cores, or to
preempt one another on the same core if one channel is more time-critical.

When the interrupt is asserted, the processor can be configured to drop whatever it is doing and call a user-specified
handler function. The handler can reconfigure and restart the channel. When the handler exits, the processor returns to

the interrupted code running in the foreground.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/dma/channel_irq/channel_irq.c Lines 35 - 52

35 void dma_handler() {

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 }

static int pwm_level = 0;
static uint32_t wavetable[N_PWM_LEVELS];
static bool first_run = true;
// Entry number ‘i’ has ‘i’ one bits and (32 - i)' zero bits.
if (first_run) {

first_run = false;

for (int 1 = @; i < N_PWM_LEVELS; ++i)

wavetable[i] = ~(~Bu << 1i);

// Clear the interrupt request.

dma_hw->ints® = 1u << dma_chan;

// Give the channel a new wave table entry to read from, and re-trigger it
dma_channel_set_read_addr(dma_chan, &wavetable[pwm_level], true);

pwm_level = (pwm_level + 1) % N_PWM_LEVELS;

In many cases, most of the configuration can be done the first time the channel is started, and only addresses and
transfer lengths need reprogramming in the DMA handler.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/dma/channel_irq/channel_irq.c Lines 54 - 94

54 int main() {
55 #ifndef PICO_DEFAULT_LED_PIN
56 #warning dma/channel_irq example requires a board with a regular LED

57 #else

58 // Set up a PIO state machine to serialise our bits

59 uint offset = pio_add_program(pio®, &pio_serialiser_program);

60 pio_serialiser_program_init(pio®, @, offset, PICO_DEFAULT_LED_PIN, PIO_SERIAL_CLKDIV);
61

62 // Configure a channel to write the same word (32 bits) repeatedly to PI0@
63 // SMB's TX FIFO, paced by the data request signal from that peripheral.
64 dma_chan = dma_claim_unused_channel(true);

65 dma_channel_config ¢ = dma_channel_get_default_config(dma_chan);

66 channel_config_set_transfer_data_size(&c, DMA_SIZE_32);

67 channel_config_set_read_increment(&c, false);

68 channel_config_set_dreq(&c, DREQ_PI0O_TXO);

69

70 dma_channel_configure(

71 dma_chan,

72 &c,

73 &pio0_hw->txf[0], // Write address (only need to set this once)

74 NULL, // Don't provide a read address yet

75 PWM_REPEAT_COUNT, // Write the same value many times, then halt and interrupt
76 false // Don't start yet

77 B

78

2.5.DMA

98

https://github.com/raspberrypi/pico-examples/blob/master/dma/channel_irq/channel_irq.c#L35-L52
https://github.com/raspberrypi/pico-examples/blob/master/dma/channel_irq/channel_irq.c#L54-L94

RP2040 Datasheet
]

79 // Tell the DMA to raise IRQ line @ when the channel finishes a block

80 dma_channel_set_irg@_enabled(dma_chan, true);

81

82 // Configure the processor to run dma_handler() when DMA IRQ @ is asserted
83 irq_set_exclusive_handler (DMA_IRQ_O, dma_handler);

84 irq_set_enabled(DMA_IRQ_O, true);

85

86 // Manually call the handler once, to trigger the first transfer

87 dma_handler();

88

89 // Everything else from this point is interrupt-driven. The processor has
90 // time to sit and think about its early retirement -- maybe open a bakery?
91 while (true)

92 tight_loop_contents();

93 #endif

94 }

One disadvantage of this technique is that we don't start to reconfigure the channel until some time after the channel
makes its last transfer. If there is heavy interrupt activity on the processor, this may be quite a long time, and therefore
quite a large gap in transfers, which is problematic if we need to sustain a high data throughput.

This is solved by using two channels, with their CHAIN_T0 fields crossed over, so that channel A triggers channel B when it
completes, and vice versa. At any point in time, one of the channels is transferring data, and the other is either already
configured to start the next transfer immediately when the current one finishes, or it is in the process of being
reconfigured. When channel A completes, it immediately starts the cued-up transfer on channel B. At the same time, the
interrupt is fired, and the handler reconfigures channel A so that it is ready for when channel B completes.

2.5.6.2. DMA Control Blocks

Frequently, multiple smaller buffers must be gathered together and sent to the same peripheral. To address this use
case, the RP2040 DMA can execute a long and complex sequence of transfers without processor control. One channel
repeatedly reconfigures a second channel, and the second channel restarts the first each time it completes block of
transfers.

Because the first DMA channel is transferring data directly from memory to the second channel’s control registers, the
format of the control blocks in memory must match those registers. The last register written to, each time, will be one of
the trigger registers (Section 2.5.2.1) which will start the second channel on its programmed block of transfers. The
register aliases (Section 2.5.2.1) give some flexibility for the block layout, and more importantly allow some registers to
be omitted from the blocks, so they occupy less memory and can be loaded more quickly.

This example shows how multiple buffers can be gathered and transferred to the UART, by reprogramming TRANS_COUNT
and READ_ADDR_TRIG:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/dma/control_blocks/control_blocks.c

U g

2 * Copyright (c) 2626 Raspberry Pi (Trading) Ltd.

3 *

4 * SPDX-License-Identifier: BSD-3-Clause

5 =y

6

7 // Use two DMA channels to make a programmed sequence of data transfers to the
8 // UART (a data gather operation). One channel is responsible for transferring
9 // the actual data, the other repeatedly reprograms that channel.
10
11 #include <stdio.h>
12 #include "pico/stdlib.h"
13 #include "hardware/dma.h"
14 #include "hardware/structs/uart.h”

2.5.DMA 99

https://github.com/raspberrypi/pico-examples/blob/master/dma/control_blocks/control_blocks.c

RP2040 Datasheet

2.5.DMA

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

// These buffers will be DMA'd to the UART, one after the other.

const char word@[] = "Transferring ";

const char word1[] = "one ";

const char word2[] = "word ";

const char word3[] = "at ";

const char word4[] = "a ";

const char word5[] = "time.\n";

// Note the order of the fields here: it's important that the length is before

// the read address, because the control channel is going to write to the last
// two registers in alias 3 on the data channel:

// +0x0 +0x4 +0x8 +0xC (Trigger)

// Alias @: READ_ADDR WRITE_ADDR TRANS_COUNT CTRL

// Alias 1: CTRL READ_ADDR WRITE_ADDR TRANS_COUNT
// Alias 2: CTRL TRANS_COUNT ~ READ_ADDR WRITE_ADDR
// Alias 3: CTRL WRITE_ADDR TRANS_COUNT READ_ADDR

//

// This will program the transfer count and read address of the data channel,
// and trigger it. Once the data channel completes, it will restart the

// control channel (via CHAIN_TO) to load the next two words into its control
// registers.

const struct {uint32_t len; const char *data;} control_blocks[] = {

{count_of(word@) - 1, worde}, // Skip null terminator
{count_of(word1) - 1, wordl},
{count_of(word2) - 1, word2},
{count_of(word3) - 1, word3},
{count_of(word4) - 1, word4},
{count_of(word5) - 1, word5},

{0, NULL} // Null trigger to end chain.

b

int main() {
#ifndef uart_default
#warning dma/control_blocks example requires a UART
#else
stdio_init_all();
puts("DMA control block example:");

// ctrl_chan loads control blocks into data_chan, which executes them.
int ctrl_chan = dma_claim_unused_channel(true);
int data_chan = dma_claim_unused_channel(true);

// The control channel transfers two words into the data channel's control
// registers, then halts. The write address wraps on a two-word

// (eight-byte) boundary, so that the control channel writes the same two
// registers when it is next triggered.

dma_channel_config ¢ = dma_channel_get_default_config(ctrl_chan);
channel_config_set_transfer_data_size(&c, DMA_SIZE_32);
channel_config_set_read_increment(&c, true);
channel_config_set_write_increment(&c, true);

channel_config_set_ring(&c, true, 3); // 1 << 3 byte boundary on write ptr

dma_channel_configure(
ctrl_chan,
&c,
&dma_hw->ch[data_chan].al3_transfer_count, // Initial write address
&control_blocks[@], // Initial read address

2, // Halt after each control block

false // Don't start yet

100

RP2040 Datasheet

79

80 // The data channel is set up to write to the UART FIFO (paced by the

81 // UART's TX data request signal) and then chain to the control channel
82 // once it completes. The control channel programs a new read address and
83 // data length, and retriggers the data channel.

84

85 ¢ = dma_channel_get_default_config(data_chan);

86 channel_config_set_transfer_data_size(&c, DMA_SIZE_8);

87 channel_config_set_dreq(&c, uart_get_dreq(uart_default, true));

88 // Trigger ctrl_chan when data_chan completes

89 channel_config_set_chain_to(&c, ctrl_chan);

90 // Raise the IRQ flag when 0 is written to a trigger register (end of chain):
91 channel_config_set_irq_quiet(&c, true);

92

93 dma_channel_configure(

94 data_chan,

95 &c,

96 &uart_get_hw(uart_default)->dr

97 NULL, // Initial read address and transfer count are unimportant;
98 9, // the control channel will reprogram them each time.
99 false // Don't start yet.

100 E

101

102 // Everything is ready to go. Tell the control channel to load the first
103 // control block. Everything is automatic from here.

104 dma_start_channel_mask(1u << ctrl_chan);

105

106 // The data channel will assert its IRQ flag when it gets a null trigger,
107 // indicating the end of the control block list. We're just going to wait
108 // for the IRQ flag instead of setting up an interrupt handler.

109 while (!(dma_hw->intr & 1u << data_chan))

110 tight_loop_contents();

111 dma_hw->ints@® = 1u << data_chan;

112

113 puts("DMA finished.");

114 #endif

115 }

2.5.7. List of Registers

The DMA registers start at a base address of 0x50000000 (defined as DMA_BASE in SDK).

Table 12(.1 List of Offset Name Info
DMA registers
0x000 CHO_READ_ADDR DMA Channel 0 Read Address pointer
0x004 CHO_WRITE_ADDR DMA Channel 0 Write Address pointer
0x008 CHO_TRANS_COUNT DMA Channel 0 Transfer Count
0x00c CHO_CTRL_TRIG DMA Channel 0 Control and Status
0x010 CHO_AL1_CTRL Alias for channel 0 CTRL register
0x014 CHO_AL1_READ_ADDR Alias for channel 0 READ_ADDR register
0x018 CHO_ALT_WRITE_ADDR Alias for channel 0 WRITE_ADDR register
0x01c CHO_ALT_TRANS_COUNT_TRIG Alias for channel 0 TRANS_COUNT register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.
0x020 CHO_AL2_CTRL Alias for channel 0 CTRL register

2.5.DMA

101

RP2040 Datasheet

Offset

Name

Info

0x024

CHO_AL2_TRANS_COUNT

Alias for channel 0 TRANS_COUNT register

0x028

CHO_AL2_READ_ADDR

Alias for channel 0 READ_ADDR register

0x02c

CHO_AL2_WRITE_ADDR_TRIG

Alias for channel 0 WRITE_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x030

CHO_AL3_CTRL

Alias for channel 0 CTRL register

0x034

CHO_AL3_WRITE_ADDR

Alias for channel 0 WRITE_ADDR register

0x038

CHO_AL3_TRANS_COUNT

Alias for channel 0 TRANS_COUNT register

0x03c

CHO_AL3_READ_ADDR_TRIG

Alias for channel 0 READ_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x040

CH1_READ_ADDR

DMA Channel 1 Read Address pointer

0x044

CH1_WRITE_ADDR

DMA Channel 1 Write Address pointer

0x048

CHT1_TRANS_COUNT

DMA Channel 1 Transfer Count

0x04c

CH1_CTRL_TRIG

DMA Channel 1 Control and Status

0x050

CH1_AL1_CTRL

Alias for channel 1 CTRL register

0x054

CH1_AL1_READ_ADDR

Alias for channel 1 READ_ADDR register

0x058

CH1_ALT_WRITE_ADDR

Alias for channel 1 WRITE_ADDR register

0x05¢

CH1_ALT_TRANS_COUNT_TRIG

Alias for channel 1 TRANS_COUNT register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x060

CH1_AL2_CTRL

Alias for channel 1 CTRL register

0x064

CH1_AL2_TRANS_COUNT

Alias for channel 1 TRANS_COUNT register

0x068

CH1_AL2_READ_ADDR

Alias for channel 1 READ_ADDR register

0x06¢c

CH1_AL2_WRITE_ADDR_TRIG

Alias for channel 1 WRITE_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x070

CH1_AL3_CTRL

Alias for channel 1 CTRL register

0x074

CH1_AL3_WRITE_ADDR

Alias for channel 1 WRITE_ADDR register

0x078

CH1_AL3_TRANS_COUNT

Alias for channel 1 TRANS_COUNT register

0x07c

CH1_AL3_READ_ADDR_TRIG

Alias for channel 1 READ_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x080

CH2_READ_ADDR

DMA Channel 2 Read Address pointer

0x084

CH2_WRITE_ADDR

DMA Channel 2 Write Address pointer

0x088

CH2_TRANS_COUNT

DMA Channel 2 Transfer Count

0x08c

CH2_CTRL_TRIG

DMA Channel 2 Control and Status

0x090

CH2_AL1_CTRL

Alias for channel 2 CTRL register

0x094

CH2_AL1_READ_ADDR

Alias for channel 2 READ_ADDR register

2.5.DMA

102

RP2040 Datasheet

Offset

Name

Info

0x098

CH2_ALT1_WRITE_ADDR

Alias for channel 2 WRITE_ADDR register

0x09c¢

CH2_ALT1_TRANS_COUNT_TRIG

Alias for channel 2 TRANS_COUNT register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x0a0

CH2_AL2_CTRL

Alias for channel 2 CTRL register

0x0a4

CH2_AL2_TRANS_COUNT

Alias for channel 2 TRANS_COUNT register

0x0a8

CH2_AL2_READ_ADDR

Alias for channel 2 READ_ADDR register

0x0ac

CH2_AL2_WRITE_ADDR_TRIG

Alias for channel 2 WRITE_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x0b0

CH2_AL3_CTRL

Alias for channel 2 CTRL register

0x0b4

CH2_AL3_WRITE_ADDR

Alias for channel 2 WRITE_ADDR register

0x0b8

CH2_AL3_TRANS_COUNT

Alias for channel 2 TRANS_COUNT register

0x0bc

CH2_AL3_READ_ADDR_TRIG

Alias for channel 2 READ_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x0c0

CH3_READ_ADDR

DMA Channel 3 Read Address pointer

0x0c4

CH3_WRITE_ADDR

DMA Channel 3 Write Address pointer

0x0c8

CH3_TRANS_COUNT

DMA Channel 3 Transfer Count

0x0cc

CH3_CTRL_TRIG

DMA Channel 3 Control and Status

0x0d0

CH3_AL1_CTRL

Alias for channel 3 CTRL register

0x0d4

CH3_AL1_READ_ADDR

Alias for channel 3 READ_ADDR register

0x0d8

CH3_ALT1_WRITE_ADDR

Alias for channel 3 WRITE_ADDR register

0x0dc

CH3_ALT_TRANS_COUNT_TRIG

Alias for channel 3 TRANS_COUNT register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x0e0

CH3_AL2_CTRL

Alias for channel 3 CTRL register

0x0e4

CH3_AL2_TRANS_COUNT

Alias for channel 3 TRANS_COUNT register

0x0e8

CH3_AL2_READ_ADDR

Alias for channel 3 READ_ADDR register

0x0ec

CH3_AL2_WRITE_ADDR_TRIG

Alias for channel 3 WRITE_ADDR register
This is a trigger register (Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x0f0

CH3_AL3_CTRL

Alias for channel 3 CTRL register

0x0f4

CH3_AL3_WRITE_ADDR

Alias for channel 3 WRITE_ADDR register

0x0f8

CH3_AL3_TRANS_COUNT

Alias for channel 3 TRANS_COUNT register

0x0fc

CH3_AL3_READ_ADDR_TRIG

Alias for channel 3 READ_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x100

CH4_READ_ADDR

DMA Channel 4 Read Address pointer

0x104

CH4_WRITE_ADDR

DMA Channel 4 Write Address pointer

2.5.DMA

103

RP2040 Datasheet

Offset

Name

Info

0x108

CH4_TRANS_COUNT

DMA Channel 4 Transfer Count

0x10c

CH4_CTRL_TRIG

DMA Channel 4 Control and Status

0x110

CH4_AL1_CTRL

Alias for channel 4 CTRL register

0x114

CH4_AL1_READ_ADDR

Alias for channel 4 READ_ADDR register

0x118

CH4_ALT1_WRITE_ADDR

Alias for channel 4 WRITE_ADDR register

0x11c

CH4_ALT_TRANS_COUNT_TRIG

Alias for channel 4 TRANS_COUNT register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x120

CH4_AL2_CTRL

Alias for channel 4 CTRL register

0x124

CH4_AL2_TRANS_COUNT

Alias for channel 4 TRANS_COUNT register

0x128

CH4_AL2_READ_ADDR

Alias for channel 4 READ_ADDR register

0x12c

CH4_AL2_WRITE_ADDR_TRIG

Alias for channel 4 WRITE_ADDR register
This is a trigger register (Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x130

CH4_AL3_CTRL

Alias for channel 4 CTRL register

0x134

CH4_AL3_WRITE_ADDR

Alias for channel 4 WRITE_ADDR register

0x138

CH4_AL3_TRANS_COUNT

Alias for channel 4 TRANS_COUNT register

0x13c

CH4_AL3_READ_ADDR_TRIG

Alias for channel 4 READ_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x140

CHS5_READ_ADDR

DMA Channel 5 Read Address pointer

0x144

CHS5_WRITE_ADDR

DMA Channel 5 Write Address pointer

0x148

CHS5_TRANS_COUNT

DMA Channel 5 Transfer Count

0x14c

CHS5_CTRL_TRIG

DMA Channel 5 Control and Status

0x150

CH5_AL1_CTRL

Alias for channel 5 CTRL register

0x154

CH5_AL1_READ_ADDR

Alias for channel 5 READ_ADDR register

0x158

CHS5_ALT_WRITE_ADDR

Alias for channel 5 WRITE_ADDR register

0x15¢

CHS5_ALT_TRANS_COUNT_TRIG

Alias for channel 5 TRANS_COUNT register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x160

CH5_AL2_CTRL

Alias for channel 5 CTRL register

0x164

CHS5_AL2_TRANS_COUNT

Alias for channel 5 TRANS_COUNT register

0x168

CHS5_AL2_READ_ADDR

Alias for channel 5 READ_ADDR register

0x16¢

CHS5_AL2_WRITE_ADDR_TRIG

Alias for channel 5 WRITE_ADDR register
This is a trigger register (Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x170

CHS5_AL3_CTRL

Alias for channel 5 CTRL register

0x174

CHS5_AL3_WRITE_ADDR

Alias for channel 5 WRITE_ADDR register

0x178

CHS5_AL3_TRANS_COUNT

Alias for channel 5 TRANS_COUNT register

2.5.DMA

104

RP2040 Datasheet

Offset

Name

Info

0x17c

CHS5_AL3_READ_ADDR_TRIG

Alias for channel 5 READ_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x180

CH6_READ_ADDR

DMA Channel 6 Read Address pointer

0x184

CH6_WRITE_ADDR

DMA Channel 6 Write Address pointer

0x188

CH6_TRANS_COUNT

DMA Channel 6 Transfer Count

0x18c

CH6_CTRL_TRIG

DMA Channel 6 Control and Status

0x190

CH6_AL1_CTRL

Alias for channel 6 CTRL register

0x194

CH6_AL1_READ_ADDR

Alias for channel 6 READ_ADDR register

0x198

CH6_ALT_WRITE_ADDR

Alias for channel 6 WRITE_ADDR register

0x19c

CH6_ALT_TRANS_COUNT_TRIG

Alias for channel 6 TRANS_COUNT register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x1a0

CH6_AL2_CTRL

Alias for channel 6 CTRL register

OxT1a4

CH6_AL2_TRANS_COUNT

Alias for channel 6 TRANS_COUNT register

O0x1a8

CH6_AL2_READ_ADDR

Alias for channel 6 READ_ADDR register

OxTac

CH6_AL2_WRITE_ADDR_TRIG

Alias for channel 6 WRITE_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x1b0

CH6_AL3_CTRL

Alias for channel 6 CTRL register

0x1b4

CH6_AL3_WRITE_ADDR

Alias for channel 6 WRITE_ADDR register

0x1b8

CH6_AL3_TRANS_COUNT

Alias for channel 6 TRANS_COUNT register

Ox1bc

CH6_AL3_READ_ADDR_TRIG

Alias for channel 6 READ_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x1c0

CH7_READ_ADDR

DMA Channel 7 Read Address pointer

Ox1c4

CH7_WRITE_ADDR

DMA Channel 7 Write Address pointer

0x1c8

CH7_TRANS_COUNT

DMA Channel 7 Transfer Count

Ox1cc

CH7_CTRL_TRIG

DMA Channel 7 Control and Status

0x1d0

CH7_AL1_CTRL

Alias for channel 7 CTRL register

0x1d4

CH7_AL1_READ_ADDR

Alias for channel 7 READ_ADDR register

0x1d8

CH7_ALT1_WRITE_ADDR

Alias for channel 7 WRITE_ADDR register

0x1dc

CH7_ALT1_TRANS_COUNT_TRIG

Alias for channel 7 TRANS_COUNT register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x1e0

CH7_AL2_CTRL

Alias for channel 7 CTRL register

OxT1e4

CH7_AL2_TRANS_COUNT

Alias for channel 7 TRANS_COUNT register

0x1e8

CH7_AL2_READ_ADDR

Alias for channel 7 READ_ADDR register

2.5.DMA

105

RP2040 Datasheet

Offset

Name

Info

Oxlec

CH7_AL2_WRITE_ADDR_TRIG

Alias for channel 7 WRITE_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x1f0

CH7_AL3_CTRL

Alias for channel 7 CTRL register

0x1f4

CH7_AL3_WRITE_ADDR

Alias for channel 7 WRITE_ADDR register

0x1f8

CH7_AL3_TRANS_COUNT

Alias for channel 7 TRANS_COUNT register

Ox1fc

CH7_AL3_READ_ADDR_TRIG

Alias for channel 7 READ_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x200

CH8_READ_ADDR

DMA Channel 8 Read Address pointer

0x204

CH8_WRITE_ADDR

DMA Channel 8 Write Address pointer

0x208

CH8_TRANS_COUNT

DMA Channel 8 Transfer Count

0x20c

CH8_CTRL_TRIG

DMA Channel 8 Control and Status

0x210

CH8_AL1_CTRL

Alias for channel 8 CTRL register

0x214

CH8_AL1_READ_ADDR

Alias for channel 8 READ_ADDR register

0x218

CH8_ALT_WRITE_ADDR

Alias for channel 8 WRITE_ADDR register

0x21c

CH8_ALT_TRANS_COUNT_TRIG

Alias for channel 8 TRANS_COUNT register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x220

CH8_AL2_CTRL

Alias for channel 8 CTRL register

0x224

CH8_AL2_TRANS_COUNT

Alias for channel 8 TRANS_COUNT register

0x228

CH8_AL2_READ_ADDR

Alias for channel 8 READ_ADDR register

0x22c

CH8_AL2_WRITE_ADDR_TRIG

Alias for channel 8 WRITE_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x230

CH8_AL3_CTRL

Alias for channel 8 CTRL register

0x234

CH8_AL3_WRITE_ADDR

Alias for channel 8 WRITE_ADDR register

0x238

CH8_AL3_TRANS_COUNT

Alias for channel 8 TRANS_COUNT register

0x23c

CH8_AL3_READ_ADDR_TRIG

Alias for channel 8 READ_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x240

CH9_READ_ADDR

DMA Channel 9 Read Address pointer

0x244

CH9_WRITE_ADDR

DMA Channel 9 Write Address pointer

0x248

CHO9_TRANS_COUNT

DMA Channel 9 Transfer Count

0x24c

CH9_CTRL_TRIG

DMA Channel 9 Control and Status

0x250

CH9_AL1_CTRL

Alias for channel 9 CTRL register

0x254

CH9_AL1_READ_ADDR

Alias for channel 9 READ_ADDR register

0x258

CH9_ALT1_WRITE_ADDR

Alias for channel 9 WRITE_ADDR register

2.5.DMA

106

RP2040 Datasheet

Offset

Name

Info

0x25c

CH9_ALT_TRANS_COUNT_TRIG

Alias for channel 9 TRANS_COUNT register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x260

CH9_AL2_CTRL

Alias for channel 9 CTRL register

0x264

CH9_AL2_TRANS_COUNT

Alias for channel 9 TRANS_COUNT register

0x268

CH9_AL2_READ_ADDR

Alias for channel 9 READ_ADDR register

0x26c

CH9_AL2_WRITE_ADDR_TRIG

Alias for channel 9 WRITE_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x270

CH9_AL3_CTRL

Alias for channel 9 CTRL register

0x274

CH9_AL3_WRITE_ADDR

Alias for channel 9 WRITE_ADDR register

0x278

CH9_AL3_TRANS_COUNT

Alias for channel 9 TRANS_COUNT register

0x27c

CH9_AL3_READ_ADDR_TRIG

Alias for channel 9 READ_ADDR register
This is a trigger register (Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x280

CH10_READ_ADDR

DMA Channel 10 Read Address pointer

0x284

CH10_WRITE_ADDR

DMA Channel 10 Write Address pointer

0x288

CHT10_TRANS_COUNT

DMA Channel 10 Transfer Count

0x28c

CH10_CTRL_TRIG

DMA Channel 10 Control and Status

0x290

CH10_AL1_CTRL

Alias for channel 10 CTRL register

0x294

CH10_AL1_READ_ADDR

Alias for channel 10 READ_ADDR register

0x298

CHTO0_AL1_WRITE_ADDR

Alias for channel 10 WRITE_ADDR register

0x29c

CH10_ALT_TRANS_COUNT_TRIG

Alias for channel 10 TRANS_COUNT register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x2a0

CH10_AL2_CTRL

Alias for channel 10 CTRL register

0x2a4

CH10_AL2_TRANS_COUNT

Alias for channel 10 TRANS_COUNT register

0x2a8

CH10_AL2_READ_ADDR

Alias for channel 10 READ_ADDR register

0x2ac

CH10_AL2_WRITE_ADDR_TRIG

Alias for channel 10 WRITE_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x2b0

CHTO0_AL3_CTRL

Alias for channel 10 CTRL register

0x2b4

CH10_AL3_WRITE_ADDR

Alias for channel 10 WRITE_ADDR register

0x2b8

CH10_AL3_TRANS_COUNT

Alias for channel 10 TRANS_COUNT register

0x2bc

CH10_AL3_READ_ADDR_TRIG

Alias for channel 10 READ_ADDR register
This is a trigger register (Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x2c0

CH11_READ_ADDR

DMA Channel 11 Read Address pointer

0x2c4

CH11_WRITE_ADDR

DMA Channel 11 Write Address pointer

0x2c8

CH11_TRANS_COUNT

DMA Channel 11 Transfer Count

2.5.DMA

107

RP2040 Datasheet

Offset Name Info

0x2cc CH11_CTRL_TRIG DMA Channel 11 Control and Status

0x2d0 CH11_AL1_CTRL Alias for channel 11 CTRL register

0x2d4 CH11_AL1_READ_ADDR Alias for channel 11 READ_ADDR register

0x2d8 CH11_AL1_WRITE_ADDR Alias for channel 11 WRITE_ADDR register

0x2dc CH11_AL1_TRANS_COUNT_TRIG Alias for channel 11 TRANS_COUNT register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x2e0 CH11_AL2_CTRL Alias for channel 11 CTRL register

0x2e4 CH11_AL2_TRANS_COUNT Alias for channel 11 TRANS_COUNT register

0x2e8 CH11_AL2_READ_ADDR Alias for channel 11 READ_ADDR register

0x2ec CH11_AL2_WRITE_ADDR_TRIG Alias for channel 11 WRITE_ADDR register
This is a trigger register (0xc). Writing a nonzero value will
reload the channel counter and start the channel.

0x2f0 CH11_AL3_CTRL Alias for channel 11 CTRL register

0x2f4 CH11_AL3_WRITE_ADDR Alias for channel 11 WRITE_ADDR register

0x2f8 CH11_AL3_TRANS_COUNT Alias for channel 11 TRANS_COUNT register

0x2fc CH11_AL3_READ_ADDR_TRIG Alias for channel 11 READ_ADDR register
This is a trigger register (0Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

0x400 INTR Interrupt Status (raw)

0x404 INTEO Interrupt Enables for IRQ 0

0x408 INTFO Force Interrupts

0x40c INTSO Interrupt Status for IRQ 0

0x414 INTE1 Interrupt Enables for IRQ 1

0x418 INTF1 Force Interrupts for IRQ 1

0x41c INTS1 Interrupt Status (masked) for IRQ 1

0x420 TIMERO Pacing (X/Y) Fractional Timer
The pacing timer produces TREQ assertions at a rate set by
((X7Y) * sys_clk). This equation is evaluated every sys_clk cycles
and therefore can only generate TREQs at a rate of 1 per sys_clk
(i.e. permanent TREQ) or less.

0x424 TIMER1 Pacing (X/Y) Fractional Timer
The pacing timer produces TREQ assertions at a rate set by
((X7Y) * sys_clk). This equation is evaluated every sys_clk cycles
and therefore can only generate TREQs at a rate of 1 per sys_clk
(i.e. permanent TREQ) or less.

0x428 TIMER2 Pacing (X/Y) Fractional Timer
The pacing timer produces TREQ assertions at a rate set by
((X7Y) * sys_clk). This equation is evaluated every sys_clk cycles
and therefore can only generate TREQs at a rate of 1 per sys_clk
(i.e. permanent TREQ) or less.

2.5.DMA

108

RP2040 Datasheet
]

Offset Name Info

0x42c TIMER3 Pacing (X/Y) Fractional Timer

The pacing timer produces TREQ assertions at a rate set by
((X7Y) * sys_clk). This equation is evaluated every sys_clk cycles
and therefore can only generate TREQs at a rate of 1 per sys_clk
(i.e. permanent TREQ) or less.

0x430 MULTI_CHAN_TRIGGER Trigger one or more channels simultaneously

0x434 SNIFF_CTRL Sniffer Control

0x438 SNIFF_DATA Data accumulator for sniff hardware

0x440 FIFO_LEVELS Debug RAF, WAF, TDF levels

0x444 CHAN_ABORT Abort an in-progress transfer sequence on one or more channels
0x448 N_CHANNELS The number of channels this DMA instance is equipped with.

This DMA supports up to 16 hardware channels, but can be
configured with as few as one, to minimise silicon area.

0x800 CHO_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x804 CHO_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0x840 CH1_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x844 CH1_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0x880 CH2_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x884 CH2_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0x8c0 CH3_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x8c4 CH3_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0x900 CH4_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x904 CH4_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

2.5.DMA 109

RP2040 Datasheet

Offset Name Info

0x940 CH5_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x944 CH5_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0x980 CH6_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x984 CH6_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0x9c0 CH7_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0x9c4 CH7_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0xa00 CH8_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0xa04 CH8_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0xa40 CH9_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

Oxad4 CH9_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

0xa80 CH10_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

0xa84 CH10_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

Oxac0 CH11_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the
DMA expects it can perform on the peripheral without
overflow/underflow. Write any value: clears the counter, and
cause channel to re-initiate DREQ handshake.

Oxac4 CH11_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length
of the next transfer

DMA: CHO_READ_ADDR, CH1_READ_ADDR, .., CH10_READ_ADDR,
CH11_READ_ADDR Registers

Offsets: 0x000, 0x040, ..., 0x280, 0x2c0

2.5.DMA 110

RP2040 Datasheet
]

Description

DMA Channel N Read Address pointer

Table 121. Bits Description Type Reset
CHO_READ_ADDR,
CHI_READADDR, .., | 3.0 This register updates automatically each time a read completes. The current | RW 0x00000000

CHT0_READ_ADDR,

CH11_READADDR value is the next address to be read by this channel.

Registers
DMA: CHO_WRITE_ADDR, CH1_WRITE_ADDR, .., CH10_WRITE_ADDR,
CH11_WRITE_ADDR Registers
Offsets: 0x004, 0x044, ..., 0x284, 0x2c4
Description
DMA Channel N Write Address pointer
Table 122. Bits Description Type Reset
CHO_WRITE_ADDR,
EZ;BWM’;;T/?EAZL?;‘W 31:0 This register updates automatically each time a write completes. The current | RW 0x00000000
CHITWRITEADDR value is the next address to be written by this channel.

Registers

DMA: CHO_TRANS_COUNT, CH1_TRANS_COUNT, .., CH10_TRANS_COUNT,

CH11_TRANS_COUNT Registers

Offsets: 0x008, 0x048, ..., 0x288, 0x2c8

Description

DMA Channel N Transfer Count

Table 123. Bits Description Type Reset
CHO_TRANS_COUNT,
CHI_TRANS.COUNT, | 31:0 Program the number of bus transfers a channel will perform before halting. RW 0x00000000
E:’-ITO_TRANS_COUNT, Note that, if transfers are larger than one byte in size, this is not equal to the
CH11_TRANS_COUNT number of bytes transferred (see CTRL_DATA_SIZE).

Registers

When the channel is active, reading this register shows the number of
transfers remaining, updating automatically each time a write transfer
completes.

Writing this register sets the RELOAD value for the transfer counter. Each time
this channel is triggered, the RELOAD value is copied into the live transfer
counter. The channel can be started multiple times, and will perform the same
number of transfers each time, as programmed by most recent write.

The RELOAD value can be observed at CHx_DBG_TCR. If TRANS_COUNT is
used as a trigger, the written value is used immediately as the length of the
new transfer sequence, as well as being written to RELOAD.

DMA: CHO_CTRL_TRIG, CH1_CTRL_TRIG, . CH10_CTRL_TRIG,
CH11_CTRL_TRIG Registers

Offsets: 0x00c, 0x04c, ..., 0x28¢, 0x2cc

Description

DMA Channel N Control and Status

2.5.DMA 111

RP2040 Datasheet
]

Table 124.
CHO_CTRL_TRIG,

CHI1_CTRL_TRIG, ...,

CH10_CTRL_TRIG,
CH11_CTRL_TRIG
Registers

2.5.DMA

Bits Description Type Reset
31 AHB_ERROR: Logical OR of the READ_ERROR and WRITE_ERROR flags. The RO 0x0
channel halts when it encounters any bus error, and always raises its channel
IRQ flag.
30 READ_ERROR: If 1, the channel received a read bus error. Write one to clear. WC 0x0
READ_ADDR shows the approximate address where the bus error was
encountered (will not be earlier, or more than 3 transfers later)
29 WRITE_ERROR: If 1, the channel received a write bus error. Write one to clear. | WC 0x0
WRITE_ADDR shows the approximate address where the bus error was
encountered (will not be earlier, or more than 5 transfers later)
28:25 Reserved. - -
24 BUSY: This flag goes high when the channel starts a new transfer sequence, |RO 0x0
and low when the last transfer of that sequence completes. Clearing EN while
BUSY is high pauses the channel, and BUSY will stay high while paused.
To terminate a sequence early (and clear the BUSY flag), see CHAN_ABORT.
23 SNIFF_EN: If 1, this channel’s data transfers are visible to the sniff hardware, |RW 0x0
and each transfer will advance the state of the checksum. This only applies if
the sniff hardware is enabled, and has this channel selected.
This allows checksum to be enabled or disabled on a per-control- block basis.
22 BSWAP: Apply byte-swap transformation to DMA data. RW 0x0
For byte data, this has no effect. For halfword data, the two bytes of each
halfword are swapped. For word data, the four bytes of each word are
swapped to reverse order.
21 IRQ_QUIET: In QUIET mode, the channel does not generate IRQs at the end of | RW 0x0
every transfer block. Instead, an IRQ is raised when NULL is written to a trigger
register, indicating the end of a control block chain.
This reduces the number of interrupts to be serviced by the CPU when
transferring a DMA chain of many small control blocks.
20:15 TREQ_SEL: Select a Transfer Request signal. RW 0x00
The channel uses the transfer request signal to pace its data transfer rate.
Sources for TREQ signals are internal (TIMERS) or external (DREQ, a Data
Request from the system).
0x0 to 0x3a — select DREQ n as TREQ
Enumerated values:
0x3b — TIMERO: Select Timer 0 as TREQ
0x3c — TIMERT: Select Timer 1 as TREQ
0x3d — TIMER2: Select Timer 2 as TREQ (Optional)
0x3e — TIMER3: Select Timer 3 as TREQ (Optional)
0x3f — PERMANENT: Permanent request, for unpaced transfers.
14:11 CHAIN_TO: When this channel completes, it will trigger the channel indicated |RW 0x0
by CHAIN_TO. Disable by setting CHAIN_TO = (this channel).
10 RING_SEL: Select whether RING_SIZE applies to read or write addresses. RW 0x0

If 0, read addresses are wrapped on a (1 << RING_SIZE) boundary. If 1, write
addresses are wrapped.

112

RP2040 Datasheet
]

Bits Description Type Reset

9:6 RING_SIZE: Size of address wrap region. If 0, don’t wrap. For values n > 0, only | RW 0x0
the lower n bits of the address will change. This wraps the address on a (1 <<
n) byte boundary, facilitating access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This can apply to either
read or write addresses, based on value of RING_SEL.

Enumerated values:

0x0 — RING_NONE

5 INCR_WRITE: If 1, the write address increments with each transfer. If 0, each | RW 0x0
write is directed to the same, initial address.

Generally this should be disabled for memory-to-peripheral transfers.

4 INCR_READ: If 1, the read address increments with each transfer. If 0, each RW 0x0
read is directed to the same, initial address.

Generally this should be disabled for peripheral-to-memory transfers.

32 DATA_SIZE: Set the size of each bus transfer (byte/halfword/word). RW 0x0
READ_ADDR and WRITE_ADDR advance by this amount (1/2/4 bytes) with
each transfer.

Enumerated values:

0x0 — SIZE_BYTE

0x1 — SIZE_HALFWORD

0x2 — SIZE_WORD

1 HIGH_PRIORITY: HIGH_PRIORITY gives a channel preferential treatment in RW 0x0
issue scheduling: in each scheduling round, all high priority channels are
considered first, and then only a single low priority channel, before returning to
the high priority channels.

This only affects the order in which the DMA schedules channels. The DMA's
bus priority is not changed. If the DMA is not saturated then a low priority
channel will see no loss of throughput.

0 EN: DMA Channel Enable. RW 0x0
When 1, the channel will respond to triggering events, which will cause it to
become BUSY and start transferring data. When 0, the channel will ignore
triggers, stop issuing transfers, and pause the current transfer sequence (i.e.
BUSY will remain high if already high)

DMA: CHO_AL1_CTRL, CH1_AL1_CTRL, .., CH10_AL1_CTRL, CH11_AL1_CTRL
Registers

Offsets: 0x010, 0x050, ..., 0x290, 0x2d0

2.5.DMA 113

RP2040 Datasheet

Table 125.
CHO_ALT_CTRL,
CHI1_AL1_CTRL, ..,
CH10_AL1_CTRL,
CHT1_AL1_CTRL
Registers

Table 126.
CHO_ALT_READ_ADDR

CHT_ALT_READ_ADDR

CHT0_AL1_READ_ADD
R
CH11_AL1_READ_ADD
R Registers

Table 127.
CHO_ALT_WRITE_ADD
R
CH1_ALT_WRITE_LADD
R ..,
CHT0_ALT_WRITE_LAD
DR,
CHT1_ALT_WRITE_AD
DR Registers

Table 128.
CHO_ALT_TRANS_COU
NT_TRIG,
CH1_AL1_TRANS_COU
NT_TRIG, ..,
CH10_AL1_TRANS_CO
UNT_TRIG,
CHT1_AL1_TRANS_CO
UNT_TRIG Registers

Table 129.
CHO_AL2_CTRL,
CH1_AL2_CTRL, ..,
CH10_AL2_CTRL,
CH11_AL2_CTRL
Registers

Table 130.
CHO_AL2_TRANS_COU
NT,
CH1_AL2_TRANS_COU
NT, ..,
CHT0_AL2_TRANS_CO
UNT,
CH11_AL2_TRANS_CO
UNT Registers

Bits Description Type Reset
31:0 Alias for channel N CTRL register RW
DMA: CHO_AL1_READ_ADDR, CH1_AL1_READ_ADDR, -

CH10_AL1_READ_ADDR, CH11_AL1_READ_ADDR Registers

Offsets: 0x014, 0x054, ..., 0x294, 0x2d4

Bits Description Type Reset

31:0 Alias for channel N READ_ADDR register RW

DMA: CHO_AL1_WRITE_ADDR, CH1_AL1_WRITE_ADDR,
CH10_AL1_WRITE_ADDR, CH11_AL1_WRITE_ADDR Registers

Offsets: 0x018, 0x058, ..., 0x298, 0x2d8

Bits Description Type Reset

31:0 Alias for channel N WRITE_ADDR register RW

DMA: CHO_ALT1_TRANS_COUNT_TRIG, CH1_AL1_TRANS_COUNT_TRIG,
CH10_AL1_TRANS_COUNT_TRIG, CH11_AL1_TRANS_COUNT_TRIG Registers

Offsets: 0x01c, 0x05c, ..., 0x29¢, 0x2dc

Bits Description Type Reset

31:0 Alias for channel N TRANS_COUNT register RW
This is a trigger register (Oxc). Writing a nonzero value will
reload the channel counter and start the channel.

DMA: CHO_AL2_CTRL, CH1_AL2_CTRL, ..., CH10_AL2_CTRL, CH11_AL2_CTRL

Registers

Offsets: 0x020, 0x060, ..., 0x2a0, 0x2e0

Bits Description Type Reset

31:0 Alias for channel N CTRL register RW

DMA: CHO_AL2_TRANS_COUNT, CH1_AL2_TRANS_COUNT, vy

CH10_AL2_TRANS_COUNT, CH11_AL2_TRANS_COUNT Registers

Offsets: 0x024, 0x064, ..., 0x2a4, 0x2e4

Bits Description Type Reset
31:0 Alias for channel N TRANS_COUNT register RW
DMA: CHO_AL2_READ_ADDR, CH1_AL2_READ_ADDR, .

CH10_AL2_READ_ADDR, CH11_AL2_READ_ADDR Registers

Offsets: 0x028, 0x068, ..., 0x2a8, 0x2e8

2.5.DMA

114

RP2040 Datasheet

Table 131.
CHO_AL2_READ_ADDR

CHT_AL2_READ_ADDR

CHT0_AL2_READ_ADD
R
CH11_AL2_READ_ADD
R Registers

Table 132.
CHO_AL2_WRITE_ADD
R_TRIG,
CH1_AL2_WRITE_ADD
R_TRIG, ..,
CHT0_AL2_WRITE_AD
DR_TRIG,
CHT1_AL2_WRITE_AD
DR_TRIG Registers

Table 133.
CHO_AL3_CTRL,
CH1_AL3_CTRL, ..,
CH10_AL3_CTRL,
CH11_AL3_CTRL
Registers

Table 134.
CHO_AL3_WRITE_ADD
R
CH1_AL3_WRITE_ADD
R ..
CHT0_AL3_WRITE_AD
DR,
CHT1_AL3_WRITE_AD
DR Registers

Table 135.
CHO_AL3_TRANS_COU
NT,
CH1_AL3_TRANS_COU
NT, ..,
CHT0_AL3_TRANS_CO
UNT,
CH11_AL3_TRANS_CO
UNT Registers

Table 136.
CHO_AL3_READ_ADDR
_TRIG,
CH1_AL3_READ_ADDR
_TRIG, ..,
CHT0_AL3_READ_ADD
R_TRIG,
CH11_AL3_READ_ADD
R_TRIG Registers

Bits Description Type Reset
31:0 Alias for channel N READ_ADDR register RW -
DMA: CHO_AL2_WRITE_ADDR_TRIG, CH1_AL2_WRITE_ADDR_TRIG, ..,

CH10_AL2_WRITE_ADDR_TRIG, CH11_AL2_WRITE_ADDR_TRIG Registers

Offsets: 0x02c, 0x06c, ..., 0x2ac, 0x2ec

Bits Description Type Reset

31:0 Alias for channel N WRITE_ADDR register RW -
This is a trigger register (0Oxc). Writing a nonzero value will

reload the channel counter and start the channel.

DMA: CHO_AL3_CTRL, CH1_AL3_CTRL, ..., CH10_AL3_CTRL, CH11_AL3_CTRL
Registers

Offsets: 0x030, 0x070, ..., 0x2b0, 0x2f0

Bits Description Type Reset

31:0 Alias for channel N CTRL register RW -

DMA: CHO_AL3_WRITE_ADDR, CH1_AL3_WRITE_ADDR, vy
CH10_AL3_WRITE_ADDR, CH11_AL3_WRITE_ADDR Registers
Offsets: 0x034, 0x074, .., 0x2b4, 0x2f4

Bits Description Type Reset

31:0 Alias for channel N WRITE_ADDR register RW -

DMA: CHO_AL3_TRANS_COUNT, CH1_AL3_TRANS_COUNT, vy

CH10_AL3_TRANS_COUNT, CH11_AL3_TRANS_COUNT Registers

Offsets: 0x038, 0x078, ..., 0x2b8, 0x2f8

Bits Description Type Reset
31:0 Alias for channel N TRANS_COUNT register RW -
DMA: CHO_AL3_READ_ADDR_TRIG, CH1_AL3_READ_ADDR_TRIG, vy

CH10_AL3_READ_ADDR_TRIG, CH11_AL3_READ_ADDR_TRIG Registers

Offsets: 0x03c, 0x07c, .., 0x2bc, 0x2fc

Bits Description Type Reset

31:0 Alias for channel N READ_ADDR register
This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

DMA: INTR Register
Offset: 0x400

Description

Interrupt Status (raw)

2.5.DMA

115

RP2040 Datasheet

Table 137. INTR

) Bits Description Type Reset
Register

31:16 Reserved. - -

15:0 Raw interrupt status for DMA Channels 0..15. Bit n corresponds to channeln. |WC 0x0000
Ignores any masking or forcing. Channel interrupts can be cleared by writing a
bit mask to INTR, INTSO or INTS1.

Channel interrupts can be routed to either of two system-level IRQs based on
INTEO and INTET.

This can be used vector different channel interrupts to different ISRs: this
might be done to allow NVIC IRQ preemption for more time-critical channels,
or to spread IRQ load across different cores.

It is also valid to ignore this behaviour and just use INTEQ/INTSO/IRQ 0.

DMA: INTEO Register
Offset: 0x404

Description

Interrupt Enables for IRQ 0

Table 138. INTEQ

) Bits Description Type Reset
Register

31:16 Reserved. - -

15:0 Set bit n to pass interrupts from channel n to DMA IRQ 0. RW 0x0000

DMA: INTFO Register
Offset: 0x408

Description

Force Interrupts

Table 139. INTFO

) Bits Description Type Reset
Register

31:16 Reserved. - -

15:.0 Write 1s to force the corresponding bits in INTEQ. The interrupt remains RW 0x0000
asserted until INTFO is cleared.

DMA: INTSO Register
Offset: 0x40c

Description

Interrupt Status for IRQ 0

2.5.DMA 116

RP2040 Datasheet
]

Table 140. INTSO
Register

Table 141. INTET
Register

Table 142. INTF1
Register

Table 143. INTS1
Register

Table 144. TIMERO,
TIMER1, TIMER2,
TIMER3 Registers

2.5.DMA

Bits Description Type Reset
31:16 Reserved. = =
15:0 Indicates active channel interrupt requests which are currently causingIRQ 0 | WC 0x0000
to be asserted.
Channel interrupts can be cleared by writing a bit mask here.
DMA: INTE1 Register
Offset: 0x414
Description
Interrupt Enables for IRQ 1
Bits Description Type Reset
31:16 Reserved. = =
15:0 Set bit n to pass interrupts from channel n to DMA IRQ 1. RW 0x0000
DMA: INTF1 Register
Offset: 0x418
Description
Force Interrupts for IRQ 1
Bits Description Type Reset
31:16 Reserved. = =
15:0 Write 1s to force the corresponding bits in INTEQ. The interrupt remains RW 0x0000
asserted until INTFO is cleared.
DMA: INTS1 Register
Offset: 0x41c
Description
Interrupt Status (masked) for IRQ 1
Bits Description Type Reset
31:16 Reserved. = =
15:0 Indicates active channel interrupt requests which are currently causing IRQ 1 | WC 0x0000

to be asserted.
Channel interrupts can be cleared by writing a bit mask here.

DMA: TIMERO, TIMER1, TIMER2, TIMER3 Registers

Offsets: 0x420, 0x424, 0x428, 0x42c

Description

Pacing (X/Y) Fractional Timer
The pacing timer produces TREQ assertions at a rate set by ((X/Y) * sys_clk). This equation is evaluated every

sys_clk cycles and therefore can only generate TREQs at a rate of 1 per sys_clk (i.e. permanent TREQ) or less.

Bits

Description

Type

Reset

31:16

X: Pacing Timer Dividend. Specifies the X value for the (X/Y) fractional timer.

RW

0x0000

117

RP2040 Datasheet

Bits Description Type Reset
15:.0 Y: Pacing Timer Divisor. Specifies the Y value for the (X/Y) fractional timer. RW 0x0000
DMA: MULTI_CHAN_TRIGGER Register
Offset: 0x430
Description
Trigger one or more channels simultaneously
Table 145. Bits Description Type Reset
MULTLCHAN_TRIGGE
R Register 31:16 | Reserved. - -
15:.0 Each bit in this register corresponds to a DMA channel. Writing a 1 to the SC 0x0000
relevant bit is the same as writing to that channel’s trigger register; the
channel will start if it is currently enabled and not already busy.
DMA: SNIFF_CTRL Register
Offset: 0x434
Description
Sniffer Control
Table 146.) Bits Description Type Reset
SNIFF_CTRL Register
31:12 Reserved. = =
11 OUTL_INV: If set, the result appears inverted (bitwise complement) when read. | RW 0x0
This does not affect the way the checksum is calculated; the result is
transformed on-the-fly between the result register and the bus.
10 OUT_REV: If set, the result appears bit-reversed when read. This does not RW 0x0
affect the way the checksum is calculated; the result is transformed on-the-fly
between the result register and the bus.
9 BSWAP: Locally perform a byte reverse on the sniffed data, before feeding into | RW 0x0
checksum.
Note that the sniff hardware is downstream of the DMA channel byteswap
performed in the read master: if channel CTRL_BSWAP and
SNIFF_CTRL_BSWAP are both enabled, their effects cancel from the sniffer’s
point of view.
8:5 CALC RW 0x0

2.5.DMA

Enumerated values:

0x0 — CRC32: Calculate a CRC-32 (IEEE802.3 polynomial)

0x1 — CRC32R: Calculate a CRC-32 (IEEE802.3 polynomial) with bit reversed
data

0x2 — CRC16: Calculate a CRC-16-CCITT

0x3 — CRC16R: Calculate a CRC-16-CCITT with bit reversed data

Oxe — EVEN: XOR reduction over all data. ==
is odd.

if the total 1 population count

0xf — SUM: Calculate a simple 32-bit checksum (addition with a 32 bit
accumulator)

118

RP2040 Datasheet

Table 147.
SNIFF_DATA Register

Table 148.
FIFO_LEVELS Register

Table 149.
CHAN_ABORT
Register

Table 150.
N_CHANNELS Register

2.5.DMA

Bits Description Type Reset
41 DMACH: DMA channel for Sniffer to observe RW 0x0
0 EN: Enable sniffer RW 0x0
DMA: SNIFF_DATA Register
Offset: 0x438
Description
Data accumulator for sniff hardware
Bits Description Type Reset
31:0 Write an initial seed value here before starting a DMA transfer on the channel | RW 0x00000000
indicated by SNIFF_CTRL_DMACH. The hardware will update this register each
time it observes a read from the indicated channel. Once the channel
completes, the final result can be read from this register.
DMA: FIFO_LEVELS Register
Offset: 0x440
Description
Debug RAF, WAF, TDF levels
Bits Description Type Reset
31:24 Reserved. = =
23:16 RAF_LVL: Current Read-Address-FIFO fill level RO 0x00
15:8 WAF_LVL: Current Write-Address-FIFO fill level RO 0x00
7:0 TDF_LVL: Current Transfer-Data-FIFO fill level RO 0x00
DMA: CHAN_ABORT Register
Offset: 0x444
Description
Abort an in-progress transfer sequence on one or more channels
Bits Description Type Reset
31:16 Reserved. - -
15:.0 Each bit corresponds to a channel. Writing a 1 aborts whatever transfer SC 0x0000
sequence is in progress on that channel. The bit will remain high until any in-
flight transfers have been flushed through the address and data FIFOs.
After writing, this register must be polled until it returns all-zero. Until this
point, it is unsafe to restart the channel.
DMA: N_CHANNELS Register
Offset: 0x448
Bits Description Type Reset
31:5 Reserved. - -

RP2040 Datasheet

Bits Description Type Reset

4.0 The number of channels this DMA instance is equipped with. This DMA RO -
supports up to 16 hardware channels, but can be configured with as few as
one, to minimise silicon area.

DMA: CHO_DBG_CTDREQ, CH1_DBG_CTDREQ, .., CH10_DBG_CTDREQ,
CH11_DBG_CTDREQ Registers

Offsets: 0x800, 0x840, ..., 0xa80, Oxac0

Table 151.

Bits Description Type Reset
CHO_DBG_CTDREQ,
CH1_DBG_CTDREQ, ., | 31-g asaeEd : _
CH10_DBG_CTDREQ,))
zm";DBG-CTDREO 5:0 Read: get channel DREQ counter (i.e. how many accesses the DMA expects it | WC 0x00
egisters
can perform on the peripheral without overflow/underflow. Write any value:
clears the counter, and cause channel to re-initiate DREQ handshake.
DMA: CHO_DBG_TCR, CH1_DBG_TCR, .., CH10_DBG_TCR, CH11_DBG_TCR
Registers
Offsets: 0x804, 0x844, ..., 0xa84, Oxac4
Table 152. Bits Description Type Reset
CHO_DBG_TCR,
g:;;}”gg;;n’j;" 31:0 Read to get channel TRANS_COUNT reload value, i.e. the length of the next RO 0x00000000
CHI1_DBG.TCR transfer

Registers

2.6. Memory

RP2040 has embedded ROM and SRAM, and access to external Flash via a QSPI interface. Details of internal memory
are given below.

2.6.1. ROM

A 16kB read-only memory (ROM) is at address 0x00000000. The ROM contents are fixed at the time the silicon is
manufactured. It contains:

® |nitial startup routine

® Flash boot sequence

® Flash programming routines

® USB mass storage device with UF2 support

o Utility libraries such as fast floating point

The boot sequence of the chip is defined in Section 2.8.1, and the ROM contents is described in more detail in Section
2.8. The full source code for the RP2040 bootrom is available at:

pico-bootrom

The ROM offers single-cycle read-only bus access, and is on a dedicated AHB-Lite arbiter, so it can be accessed
simultaneously with other memory devices. Attempting to write to the ROM has no effect (no bus fault is generated).

|
2.6. Memory 120

https://github.com/raspberrypi/pico-bootrom

RP2040 Datasheet

Table 153. SRAM
bank0/1/2/3 striped
mapping.

2.6.2. SRAM

There is a total of 264kB of on-chip SRAM. Physically this is partitioned into six banks, as this vastly improves memory
bandwidth for multiple masters, but software may treat it as a single 264kB memory region. There are no restrictions on
what is stored in each bank: processor code, data buffers, or a mixture. There are four 16k x 32-bit banks (64kB each)
and two 1k x 32-bit banks (4kB each).

O IMPORTANT

Banking is a physical partitioning of SRAM which improves performance by allowing multiple simultaneous
accesses. Logically there is a single 264kB contiguous memory.

Each SRAM bank is accessed via a dedicated AHB-Lite arbiter. This means different bus masters can access different
SRAM banks in parallel, so up to four 32-bit SRAM accesses can take place every system clock cycle (one per master).

SRAM is mapped to system addresses starting at 0x20000000. The first 256kB address region is word-striped across the
four larger banks, which provides a significant memory parallelism benefits for most use cases.

Consecutive words in the system address space are routed to different RAM banks as shown in Table 153.

System address SRAM Bank SRAM word address
0x20000000 Bank 0 0
0x20000004 Bank 1 0
0x20000008 Bank 2 0
0x2000000c Bank 3 0
0x20000010 Bank 0 1
0x20000014 Bank 1 1
0x20000018 Bank 2 1
0x2000001c Bank 3 1
0x20000020 Bank 0 2
0x20000024 Bank 1 2
0x20000028 Bank 2 2
0%2000002c Bank 3 2
etc

The next two 4kB regions (starting at 0x20040000 and 0x20041000) are mapped directly to the smaller, 4kB memory banks.
Software may choose to use these for per-core purposes, e.g. stack and frequently-executed code, guaranteeing that
the processors never stall on these accesses. However, like all SRAM on RP2040, these banks have single-cycle access
from all masters providing no other masters are accessing the bank in the same cycle, so it is reasonable to treat
memory as a single 264kB device.

The four 64kB banks are also available at a non-striped mirror. The four 64kB regions starting at 0x21000000, 0x21010000,
0x21020000, 0x21030000 are each mapped directly to one of the four 64kB SRAM banks. Software can explicitly allocate
data and code across the physical memory banks, for improved memory performance in exceptionally demanding
cases. This is often unnecessary, as memory striping usually provides sufficient parallelism with less software
complexity.

The non-striped mirror starts at an offset of +16MB above the base of SRAM, as this is the maximum offset that allows
ARMv6M subroutine calls between the smaller banks and the non-striped larger banks.

2.6. Memory

121

RP2040 Datasheet

Figure 14. Flash
execute-in-place (XIP)
subsystem. System
accesses via the main
AHB-Lite slave are
decoded to determine
if they are XIP
accesses, direct
accesses to the SS/
e.g. for configuration,
or accesses to various
other hardware and
control registers in the
XIP subsystem. XIP
accesses are first
looked up in the
cache, to accelerate
accesses to recently-
used data. If the data
is not found in the
cache, an external
serial access is
generated via the SSI,
and the resulting data
is stored in the cache
and forwarded on to
the system bus.

2.6.2.1. Other On-chip Memory

Besides the 264kB main memory, there are two other dedicated RAM blocks that may be used in some circumstances:
e |f flash XIP caching is disabled, the cache becomes available as a 16kB memory starting at 0x15000000
¢ |f the USB is not used, the USB data DPRAM can be used as a 4kB memory starting at 0x50100000

This gives a total of 284kB of on-chip SRAM. There are no restrictions on how these memories are used, e.g. it is
possible to execute code from the USB data RAM if you choose.

2.6.3. Flash

External Flash is accessed via the QSPI interface using the execute-in-place (XIP) hardware. This allows an external
flash memory to be addressed and accessed by the system as though it were internal memory. Bus reads to a 16MB
memory window starting at 0x10000000 are translated into a serial flash transfer, and the result is returned to the master
that initiated the read. This process is transparent to the master, so a processor can execute code from the external
flash without first copying the code to internal memory, hence "execute in place". An internal cache remembers the
contents of recently-accessed flash locations, which accelerates the average bandwidth and latency of the interface.

Once correctly configured by RP2040’s bootrom and the flash second stage, the XIP hardware is largely transparent,
and software can treat flash as a large read-only memory. However, it does provide a number of additional features to
serve more demanding software use cases.

Aux AHBL Slave

MainAHBL Slav
a gk (streaming FIFO only)

!

Decode and Config

!

Read-only Cache

AHBL-APB Bridge
for SSI Configuration

t ¢

Streaming FIFO

Atomic RWType
Interposer

Ssl

@sp1
v

© NoTE

The serial flash interface is configured by the flash second stage when using the SDK to run at an integer divider of
the system clock. All the included second stage boot implementations support a PICO_FLASH_SPI_CLKDIV setting (e.g.
defaulted to 4 in https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/boot_stage2/boot2_w25q080.S
to make the default interface speed 125/4 = 31.25MHz). This divider can be overridden by specifying
PICO_FLASH_SPI_CLKDIV in the particular board config header used with the SDK.

2.6.3.1. XIP Cache

The cache is 16kB, two way set-associative, 1 cycle hit. It is internal to the XIP subsystem, and only affects accesses to
XIP flash, so software does not have to consider cache coherence, unless performing flash programming operations. It
caches reads from a 24-bit flash address space, which is mirrored multiple times in the RP2040 address space, each
alias having different caching behaviour. The eight MSBs of the system address are used for segment decode, leaving
24 bits for flash addressing, so the maximum supported flash size (for XIP operation) is 16MB. The available mirrors

2.6. Memory

122

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/boot_stage2/boot2_w25q080.S

RP2040 Datasheet
]

are:
® 0x10- XIP access, cacheable, allocating - Normal cache operation
® 9x11-- XIP access, cacheable, non-allocating - Check for hit, don't update cache on miss
® 9x12--- XIP access, non-cacheable, allocating - Don't check for hit, always update cache
® 0x13-- XIP access, non-cacheable, non-allocating - Bypass cache completely
® 0x15-- Use XIP cache as SRAM bank, mirrored across entire segment

If the cache is disabled, via the CTRL.EN register bit, then all four of the XIP aliases (0x10 to 0x13) will bypass the cache,
and access the flash directly. This has a significant impact on XIP code execution performance.

Access to the 0x15--- segment produces a bus error unless the cache is disabled by clearing CTRL.EN. Once the cache is
disabled, this region behaves as an additional 16kB SRAM bank. Reads and writes are one cycle, but there is a wait state
on consecutive write-read sequences, i.e. there is no write forwarding buffer.

2.6.3.2. Cache Flushing and Maintenance

The FLUSH register allows the entire cache contents to be flushed. This is necessary if software has reprogrammed the
flash contents, and needs to clear out stale data and code, without performing a reboot. Cache flushes are triggered
either manually by writing 1 to FLUSH, or automatically when the XIP block is brought out of reset. The flush is
implemented by zeroing the cache tag memory using an internal counter, which takes just over 1024 clock cycles (16kB
total size / 8 bytes per line / 2 ways per set).

Flushing the cache whilst accessing flash data (perhaps initiating the flush on one core whilst another core may be
executing code from flash) is a safe operation, but any master accessing flash data while the flush is in progress will be
stalled until completion.

A cAuTION

The cache-as-SRAM alias (0x15-:*) must not be written whilst a cache flush is in progress. Before writing for the first
time, if a cache flush has recently been initiated (e.g. via a watchdog reset), a dummy read from FLUSH is
recommended to ensure the cache flush has completed. Writing to cache-as-SRAM whilst a flush is in progress can
corrupt the data memory contents.

A complete cache flush dramatically slows subsequent code execution, until the cache "warms up" again. There is an
alternative, which allows cache contents corresponding to only a certain address range to be invalidated. A write to the
0x10--- mirror will look up the addressed location in the cache, and delete any matching entry found. Writing to all word-
aligned locations in an address range (e.g. a flash sector that has just been erased and reprogrammed) therefore
eliminates the possibility of stale cached data in this range, without suffering the effects of a complete cache flush.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/flash/cache_perfctr/flash_cache_perfctr.c Lines 30 - 55

30 // Flush cache to make sure we miss the first time we access test_data
31 xip_ctrl_hw->flush = 1;

32 while (!(xip_ctrl_hw->stat & XIP_STAT_FLUSH_READY_BITS))

33 tight_loop_contents();

34

35 // Clear counters (write any value to clear)

36 xip_ctrl_hw->ctr_acc = 1;

37 xip_ctrl_hw->ctr_hit = 1;

38

39 (void) *test_data_ptr;

40 check(xip_ctrl_hw->ctr_hit == @ && xip_ctrl_hw->ctr_acc == 1,
41 "First access to data should miss");

42

43 (void) *test_data_ptr;

44 check(xip_ctrl_hw->ctr_hit == 1 && xip_ctrl_hw->ctr_acc ==

|
2.6. Memory 123

https://github.com/raspberrypi/pico-examples/blob/master/flash/cache_perfctr/flash_cache_perfctr.c#L30-L55

RP2040 Datasheet

45 "Second access to data should hit");

46

47 // Write to invalidate individual cache lines (64 bits)

48 // Writes must be directed to the cacheable, allocatable alias (address 0x16.._....)

49 *test_data_ptr = 0;

50 (void) *test_data_ptr;

51 check(xip_ctrl_hw->ctr_hit == 1 && xip_ctrl_hw->ctr_acc == 3,

52 "Should miss after invalidation");

53 (void) *test_data_ptr;

54 check(xip_ctrl_hw->ctr_hit == 2 && xip_ctrl_hw->ctr_acc ==

55 "Second access after invalidation should hit again");
2.6.3.3. SSI

The execute-in-place functionality is provided by the SSI interface, documented in Section 4.710. It supports 1, 2 or 4-bit
SPI flash interfaces (SPI, DSPI and QSPI), and can insert either an instruction prefix or mode continuation bits on each
XIP access. This includes the possibility of issuing a standard 03h serial flash read command for each access, allowing
virtually any serial flash device to be used. The maximum SPI clock frequency is half the system clock frequency.

The SSI can also be used as a standard FIFO-based SPI master, with DMA support. This mode is used by the bootrom to
extract the second stage bootloader from external flash (see Section 2.8.1). The bus interposer allows an atomic set,
clear or XOR operation to be posted to SSI control registers, in the same manner as other memory-mapped 10 on
RP2040. This is described in more detail in Section 2.1.2.

2.6.3.4. Flash Streaming and Auxiliary Bus Slave

As the flash is generally much larger than SRAM, it's often useful to stream chunks of data into memory from flash. It's
convenient to have the DMA stream this data in the background while software in the foreground is doing other things,
and it's even more convenient if code can continue to execute from flash whilst this takes place.

This doesn't interact well with standard XIP operation, because of the lengthy bus stalls forced on the DMA whilst the
SSl is performing serial transfers. These stalls are tolerable for a processor, because an in-order processor tends to
have nothing better to do while waiting for an instruction fetch to retire, and because typical code execution tends to
have much higher cache hit rates than bulk streaming of infrequently accessed data. In contrast, stalling the DMA
prevents any other active DMA channels from making progress during this time, which slows overall DMA throughput.

The STREAM_ADDR and STREAM_CTR registers are used to program a linear sequence of flash reads, which the XIP subsystem
will perform in the background in a best-effort fashion. To minimise impact on code being executed from flash whilst
the stream is ongoing, the streaming hardware has lower priority access to the SSI than regular XIP accesses, and there
is a brief cooldown (seven cycles) between the last XIP cache miss and resuming streaming. This helps to avoid
increase in initial access latency on XIP cache miss.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/flash/xip_stream/flash_xip_stream.c Lines 45 - 48

45 while (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))

46 (void) xip_ctrl_hw->stream_fifo;
47 xip_ctrl_hw->stream_addr = (uint32_t) &random_test_data[@];
48 xip_ctrl_hw->stream_ctr = count_of(random_test_data);

The streamed data is pushed to a small FIFO, which generates DREQ signals, telling the DMA to collect the streamed
data. As the DMA does not initiate a read until after the data has been read from flash, the DMA is not stalled when
accessing the data.

Although this scheme ensures that the data is ready in the streaming FIFO once the DREQ is asserted, the DMA can still
be stalled if another master is currently stalled on the XIP slave, e.g. due to a cache miss. This is solved by the auxiliary
bus slave, which is a simple bus interface providing access only to the streaming FIFO. This slave is exposed on the

2.6. Memory 124

https://github.com/raspberrypi/pico-examples/blob/master/flash/xip_stream/flash_xip_stream.c#L45-L48

RP2040 Datasheet

FASTPERI arbiter, which services only native AHB-Lite peripherals which don’t generate wait states, so the DMA will never
experience stalls when accessing the FIFO at this address, assuming it has high bus priority.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/flash/xip_stream/flash_xip_stream.c Lines 58 - 70

58
59
60
61
62
63
64
65
66
67
68
69
70

const uint dma_chan = 0;
dma_channel_config cfg = dma_channel_get_default_config(dma_chan);
channel_config_set_read_increment(&cfg, false);
channel_config_set_write_increment(&cfg, true);
channel_config_set_dreq(&cfg, DREQ_XIP_STREAM);
dma_channel_configure(
dma_chan,
&cfg,
(void *) buf, // Write addr
(const void *) XIP_AUX_BASE, // Read addr
count_of(random_test_data), // Transfer count
true // Start immediately!

2.6.3.5. Performance Counters

The XIP subsystem provides two performance counters. These are 32 bits in size, saturate upon reaching oxffffffff,

and are cleared by writing any value. They count:

1. The total number of XIP accesses, to any alias

2. The number of XIP accesses which resulted in a cache hit

For common use cases, this allows the cache hit rate to be profiled.

2.6.3.6. List of XIP Registers

The XIP registers start at a base address of 0x14000000 (defined as XIP_CTRL_BASE in SDK).

Table 154. List of XIP

registers Offset Name Info
0x00 CTRL Cache control
0x04 FLUSH Cache Flush control
0x08 STAT Cache Status
0x0c CTR_HIT Cache Hit counter
0x10 CTR_ACC Cache Access counter
0x14 STREAM_ADDR FIFO stream address
0x18 STREAM_CTR FIFO stream control
OxT1c STREAM_FIFO FIFO stream data
XIP: CTRL Register
Offset: 0x00
Description

Cache control

2.6. Memory

125

https://github.com/raspberrypi/pico-examples/blob/master/flash/xip_stream/flash_xip_stream.c#L58-L70

RP2040 Datasheet

Table 155. CTRL

) Bits Description Type Reset
Register
31:4 Reserved. = =
3 POWER_DOWN: When 1, the cache memories are powered down. They retain | RW 0x0
state,
but can not be accessed. This reduces static power dissipation.
Writing 1 to this bit forces CTRL_EN to 0, i.e. the cache cannot
be enabled when powered down.
Cache-as-SRAM accesses will produce a bus error response when
the cache is powered down.
2 Reserved. - -
1 ERR_BADWRITE: When 1, writes to any alias other than 0x0 (caching, RW 0x1
allocating)
will produce a bus fault. When 0, these writes are silently ignored.
In either case, writes to the 0x0 alias will deallocate on tag match,
as usual.
0 EN: When 1, enable the cache. When the cache is disabled, all XIP accesses RW 0x1
will go straight to the flash, without querying the cache. When enabled,
cacheable XIP accesses will query the cache, and the flash will
not be accessed if the tag matches and the valid bit is set.
If the cache is enabled, cache-as-SRAM accesses have no effect on the
cache data RAM, and will produce a bus error response.
XIP: FLUSH Register
Offset: 0x04
Description
Cache Flush control
Tab{e 196. FLUSH Bits Description Type Reset
Register
31:1 Reserved. = =
0 Write 1 to flush the cache. This clears the tag memory, but SC 0x0
the data memory retains its contents. (This means cache-as-SRAM
contents is not affected by flush or reset.)
Reading will hold the bus (stall the processor) until the flush
completes. Alternatively STAT can be polled until completion.
XIP: STAT Register
Offset: 0x08
Description
Cache Status
Tabl_e 197. STAT Bits Description Type Reset
Register
BilES Reserved. = =
2 FIFO_FULL: When 1, indicates the XIP streaming FIFO is completely full. RO 0x0
The streaming FIFO is 2 entries deep, so the full and empty
flag allow its level to be ascertained.
1 FIFO_EMPTY: When 1, indicates the XIP streaming FIFO is completely empty. | RO 0x1

2.6. Memory 126

RP2040 Datasheet
]

Bits Description Type Reset

0 FLUSH_READY: Reads as 0 while a cache flush is in progress, and 1 otherwise. | RO 0x0
The cache is flushed whenever the XIP block is reset, and also
when requested via the FLUSH register.

XIP: CTR_HIT Register
Offset: 0x0c

Description

Cache Hit counter

Table 158. CTR_HIT

) Bits Description Type Reset
Register

31:0 A 32 bit saturating counter that increments upon each cache hit, WC 0x00000000
i.e. when an XIP access is serviced directly from cached data.
Write any value to clear.

XIP: CTR_ACC Register
Offset: 0x10

Description

Cache Access counter

Table 159. CTR_ACC

) Bits Description Type Reset
Register
31:0 A 32 bit saturating counter that increments upon each XIP access, WC 0x00000000
whether the cache is hit or not. This includes noncacheable accesses.
Write any value to clear.
XIP: STREAM_ADDR Register
Offset: 0x14
Description
FIFO stream address
Table 160. Bits Description Type Reset
STREAM_ADDR
Register 31:2 The address of the next word to be streamed from flash to the streaming RW 0x00000000
FIFO.
Increments automatically after each flash access.
Write the initial access address here before starting a streaming read.
1:0 Reserved. - -
XIP: STREAM_CTR Register
Offset: 0x18
Description
FIFO stream control
Table 161.

) Bits Description Type Reset
STREAM_CTR Register

31:22 Reserved. - -

|
2.6. Memory 127

RP2040 Datasheet
]

Bits Description Type Reset

21:0 Write a nonzero value to start a streaming read. This will then RW 0x000000
progress in the background, using flash idle cycles to transfer
a linear data block from flash to the streaming FIFO.
Decrements automatically (1 at a time) as the stream
progresses, and halts on reaching 0.

Write 0 to halt an in-progress stream, and discard any in-flight
read, so that a new stream can immediately be started (after
draining the FIFO and reinitialising STREAM_ADDR)

XIP: STREAM_FIFO Register
Offset: Ox1c

Description

FIFO stream data

Table 162. Bits Description Type e
STREAM_FIFO
Register 31:0 Streamed data is buffered here, for retrieval by the system DMA. RF 0x00000000

This FIFO can also be accessed via the XIP_AUX slave, to avoid exposing
the DMA to bus stalls caused by other XIP traffic.

2.7. Boot Sequence

Several components of the RP2040 work together to get to a point where the processors are out of reset and able to run
the bootrom (Section 2.8). The bootrom is software that is built into the chip, performing the "processor controlled" part
of the boot sequence. We will refer to the steps before the processor is running as the "hardware controlled" boot
sequence.

The hardware controlled boot sequence is as follows:
® Power is applied to the chip and the RUN pin is high. (If RUN is low then the chip will be held in reset.)
® The On-Chip Voltage Regulator (Section 2.10) waits until the digital core supply (DVDD) is stable
® The Power-On State Machine (Section 2.13) is started. To summarise the sequence:

o The Ring Oscillator (Section 2.17) is started, providing a clock source to the clock generators. clk_sys and
clk_ref are now running at a relatively low frequency (typically 6.5MHz).

o The reset controller (Section 2.14), the execute-in-place hardware (Section 2.6.3), memories (Section 2.6.2
and Section 2.6.7), Bus Fabric (Section 2.1), and Processor Subsystem (Section 2.3) are taken out of reset.

o Processor core 0 and core 1 begin to execute the bootrom (Section 2.8).

2.8. Bootrom

The Bootrom size is limited to 16kB. It contains:
® Processor core 0 initial boot sequence.
® Processor core 1 low power wait and launch protocol.
® USB MSC class-compliant bootloader with UF2 support for downloading code/data to FLASH or RAM.

® USB PICOBOOT bootloader interface for advanced management.

|
2.7. Boot Sequence 128

https://github.com/Microsoft/uf2

RP2040 Datasheet

® Routines for programming and manipulating the external flash.
® Fast floating point library.
® Fast bit counting / manipulation functions.

® Fast memory fill / copy functions.
Bootrom Source Code

The full source for the RP2040 bootrom can be found at https://github.com/raspberrypi/pico-bootrom.

This includes versions 1, 2 and 3 of the bootrom, which correspond to the B0, B1 and B2 silicon
revisions, respectively.

2.8.1. Processor Controlled Boot Sequence

A flow diagram of the boot sequence is given in Figure 15.

Figure 15. RP2040

Boot Sequence

N 2

Configure SSI and
connect to pads

Both cores enter
bootrom

|

Sleep until given Load 256 bytes
b
WiTEcRam(! entry point from flash
0
Increment
RoRirescle Y Clear flag and halt CPOL, CPHA and Checksum pass? Y ey e
flag set? second stage
delay 100us
N N
atchdog Set SPandj
jump .
boot—to—SRAM v N than 0.5 s since
set?
N e 4
¥ 2
100us delay Start crystal
pullup on flas|) oscillator
1l flash CSi ill
Read flash CSn High (flash boot) =] Crystal present? N
Y
Low (USB device) *

Start PLLs. Sys,
USB clocked at 48
MHz

Read CSn multiple times and
take majority vote, to mitigate
noise due to weak pullup

Enter USB device
mode bootcode

After the hardware controlled boot sequence described in Section 2.7, the processor controlled boot sequence starts:
® Reset to both processors released: both enter ROM at same location
® Processors check SI0.CPUID

o Processor 1 goes to sleep (WFE with SCR.SLEEPDEEP enabled) and remains asleep until woken by user code,
via the mailbox

o Processor 0 continues executing from ROM
* If power up event was from Rescue DP, clear this flag and halt immediately
o The debug host (which initiated the rescue) will provide further instruction.

* |f watchdog scratch registers set to indicate pre-loaded code exists in SRAM, jump to that code

2.8. Bootrom 129

https://github.com/raspberrypi/pico-bootrom

RP2040 Datasheet
]

® Check if SPI CS pin is tied low ("bootrom button"), and skip flash boot if so.

® Set up 10 muxing, pad controls on QSPI pins, and initialise Synopsys SSI for standard SPI mode
* |ssue XIP exit sequence, in case flash is still in an XIP mode and has not been power-cycled

® Copy 256 bytes from SPI to internal SRAM (SRAMS5) and check for valid CRC32 checksum

® |f checksum passes, assume what we have loaded is a valid flash second stage

® Start executing the loaded code from SRAM (SRAMS5)

* |f no valid image found in SPI after 0.5 seconds of attempting to boot, drop to USB device boot
® USB device boot: appear as a USB Mass Storage Device

o Can program the SPI flash, or load directly into SRAM and run, by dragging and dropping an image in UF2
format.

o Also supports an extended PICOBOOT interface

2.8.1.1. Watchdog Boot

Watchdog boot allows users to install their own boot handler, and divert control away from the main boot sequence on
non-POR/BOR resets. It also simplifies running code over the JTAG test interface. It recognises the following values
written to the watchdog's upper scratch registers:

® Scratch 4: magic number 0xb007c0d3

® Scratch 5: Entry point XORed with magic -0xb007c0d3 (0x4f83f2d)
® Scratch 6: Stack pointer

® Scratch 7: Entry point

If either of the magic numbers mismatch, watchdog boot does not take place. If the numbers match, the Bootrom
zeroes scratch 4 before transferring control, so that the behaviour does not persist over subsequent reboots.

2.8.1.2. Flash Boot Sequence

One of the main challenges of a warm flash boot is forcing the external flash from XIP mode to a mode where it will
accept standard SPI commands. There is no standard method to discontinue XIP on an unknown flash. The Bootrom
provides a best-effort sequence with broad compatibility, which is as follows:

® (Sn=1, 10[3:0]=4'b0000 (via pull-downs to avoid contention), issue x32 clocks
® (Sn=0, 10[3:0]=4'b1111 (via pull-ups to avoid contention), issue x32 clocks

® (Sn=1

® (Sn=0, MOSI=1'b1 (driven low-Z, all other 10s Hi-Z), issue x16 clocks

This is designed to miss the XIP continuation codes on Cypress, Micron and Winbond parts. If the device is already in
SPI mode, it interprets this sequence as two FFh NOP instructions, which should be ignored.

As this is best effort only, there may be some devices which obstinately remain in XIP mode. There are then two
options:

® Use a less efficient XIP mode where each transfer has an SPI instruction prefix, so the flash device remains
communicative in SPI mode.

® Boot code installs a compatible XIP exit sequence in SRAM, and configures the watchdog such that a warm boot
will jump straight into this sequence, foregoing our canned sequence.

After issuing the XIP exit sequence, the Bootrom attempts to read in the second stage from flash using standard 03h
serial read commands, which are near-universally supported. Since the Bootrom is immutable, it aims for compatibility

|
2.8. Bootrom 130

RP2040 Datasheet
]

rather than performance.

2.8.1.3. Flash Second Stage

The flash second stage must configure the SSI and the external flash for the best possible execute-in-place
performance. This includes interface width, SCK frequency, SPI instruction prefix and an XIP continuation code for
address-data only modes. Generally some operation can be performed on the external flash so that it does not require
an instruction prefix on each access, and will simply respond to addresses with data.

Until the SSI is correctly configured for the attached flash device, it is not possible to access flash via the XIP address
window. Additionally, the Synopsys SSI can not be reconfigured at all without first disabling it. Therefore the second
stage must be copied from flash to SRAM by the bootrom, and executed in SRAM.

Alternatively, the second stage can simply shadow an image from external flash into SRAM, and not configure execute-
in-place.

This is the only job of the second stage. All other chip setup (e.g. PLLs, Voltage Regulator) can be performed by
platform initialisation code executed over the XIP interface, once the second stage has run.

2.8.1.3.1. Checksum

The last four bytes of the image loaded from flash (which we hope is a valid flash second stage) are a CRC32 checksum
of the first 252 bytes. The parameters of the checksum are:

® Polynomial: 0x04c11db7

® |nput reflection: no

® Qutput reflection: no

® |nitial value: oxffffffff

® Final XOR: 0x00000000

® Checksum value appears as little-endian integer at end of image

The Bootrom makes 128 attempts of approximately 4ms each for a total of approximately 0.5 seconds before giving up
and dropping into USB code to load and checksum the second stage with varying SPI parameters. If it sees a checksum
pass it will immediately jump into the 252-byte payload which contains the flash second stage.

2.8.2. Launching Code On Processor Core 1

As described in the introduction to Section 2.8.1, after reset, processor core 1 "sleeps (WFE with SCR.SLEEPDEEP
enabled) and remains asleep until woken by user code, via the mailbox".

If you are using the SDK then you can simply use the multicore_launch_corel function to launch code on processor core 1.
However this section describes the procedure to launch code on processor core 1 yourself.

The procedure to start running on processor core 1 involves both cores moving in lockstep through a state machine
coordinated by passing messages over the inter-processor FIFOs. This state machine is designed to be robust enough
to cope with a recently reset processor core 1 which may be anywhere in its boot code, up to and including going to
sleep. As result, the procedure may be performed at any point after processor core 1 has been reset (either by system
reset, or explicitly resetting just processor core 1).

The following C code is the simplest way to describe the procedure:

// values to be sent in order over the FIFO from core 6 to core 1
//
// vector_table is value for VTOR register

2.8. Bootrom

131

RP2040 Datasheet
]

Table 163. Bootrom
contents at fixed (well
known) addresses

// sp is initial stack pointer (SP)
// entry is the initial program counter (PC) (don't forget to set the thumb bit!)
const uint32_t cmd_sequence[] =

{0, 0, 1, (uintptr_t) vector_table, (uintptr_t) sp, (uintptr_t) entry};

uint seq = 0;
do {
uint cmd = cmd_sequence[seq];
// always drain the READ FIFO (from core 1) before sending a @
if ('emd) {
// discard data from read FIFO until empty
multicore_fifo_drain();
// execute a SEV as core 1 may be waiting for FIFO space
__sev();
}
// write 32 bit value to write FIFO
multicore_fifo_push_blocking(cmd);
// read 32 bit value from read FIFO once available
uint32_t response = multicore_fifo_pop_blocking();
// move to next state on correct response (echo-d value) otherwise start over
seq = cmd == response ? seq + 1 : 0;
} while (seq < count_of(cmd_sequence));

2.8.3. Bootrom Contents

Some of the bootrom is dedicated to the implementation of the boot sequence and USB boot interfaces. There is also
code in the bootrom useful to user programs. Table 163 shows the fixed memory layout of the first handful of words in
the Bootrom which are instrumental in locating other content within the bootrom.

Address Contents Description

0x00000000 32-bit pointer Initial boot stack pointer

0x00000004 32-bit pointer Pointer to boot reset handler function

0x00000008 32-bit pointer Pointer to boot NMI handler function

0x0000000c 32-bit pointer Pointer to boot Hard fault handler function

0x00000010 ‘M, 'u', 0x01 Magic

0x00000013 byte Bootrom version

0x00000014 16-bit pointer Pointer to a public function lookup table (rom_func_table)
000000016 16-bit pointer Pointer to a public data lookup table (rom_data_table)
0x00000018 16-bit pointer Pointer to a helper function (rom_table_lookup())

2.8.3.1. Bootrom Functions

The Bootrom contains a number of public functions that provide useful RP2040 functionality that might be needed in
the absence of any other code on the device, as well as highly optimized versions of certain key functionality that would
otherwise have to take up space in most user binaries.

These functions are normally made available to the user by the SDK, however a lower level method is provided to locate
them (their locations may change with each Bootrom release) and call them directly.

Assuming the three bytes starting at address 0x00000010 are ('M', 'u', 0x01) then the three halfwords starting at offset
0x00000014 are valid.

2.8. Bootrom

132

RP2040 Datasheet

Table 164. Fast Bit
Counting /
Manipulation
Functions.

These three values can be used to dynamically locate other functions or data within the Bootrom. The version byte at
offset 0x00000013 is informational and should not be used to infer the exact location of any functions.

The following code from the SDK shows how the three 16-bit pointers are used to lookup other functions or data.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_bootrom/bootrom.c Lines 12 - 19

12 void *rom_func_lookup(uint32_t code) {

13 return rom_func_lookup_inline(code);
14 }

15

16 void *rom_data_lookup(uint32_t code) {
17 return rom_data_lookup_inline(code);
18 }

The code parameter correspond to the CODE values in the tables below, and is calculated as follows:

uint32_t rom_table_code(char c1, char c2) {
return (c2 << 8) | c1;

2.8.3.1.1. Fast Bit Counting / Manipulation Functions

These are optimized versions of common bit counting / manipulation functions.

In general you do not need to call these methods directly as the SDK pico_bit_ops library replaces the corresponding
standard compiler library functions by default so that the standard functions such as __builtin_popcount or __c1zdi2 uses
the corresponding Bootrom implementations automatically (see pico_bit_ops for more details).

These functions have changed in speed slightly between version 1 (V1) of the bootrom and version 2 (V2).

CODE Cycles Avg | Cycles Avg | Description
\'Al V2/V3

'p','3" 18 20 uint32_t _popcount32(uint32_t value)
Return a count of the number of 1 bits in value.

'R','3" 21 22 uint32_t _reverse32(uint32_t value)
Return the bits of value in the reverse order.

L,'3! 13 9.6 uint32_t _c1z32(uint32_t value)
Return the number of consecutive high order @ bits of value. If value is zero, returns
32.

T, '3 12 " uint32_t _ctz32(uint32_t value)
Return the number of consecutive low order 0 bits of value. If value is zero, returns
32.

2.8.3.1.2. Fast Bulk Memory Fill / Copy Functions

These are highly optimized bulk memory fill and copy functions commonly provided by most language runtimes.

In general you do not need to call these methods directly as the SDK pico_mem_ops library replaces the corresponding
standard ARM EABI functions by default so that the standard C library functions e.g. memcpy or memset use the Bootrom
implementations automatically (see pico_mem_ops for more details).

2.8. Bootrom

133

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_bootrom/bootrom.c#L12-L19
https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_bit_ops
https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_mem_ops

RP2040 Datasheet

Table 165. Optimized s e
Bulk Memory Fill / CODE Description
Functi
Copy Functions 'M','S’ uint8_t *_memset(uint8_t *ptr, uint8_t c, uint32_t n)
Sets n bytes start at ptr to the value ¢ and returns ptr.
'St 4 uint32_t *_memset4(uint32_t *ptr, uint8_t c, uint32_t n)
Sets n bytes start at ptr to the value ¢ and returns ptr. Note this is a slightly more efficient variant of
_memset that may only be used if ptr is word aligned.
M,re! uint8_t *_memcpy(uint8_t *dest, uint8_t *src, uint32_t n)
Copies n bytes starting at src to dest and returns dest. The results are undefined if the regions overlap.
e, uint8_t *_memcpy44(uint32_t *dest, uint32_t *src, uint32_t n)
Copies n bytes starting at src to dest and returns dest. The results are undefined if the regions overlap.
Note this is a slightly more efficient variant of _memcpy that may only be used if dest and src are word
aligned.
2.8.3.1.3. Flash Access Functions

These are low level flash helper functions.

Table 166. Flash
Access Functions

CODE

Description

T

void _connect_internal_flash(void)

Restore all QSPI pad controls to their default state, and connect the SSI to the QSPI pads

EY

void _flash_exit_xip(void)

First set up the SSI for serial-mode operations, then issue the fixed XIP exit sequence described in
Section 2.8.1.2. Note that the bootrom code uses the 10 forcing logic to drive the CS pin, which must be
cleared before returning the SSI to XIP mode (e.g. by a call to _flash_flush_cache). This function
configures the SSI with a fixed SCK clock divisor of /6.

R','E'

void _flash_range_erase(uint32_t addr, size_t count, uint32_t block_size, uint8_t block_cmd)

Erase a count bytes, starting at addr (offset from start of flash). Optionally, pass a block erase command
e.g. D8h block erase, and the size of the block erased by this command — this function will use the larger
block erase where possible, for much higher erase speed. addr must be aligned to a 4096-byte sector, and
count must be a multiple of 4096 bytes.

R','P

void flash_range_program(uint32_t addr, const uint8_t *data, size_t count)

Program data to a range of flash addresses starting at addr (offset from the start of flash) and count bytes
in size. addr must be aligned to a 256-byte boundary, and count must be a multiple of 256.

Ere

void _flash_flush_cache(void)

Flush and enable the XIP cache. Also clears the 10 forcing on QSPI CSn, so that the SSI can drive the
flash chip select as normal.

ey

void _flash_enter_cmd_xip(void)

Configure the SSI to generate a standard 03h serial read command, with 24 address bits, upon each XIP
access. This is a very slow XIP configuration, but is very widely supported. The debugger calls this
function after performing a flash erase/programming operation, so that the freshly-programmed code
and data is visible to the debug host, without having to know exactly what kind of flash device is
connected.

A typical call sequence for erasing a flash sector from user code would be:

2.8. Bootrom

134

RP2040 Datasheet
]

Table 167. Debugging
Support Functions

Table 168.
Miscellaneous
Functions

® _connect_internal_flash

* _flash_exit_xip

e _flash_range_erase(addr, 1 << 12, 1 << 16, 0xd8)

e _flash_flush_cache

® FEither a call to _flash_enter_cmd_xip or call into a flash second stage that was previously copied out into SRAM

Note that, in between the first and last calls in this sequence, the SSl is not in a state where it can handle XIP accesses,
so the code that calls the intervening functions must be located in SRAM. The SDK hardware_flash library hides these

details.

2.8.3.1.4. Debugging Support Functions

These two methods simplify the task of calling code on the device and then returning control to the debugger.

CODE Description

D','T! _debug_trampoline
Simple debugger trampoline for break-on-return.
This methods helps the debugger call ROM routines without setting hardware breakpoints. The function
address is passed in r7 and args are passed through r0 ... r3 as per ABI.
This method does not return but executes a BKPT #0 at the end.

D', 'E" _debug_trampoline_end
This is the address of the final BKPT #0 instruction of debug_trampoline. This can be compared with the
program counter to detect completion of the debug_trampoline call.

2.8.3.1.5. Miscellaneous Functions

These remaining functions don't fit in other categories and are exposed in the SDK via the pico_bootrom library (see

pico_bootrom).

CODE

Description

B!

void _reset_to_usb_boot(uint32_t gpio_activity_pin_mask, uint32_t disable_interface_mask)

Resets the RP2040 and uses the watchdog facility to re-start in BOOTSEL mode:

® gpio_activity_pin_mask is provided to enable an "activity light" via GPIO attached LED for the USB
Mass Storage Device:

o 0 No pins are used as per a cold boot.

o Otherwise a single bit set indicating which GPIO pin should be set to output and raised
whenever there is mass storage activity from the host.

® disable_interface_mask may be used to control the exposed USB interfaces:
o 0 To enable both interfaces (as per a cold boot)
o 1To disable the USB Mass Storage Interface (see Section 2.8.4)

o 2 To disable the USB PICOBOOT Interface (see Section 2.8.5)

2.8. Bootrom

135

https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_bootrom

RP2040 Datasheet

W,y _wait_for_vector

This is the method that is entered by core 1 on reset to wait to be launched by core 0. There are few
cases where you should call this method (resetting core 1 is much better). This method does not return
and should only ever be called on core 1.

'E','c! deprecated

Do not use this function which may not be present.

2.8.3.2. Fast Floating Point Library

The Bootrom contains an optimized single-precision floating point implementation. Additionally V2 onwards also
contain an optimized double-precision float point implementation. The function pointers for each precision are kept in a
table structure found via the rom_data_lookup table (see Section 2.8.3.3).

2.8.3.2.1. Implementation Details

There is always a trade-off between speed and size. Whilst the overall goal for the floating-point routines is to achieve
good performance within a small footprint, the emphasis is more on improved performance for the basic operations
(add, subtract, multiply, divide and square root) and more on reduced footprint for the scientific functions (trigonometric
functions, logarithms and exponentials).

The IEEE single- and double-precision data formats are used throughout, but in the interests of reducing code size, input
denormals are treated as zero, input NaNs are treated as infinities, output denormals are flushed to zero, and output
NaNs are rendered as infinities. Only the round-to-nearest, even-on-tie rounding mode is supported. Traps are not
supported.

The five basic operations return results that are always correctly rounded.

The scientific functions always return results within 1 ULP (unit in last place) of the exact result. In many cases results
are better.

The scientific functions are calculated using internal fixed-point representations so accuracy (as measured in ULP error
rather than in absolute terms) is poorer in situations where converting the result back to floating point entails a large
normalising shift. This occurs, for example, when calculating the sine of a value near a multiple of pi, the cosine of a
value near an odd multiple of pi/2, or the logarithm of a value near 1. Accuracy of the tangent function is also poorer
when the result is very large. Although covering these cases is possible, it would add considerably to the code footprint,
and there are few types of program where accuracy in these situations is essential.

The sine, cosine and tangent functions also only operate correctly over a limited range: -128 < x < +128 for single-
precision arguments x and -1024 < x < +1024 for double-precision x. This is to avoid the need to (at least in effect) store
the value of pi to high precision within the code, and hence saves code space. Accurate range reduction over a wider
range of arguments can be done externally to the library if required, but again there are few situations where this would
be needed.

O NoTE

The SDK cos/sin functions perform this range reduction, so accept the full range of arguments, though are slower
for inputs outside of these ranges.

2.8.3.2.2. Functions

These functions follow the standard ARM EABI for passing floating point values.

You do not need to call these methods directly as the SDK pico_float and pico_double libraries used by default replace
the ARM EABI Float functions such that C/C++ level code (or indirectly code in languages such as MicroPython that are
implemented in C) use these Bootrom functions automatically for the corresponding floating point operations.

|
2.8. Bootrom 136

https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_float
https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_double

RP2040 Datasheet

Table 169. Single-
precision Floating
Point Function Table.
Timings are average
time in us over
random (worst case)
input. Functions with
timing of N/A are not
present in that ROM
version, and the
function pointer
should be considered
invalid. The functions
(and table entries)
from offset 0x54
onwards are only
present in the V2
ROM.

Some of these functions do not behave exactly the same as some of the corresponding C library functions. For that
reason if you are using the SDK it is strongly advised that you simply use the regular math.h functions or those in
pico/float.h or pico/double.h and not try to call into the bootrom directly.

Note that double-precision floating point support is not present in version 1 (V1) of the bootrom, but the above
mentioned pico_double library in the SDK will take care of pulling in any extra code needed for V1.

© NoTE

For more information on using floating point in the SDK, and real world timings (noting also that some conversion
functions are re-implemented in the SDK to be faster) see floating point support.

Offset

V1 Cycles
(Avg)

V2/V3
Cycles
(Avg)

Description

Functions common to all

versions of

the bootrom

0x00

7

Al

float _fadd(float a, float b)

Returna+b

0x04

74

74

float _fsub(float a, float b)

Returna-b

0x08

69

58

float _fmul(float a, float b)

Returna*b

0x0c

7

Al

float _fdiv(float a, float b)

Returna/b

0x10

N/A

N/A

deprecated

Do not use this function

0x14

N/A

N/A

deprecated

Do not use this function

0x18

63

63

float _fsqrt(float v)

Return /v or -Infinity if v is negative. (Note V1 returns +Infinity in this case)

0x1c

37

40

int _float2int(float v)

Convert a float to a signed integer, rounding towards -Infinity, and clamping the
result to lie within the range -0x80000000 to 0x7FFFFFFF

0x20

36

39

int _float2fix(float v, int n)

Convert a float to a signed fixed point integer representation where n specifies the
position of the binary point in the resulting fixed point representation - e.g.
_float2fix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and clamps
the resulting integer to lie within the range -0x80000000 to @x7FFFFFFF

0x24

38

39

vint _float2uint(float v)

Convert a float to an unsigned integer, rounding towards -Infinity, and clamping
the result to lie within the range 0x00000000 to 0xFFFFFFFF

2.8. Bootrom

137

https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_double
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf#section_floating_point

RP2040 Datasheet
]

0x28 38 38 uint _float2ufix(float v, int n)

Convert a float to an unsigned fixed point integer representation where n specifies
the position of the binary point in the resulting fixed point representation, e.g.
_float2ufix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and clamps
the resulting integer to lie within the range 0x00000000 to 0xFFFFFFFF

0x2c 55 55 float _int2float(int v)

Convert a signed integer to the nearest float value, rounding to even on tie

0x30 53 53 float _fix2float(int32_t v, int n)

Convert a signed fixed point integer representation to the nearest float value,
rounding to even on tie. n specifies the position of the binary point in fixed point,
so f = nearest(v/2")

0x34 54 54 float _uint2float(uint32_t v)

Convert an unsigned integer to the nearest float value, rounding to even on tie

0x38 52 52 float _ufix2float(uint32_t v, int n)

Convert an unsigned fixed point integer representation to the nearest float value,
rounding to even on tie. n specifies the position of the binary point in fixed point,
so f = nearest(v/2")

0x3c 603 587 float _fcos(float angle)

Return the cosine of angle. angle is in radians, and must be in the range -128 to
128

0x40 593 577 float _fsin(float angle)

Return the sine of angle. angle is in radians, and must be in the range -128 to 128

0x44 669 653 float _ftan(float angle)

Return the tangent of angle. angle is in radians, and must be in the range -128 to
128

0x48 N/A N/A deprecated

Do not use this function

Ox4c 542 524 float _fexp(float v)

Return the exponential value of v, i.e. so ev

0x50 810 789 float _fln(float v)

Return the natural logarithm of v. If y< = 0 return -Infinity

Functions (and table entries) present in the V2/V3 bootrom only

0x54 N/A 25 int _femp(float a, float b)

Compares two floating point numbers, returning:
* Qifa==
e -lTifa<b

e 1ifa>b

0x58 N/A 667 float _fatan2(float y, float x)

Computes the arc tangent of y/x using the signs of arguments to determine the
correct quadrant

|
2.8. Bootrom 138

RP2040 Datasheet
]

0x5¢ N/A 62 float _int642float(int64_t v)

Convert a signed 64-bit integer to the nearest float value, rounding to even on tie

0x60 N/A 60 float _fix642float(int64_t v, int n)

Convert a signed fixed point 64-bit integer representation to the nearest float
value, rounding to even on tie. n specifies the position of the binary point in fixed
point, so f = nearest(v/2")

0x64 N/A 58 float _uint642float(uint64_t v)

Convert an unsigned 64-bit integer to the nearest float value, rounding to even on
tie

0x68 N/A 57 float _ufix642float(uint64_t v, int n)

Convert an unsigned fixed point 64-bit integer representation to the nearest float
value, rounding to even on tie. n specifies the position of the binary point in fixed
point, so f = nearest(v/2")

0x6c N/A 54 _float2int64

Convert a float to a signed 64-bit integer, rounding towards -Infinity, and clamping
the result to lie within the range -0x8000000000000000 to 0x7FFFFFFFFFFFFFFF

0x70 N/A 53 _float2fix64

Convert a float to a signed fixed point 64-bit integer representation where n
specifies the position of the binary point in the resulting fixed point representation
- e.g. _float2fix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and
clamps the resulting integer to lie within the range -0x8000000000000000 to
Ox7FFFFFFFFFFFFFFF

0x74 N/A 42 _float2uintb4

Convert a float to an unsigned 64-bit integer, rounding towards -Infinity, and
clamping the result to lie within the range 0x0000000000000000 to 0xFFFFFFFFFFFFFFFF

0x78 N/A M _float2ufixb4

Convert a float to an unsigned fixed point 64-bit integer representation where n
specifies the position of the binary point in the resulting fixed point representation,
e.g. _float2ufix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and
clamps the resulting integer to lie within the range 0x0000000000000000 to
OXFFFFFFFFFFFFFFFF

0x7c N/A 15 double _float2double(float v)

Converts a float to a double

Function present in the V3 bootrom only

0x48 577 (V3 | float (float) _fsincos(float angle)
only)
(uses
previously

Calculates the sine and cosine of angle. angle is in radians, and must be in the
range -128 to 128. The sine value is returned in register r0 (and is thus the official
function return value), the cosine value is returned in register r1. This method is
considerably faster than calling _fsinand _fcos separately.

deprecated
slot)

Note that the V2/V3 bootroms contains an equivalent table of functions for double-precision floating point operations.
The offsets are the same, however where there was now float there is double (and vice versa for the float<>double
conversion)

|
2.8. Bootrom 139

RP2040 Datasheet
]

Table 170. Double-
precision Floating
Point Function Table.
Timings are average
time in us over
random (worst case)
input. Functions with
timing of N/A are not
present in that ROM
version, and the
function pointer
should be considered
invalid. The functions
(and table entries)
from offset 0x54
onwards are only
present in the V2 and
V3 ROMs.

Offset

Cycles
(Avg)*

Description

0x00

91

double _dadd(double a, double b)

Returna+b

0x04

95

double _dsub(double a, double b)

Returna-b

0x08

155

double _dmul(double a, double b)

Returna*b

0x0c

183

double _ddiv(double a, double b)

Returna/b

0x10

N/A

deprecated

Do not use this function

0x14

N/A

deprecated

Do not use this function

0x18

169

double _dsqrt(double v)

Return /v or -Infinity if v is negative.

0x1c

75

int _double2int(double v)

Convert a double to a signed integer, rounding towards -Infinity, and clamping the result to
lie within the range -0x80000000 to 0x7FFFFFFF

0x20

74

int _double2fix(double v, int n)

Convert a double to a signed fixed point integer representation where n specifies the
position of the binary point in the resulting fixed point representation - e.g. _double2fix(0.5f,
16) == 0x8000. This method rounds towards -Infinity, and clamps the resulting integer to lie
within the range -0x80000000 to 0x7FFFFFFF

0x24

63

uint _double2uint(double v)

Convert a double to an unsigned integer, rounding towards -Infinity, and clamping the result
to lie within the range 0x00000000 to 0xFFFFFFFF

0x28

62

uint _double2ufix(double v, int n)

Convert a double to an unsigned fixed point integer representation where n specifies the
position of the binary point in the resulting fixed point representation, e.g. _double2ufix(8.5f,
16) == 0x8000. This method rounds towards -Infinity, and clamps the resulting integer to lie
within the range 0x00000000 to 0xFFFFFFFF

0x2c

69

double _int2double(int v)

Convert a signed integer to the nearest double value, rounding to even on tie

0x30

68

double _fix2double(int32_t v, int n)

Convert a signed fixed point integer representation to the nearest double value, rounding to
even on tie. n specifies the position of the binary point in fixed point, so
f =nearest(v/2")

0x34

64

double _uint2double(uint32_t v)

Convert an unsigned integer to the nearest double value, rounding to even on tie

2.8. Bootrom

140

RP2040 Datasheet
]

Offset Cycles Description
(Avg)*
0x38 62 double _ufix2double(uint32_t v, int n)

Convert an unsigned fixed point integer representation to the nearest double value,
rounding to even on tie. n specifies the position of the binary point in fixed point, so
f = nearest(v/2n)

0x3c 1617 double _dcos(double angle)

Return the cosine of angle. angle is in radians, and must be in the range -1024 to 1024

0x40 1618 double _dsin(double angle)

Return the sine of angle. angle is in radians, and must be in the range -1024 to 1024

0x44 1891 double _dtan(double angle)

Return the tangent of angle. angle is in radians, and must be in the range -1024 to 1024

0x48 N/A deprecated

Do not use this function

Ox4c 804 double _dexp(double v)

Return the exponential value of v, i.e. so e”

0x50 428 double _dln(double v)

Return the natural logarithm of v. If y< = Q return -Infinity

0x54 39 int _dcmp(double a, double b)

Compares two floating point numbers, returning:
® Oifa==
e -Tifa<b

e Tifa>b

0x58 2168 double _datan2(double y, double x)

Computes the arc tangent of y/x using the signs of arguments to determine the correct
quadrant

0x5¢ 55 double _int642double(int64_t v)

Convert a signed 64-bit integer to the nearest double value, rounding to even on tie

0x60 56 double _dix642double(int64_t v, int n)

Convert a signed fixed point 64-bit integer representation to the nearest double value,
rounding to even on tie. n specifies the position of the binary point in fixed point, so
f = nearest(v/2n)

0x64 50 double _uint642double(uintb4_t v)

Convert an unsigned 64-bit integer to the nearest double value, rounding to even on tie

0x68 49 double _ufix642double(uint64_t v, int n)

Convert an unsigned fixed point 64-bit integer representation to the nearest double value,
rounding to even on tie. n specifies the position of the binary point in fixed point, so
f = nearest(v/2")

0x6c 64 _double2int64

Convert a double to a signed 64-bit integer, rounding towards -Infinity, and clamping the
result to lie within the range -0x8000000000000000 to 0x7FFFFFFFFFFFFFFF

|
2.8. Bootrom 141

RP2040 Datasheet

Offset Cycles Description
(Avg)*

0x70 63 _double2fix64
Convert a double to a signed fixed point 64-bit integer representation where n specifies the
position of the binary point in the resulting fixed point representation - e.g. _double2fix(0.5f,
16) == 0x8000. This method rounds towards -Infinity, and clamps the resulting integer to lie
within the range -0x8000000000000000 to 0x7FFFFFFFFFFFFFFF

0x74 53 _double2uint64
Convert a double to an unsigned 64-bit integer, rounding towards -Infinity, and clamping the
result to lie within the range 0x0000000000000000 to 0xFFFFFFFFFFFFFFFF

0x78 52 _double2ufix64
Convert a double to an unsigned fixed point 64-bit integer representation where n specifies
the position of the binary point in the resulting fixed point representation, e.g.
_double2ufix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and clamps the
resulting integer to lie within the range 0x0000000000000000 to OxFFFFFFFFFFFFFFFF

0x7c 23 float _double2float(double v)
Converts a double to a float

Function present in the V3 bootrom only
0x48 1718 double (,double) _sincos(double angle)
(uses (V3 only)
previously Calculates the sine and cosine of angle. angle is in radians, and must be in the range -1024
deprlecta)md to 1024. The sine value is returned in registers r0/r1 (and is thus the official return value),

SLo
the cosine value is returned in registers r2/r3. This method is considerably faster than
calling _sin and _cos separately.

2.8.3.3. Bootrom Data

The Bootrom data table (rom_data_table) contains the following pointers.

Table 171. Bootrom
data pointers

CODE

Value (16-bit pointer) Description

R

const char *copyright_string

The Raspberry Pi Trading Ltd copyright string.

6", 'R

const uint32_t *git_revision

The 8 most significant hex digits of the Bootrom git revision.

Er S

fplib_start

The start address of the floating point library code and data. This and fplib_end along with the individual
function pointers in soft_float_table can be used to copy the floating point implementation into RAM if
desired.

S

soft_float_table

See Table 169 for the contents of this table.

YU

fplib_end

The end address of the floating point library code and data.

2.8. Bootrom

142

RP2040 Datasheet
]

'SY,'D! soft_double_table

This entry is only present in the V2 bootrom. See Table 170 for the contents of this table.

'P','8' | deprecated. This entry is not present in the V2 bootrom; do not use it.

'R','8" | deprecated. This entry is not present in the V2 bootrom; do not use it.

'L','8" | deprecated. This entry is not present in the V2 bootrom; do not use it.

'T','8' | deprecated. This entry is not present in the V2 bootrom; do not use it.

2.8.4. USB Mass Storage Interface
The Bootrom provides a standard USB bootloader that makes a writeable drive available for copying code to the
RP2040 using UF2 files (see Section 2.8.4.2).

A UF2 file copied to the drive is downloaded and written to Flash or RAM, and the device is automatically rebooted,
making it trivial to download and run code on the RP2040 using only a USB connection.

2.8.4.1. The RPI-RP2 Drive
The RP2040 appears as a standard 128MB flash drive named RPI-RP2 formatted as a single partition with FAT16. There
are only ever two actual files visible on the drive specified.

® INFO_UF2.TXT - contains a string description of the UF2 bootloader and version.

® INDEX.HTM - redirects to information about the RP2040 device.

Any type of files may be written to the USB drive from the host, however in general these are not stored, and only appear
to be so because of caching on the host side.

When a UF2 file is written to the device however, the special contents are recognized and data is written to specified
locations in RAM or Flash. On the completed download of an entire valid UF2 file, the RP2040 automatically reboots to
run the newly downloaded code.

© NoOTE

The INDEX.HTM file is currently redirected to https://www.raspberrypi.com/documentation/microcontrollers/

2.8.4.2. UF2 Format Details

@ TP

To generate UF2 files, use the UF2 convert functionality in picotool.

© NOTE

Invalid UF2 files may not write at all or only write partially to RP2040 before failing. Not all operating systems notify
you of disk write errors after a failed write. You can use picotool to verify that a UF2 file wrote correctly to RP2040.

® All data destined for the device must be in a UF2 block with familyID present and set to 0xe48bff56, and a payload_size
of 256.

® All data must be destined for (and fit entirely within) the following memory ranges (depending on the type of binary
being downloaded which is determined by the address of the first UF2 block encountered):

|
2.8. Bootrom 143

https://www.raspberrypi.com/documentation/microcontrollers/
https://github.com/raspberrypi/picotool

RP2040 Datasheet
]

a. Aregular flash binary

= 0x10000000-0x11000000 Flash: All blocks must be targeted at 256 byte alignments. Writes beyond the end of
physical flash will wrap back to the beginning of flash.

b. A RAM only binary
= 0x20000000-0x20042000 Main RAM: Blocks can be positioned with byte alignment.

= 0x15000000-0x15004000 Flash Cache: (since flash is not being targeted, the Flash Cache is available for use
as RAM with same properties as Main RAM).

O NoTE

Traditionally UF2 has only been used to write to Flash, but this is more a limitation of using the metadata-free
.BIN file as the source to generate the UF2 file. RP2040 takes full advantage of the inherent flexibility of UF2 to
support the full range of binaries in the richer .ELF format produced by the build to be used as the source for the
UF2 file.

® The numBlocks must specify a total size of the binary that fits in the regions specified above

® A change of numBlocks or the binary type (determined by UF2 block target address) will discard the current transfer
in progress.

® All data must be in blocks without the UF2_FLAG_NOT_MAIN_FLASH marking which relates to content to be ignored rather
than Flash vs RAM.

The flash is always erased a 4kB sector at a time, so including data for only a subset of the 256-byte pages within a
sector in a flash-binary UF2 will leave the remaining 256-byte pages of the sector erased but undefined. The RP2040
bootrom will accept UF2 binaries with such partially-filled sectors, however due to a bug (RP2040-E14) such binaries
may not be written correctly if there is any partially-filled sector other than at the end. Most flash binaries are 4kB
aligned and contiguous, and therefore it is usually only the last sector that is partially-filled. If you need to write non-
aligned or non-contiguous UF2s to flash, then you should make sure to include a full 4kB worth of data for every sector
in flash that will be written other than the last. This is handled for you automatically by the elf2uf2 tool in the SDK
version 1.3.1 onwards, which explicitly adds zero-filled pages to the appropriate partially-filled sectors.

A binary is considered "downloaded" when each of the numBlocks blocks has been seen at least once in the course of a
single valid transfer. The data for a block is only written the first time in case of the host resending duplicate blocks.

After downloading a regular flash binary, a reset is performed after which the flash binary second stage (at address
0x10000000 - the start of flash) will be entered (if valid) via the bootrom.

A downloaded RAM only binary is entered by watchdog reset into the start of the binary, which is calculated as the
lowest address of a downloaded block (with Main RAM considered lower than Flash Cache if both are present).

Finally it is possible for host software to temporarily disable UF2 writes via the PICOBOOT interface to prevent
interference with operations being performed via that interface (see below), in which case any UF2 file write in progress
will be aborted.

2.8.5. USB PICOBOOT Interface
The PICOBOOT interface is a low level USB protocol for interacting with the RP2040 while it is in BOOTSEL mode. This
interface may be used concurrently with the USB Mass Storage Interface.

It provides for flexible reading from and writing to RAM or Flash, rebooting, executing code on the device and a handful
of other management functions.

Constants and structures related to the interface can be found in the SDK header https://github.com/raspberrypi/pico-
sdk/blob/master/src/common/boot_picoboot_headers/include/boot/picoboot.h

2.8. Bootrom

144

https://github.com/raspberrypi/pico-sdk/blob/master/src/common/boot_picoboot_headers/include/boot/picoboot.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/boot_picoboot_headers/include/boot/picoboot.h

RP2040 Datasheet

2.8.5.1. Identifying The Device

A RP2040 device is recognized by the Vendor ID and Product ID in its device descriptor (shown in Table 172).

Table 172. RP2040

Boot Device Field Value

Descriptor bLength 18
bDescriptorType 1
bcdUSB 1.10
bDeviceClass 0
bDeviceSubClass 0
bDeviceProtocol 0
bMaxPacketSize0 64
idVendor Ox2e8a
idProduct 0x0003
bcdDevice 1.00
iManufacturer 1
iProduct 2
iSerial 3

bNumConfigurations

2.8.5.2. Identifying The Interface

The PICOBOOT interface is recognized by the "Vendor Specific" Interface Class and the zero Interface Sub Class and
Interface Protocol (shown in Table 173). Note that you should not rely on the interface number, as that is dependent on
whether the device is also exposing the Mass Storage Interface. Note also that the device equally may not be exposing
the PICOBOOT interface at all, so you should not assume it is present.

Table 173. PICOBOOT

Field Value
Interface Descriptor

bLength 9

bDescriptorType 4

binterfaceNumber varies

bAlternateSetting 0

bNumEndpoints 2

binterfaceClass

0xff (vendor specific)

binterfaceSubClass 0
binterfaceProtocol 0
iInterface 0

2.8.5.3. Identifying The Endpoints

The PICOBOOT interface provides a single BULK OUT and a single BULK IN endpoint. These can be identified by their
direction and type. You should not rely on endpoint numbers.

2.8. Bootrom

145

RP2040 Datasheet
]

Table 174. PICOBOOT
Command Definition

Table 175. PICOBOOT
Exclusive access
command structure

Table 176. PICOBOOT
Reboot access
command structure

2.8.5.4. PICOBOOT Commands

The two bulk endpoints are used for sending commands and retrieved successful command results. All commands are
exactly 32 bytes (see Table 174) and sent to the BULK OUT endpoint.

Offset Name Description

0x00 dMagic The value 0x431fd10b

0x04 dToken A user provided token to identify this request by

0x08 bCmdId The ID of the command. Note that the top bit indicates data transfer direction
(0x80 = IN)

0x09 bCmdSize Number of bytes of valid data in the args field

0x0a reserved 0x0000

0x0c dTransferLength The number of bytes the host expects to send or receive over the bulk channel

0x10 args 16 bytes of command specific data padded with zeros

If a command sent is invalid or not recognized, the bulk endpoints will be stalled. Further information will be available
via the GET_COMMAND_STATUS request (see Section 2.8.5.5.2).

Following the initial 32 byte packet, if dTranferLength is non-zero, then that many bytes are transferred over the bulk
pipe and the command is completed with an empty packet in the opposite direction. If dTransferLength is zero then
command success is indicated by an empty IN packet.

The following commands are supported (note common fields dMagic, dToken, reserved are omitted for clarity)

2.8.5.4.1. EXCLUSIVE_ACCESS (0x01)

Claim or release exclusive access for writing to the RP2040 over USB (versus the Mass Storage Interface)

Offset Name Value / Description

0x08 bCmdld 0x01 (EXCLUSIVE_ACCESS)

0x09 bCmdSize 0x01

0x0c dTransferLength 0x00000000

0x10 bExclusive NOT_EXCLUSIVE (0) No restriction on USB Mass Storage operation

EXCLUSIVE (1)

Disable USB Mass Storage writes (the host should
see them as write protect failures, but in any case
any active UF2 download will be aborted)

@

EXCLUSIVE_AND_EJECT | Lock the USB Mass Storage Interface out by

marking the drive media as not present (ejecting
the drive)

2.8.5.4.2. REBOOT (0x02)

Reboots the RP2040 out of BOOTSEL mode. Note that BOOTSEL mode might be re-entered if rebooting to flash and no
valid second stage bootloader is found.

Offset Name Value / Description
0x08 bCmdId 0x02 (REBOOT)
0x09 bCmdSize 0x0c

2.8. Bootrom

146

RP2040 Datasheet
]

0x0c dTransferLength 0x00000000
0x10 dPC The address to start executing from. Valid values are:
0x00000000 Reboot via the standard
Flash boot mechanism
RAM address Reboot via watchdog and
start executing at the
specified address in RAM
0x14 dspP Initial stack pointer post reboot (only used if booting into
RAM)
0x18 dDelayMS Number of milliseconds to delay prior to reboot
2.8.5.4.3. FLASH_ERASE (0x03)

Erases a contiguous range of flash sectors.

Table 177. PICOBOOT

Offset Name Value / Description
Flash erase command
structure 0x08 bCmdld 0x03 (FLASH_ERASE)
0x09 bCmdSize 0x08
0x0c dTransferLength 0x00000000
0x10 dAddr The address in flash to erase, starting at this location. This must be sector

(4kB) aligned

0x14 dSize The number of bytes to erase. This must an exact multiple number of sectors
(4kB)

2.8.5.4.4. READ (0x84)

Read a contiguous memory (Flash or RAM or ROM) range from the RP2040

Table 176. PICOBOOT | feset Name Value / Description
Read memory
command (Flash, 0x08 bCmdld 0x84 (READ)
RAM, ROM) structure
0x09 bCmdSize 0x08
0x0c dTransferLength Must be the same as dSize
0x10 dAddr The address to read from. May be in Flash or RAM or ROM
0x14 dSize The number of bytes to read
2.8.5.4.5. WRITE (0x05)

Writes a contiguous memory range of memory (Flash or RAM) on the RP2040.

Table 179. PICOBOOT

; Offset Name Value / Description
Write memory
command (Flash, 0x08 bCmdld 0x05 (WRITE)
RAM) structure
0x09 bCmdSize 0x08
0x0c dTransferLength Must be the same as dSize

|
2.8. Bootrom 147

RP2040 Datasheet
]

Table 180. PICOBOOT
Exit Execute in place
(XIP) command
structure

Table 181. PICOBOOT
Enter Execute in place
(XIP) command

Table 182. PICOBOOT
Execute function on
device command
structure

Offset Name Value / Description

0x10 dAddr The address to write from. May be in Flash or RAM, however must be page
(256 byte) aligned if in Flash. Note the flash must be erased first or the results
are undefined.

0x14 dSize The number of bytes to write. If writing to flash and the size is not an exact
multiple of pages (256 bytes) then the last page is zero-filled to the end.

2.8.5.4.6. EXIT_XIP (0x06)

Exit Flash XIP mode. This first initialises the SSI for serial transfers, and then issues the XIP exit sequence given in
Section 2.8.1.2, to attempt to make the flash responsive to standard serial SPI commands. The SSI is configured with a
fixed clock divisor of /6, so the USB bootloader will drive SCLK at 8MHz.

Offset Name Value / Description
0x08 bCmdid 0x06 (EXIT_XIP)
0x09 bCmdSize 0x00

0x0c dTransferLength 0x00000000

2.8.5.4.7. ENTER_XIP (0x07)

Enter Flash XIP mode. This configures the SSI to issue a standard 03h serial read command, with 24 address clocks and
32 data clocks, for every XIP access. This is a slow but very widely supported way to read flash. The intent of this
function is to make flash easily accessible (i.e. just access addresses in the 0x10:- segment) without having to know
the details of exactly what kind of flash is connected. This mode is suitable for executing code from flash, but is much
slower than e.g. QSPI XIP access.

Offset Name Value / Description
0x08 bCmdld 0x07 (ENTER_XIP)
0x09 bCmdSize 0x00

0x0c dTransferLength 0x00000000

2.8.5.4.8. EXEC (0x08)

Executes a function on the device. This function takes no arguments and returns no results, so it must communicate via
RAM. Execution of this method will block any other commands as well as Mass Storage Interface UF2 writes, so should
only be used in exclusive mode and with extreme care (and it should save and restore registers as per the ARM EABI).
This method is called from a regular (non-IRQ) context, and has a very limited stack, so the function should use its own.

Offset Name Value / Description

0x08 bCmdid 0x08 (EXEC)

0x09 bCmdSize 0x04

0x0c dTransferLength 0x00000000

0x10 dAddr Function address to execute at (a thumb bit will be added for you since you
will have forgotten).

2.8. Bootrom

148

RP2040 Datasheet

2.8.5.4.9. VECTORIZE_FLASH (0x09)

Requests that the vector table of flash access functions used internally by the Mass Storage and PICOBOOT interfaces
be copied into RAM, such that the method implementations can be replaced with custom versions (For example, if the
board uses flash that does not support standard commands)

Table ?83‘ PICOBOOT | offset Name Value / Description
Vectorise flash
command structure | gy 08 bCmdld 0x09 (VECTORIZE_FLASH)
0x09 bCmdSize 0x04
0x0c dTransferLength 0x00000000
0x10 dAddr Pointer to where to place vector table in RAM

Flash function vector table

struct {
uint32_t size; // 28
uint32_t (*do_flash_enter_cmd_xip)();
uint32_t (*do_flash_exit_xip)();
uint32_t (*do_flash_erase_sector)();
uint32_t (*do_flash_erase_range)(uint32_t addr, uint32_t size);
uint32_t (*do_flash_page_program)(uint32_t addr, uint8_t *data);
uint32_t (*do_flash_page_read)(uint32_t addr, uint8_t *data);

These methods have the same signature and arguments as the corresponding flash access functions in the bootrom
(see Section 2.8.3.1.3).

Note that the host must subsequently update the RAM copy of this table via an EXEC command running on the RP2040
as any write to RAM from the host via a PICOBOOT WRITE that overlaps this (now active in RAM) vector table will cause a
reset to the use of the default ROM Flash function vector table.

2.8.5.5. Control Requests

The following requests are sent to the interface via the default control pipe.

2.8.5.5.1. INTERFACE_RESET (0x41)

The host sends this control request to reset the PICOBOOT interface. This command:
® Clears the HALT condition (if set) on each of the bulk endpoints

® Aborts any in-process PICOBOOT or Mass Storage transfer and any flash write (this method is the only way to kill a
stuck flash transfer).

® Clears the previous command result

® Removes EXCLUSIVE_ACCESS and remounts the Mass Storage drive if it was ejected due to exclusivity.

Table 184. PICOBOOT
Reset PICOBOOT

interface control 01000001b 01000001b 0000h Interface 0000h none

bmRequestType bRequest wValue windex wLength Data

This command responds with an empty packet on success.

2.8. Bootrom 149

RP2040 Datasheet
]

Table 185. PICOBOOT
Get last command
status control

Table 186. PICOBOOT
Get last command
status control
response

2.8.5.5.2. GET_COMMAND_STATUS (0x42)

Retrieve the status of the last command (which may be a command still in progress). Successful completion of a
PICOBOOT Protocol Command is acknowledged over the bulk pipe, however if the operation is still in progress or has
failed (stalling the bulk pipe), then this method can be used to determine the operation’s status.

bmRequestType bRequest wValue

windex wLength Data

11000001b 01000010b 0000h

Interface 0000h none

The command responds with the following 16 byte response

Offset Name Description
0x00 dToken The user token specified with the command
0x04 dStatusCode 0K (0) The command completed successfully (or is in still in
progress)
UNKNOWN_CMD (1) The ID of the command was not recognized
INVALID_CMD_LENGTH (2) | The length of the command request was incorrect
INVALID_TRANSFER_LENG | The data transfer length was incorrect given the
TH (3) command
INVALID_ADDRESS (4) The address specified was invalid for the command type;
i.e. did not match the type Flash/RAM that the command
was expecting
BAD_ALIGNMENT (5) The address specified was not correctly aligned according
to the requirements of the command
INTERLEAVED_WRITE (6) A Mass Storage Interface UF2 write has interfered with the
current operation. The command was abandoned with
unknown status. Note this will not happen if you have
exclusive access.
REBOOTING (7) The device is in the process of rebooting, so the command
has been ignored.
UNKNOWN_ERROR (8) Some other error occurred.
0x08 bCmdld The ID of the command
0x09 bInProgress 1if the command is stillin | 0 otherwise
progress
0x0a reserved (6 zero bytes)

2.9. Power Supplies

RP2040 requires five separate power supplies. However, in

most applications, several of these can be combined and

connected to a single power source. In a typical application, only a single 3.3V supply will be required. See Section

2.9.7.1, “Single 3.3V Supply”.

The power supplies and a number of potential power supply schemes are described in the following sections. Detailed
power supply parameters are provided in Section 5.6, “Power Supplies”.

]
2.9. Power Supplies

150

RP2040 Datasheet
]

2.9.1. Digital 10 Supply (I0VDD)

I0VDD supplies the chip’s digital 10, and should be powered at a nominal voltage between 1.8V and 3.3V. The supply
voltage sets the external signal level for the digital 10 and should be chosen based on the signal level required. See
Section 5.5.3, “Pin Specifications” for details. All digital I0s share the same power supply and operate at the same
signal level.

10VDD should be decoupled with a 100nF capacitor close to each of the chip’s IOVDD pins.

A cAuTION

If the digital |0 is powered at a nominal 1.8V, the 10 input thresholds should be adjusted via the VOLTAGE_SELECT
register. By default, the 10 input thresholds are valid when the digital 10 is powered at a nominal voltage between
2.5V and 3.3V. See Section 2.19, “GPIO” for details. Powering the 10 at 1.8V with input thresholds set for a 2.5V to
3.3V supply is a safe operating mode, but will result in input thresholds that do not meet specification. Powering the
10 at voltages greater than a nominal 1.8V with input thresholds set for a 1.8V supply may result in damage to the
chip.

2.9.2. Digital Core Supply (DVDD)

DVDD supplies the chip’s core digital logic, and should be powered at a nominal 1.1V. A dedicated on-chip voltage
regulator is provided to allow DVDD to be generated from the digital 10 supply (IOVDD) or another nominally 1.8V to
3.3V supply. The connection between the output pin of the on-chip regulator (VREG_VOUT) and the DVDD supply pins is
made off-chip, allowing DVDD to be powered from an off-chip power source if required.

DVDD should be decoupled with a 100nF capacitor close to each of the chip’s DVDD pins.

2.9.3. On-Chip Voltage Regulator Input Supply (VREG_VIN)

VREG_VIN is the input supply for the on-chip voltage regulator. It should be powered at a nominal voltage between 1.8V
and 3.3V. To reduce the number of external power supplies, VREG_VIN can use the same power source as the digital 10
supply (IOVDD).

A 1yF capacitor should be connected between VREG_VIN and ground close to the chip’s VREG_VIN pin.

A CAUTION

VREG_VIN also powers the chip’s power-on reset and brown-out detection blocks, so it must be powered even if the
on-chip voltage regulator is not used.

For more details on the on-chip voltage regulator see Section 2.10, “Core Supply Regulator”.

2.9.4. USB PHY Supply (USB_VDD)

USB_VDD supplies the chip’s USB PHY, and should be powered at a nominal 3.3V. To reduce the number of external
power supplies, USB_VDD can use the same power source as the digital 10 supply (IO0VDD), assuming IOVDD is also
powered at 3.3V. If IOVDD is not powered at 3.3V, a separate 3.3V supply will be required for the USB PHY, see Section
2.9.7.3,“1.8V Digital 10 with Functional USB and ADC". In applications where the USB PHY is never used, USB_VDD can
be tied to any supply with a nominal voltage between 1.8V and 3.3V. See Section 2.9.7.4, “Single 1.8V Supply” for an
example. USB_VDD should not be left unconnected.

USB_VDD should be decoupled with a 100nF capacitor close to the chip’s USB_VDD pin.

]
2.9. Power Supplies 151

RP2040 Datasheet

2.9.5. ADC Supply (ADC_AVDD)

ADC_AVDD supplies the chip’s Analogue to Digital Converter (ADC). It can be powered at a nominal voltage between
1.8V and 3.3V, but the performance of the ADC will be compromised at voltages below 2.97V. To reduce the number of
external power supplies, ADC_AVDD can use from the same power source as the digital 10 supply (I0VDD).

O NoTE

It is safe to supply ADC_AVDD at a higher or lower voltage than IOVDD, e.g. to power the ADC at 3.3V, for optimum
performance, while supporting 1.8V signal levels on the digital 10. But the voltage on the ADC analogue inputs must
not exceed I0VDD, e.g. if IOVDD is powered at 1.8V, the voltage on the ADC inputs should be limited to 1.8V.
Voltages greater than 10VDD will result in leakage currents through the ESD protection diodes. See Section 5.5.3,
“Pin Specifications” for details.

ADC_AVDD should be decoupled with a 100nF capacitor close to the chip’s ADC_AVDD pin.

2.9.6. Power Supply Sequencing

RP2040’s power supplies may be powered up or down in any order. However, small transient currents may flow in the
ADC supply (ADC_AVDD) if it is powered up before, or powered down after, the digital core supply (DVDD). This will not
damage the chip, but can be avoided by powering up DVDD before or at the same time as ADC_AVDD, and powering
down DVDD after or at the same time as ADC_AVDD. In the most common power supply scheme, where the chip is
powered from a single 3.3V supply, DVDD will be powered up shortly after ADC_AVDD due to the startup time of the on-
chip voltage regulator. This is acceptable behaviour. See Section 2.9.7.1, “Single 3.3V Supply”.

2.9.7. Power Supply Schemes

2.9.7.1. Single 3.3V Supply

In most applications, RP2040 will be powered from a single 3.3V supply, as shown in Figure 16. The digital 10 (I0VDD),
USB PHY (USB_VDD) and ADC (ADC_AVDD) will be powered directly from the 3.3V supply, and the 1.1V digital core
supply (DVDD) will be regulated from the 3.3V supply by the on-chip voltage regulator. Note that the regulator output pin
(VREG_VOUT) must be connected to the chip’s DVDD pins off-chip.

For more details on the on-chip voltage regulator see Section 2.10, “Core Supply Regulator”.

]
2.9. Power Supplies 152

RP2040 Datasheet
]

Figure 16. powering
the chip from a single
3.3V supply
(simplified diagram
omitting decoupling
components)

Figure 17. using an
external core supply

3.3V supply
a a a 1= z o
g g s 3 5 S
88 4 543
g
@ o B o
& g 5 2
>
1ovbD 1ovbD
1ovDD 1ovDD
g 8
s 3

2.9.7.2. External Core Supply

The digital core (DVDD) can be powered directly from an external 1.1V supply, rather than from the on-chip regulator, as
shown in Figure 17. This approach may make sense if a suitable external regulator is available elsewhere in the system,
or for low power applications where an efficient switched-mode regulator could be used instead of the less efficient
linear on-chip voltage regulator.

If an external core supply is used, the output of on-chip voltage regulator (VREG_VOUT) should be left unconnected.
However, power must still be provided to the regulator input (VREG_VIN) to supply the chip’s power-on reset and brown-
out detection blocks. The on-chip voltage regulator will power-on as soon as VREG_VIN is available, but can be
shutdown under software control once the chip is out of reset. See Section 2.10, “Core Supply Regulator” for details.

3.3V supply
1.1V supply
a a a E z o
=] a Q 2 S a
3 5
g3 2 343
@ o # o
E gz g
s
10vDD 10vDD
10vDD 10vDD
g 3
g 3

]
2.9. Power Supplies 153

RP2040 Datasheet
]

2.9.7.3. 1.8V Digital 10 with Functional USB and ADC

Applications with digital 10 signal levels less than 3.3V will require a separate 3.3V supply for the USB PHY and ADC, as
the USB PHY does not meet specification at voltages below 3.135V and ADC performance is compromised at voltages
below 2.97V. Figure 18 shows an example application with the digital 10 (IOVDD) powered at 1.8V and a separate 3.3V
supply for the USB PHY (USB_VDD) and ADC (ADC_AVDD). In this example, the voltage regulator input (VREG_VIN) is
connected to the 1.8V supply, though it could equally have been connected to the 3.3V supply. Connecting it to the 1.8V
supply will reduce overall power consumption if the 1.8V supply is generated by an efficient switched-mode regulator.

Figure 18. supporting
1.8V 10 while using

3.3V supply

1.8V supply
USB and the ADC
a a a = z =3
a a Q 2 S a
>
28 3 g. I 3\
@ o B 9
E g ¢ g
>
10vDD 10vDD
10vDD 10vDD
Q a
e a
8 3

2.9.7.4. Single 1.8V Supply

If a functional USB PHY and optimum ADC performance are not required, RP2040 can be powered from a single supply
of less than 3.3V. Figure 19 shows an example with a single 1.8V supply. In this example, the core supply (DVDD) is
regulated from the 1.8V supply by the on-chip voltage regulator.

]
2.9. Power Supplies 154

RP2040 Datasheet
]

Figure 19. powering
the chip from a single
1.8V supply

1.8V supply
a a a E z o
g g s 3 5 £
a2 4 8 3
@ o B o
-
>
10vDD 10VDD
10vDD 10vDD
g 8
g 2

2.10. Core Supply Regulator

RP2040 includes an on-chip voltage regulator, allowing the digital core supply (DVDD) to be generated from an external,
nominally 1.8V to 3.3V, power supply. In most cases, the regulator’s input supply will share an external power source
with the chip’s digital 10 supply IOVDD, simplifying the overall power supply requirements.

To allow the chip to start up, the voltage regulator is enabled by default and will power-on as soon as its input supply is
available. Once the chip is out of reset, the regulator can be disabled, placed into a high impedance state, or have its
output voltage adjusted, under software control. The output voltage can be set in the range 0.80V to 1.30V in 50mV
steps, but is set to a nominal 1.1V at initial power-on, or after a reset event. The voltage regulator can supply up to
100mA.

Although intended to provide the chip’s digital core supply (DVDD), the voltage regulator can be used for other purposes
if DVDD is powered directly from an external power supply.

2.10.1. Application Circuit

]
2.10. Core Supply Regulator 155

RP2040 Datasheet
]

Figure 20. voltage
regulator application
circuit

1.8V to 3.3V supply

100nF WF 1WF

DVDD
VREG_VOUT
VREG_VIN

100nF

DVDD
g

The regulator must have 1pF capacitors placed close to its input (VREG_VIN) and output (VREG_VOUT) pins.

2.10.2. Operating Modes

The voltage regulator operates in one of three modes. The mode to be used being selected by writing to the EN and HIzZ
fields in the VREG register, as shown in Table 187. At initial power-on, or following a reset event, the voltage regulator
will be in Normal Operation mode.

Table 187. Voltage Mode EN HIZ
Regulator Mode Select
Normal Operation® 1 0
High Impedance 1 1
Shutdown 0 X

2 the voltage regulator will be in normal mode at initial power-on or following a reset event

2.10.2.1. Normal Operation Mode

In Normal Operation mode, the voltage regulator’s output is in regulation at the selected voltage, and the regulator is
able to supply power.

2.10.2.2. High Impedance Mode

In High Impedance mode, the voltage regulator is disabled and its output pin (VREG_VOUT) is set to a high impedance
state. In this mode, the regulator's power consumption is minimised. This mode allows a load connected to
VREG_VOUT to be powered from a power source other than the on-chip regulator. This could allow, for example, the
load to be initially powered from the on-chip voltage regulator, and then switched to an external regulator under
software control. The external regulator would also need to support a high impedance mode, with only one regulator
supplying the load at a time. The supply voltage is maintained by the regulator’s output capacitor during the brief period
when both regulators are in high impedance mode.

]
2.10. Core Supply Regulator 156

RP2040 Datasheet
]

Table 188. List of
VREG_AND_CHIP_RES
ET registers

2.10.2.3. Shutdown Mode

In Shutdown mode, the voltage regulator is disabled, power consumption is minimized and the regulator’s output pin
(VREG_VOUT) is pulled to OV.

Shutdown mode is only useful if the voltage regulator is not providing the RP2040’s digital core supply (DVDD). If the
regulator is supplying DVDD, and brown-out detection is enabled, entering shutdown mode will cause a reset event and
the voltage regulator will return to normal mode. If brown-out detection isn't enabled, the voltage regulator will shut
down and will remain in shutdown mode until its input supply (VREG_VIN) is power cycled.

2.10.3. Output Voltage Select

The required output voltage can be selected by writing to the VSEL field in the VREG register. The voltage regulator’s
output voltage can be set in the range 0.80V to 1.30V in 50mV intervals. The regulator output voltage is set to 1.1V at
initial power-on or following a reset event. For details, see the VREG register description.

Note that RP2040 may not operate reliably with its digital core supply (DVDD) outside of operating conditions (see
Section 5.6); it is recommended to set the regulator to 1.10V for most applications.

2.10.4. Status

The VREG register contains a single status field, ROK, which indicates whether the voltage regulator’s output is being
correctly regulated.

At power on, ROK remains low until the regulator has started up and the output voltage reaches the ROK assertion
threshold (ROK.sssevr). It then remains high until the voltage drops below the ROK deassertion threshold (ROK.oeasserr),
remaining low until the output voltage is above the assertion threshold again. ROKm.issexr is nominally 90% of the selected
output voltage, 0.99V if the selected output voltage is 1.1V, and ROKw.oussesr iS nominally 87% of the selected output
voltage, 0.957V if the selected output voltage is 1.1V.

Note that adjusting the output voltage to a higher voltage will cause ROK to go low until the assertion threshold for the
higher voltage is reached. RoK will also go low if the regulator is placed in high impedance mode.

2.10.5. Current Limit

The voltage regulator includes a current limit to prevent the load current exceeding the maximum rated value. The
output voltage will not be regulated and will drop below the selected value when the current limit is active.

2.10.6. List of Registers

The voltage regulator shares a register address space with the chip-level reset subsystem. The registers for both
subsystems are listed here. Only, the VREG register is part of the voltage register subsystem. The BOD and CHIP_RESET
registers are part of the chip-level reset subsystem. The shared address space is referred to as vreg_and_chip_reset
elsewhere in this document.

The VREG_AND_CHIP_RESET registers start at a base address of 0x40064000 (defined as VREG_AND_CHIP_RESET_BASE
in SDK).

Offset Name Info

0x0 VREG Voltage regulator control and status
0x4 BOD brown-out detection control

0x8 CHIP_RESET Chip reset control and status

]
2.10. Core Supply Regulator 157

RP2040 Datasheet
]

VREG_AND_CHIP_RESET: VREG Register
Offset: 0x0

Description

Voltage regulator control and status

Tab{e 189, VREG Bits Description Type Reset
Register
31:13 Reserved. - -
12 ROK: regulation status RO 0x0
0=not in regulation, 1=in regulation
11:8 Reserved. - -
74 VSEL: output voltage select RW Oxb
0000 to 0101 - 0.80V
0110-0.85V
0111-0.90V
1000-0.95V
1001 - 1.00V
1010-1.05V
1011 -1.10V (default)
1100-1.15V
1101 - 1.20V
1110-1.25V
1111 -1.30V
3:2 Reserved. = =
1 HIZ: high impedance mode select RW 0x0
0=not in high impedance mode, 1=in high impedance mode
0 EN: enable RW 0x1
0=not enabled, 1=enabled
VREG_AND_CHIP_RESET: BOD Register
Offset: 0x4
Description
brown-out detection control
Tab{e 190. 50D Bits Description Type Reset
Register

31:8 Reserved. - -

]
2.10. Core Supply Regulator 158

RP2040 Datasheet

Bits Description Type Reset

7:4 VSEL: threshold select RW 0x9
0000-0.473V
0001 -0.516V
0010-0.559V
0011 -0.602V
0100 -0.645V
0101 -0.688V
0110-0.731V
0111-0.774V
1000-0.817V
1001 - 0.860V (default)
1010-0.903V
1011 -0.946V
1100-0.989V
1101 -1.032V
1110-1.075V
1111-1.118V

3:1 Reserved. - -

0 EN: enable RW 0x1
0=not enabled, 1=enabled

VREG_AND_CHIP_RESET: CHIP_RESET Register
Offset: 0x8

Description

Chip reset control and status

Table 197.

) Bits Description Type Reset
CHIP_RESET Register

31:25 Reserved. - -

24 PSM_RESTART_FLAG: This is set by psm_restart from the debugger. WC 0x0
Its purpose is to branch bootcode to a safe mode when the debugger has
issued a psm_restart in order to recover from a boot lock-up.

In the safe mode the debugger can repair the boot code, clear this flag then
reboot the processor.

23:21 Reserved. - -

20 HAD_PSM_RESTART: Last reset was from the debug port RO 0x0

19:17 Reserved. - -

16 HAD_RUN: Last reset was from the RUN pin RO 0x0

15:9 Reserved. - -

8 HAD_POR: Last reset was from the power-on reset or brown-out detection RO 0x0
blocks
7:0 Reserved. = =

2.10. Core Supply Regulator 159

RP2040 Datasheet
]

Table 192. Volfage Paramerer Description Min Typ Max Units
Regulator Detailed
Specifications Vyres.vin input supply 1.63 1.8-3.3 3.63 %
voltage
AVyrec_vour output voltage -3 +3 % of selected
variation output voltage
Imax output current 100 mA
lumir current limit 150 350 450 mA
ROKy assert ROK assertion 87 90 93 % of selected
threshold output voltage
ROKy peassert ROK deassertion 84 87 90 % of selected
threshold output voltage
troweron® power-up time 275 350 us

2.10.7. Detailed Specifications

2 values will vary with load current and capacitance on VREG_VOUT. Conditions: EN = 1, load current = 0OmA, VREG_VIN
ramps up in 100us

2.11. Power Control

RP2040 provides a range of options for reducing dynamic power:
® Top-level clock gating of individual peripherals and functional blocks
* Automatic control of top-level clock gates based on processor sleep state

® On-the-fly changes to system clock frequency or system clock source (e.g. switch to internal ring oscillator, and
disable PLLs and crystal oscillator)

® Zero-dynamic-power DORMANT state, waking on GPIO event or RTC IRQ

All digital logic on RP2040 is in a single core power domain. The following options are available for static power
reduction:

® Placing memories into state-retaining power down state

® Power gating on peripherals that support this, e.g. ADC, temperature sensor

2.11.1. Top-level Clock Gates

Each clock domain (for example, the system clock) may drive a large number of distinct hardware blocks, not all of
which may be required at once. To avoid unnecessary power dissipation, each individual endpoint of each clock (for
example, the UART system clock input) may be disabled at any time.

Enabling and disabling a clock gate is glitch-free. If a peripheral clock is temporarily disabled, and subsequently re-
enabled, the peripheral will be in the same state as prior to the clock being disabled. No reset or reinitialisation should
be required.

Clock gates are controlled by two sets of registers: the WAKE_ENXx registers (starting at WAKE_ENO) and SLEEP_ENx
registers (starting at SLEEP_ENO). These two sets of registers are identical at the bit level, each possessing a flag to
control each clock endpoint. The WAKE_EN registers specify which clocks are enabled whilst the system is awake, and
the SLEEP_ENX registers select which clocks are enabled while the processor is in the SLEEP state (Section 2.11.2).

The two Cortex-MO+ processors do not have externally-controllable clock gates. Instead, the processors gate the clocks
of their subsystems autonomously, based on execution of WFI/WFE instructions, and external Event and IRQ signals.

]
2.11. Power Control 160

RP2040 Datasheet
]

2.11.2. SLEEP State

RP2040 enters the SLEEP state when all of the following are true:
® Both processors are asleep (e.g. in a WFE or WFI instruction)
® The system DMA has no outstanding transfers on any channel
RP2040 exits the SLEEP state when either processor is awoken by an interrupt.

When in the SLEEP state, the top-level clock gates are masked by the SLEEP_ENXx registers (starting at SLEEP_ENO),
rather than the WAKE_ENX registers. This permits more aggressive pruning of the clock tree when the processors are
asleep.

© NoOTE

Though it is possible for a clock to be enabled during SLEEP and disabled outside of SLEEP, this is generally not
useful

For example, if the system is sleeping until a character interrupt from a UART, the entire system except for the UART
can be clock-gated (SLEEP_ENXx = all-zeroes except for CLK_SYS_UARTO and CLK_PERI_UARTO). This includes system
infrastructure such as the bus fabric.

When the UART asserts its interrupt, and wakes a processor, RP2040 leaves SLEEP mode, and switches back to the
WAKE_ENXx clock mask. At the minimum this should include the bus fabric, and the memory devices containing the
processor’s stack and interrupt vectors.

A system-level clock request handshake holds the processors off the bus until the clocks are re-enabled.

2.11.3. DORMANT State

The DORMANT state is a true zero-dynamic-power sleep state, where all clocks (and all oscillators) are disabled. The
system can awake from the DORMANT state upon a GPIO event (high/low level or rising/falling edge), or an RTC
interrupt: this restarts one of the oscillators (either ring oscillator or crystal oscillator), and ungates the oscillator output
once it is stable. System state is retained, so code execution resumes immediately upon leaving the DORMANT state.

Note that, if relying on the RTC (Section 4.8) to wake from the DORMANT state, the RTC must have some external clock
source. The RTC accepts clock frequencies as low as THz.

Note also that DORMANT does not halt PLLs. To avoid unnecessary power dissipation, software should power down
PLLs before entering the DORMANT state, and power up and reconfigure the PLLs again after exiting.

The DORMANT state is entered by writing a keyword to the DORMANT register in whichever oscillator is active: ring
oscillator (Section 2.17) or crystal oscillator (Section 2.16). If both are active then the one providing the processor clock
must be stopped last because it will stop software from executing.

2.11.4. Memory Power Down

The main system memories (SRAMO...5, mapped to bus addresses 0x20000000 to 0x200411ff), as well as the USB DPRAM,
can be powered down via the MEMPOWERDOWN register in the Syscfg registers (see Section 2.21). When powered
down, memories retain their current contents, but cannot be accessed. Static power is reduced.

]
2.11. Power Control 161

RP2040 Datasheet

A CAUTION

Memories must not be accessed when powered down. Doing so can corrupt memory contents.

When powering a memory back up, a 20ns delay is required before accessing the memory again.

The XIP cache (see Section 2.6.3) can also be powered down, with CTRL.POWER_DOWN. The XIP hardware will not
generate cache accesses whilst the cache is powered down. Note that this is unlikely to produce a net power savings if
code continues to execute from XIP, due to the comparatively high voltages and switching capacitances of the external
QSPI bus.

2.11.5. Programmer’s Model

2.11.5.1. Sleep

The hello_sleep example, https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_sleep/
hello_sleep_aon.c, demonstrates sleep mode. The hello_sleep application (and underlying functions) takes the following
steps:

® Run all clocks in the system from XOSC

® Configure an alarm in the RTC for 10 seconds in the future

¢ Set clk_rtc as the only clock running in sleep mode using the SLEEP_ENX registers (see SLEEP_ENO)
® Enable deep sleep in the processor

® Call __wfi on processor which will put the processor into deep sleep until woken by the RTC interrupt
® The RTC interrupt clears the alarm and then calls a user supplied callback function

® The callback function ends the example application

O NoOTE

It is necessary to enable deep sleep on both proc0 and proc1 and call __wfi, as well as ensure the DMA is stopped to
enter sleep mode.

hello_sleep makes use of functions in pico_sleep of the Pico Extras. In particular, sleep_goto_sleep_until puts the
processor to sleep until woken up by an RTC time assumed to be in the future.

Pico Extras: https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c Lines 159 - 183

159 void sleep_goto_sleep_until(struct timespec *ts, aon_timer_alarm_handler_t callback)

160 {

161

162 // We should have already called the sleep_run_from_dormant_source function

163 // This is only needed for dormancy although it saves power running from xosc while
sleeping

164 //assert(dormant_source_valid(_dormant_source));

165

166 clocks_hw->sleep_en® = CLOCKS_SLEEP_EN®_CLK_RTC_RTC_BITS;

167 clocks_hw->sleep_en1 = 0x0;

168

169 aon_timer_enable_alarm(ts, callback, false);

170

171 stdio_flush();

172

173 // Enable deep sleep at the proc

174 processor_deep_sleep();

]
2.11. Power Control 162

https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_sleep/hello_sleep_aon.c
https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_sleep/hello_sleep_aon.c
https://github.com/raspberrypi/pico-extras
https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c#L159-L183

RP2040 Datasheet

175

176 // Go to sleep
177 __wfi();

178 }

2.11.5.2. Dormant

The hello_dormant example, https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_dormant/

hello_dormant_gpio.c, demonstrates dormant mode. The example takes the following steps:

® Run all clocks in the system from XOSC

® Configure a GPIO interrupt for the "dormant_wake" hardware which can wake both the ROSC and XOSC from

dormant mode

® Put the XOSC into dormant mode which stops all processor execution (and all other clocked logic on the chip)

immediately

* When GPIO 10 goes high, the XOSC is started again and execution of the program continues

hello_dormant uses sleep_goto_dormant_until_pin under the hood:

Pico Extras: https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c Lines 258 - 282

258 void sleep_goto_dormant_until_pin(uint gpio_pin, bool edge, bool high) {

259 bool low = 'high;

260 bool level = !edge;

261

262 // Configure the appropriate IRQ at IO bank @

263 assert(gpio_pin < NUM_BANKO_GPIOS);

264

265 uint32_t event = 0;

266

267 if (level && low) event = IO_BANKO_DORMANT_WAKE_INTE@_GPIOO_LEVEL_LOW_BITS;
268 if (level && high) event = I0_BANKO_DORMANT_WAKE_INTEO_GPIOO_LEVEL_HIGH_BITS;
269 if (edge && high) event = IO_BANKO_DORMANT_WAKE_INTE@®_GPIOO_EDGE_HIGH_BITS;
270 if (edge && low) event = IO_BANKO_DORMANT_WAKE_INTE@_GPIO@_EDGE_LOW_BITS;
271

272 gpio_init(gpio_pin);

273 gpio_set_input_enabled(gpio_pin, true);

274 gpio_set_dormant_irq_enabled(gpio_pin, event, true);

275

276 _go_dormant();

277 // Execution stops here until woken up

278

279 // Clear the irq so we can go back to dormant mode again if we want

280 gpio_acknowledge_irq(gpio_pin, event);

281 gpio_set_input_enabled(gpio_pin, false);

282 }

2.12. Chip-Level Reset

2.12.1. Overview

The chip-level reset subsystem resets the whole chip, placing it in a default state. This happens at initial power-on,
during a power supply brown-out event or when the chip’s RUN pin is taken low. The chip can also be reset via the

2.12. Chip-Level Reset

163

https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_dormant/hello_dormant_gpio.c
https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_dormant/hello_dormant_gpio.c
https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c#L258-L282

RP2040 Datasheet
]

Rescue Debug Port. See Section 2.3.4.2, “Rescue DP” for details.

The subsystem has two reset outputs. rst_n_psm, which resets the whole chip, except the debug port, and rst_n_dp, which
only resets the Rescue DP. Both resets are held low at initial power-on, during a brown-out event or when RUN is low.
rst_n_psm can additionally be held low by the Rescue DP via the subsystem’s psm_restart input. This allows the chip to be
reset via the Rescue DP without resetting the Rescue DP itself. The subsystem releases chip level reset by taking
rst_n_psm high, handing control to the Power-on State Machine, which continues to start up the chip. See Section 2.13,
“Power-On State Machine” for details.

The chip level reset subsystem is shown in Figure 21, and more information is available in the following sections.

Figure 21. The chip-
level reset subsystem

Xt | result (RUN)

VREG_VIN DVDD
Supply Monitor Power-on Reset

initialise_por_n

i _n _por_n

DVDD

bod_n enable

Brown-out Detection

2.12.2. Power-on Reset

The power-on reset block makes sure the chip starts up cleanly when power is first applied by holding it in reset until the
digital core supply (DVDD) can reliably power the chip’s core logic. The block holds its por_n output low until DVDD has
been above the power-on reset threshold (DVDDqypor) for a period greater than the power-on reset assertion delay
(tporasserr)- Once high, por_n remains high even if DVDD subsequently falls below DVDDqypog, Unless brown-out detection
is enabled. The behaviour of por_n when power is applied is shown in Figure 22.

DVDDqypor is fixed at a nominal 0.957V, which should result in a threshold between 0.924V and 0.99V. The threshold
assumes a nominal DVDD of 1.1V at initial power-on, and por_n may never go high if a lower voltage is used. Once the
chip is out of reset, DVDD can be reduced without por_n going low, as long as brown-out detection has been disabled or
a suitable threshold voltage has been set.

DVDDtypor =—==—- /
DVDD

Figure 22. A power-on
reset cycle

tror.AsSERT

>
I
I

por_n

]
2.12. Chip-Level Reset 164

RP2040 Datasheet
]

Table 193. Power-on
Reset Parameters

Figure 23. A brown-out
detection cycle

Figure 24. Activation
of brown-out detection
at initial power-on and
following a brown-out
event.

2.12.2.1. Detailed Specifications

Parameter Description Min Typ Max Units
DVDD1ypor power-on reset 0.924 0.957 0.99 \
threshold
tpor AsserT power-on reset 3 10 us
assertion delay

2.12.3. Brown-out Detection

The brown-out detection block prevents unreliable operation by initiating a power-on reset cycle if the digital core supply
(DVDD) drops below a safe operating level. The block’s bod_n output is taken low if DVDD drops below the brown-out
detection threshold (DVDDyyg0p) for a period longer than the brown-out detection assertion delay (tzopasserr)- This re-
initialises the power-on reset block, which resets the chip, by taking its por_n output low, and holds it in reset until DVDD
returns to a safe operating level. Figure 23 shows a brown-out event and the subsequent power-on reset cycle.

DVDDrwpor

DVDDrigon ——==—

DVDD

tpor asserT
I
I

por_n

teop.AsserT 1

bod_n

2.12.3.1. Detection Enable

Brown-out detection is automatically enabled at initial power-on or after a brown-out initiated reset. There is, however, a
short delay, the brown-out detection activation delay (tsop.active), between por_n going high and detection becoming active.
This is shown in Figure 24.

DVDDriipor ===~ 4

DVDD /o
I

1

DVDDripor

DVDDrygop ===~

trorassert teor asserT

'
I
1
i
'
I
e d e
i
l
1
!
por_n]
'
1
l
1, tooosssenr
—
1
'
bod_n ,—
toop acTive tooo.acTive

detection
inactive

detection
active

detection
inactive

detection
active

Once the chip is out of reset, detection can be disabled under software control. This also saves a small amount of
power. If detection is subsequently re-enabled, there will be another short delay, the brown-out detection enable delay
(tsonenasie), Defore it becomes active again. This is shown in Figure 25.

2.12. Chip-Level Reset

165

RP2040 Datasheet

Detection is disabled by writing a zero to the EN field in the BOD register and is re-enabled by writing a one to the same
field. The block’s bod_n output is high when detection is disabled.

Figure 25. Disabling

and enabling brown-
out detection EN 7 X 0 X 7

1
1 teonenasie v
[

detection detection detection
inactive inactive active

Detection is re-enabled if the BOD register is reset, as this sets the register’s EN field to one. Again, detection will become
active after a delay equal to the brown-out detection enable delay (tsop.enasie)-

O NoTE

If the BOD register is reset by a power-on or brown-out initiated reset, the delay between the register being reset and
brown-out detection becoming active will be equal to the brown-out detection activation delay (tsopacrive). The delay
will be equal to the brown-out detection enable delay (tzopenasie) fOr all other reset sources.

2.12.3.2. Adjusting the Detection Threshold

The brown-out detection threshold (DVDDyyg0p) has a nominal value of 0.86V at initial power-on or after a reset event.
This should result in a detection threshold between 0.83V and 0.89V. Once out of reset, the threshold can be adjusted
under software control. The new detection threshold will take effect after the brown-out detection programming delay
((tsop.proc). An example of this is shown in Figure 26.

The threshold is adjusted by writing to the VSEL field in the BOD register. See the BOD register description for details.

Figure 26. Adjusting
the brown-out

detection threshold

VSEL 1001 0111
I
1 tBob.rroc ;
>
i
threshold threshold
0.86V 0.774V

2.12.3.3. Detailed Specifications

;ZZ‘Z(:::‘PB;TZ::ZZ Parameter Description Min Typ Max Units
DVDDqy 500 brown-out 96.5 100 103.5 % of selected
detection threshold voltage
threshold
teon.acTive brown-out 55 80 us
detection
activation delay

2.12. Chip-Level Reset 166

RP2040 Datasheet
]

Table 195. Voltage
Regulator Input Supply
Monitor Parameters

Parameter Description Min Typ Max Units
tsop.AssERT brown-out 3 10 s
detection

assertion delay

tsop.EnnBLE brown-out 35 55 us
detection enable
delay
ts00.pROG brown-out 20 30 us
detection

programming
delay

2.12.4. Supply Monitor

The power-on and brown-out reset blocks are powered by the on-chip voltage regulator’s input supply (VREG_VIN). The
blocks are initialised when power is first applied, but may not be reliably re-initialised if power is removed and then
reapplied before VREG_VIN has dropped to a sufficiently low level. To prevent this happening, VREG_VIN is monitored
and the power-on reset block is re-initialised if it drops below the VREG_VIN activation threshold (VREG_VINracrive)-
VREG_VINgacrive is fixed at a nominal 1.1V, which should result in a threshold between 0.87V and 1.26V. This threshold
does not represent a safe operating voltage. It is the voltage that VREG_VIN must drop below to reliably re-initialise the
power-on reset block. For safe operation, VREG_VIN must be at a nominal voltage between 1.8V and 3.3V.

2.12.4.1. Detailed Specifications

Parameter Description Min Typ Max Units
VREG_VINy active VREG_VIN 0.87 1.1 1.26 \%
activation
threshold

2.12.5. External Reset

The chip can also be reset by taking its RUN pin low. Taking RUN low will hold the chip in reset irrespective of the state
of the core power supply (DVDD) and the power-on reset / brown-out detection blocks. The chip will come out of reset
as soon as RUN is taken high, if all other reset sources have been released. RUN can be used to extend the initial power-
on reset, or can be driven from an external source to start and stop the chip as required. If RUN is not used, it should be
tied high.

2.12.6. Rescue Debug Port Reset

The chip can also be reset via the Rescue Debug Port. This allows the chip to be recovered from a locked up state. In
addition to resetting the chip, a Rescue Debug Port reset also sets the PSM_RESTART_FLAG in the CHIP_RESET register. This
is checked by the bootcode at startup, causing it to enter a safe state if the bit is set. See Section 2.3.4.2, “Rescue DP”
for more information.

]
2.12. Chip-Level Reset 167

RP2040 Datasheet
]

Figure 27. Power-On
State Machine
Sequence.

2.12.7. Source of Last Reset

The source of the most recent chip-level reset can be determined by reading the state of the HAD_POR, HAD_RUN and
HAD_PSM_RESTART fields in the CHIP_RESET register. A one in the HAD_POR field indicates a power supply related reset, i.e.
either a power-on or brown-out initiated reset, a one in the HAD_RUN field indicates the chip was last reset by the RUN pin,
and a one in the HAD_PSM_RESTART field indicates the chip has been reset via Rescue Debug Port. There should never be
more than one field set to one.

2.12.8. List of Registers

The chip-level reset subsystem shares a register address space with the on-chip voltage regulator. The registers for
both subsystems are listed in Section 2.10.6. The shared address space is referred to as vreg_and_chip_reset elsewhere
in this document.

2.13. Power-On State Machine

2.13.1. Overview

The power-on state machine removes the reset from various hardware blocks in a specific order. Each peripheral in the
power-on state machine is controlled by an internal rst_n active-low reset signal and generates an internal rst_done
active-high reset done signal. The power-on state machine deasserts the reset to each peripheral, waits for that
peripheral to assert its rst_done and then deasserts the reset to the next peripheral. An important use of this is to wait
for a clock source to be running cleanly in the chip before the reset to the clock generators is deasserted. This avoids
potentially glitchy clocks being distributed to the chip.

The power-on state machine is itself taken out of reset when the Chip-Level Reset subsystem confirms that the digital
core supply (DVDD) is powered and stable, and the RUN pin is high. The power-on state machine takes a number of other
blocks out of reset at this point via its rst_n_run output. This is used to reset things that need to be reset at start-up but
must not be reset if the power-on state machine is restarted. This list includes:

® Power on logic in the ring oscillator and crystal oscillator
® Clock dividers which must keep on running during a power-on state machine restart (clk_ref and clk_sys)

* Watchdog (contains scratch registers which need to persist through a soft-restart of the power-on state machine)

2.13.2. Power On Sequence

Chip Level Reset
Released

!

Ring Oscillator

—> Crystal Oscillator = Clock Generators ——» Reset Controller

1

Bus Fabric

Chip Level Reset
and Voltage
Regulator Registers

!

Processor Complex

XIP

(Execute-In-Place) oM

<

]
2.13. Power-On State Machine 168

RP2040 Datasheet
]

The power-on state machine sequence is as follows:

® Chip-Level Reset subsystem deasserts power-on state machine reset once digital core supply (DVDD) is powered
and stable, and RUN pin is high (rst_n_run is also deasserted at this point)

Ring Oscillator is started. rst_done is asserted once the ripple counter has seen a sufficient number of clock edges
to indicate the ring oscillator is stable

Crystal Oscillator reset is deasserted. The crystal oscillator is not started at this point, so rst_done is asserted
instantly.

clk_ref and clk_sys clock generators are taken out of reset. In the initial configuration clk_ref is running from the
ring oscillator with no divider. clk_sys is running from clk_ref. These clocks are needed for the rest of the sequence
to progress.

The rest of the sequence is fairly simple, with the following coming out of reset in order one by one:

* Reset Controller - used to reset all non-boot peripherals

Chip-Level Reset and Voltage Regulator registers - used by the bootrom to check the boot state of the chip. In
particular, the PSM_RESTART_FLAG flag in the CHIP_RESET register can be set via SWD to indicate to the boot code that
there is bad code in flash and it should stop executing. The reset state of the CHIP_RESET register is determined
by the Chip-Level Reset subsystem and is not affected by reset coming from the power-on state machine

XIP (Execute-In-Place) - used by the bootrom to execute code from an external SPI flash

ROM and SRAM - Boot code is executed from the ROM. SRAM is used by processors and Bus Fabric.

® Bus Fabric - Allows the processors to communicate with peripherals

Processor complex - Finally the processors can start running

The final thing to come out of reset is the processor complex. This includes both cored and corel. Both cores will start
executing the bootcode from ROM. One of the first things the bootrom does is read the core id. At this point, core1 will
go to sleep leaving cored to continue with the bootrom execution. The processor complex has its own reset control and
various low-power modes which is why both the cored and core resets are deasserted, despite only cored being needed
for the bootrom.

2.13.3. Register Control

The power-on state machine is a fully automated piece of hardware. It requires no input from the user to work. There
are register controls that can be used to override and see the status of the power-on state machine. This allows
hardware blocks in the power-on state machine to be reset by software if necessary. There is also a WDSEL register which
is used to control what is reset by a Watchdog reset.

2.13.4. Interaction with Watchdog

The power-on state machine can be restarted from a software-programmable position if the Watchdog fires. For
example, in the case the processor is stuck in an infinite loop, or the programmer has somehow misconfigured the chip.
It is important to note that if a peripheral in the power-on state machine has the WDSEL bit set, every peripheral after it in
the power-on sequence will also be reset because the rst_done of the selected peripheral will be deasserted, asserting
rst_n for the remaining peripherals.

2.13.5. List of Registers

The PSM registers start at a base address of 0x40010000 (defined as PSM_BASE in SDK).

]
2.13. Power-On State Machine 169

RP2040 Datasheet
]

Taéle 196. List of PSM Offset Nae e
registers
0x0 FRCE_ON Force block out of reset (i.e. power it on)
0x4 FRCE_OFF Force into reset (i.e. power it off)
0x8 WDSEL Set to 1 if this peripheral should be reset when the watchdog
fires.
Oxc DONE Indicates the peripheral’s registers are ready to access.

PSM: FRCE_ON Register
Offset: 0x0

Description

Force block out of reset (i.e. power it on)

;ZZ;;;N FRCE_ON Bits Description Type Reset
31:17 Reserved. = -
16 PROC1 RW 0x0
15 PROCO RW 0x0
14 SIo RW 0x0
13 VREG_AND_CHIP_RESET RW 0x0
12 XIP RW 0x0
11 SRAMS RW 0x0
10 SRAM4 RW 0x0
9 SRAM3 RW 0x0
8 SRAM2 RW 0x0
7 SRAM1 RW 0x0
6 SRAMO RW 0x0
5 ROM RW 0x0
4 BUSFABRIC RW 0x0
3 RESETS RW 0x0
2 CLOCKS RW 0x0
1 Xosc RW 0x0
0 ROSC RW 0x0

PSM: FRCE_OFF Register
Offset: 0x4

Description

Force into reset (i.e. power it off)

Tab{e 198. FRCE.OFF | por Description Type Reset
Register

31:17 Reserved. : ;

16 PROC1 RW 0x0

]
2.13. Power-On State Machine 170

RP2040 Datasheet
]

Bits Description Type Reset
15 PROCO RW 0x0
14 Slo RW 0x0
13 VREG_AND_CHIP_RESET RW 0x0
12 XIP RW 0x0
11 SRAMS5 RW 0x0
10 SRAM4 RW 0x0
9 SRAM3 RW 0x0
8 SRAM2 RW 0x0
7 SRAM1 RW 0x0
6 SRAMO RW 0x0
5 ROM RW 0x0
4 BUSFABRIC RW 0x0
3 RESETS RW 0x0
2 CLOCKS RW 0x0
1 X0scC RW 0x0
0 ROSC RW 0x0
PSM: WDSEL Register

Offset: 0x8

Description

Set to 1 if this peripheral should be reset when the watchdog fires.

Table 199. WDSEL

Register Bits Description Type Reset
31:17 Reserved. = =
16 PROC1 RW 0x0
15 PROCO RW 0x0
14 sio RW 0x0
13 VREG_AND_CHIP_RESET RW 0x0
12 XIP RW 0x0
11 SRAMS RW 0x0
10 SRAM4 RW 0x0
9 SRAM3 RW 0x0
8 SRAM2 RW 0x0
7 SRAM1 RW 0x0
6 SRAMO RW 0x0
5 ROM RW 0x0
4 BUSFABRIC RW 0x0

]
2.13. Power-On State Machine 171

RP2040 Datasheet
]

Bits Description Type Reset
3 RESETS RW 0x0
2 CLOCKS RW 0x0
1 X0sC RW 0x0
0 ROSC RW 0x0

PSM: DONE Register
Offset: Oxc

Description

Indicates the peripheral’s registers are ready to access.

;:S:zéfo‘ DONE Bits Description Type Reset
31:17 Reserved. = =
16 PROC1 RO 0x0
15 PROCO RO 0x0
14 Sio RO 0x0
13 VREG_AND_CHIP_RESET RO 0x0
12 XIP RO 0x0
11 SRAMS5 RO 0x0
10 SRAM4 RO 0x0
9 SRAM3 RO 0x0
8 SRAM2 RO 0x0
7 SRAM1 RO 0x0
6 SRAMO RO 0x0
5 ROM RO 0x0
4 BUSFABRIC RO 0x0
3 RESETS RO 0x0
2 CLOCKS RO 0x0
1 X0sC RO 0x0
0 ROSC RO 0x0

2.14. Subsystem Resets

2.14.1. Overview

The reset controller allows software control of the resets to all of the peripherals that are not critical to boot the
processor in RP2040. This includes:

® USB Controller

]
2.14. Subsystem Resets 172

RP2040 Datasheet

* PIO

® Peripherals such as UART, I2C, SPI, PWM, Timer, ADC

® PLLs

® |0 and Pad registers

The full list can be seen in the register descriptions.

Every peripheral reset by the reset controller is held in reset at power-up. It is up to software to deassert the reset of

peripherals it intends to use. Note that if you are using the SDK some peripherals may already be out of reset.

2.14.2. Programmer’s Model

The SDK defines a struct to represent the resets registers.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/resets.h Lines 59 - 146

59 typedef struct {

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

REG(RESETS_RESET_OFFSET) // RESETS_RESET

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

io_

REG(RESETS_WDSEL_OFFSET) // RESETS_WDSEL
Watchdog select.

//
//
//
//
//
//
//
//
//
//
//
//
//

Reset control.

0x01000000
0x00800000
0x00400000
0x00200000
0x00100000
0x00080000
0x00040000
0x00020000
0x00010000
0x00008000
0x00004000
0x00002000
0x00001000
0x00000800
0x00000400
0x00000200
0x00000100
0x00000080
0x00000040
0x00000020
0x00000010
0x00000008
0x00000004
0x00000002
0x00000001

[24]
[23]
[22]
[21]
[26]
[19]
[18]
[17]
[16]
[15]
[14]
[13]
[12]
[11]
[16]
[91
[8]
[71
[6]
[51]
[4]
[31
[2]
[11
[e]

rw_32 reset;

0x01000000
0x00800000
0x00400000
0x00200000
0x00100000
0x00080000
0x00040000
0x00020000
0x00010000
0x00008000
0x00004000
0x00002000

[24]
[23]
[22]
[27]
[26]
[19]
[18]
[17]
[16]
[15]
[14]
[13]

USBCTRL
UART1
UARTO
TIMER
TBMAN
SYSINFO
SYSCFG
SPI1
SPI@

RTC

PWM
PLL_USB
PLL_SYS
PIO1
PIOO
PADS_QSPI
PADS_BANK@
JTAG
I0_QSPI
I0_BANK@
I2C1
I2Ce

DMA
BUSCTRL
ADC

USBCTRL
UART1
UARTO
TIMER
TBMAN
SYSINFO
SYSCFG
SPI1
SPI@
RTC

PWM
PLL_USB

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

(e)
(e)
(e)
(e)
(e)
(0)
(e)
(e)
(e)
(e)
(e)
(e)

2.14. Subsystem Resets

173

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/resets.h#L59-L146

RP2040 Datasheet

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

//
//
//
//
//
//
//
//
//
//
//
//
//

io_

REG(RESETS_RESET_DONE_OFFSET) // RESETS_RESET_DONE

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

io_

0x00001000
0x00000800
0x00000400
0x00000200
0x00000100
0x00000080
0x00000040
0x00000020
0x00000010
0x00000008
0x00000004
0x00000002
0x00000001

[12]
[11]
[16]
[91
[8]
[71
[6]
[5]
[4]
[31
[2]
[11
[e]

rw_32 wdsel;

Reset done.
0x01000000
0x00800000
0x00400000
0x00200000
0x00100000
0x00080000
0x00040000
0x00020000
0x00010000
0x00008000
0x00004000
0x00002000
0x00001000
0x00000800
0x00000400
0x00000200
0x00000100
0x00000080
0x00000040
0x00000020
0x00000010
0x00000008
0x00000004
0x00000002
0x00000001

ro_32 reset_done;

146 } resets_hw_t;

Three registers are defined:

[24]
[23]
[22]
[21]
[26]
[19]
[18]
[17]
[16]
[15]
[14]
[13]
[12]
[11]
[16]
[91
[8]
[71
[6]
[5]
[4]
[31
[2]
[11
[e]

PLL_SYS
PIO1

PIOO
PADS_QSPI
PADS_BANK@
JTAG
I0_QSPI
I0_BANK@
I2C1

I2Ce

DMA
BUSCTRL
ADC

USBCTRL
UARTT
UARTO
TIMER
TBMAN
SYSINFO
SYSCFG
SPI1
SPI@

RTC

PWM
PLL_USB
PLL_SYS
PIO1
PIOO
PADS_QSPI
PADS_BANK@
JTAG
I0_QSPI
I0_BANKO
I2C1
I2C0

DMA
BUSCTRL
ADC

(e)
(e)
(0)
(e)
(e)
(e)
(e)
(e)
(e)
(e)
(e)
(e)
(e)

(e)
(e)
(e)
(0)
(e)
(e)
(e)
(e)
(e)
(e)
(e)
(e)
(e)
(e)
(e)
(e)
(e)
(e)
(e)
(e)
(e)
(0)
(e)
(e)
(e)

® reset: this register contains a bit for each peripheral that can be reset. If the bit is set to 1 then the reset is asserted.

If the bit is cleared then the reset is deasserted.

* wdsel: if the bit is set then this peripheral will be reset if the watchdog fires (note that the power on state machine

can potentially reset the whole reset controller, which will reset everything)

* reset_done: a bit for each peripheral, that gets set once the peripheral is out of reset. This allows software to wait

for this status bit in case the peripheral has some initialisation to do before it can be used.

The reset functions in the SDK are defined as follows:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_resets/include/hardware/resets.h Lines 121 - 123

121 static __force_inline void reset_block(uint32_t bits) {

122

reset_block_mask(bits);

2.14. Subsystem Resets

174

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_resets/include/hardware/resets.h#L121-L123

RP2040 Datasheet
]

123 }

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_resets/include/hardware/resets.h Lines 125 - 127

125 static __force_inline void unreset_block(uint32_t bits) {
126 unreset_block_mask(bits);
127 }

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_resets/include/hardware/resets.h Lines 129 - 131

129 static __force_inline void unreset_block_wait(uint32_t bits) {
130 return unreset_block_mask_wait_blocking(bits);
131 }

An example use of these is in the UART driver, where the driver defines a uart_reset function, selecting a different bit of
the reset register depending on the uart specified:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/uart.c Lines 32 - 38

32 static inline void uart_reset(uart_inst_t *uart) {

33 reset_block_num(uart_get_reset_num(uart));

34 }

35

36 static inline void uart_unreset(uart_inst_t *uart) {

37 unreset_block_num_wait_blocking(uart_get_reset_num(uart));
38 }

2.14.3. List of Registers

The reset controller registers start at a base address of 0x4000c000 (defined as RESETS_BASE in SDK).

Table 201. List of Offset Name lifte

RESETS registers
0x0 RESET Reset control.
0x4 WDSEL Watchdog select.
0x8 RESET_DONE Reset done.

RESETS: RESET Register
Offset: 0x0

Description

Reset control. If a bit is set it means the peripheral is in reset. 0 means the peripheral’s reset is deasserted.

Table 202. RESET Bits Description Type Reset
Register
31:25 Reserved. - -
24 USBCTRL RW 0x1
23 UARTT RW 0x1
22 UARTO RW 0x1
21 TIMER RW 0x1

]
2.14. Subsystem Resets 175

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_resets/include/hardware/resets.h#L125-L127
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_resets/include/hardware/resets.h#L129-L131
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/uart.c#L32-L38

RP2040 Datasheet
]

Bits Description Type Reset
20 TBMAN RW 0x1
19 SYSINFO RW 0x1
18 SYSCFG RW 0x1
17 SPI1 RW 0x1
16 SPIO RW 0x1
15 RTC RW 0x1
14 PWM RW 0x1
13 PLL_USB RW 0x1
12 PLL_SYS RW 0x1
11 PlO1 RW 0x1
10 PIOO RW 0x1
9 PADS_QSPI RW 0x1
8 PADS_BANKO RW 0x1
7 JTAG RW 0x1
6 10_QSPI RW 0x1
5 10_BANKO RW 0x1
4 12C1 RW 0x1
3 12Co RW 0x1
2 DMA RW 0x1
1 BUSCTRL RW 0x1
0 ADC RW 0x1

RESETS: WDSEL Register
Offset: 0x4

Description

Watchdog select. If a bit is set then the watchdog will reset this peripheral when the watchdog fires.

;:Z;;Z‘:s‘ WOSEL Bits Description Type Reset

31:25 Reserved. > =

24 USBCTRL RW 0x0
23 UART1 RW 0x0
22 UARTO RW 0x0
21 TIMER RW 0x0
20 TBMAN RW 0x0
19 SYSINFO RW 0x0
18 SYSCFG RW 0x0
17 SPI1 RW 0x0

]
2.14. Subsystem Resets 176

RP2040 Datasheet
]

Table 204.
RESET_DONE Register

Bits Description Type Reset
16 SPIO RW 0x0
15 RTC RW 0x0
14 PWM RW 0x0
13 PLL_USB RW 0x0
12 PLL_SYS RW 0x0
11 PIO1 RW 0x0
10 PIOO RW 0x0
9 PADS_QSPI RW 0x0
8 PADS_BANKO RW 0x0
7 JTAG RW 0x0
6 10_QSPI RW 0x0
5 10_BANKO RW 0x0
4 12C1 RW 0x0
3 12C0 RW 0x0
2 DMA RW 0x0
1 BUSCTRL RW 0x0
0 ADC RW 0x0

RESETS: RESET_DONE Register
Offset: 0x8

Description

Reset done. If a bit is set then a reset done signal has been returned by the peripheral. This indicates that the

peripheral’s registers are ready to be accessed.

Bits Description Type Reset
31:25 Reserved. - -
24 USBCTRL RO 0x0
23 UART1 RO 0x0
22 UARTO RO 0x0
21 TIMER RO 0x0
20 TBMAN RO 0x0
19 SYSINFO RO 0x0
18 SYSCFG RO 0x0
17 SPI1 RO 0x0
16 SPIO RO 0x0
15 RTC RO 0x0
14 PWM RO 0x0
13 PLL_USB RO 0x0

2.14. Subsystem Resets

177

RP2040 Datasheet
]

Bits Description Type Reset
12 PLL_SYS RO 0x0
11 PIO1 RO 0x0
10 PIOO RO 0x0
9 PADS_QSPI RO 0x0
8 PADS_BANKO RO 0x0
7 JTAG RO 0x0
6 10_QSPI RO 0x0
5 10_BANKO RO 0x0
4 12C1 RO 0x0
3 12C0 RO 0x0
2 DMA RO 0x0
1 BUSCTRL RO 0x0
0 ADC RO 0x0

2.15. Clocks

2.15.1. Overview

The clocks block provides independent clocks to on-chip and external components. It takes inputs from a variety of
clock sources allowing the user to trade off performance against cost, board area and power consumption. From these
sources it uses multiple clock generators to provide the required clocks. This architecture allows the user flexibility to
start and stop clocks independently and to vary some clock frequencies whilst maintaining others at their optimum
frequencies.

2.15. Clocks

178

RP2040 Datasheet

Figure 28. Clocks
overview

__j_E} oIk gpouto-3 GPIO Muxing
External clocks |z— GPCLKO - 1 \
or from —>
Relaxation GPIO Muxing — en T ADC
oscillators Ig— clesde
] en » USB
USBPLL >] IE, ’:} CL
1 H : H en ke RTC
System PLL |—»
Clock
IE X owl Processors, Bus fabric,
rystal Oscillator| . en » i
= om0 Tor Memories & .
IZI Memory -mapped registers
__j_E} <ot » Watchdog & Timers
Ring Oscillator

Frequency counter

(ROSC) —]

Clocks

For very low cost or low power applications where precise timing is not required, the chip can be run from the internal
Ring Oscillator (ROSC). Alternatively the user can provide external clocks or construct simple relaxation oscillators
using the GPIOs and appropriate external passive components. Where timing is more critical, the Crystal Oscillator
(XOSC) can provide an accurate reference to the 2 on-chip PLLs to provide fast clocking at precise frequencies.

The clock generators select from the clock sources and optionally divide the selected clock before outputting through
enable logic which provides automatic clock disabling in SLEEP mode (see Section 2.11.2).

An on-chip frequency counter facilitates debugging of the clock setup and also allows measurement of the frequencies
of external clocks. The on-chip resus component restarts the system clock from a known good clock if it is accidentally
stopped. This allows the software debugger to access registers and debug the problem.

The chip has an ultra-low power mode called DORMANT (see Section 2.11.3) in which all on-chip clock sources are
stopped to save power. External sources are not stopped and can be used to provide a clock to the on-chip RTC which
can provide an alarm to wake the chip from DORMANT mode. Alternatively the GPIO interrupts can be configured to
wake the chip from DORMANT mode in response to an external event.

Up to 4 generated clocks can be output to GPIOs at up to 50MHz. This allows the user to supply clocks to external
devices, thus reducing component counts in power, space and cost sensitive applications.

2.15.2. Clock sources

The RP2040 can be run from a variety of clock sources. This flexibility allows the user to optimise the clock setup for
performance, cost, board area and power consumption. The sources include the on-chip Ring Oscillator (Section 2.17),
the Crystal Oscillator (Section 2.16), external clocks from GPIOs (Section 2.15.6.4) and the PLLs (Section 2.18).

The list of clock sources is different per clock generator and can be found as enumerated values in the CTRL register.
See CLK_SYS_CTRL as an example.

2.15. Clocks

179

RP2040 Datasheet
]

2.15.2.1. Ring Oscillator

The on-chip Ring Oscillator (Section 2.17) requires no external components. It runs automatically from power-up and is
used to clock the chip during the initial boot stages. The startup frequency is typically 6MHz but varies with PVT
(Process, Voltage and Temperature). The frequency is likely to be in the range 4-8MHz and is guaranteed to be in the
range 1.8-12MHz.

For low cost applications where frequency accuracy is unimportant, the chip can continue to run from the ROSC. If
greater performance is required the frequency can be increased by programming the registers as described in Section
2.17. The frequency will vary with PVT (Process, Voltage and Temperature) so the user must take care to avoid
exceeding the maximum frequencies described in the clock generators section. This variation can be mitigated in
various ways (see Section 2.15.2.1.1) if the user wants to continue running from the ROSC at a frequency close to the
maximum. Alternatively, the user can use an external clock or the XOSC to provide a stable reference clock and use the
PLLs to generate higher frequencies. This will require external components, which will cost board area and increase
power consumption.

If an external clock or the XOSC is used then the ROSC can be stopped to save power. However, the reference clock
generator and the system clock generator must be switched to an alternate source before doing so.

The ROSC is not affected by SLEEP mode. If required the frequency can be reduced before entering SLEEP mode to
save power. On entering DORMANT mode the ROSC is automatically stopped and is restarted in the same configuration
when exiting DORMANT mode. If the ROSC is driving clocks at close to their maximum frequencies then it is
recommended to drop the frequency before entering SLEEP or DORMANT mode to allow for frequency variation due to
changes in environmental conditions during SLEEP or DORMANT mode.

If the user wants to use the ROSC clock externally then it can be output to a GPIO pin using one of the clk_gpclk0-3
generators.

The following sections describe techniques for mitigating PVT variation of the ROSC frequency. They also provide some
interesting design challenges for use in teaching both the effects of PVT and writing software to control real time
functions.

O NoOTE

The ROSC frequency varies with PVT so the user can send its output to the frequency counter and use it to measure
any 1 of these 3 variables if the other 2 are known.

2.15.2.1.1. Mitigating ROSC frequency variation due to process

Process varies for two reasons. Firstly, chips leave the factory with a spread of process parameters which cause
variation in the ROSC frequency across chips. Secondly, process parameters vary slightly as the chip ages, though this
will only be observable over many thousands of hours of operation. To mitigate for process variation, the user can
characterise individual chips and program the ROSC frequency accordingly. This is an adequate solution for small
numbers of chips but is not suitable for volume production. In such applications the user should consider using the
automatic mitigation techniques described below.

2.15.2.1.2. Mitigating ROSC frequency variation due to voltage

Supply voltage varies for two reasons. Firstly, the power supply itself may vary, and secondly, there will be varying on-
chip IR drop as chip activity varies. If the application has a minimum performance target then the user needs to
calibrate for that application and adjust the ROSC frequency to ensure it always exceeds the minimum required.

2.15.2.1.3. Mitigating ROSC frequency variation due to temperature

Temperature varies for two reasons. Firstly, the ambient temperature may vary, and secondly, the chip temperature will
vary as chip activity varies due to self-heating. This can be mitigated by stabilising the temperature using a temperature

]
2.15. Clocks 180

RP2040 Datasheet
]

controlled environment and passive or active cooling. Alternatively the user can track the temperature using the on-chip
temperature sensor and adjust the ROSC frequency so it remains within the required bounds.

2.15.2.1.4. Automatic mitigation of ROSC frequency variation due to PVT

Techniques for automatic ROSC frequency control avoid the need to calibrate individual chips but require periodic
access to a clock reference or to a time reference. If a clock reference is available then it can be used to periodically
measure the ROSC frequency and adjust it accordingly. The reference could be the on-chip XOSC which can be turned
on periodically for this purpose. This may be useful in a very low power application where it is too costly to run the
XOSC continuously and too costly to use the PLLs to achieve high frequencies. If a time reference is available then the
user could clock the on-chip RTC from the ROSC and periodically compare it against the time reference, then adjust the
ROSC frequency as necessary. Using these techniques the ROSC frequency will drift due to VT variation so the user
must take care that these variations do not allow the ROSC frequency to drift out of the acceptable range.

2.15.2.1.5. Automatic overclocking using the ROSC

The datasheet maximum frequencies for any digital device are quoted for worst case PVT. Most chips in most normal
environments can run significantly faster than the quoted maximum and can therefore be overclocked. If the RP2040 is
running from the ROSC then both the ROSC and the digital components are similarly affected by PVT, so, as the ROSC
gets faster, the processors can also run faster. This means the user can overclock from the ROSC then rely on the ROSC
frequency tracking with PVT variations. The tracking of ROSC frequency and the processor capability is not perfect and
currently there is insufficient data to specify a safe ROSC setting for this mode of operation, so some experimentation is
required.

This mode of operation will maximise processor performance but will lead to variations in the time taken to complete a
task, which may be unacceptable in some applications. Also, if the user wants to use frequency sensitive interfaces
such as USB or UART then the XOSC and PLL must be used to provide a precise clock for those components.

2.15.2.2. Crystal Oscillator

The Crystal Oscillator (Section 2.16) provides a precise, stable clock reference and should be used where accurate
timing is required and no suitable external clocks are available. The frequency is determined by the external crystal and
the oscillator supports frequencies in the range TMHz to 15MHz. The on-chip PLLs can be used to synthesise higher
frequencies if required. The RP2040 reference design (see the Minimal Design Example in Hardware design with
RP2040) uses a 12MHz crystal. Using the XOSC and the PLLs, the on-chip components can be run at their maximum
frequencies. Appropriate margin is built into the design to tolerate up to 1000ppm variation in the XOSC frequency.

The XOSC is inactive on power up. If required it must be enabled in software. XOSC startup takes several milliseconds
and the software must wait for the XOSC_STABLE flag to be set before starting the PLLs and before changing any clock
generators to use it. Prior to that the output from the XOSC may be non-existent or may have very short pulse widths
which will corrupt logic if used. Once it is running the reference clock (clk_ref) and the system clock (clk_sys) can be
switched to run from the XOSC and the ROSC can be stopped to save power.

The XOSC is not affected by SLEEP mode. It is automatically stopped and restarted in the same configuration when
entering and exiting DORMANT mode.

If the user wants to use the XOSC clock externally then it can be output to a GPIO pin using one of the clk_gpclk0-3
generators. It cannot be taken directly from the XIN or XOUT pins.

2.15.2.3. External Clocks

If external clocks exist in your hardware design then they can be used to clock the RP2040 either on their own or in
conjunction with the XOSC or ROSC. This will potentially save power and will allow components on the RP2040 to be run
synchronously with external components to simplify data transfer between chips. External clocks can be input on the

]
2.15. Clocks 181

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040#minimal-design-example
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040#minimal-design-example

RP2040 Datasheet
]

Figure 29. Simple
relaxation oscillator
example

GPINO & GPINT GPIO inputs and on the XIN input to the XOSC. If the XIN input is used in this way the XOSC must be
configured to pass through the XIN signal. All 3 inputs are limited to 50MHz but the on-chip PLLs can be used to
synthesise higher frequencies from the XIN input if required. If the frequency accuracy of the external clocks is poorer
than 1000ppm then the generated clocks should not be run at their maximum frequencies because they may exceed
their design margins.

Once the external clocks are running, the reference clock (clk_ref) and the system clock (clk_sys) can be switched to run
from the external clocks and the ROSC can be stopped to save power.

The external clock sources are not affected by SLEEP mode or DORMANT mode.

2.15.2.4. Relaxation Oscillators

If the user wants to use external clocks to replace or supplement the other clock sources but does not have an
appropriate clock available, then 1 or 2 relaxation oscillators can be constructed using external passive components.
Simply send the clock source (GPINO or GPINT) to one of the gpclk0-3 generators, invert it through the GPIO inverter
OUTOVER and connect back to the clock source input via an RC circuit.

GPIN®
from =1 ik {>O
GPIO Muxing 3

The frequency of clocks generated from relaxation oscillators will depend on the delay through the chip and the drive
current from the GPIO output both of which vary with PVT. They will also depend on the quality and accuracy of the
external components. It may be possible to improve the frequency accuracy using more elaborate external components
such as ceramic resonators but that will increase cost and complexity and can never rival the XOSC. For that reason
they are not discussed here. Given that these oscillators will not achieve 1000ppm then they cannot be used to drive
internal clocks at their maximum frequencies.

The relaxation oscillators are not affected by SLEEP mode or DORMANT mode.

2.15.2.5. PLLs

The PLLs (Section 2.18) are used to provide fast clocks when running from the XOSC (or an external clock source driven
into the XIN pin). In a fully featured application the USB PLL provides a fixed 48MHz clock to the ADC and USB while
clk_rtc and clk_ref are driven from the XOSC or external source. This allows the user to drive clk_sys from the system
PLL and vary the frequency according to demand to save power without having to change the setups of the other
clocks. clk_peri can be driven either from the fixed frequency USB PLL or from the variable frequency system PLL. If
clk_sys never needs to exceed 48MHz then one PLL can be used and the divider in the clk_sys clock generator can be
used to scale the clk_sys frequency according to demand.

When a PLL is started, its output cannot be used until the PLL locks as indicated by the LOCK bit in the STATUS register.
Thereafter the PLL output cannot be used during changes to the reference clock divider, the output dividers or the
bypass mode. The output can be used during feedback divisor changes with the proviso that the output frequency may
overshoot or undershoot on large changes to the feedback divisor. For more information, see Section 2.18.

If the PLL reference clock is accurate to 1000ppm then the PLLs can be used to drive clocks at their maximum
frequency because the frequency of the generated clocks will be within the margins allowed in the design.

The PLLs are not affected by SLEEP mode. If the user wants to save power in SLEEP mode then all clock generators
must be switched away from the PLLs and they must be stopped in software before entering SLEEP mode. The PLLs
are not stopped and restarted automatically when entering and exiting DORMANT mode. If they are left running on entry
to DORMANT mode they will be corrupted and will generate out of control clocks that will consume power
unnecessarily. This happens because their reference clock from XOSC will be stopped. It is therefore essential to switch
all clock generators away from the PLLs and stop the PLLs in software before entering DORMANT mode.

2.15. Clocks

182

RP2040 Datasheet
]

Figure 30. A generic
clock generator

Table 205. RP2040
clock generators

2.15.3. Clock Generators

The clock generators are built on a standard design which incorporates clock source multiplexing, division, duty cycle
correction and SLEEP mode enabling. To save chip area and power, the individual clock generators do not support all
features.

clock
sources

—- Bl EEE Wakeand 1 oonerated clock
. correction Sleep enable

Divider enable

Glitchless

2.15.3.1. Instances

RP2040 has several clock generators which are listed below.

Clock Description Nominal Frequency
clk_gpout® Clock output to GPIO. Can be usedto | N/A
clock external devices or debug on
clk_gpout1 . . .
chip clocks with a logic analyser or
clk_gpout2 oscilloscope.
clk_gpout3
clk_ref Reference clock that is always running | 6 - 12MHz
unless in DORMANT mode. Runs from
Ring Oscillator (ROSC) at power-up
but can be switched to Crystal
Oscillator (XOSC) for more accuracy.
clk_sys System clock that is always running 125MHz
unless in DORMANT mode. Runs from
clk_ref at power-up but is typically
switched to a PLL.
clk_peri Peripheral clock. Typically runs from |12 - 125MHz
clk_sys but allows peripherals to run at
a consistent speed if clk_sys is
changed by software.
clk_usb USB reference clock. Must be 48MHz. | 48MHz
clk_adc ADC reference clock. Must be 48MHz. | 48MHz
clk_rte RTC reference clock. The RTC divides | 46875Hz
this clock to generate a 1 second
reference.
© NOTE

clk_sys (and clk_peri) have a maximum frequency of 133MHz across all process, voltage and temperature variations.
You can achieve 200MHz by running at an elevated core supply (DVDD) and setting VREG VSEL to 1.15V. For more
information, see Section 2.10.6.

For a full list of clock sources for each clock generator see the appropriate CTRL register. For example, CLK_SYS_CTRL.

2.15. Clocks

183

RP2040 Datasheet
]

2.15.3.2. Multiplexers

All clock generators have a multiplexer referred to as the auxiliary (aux) mux. This mux has a conventional design
whose output will glitch when changing the select control. Two clock generators (clk_sys and clk_ref) have an additional
multiplexer, referred to as the glitchless mux. The glitchless mux can switch between clock sources without generating
a glitch on the output.

Clock glitches should be avoided at all costs because they may corrupt the logic running on that clock. This means that
any clock generator with only an aux mux must be disabled while switching the clock source. If the clock generator has
a glitchless mux (c1k_sys and clk_ref), then the glitchless mux should switch away from the aux mux while changing the
aux mux source. The clock generators require 2 cycles of the source clock to stop the output and 2 cycles of the new
source to restart the output. The user must wait for the generator to stop before changing the auxiliary mux, and
therefore must be aware of the source clock frequency.

The glitchless mux is only implemented for always-on clocks. On RP2040 the always-on clocks are the reference clock
(clk_ref) and the system clock (clk_sys). Such clocks must run continuously unless the chip is in DORMANT mode. The
glitchless mux has a status output (SELECTED) which indicates which source is selected and can be read from
software to confirm that a change of clock source has been completed.

The recommended control sequences are as follows.
To switch the glitchless mux:
® switch the glitchless mux to an alternate source
® poll the SELECTED register until the switch is completed
To switch the auxiliary mux when the generator has a glitchless mux:
® switch the glitchless mux to a source that isn't the aux mux
® poll the SELECTED register until the switch is completed
® change the auxiliary mux select control
® switch the glitchless mux back to the aux mux
* if required, poll the SELECTED register until the switch is completed
To switch the auxiliary mux when the generator does not have a glitchless mux:
e disable the clock divider
® wait for the generated clock to stop (2 cycles of the clock source)
® change the auxiliary mux select control
® enable the clock divider
e if required, wait for the clock generator to restart (2 cycles of the clock source)

See Section 2.15.6.1 for a code example of this.

2.15.3.3. Divider

A fully featured divider divides by 1 or a fractional number in the range 2.0 to 2*24-0.01. Fractional division is achieved
by toggling between 2 integer divisors therefore it yields a jittery clock which may not be suitable for some applications.
For example, when dividing by 2.4 the divider will divide by 2 for 3 cycles and by 3 for 2 cycles. For divisors with large
integer components the jitter will be much smaller and less critical.

]
2.15. Clocks 184

RP2040 Datasheet
]

Figure 31. An example
of fractional division.

Figure 32. An example
of
duty_cycle_correction.

B m
Generated clock

Divide by 2 Divide by 3

-« Divide by 2.4

All dividers support on-the-fly divisor changes meaning the output clock will switch cleanly from one divisor to another.
The clock generator does not need to be stopped during clock divisor changes. It does this by synchronising the divisor
change to the end of the clock cycle. Similarly, the enable is synchronised to the end of the clock cycle so will not
generate glitches when the clock generator is enabled or disabled. Clock generators for always-on clocks are
permanently enabled and therefore do not have an enable control.

In the event that a clock generator locks up and never completes the current clock cycle it can be forced to stop using
the KILL control. This may result in an output glitch which may corrupt the logic driven by the clock. It is therefore
recommended the destination logic is reset prior to this operation. It is worth mentioning that this clock generator
design has been used in numerous chips and has never been known to lock up. The KILL control is inelegant and
unnecessary and should not be used as an alternative to the enable. Clock generators for always-on clocks are
permanently active and therefore do not have a KILL control.

2.15.3.4. Duty Cycle Correction

The divider operates on the rising edge of the input clock and so does not generate an even duty cycle clock when
dividing by odd numbers.

Divide by 3 will give a duty cycle of 33.3%, divide by 5 will be 40% etc. If enabled, the duty cycle correction logic will shift
the falling edge of the output clock to the falling edge of the input clock and restore a 50% duty cycle. The duty cycle
correction can be enabled and disabled while the clock is running. It will not operate when dividing by an even number.

Clock source Jmmmmmﬂ_

Generated clock
without DCC

Generated clock
with DCC

2.15.3.5. Clock Enables

Each clock goes to multiple destinations and, with a few exceptions, there are 2 enables for each destination. The
WAKE_EN registers are used to enable the clocks when the system is awake and the SLEEP_EN registers are used to enable
the clocks when the system is in sleep mode. The purpose of these enables is to reduce power in the clock distribution
networks for components that are not being used. It is worth noting that a component which is not clocked will retain its
configuration so can be restarted quickly.

O NoTE

The WAKE_EN and SLEEP_EN registers reset to 0x1, which means that by default all clocks are enabled. The programmer
only needs to use this feature if they desire a low-power design.

2.15.3.5.1. Clock Enable Exceptions

The processor cores do not have clock enables because they require a clock at all times to manage their own power
saving features.

2.15. Clocks

185

RP2040 Datasheet
]

Table 206. Frequency
Counter Test Interval
vs Accuracy

clk_sys_busfabric cannot be disabled in wake mode because that would prevent the cores from accessing any chip
registers, including those that control the clock enables.

clk_sys_clocks does not have a wake mode enable because disabling it would prevent the cores from accessing the
clocks control registers.

The gpclks do not have clock enables.

2.15.3.5.2. System Sleep Mode

System sleep mode is entered automatically when both cores are in sleep and the DMA has no outstanding
transactions. In system sleep mode, the clock enables described in the previous paragraphs are switched from the
WAKE_EN registers to the SLEEP_EN registers. The intention is to reduce power consumed in the clock distribution networks
when the chip is inactive. If the user has not configured the WAKE_EN and SLEEP_EN registers then system sleep will do
nothing.

There is little value in using system sleep without taking other measures to reduce power before the cores are put to
sleep. Things to consider include:

® stop unused clock sources such as the PLLs and Crystal Oscillator
* reduce the frequencies of generated clocks by increasing the clock divisors
® stop external clocks

For maximum power saving when the chip is inactive, the user should consider DORMANT (see Section 2.11.3) mode in
which clocks are sourced from the Crystal Oscillator and/or the Ring Oscillator and those clock sources are stopped.

2.15.4. Frequency Counter

The frequency counter measures the frequency of internal and external clocks by counting the clock edges seen over a
test interval. The interval is defined by counting cycles of clk_ref which must be driven either from XOSC or from a
stable external source of known frequency.

The user can pick between accuracy and test time using the FCO_INTERVAL register. Table 206 shows the trade off.

Interval Register Test Interval Accuracy
0 Tus 2048kHz
1 2us 1024kHz
2 4us 512kHz
3 8us 256kHz
4 16ps 128kHz
5 32us 64kHz

6 64ps 32kHz

7 125pus 16kHz

8 250ps 8kHz

9 500us 4kHz

10 Tms 2kHz

11 2ms TkHz

12 4ms 500Hz
13 8ms 250Hz

2.15. Clocks

186

RP2040 Datasheet
]

Interval Register Test Interval Accuracy
14 16ms 125Hz
15 32ms 62.5Hz

2.15.5. Resus

It is possible to write software that inadvertently stops clk_sys. This will normally cause an unrecoverable lock-up of the
cores and the on-chip debugger, leaving the user unable to trace the problem. To mitigate against that, an automatic
resuscitation circuit is provided which will switch clk_sys to a known good clock source if no edges are detected over a
user-defined interval. The known good source is clk_ref which can be driven from the XOSC, ROSC or an external
source.

The resus block counts edges on clk_sys during a timeout interval controlled by c1k_ref, and forces c1k_sys to be driven
from clk_ref if no clk_sys edges are detected. The interval is programmable via CLK_SYS_RESUS_CTRL.

@ WARNING

There is no way for resus to revive the chip if clk_ref is also stopped.

To enable the resus, the programmer must set the timeout interval and then set the ENABLE bit in CLK_SYS_RESUS_CTRL.
To detect a resus event, the CLK_SYS_RESUS interrupt must be enabled by setting the interrupt enable bit in INTE. The
CLOCKS_DEFAULT_IRQ (see Section 2.3.2) must also be enabled at the processor.

Resus is intended as a debugging aid. The intention is for the user to trace the software error that triggered the resus,
then correct the error and reboot. It is possible to continue running after a resus event by reconfiguring clk_sys then
clearing the resus by writing the CLEAR bit in CLK_SYS_RESUS_CTRL. However, it should be noted that a resus can be
triggered by clk_sys running more slowly than expected and that could result in a c1k_sys glitch when resus is triggered.
That glitch could corrupt the chip. This would be a rare event but is tolerable in a debugging scenario. However it is
unacceptable in normal operation therefore it is recommended to only use resus for debug.

@ WARNING

Resus is a debugging aid and should not be used as a means of switching clocks in normal operation.

2.15.6. Programmer’s Model

2.15.6.1. Configuring a clock generator
The SDK defines an enum of clocks:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/clocks.h Lines 30 - 42

30 typedef enum clock_num_rp2040 {

31 clk_gpout® = @, ///< Select CLK_GPOUTO as clock source
32 clk_gpout1 = 1, ///< Select CLK_GPOUT1 as clock source
33 clk_gpout2 = 2, ///< Select CLK_GPOUT2 as clock source
34 clk_gpout3 = 3, ///< Select CLK_GPOUT3 as clock source
85 clk_ref = 4, ///< Select CLK_REF as clock source

36 clk_sys = 5, ///< Select CLK_SYS as clock source

37 clk_peri = 6, ///< Select CLK_PERI as clock source

38 clk_usb = 7, ///< Select CLK_USB as clock source

39 clk_adc = 8, ///< Select CLK_ADC as clock source

40 clk_rtc = 9, ///< Select CLK_RTC as clock source

41 CLK_COUNT

2.15. Clocks

187

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/clocks.h#L30-L42

RP2040 Datasheet
]

42 } clock_num_t;

And also a struct to describe the registers of a clock generator:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/clocks.h Lines 100 - 121

100 typedef struct {

101 _REG_(CLOCKS_CLK_GPOUT@_CTRL_OFFSET) // CLOCKS_CLK_GPOUTO_CTRL

102 // Clock control, can be changed on-the-fly (except for auxsrc)

103 // 6x00100000 [20] NUDGE (8) An edge on this signal shifts the phase of the
output by...

104 // 6x00630000 [17:16] PHASE (6x8) This delays the enable signal by up to 3 cycles
of the...

105 // 6x00001000 [12] DC50 (6) Enables duty cycle correction for odd divisors

106 // 0x00000806 [11] ENABLE (6) Starts and stops the clock generator cleanly

107 // 6x00000460 [10] KILL () Asynchronously kills the clock generator

108 // 6x006001e0 [8:5] AUXSRC (6x8) Selects the auxiliary clock source, will glitch
when switching

109 io_rw_32 ctrl;

110

111 _REG_(CLOCKS_CLK_GPOUT@O_DIV_OFFSET) // CLOCKS_CLK_GPOUT@_DIV

112 // Clock divisor, can be changed on-the-fly

113 // Oxffffffee [31:8] INT (6x000001) Integer component of the divisor, 6 ->
divide by 2416

114 // 6x000000ff [7:0] FRAC (6x00) Fractional component of the divisor

115 io_rw_32 div;

116

117 _REG_(CLOCKS_CLK_GPOUTO_SELECTED_OFFSET) // CLOCKS_CLK_GPOUT@_SELECTED

118 // Indicates which SRC is currently selected by the glitchless mux (one-hot)

119 // OXTFfFffff [371:0] CLK_GPOUTO_SELECTED (0x00000001) This slice does not have a
glitchless mux (only the...

120 io_ro_32 selected;

121 } clock_hw_t;

To configure a clock, we need to know the following pieces of information:
® The frequency of the clock source
® The mux / aux mux position of the clock source
® The desired output frequency

The SDK provides clock_configure to configure a clock:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c Lines 40 - 133

40 static void clock_configure_internal(clock_handle_t clock, uint32_t src, uint32_t auxsrc,
uint32_t actual_freq, uint32_t div) {

41 clock_hw_t *clock_hw = &clocks_hw->clk[clock];

42

43 // If increasing divisor, set divisor before source. Otherwise set source

44 // before divisor. This avoids a momentary overspeed when e.g. switching

45 // to a faster source and increasing divisor to compensate.

46 if (div > clock_hw->div)

47 clock_hw->div = div;

48

49 // If switching a glitchless slice (ref or sys) to an aux source, switch

50 // away from aux *first* to avoid passing glitches when changing aux mux.

51 // Assume (!!!) glitchless source @ is no faster than the aux source.

52 if (has_glitchless_mux(clock) && src ==
CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX) {

53 hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS);

]
2.15. Clocks 188

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/clocks.h#L100-L121
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c#L40-L133

RP2040 Datasheet
]

54 while (!(clock_hw->selected & 1u))

55 tight_loop_contents();

56 }

57 // If no glitchless mux, cleanly stop the clock to avoid glitches

58 // propagating when changing aux mux. Note it would be a really bad idea
59 // to do this on one of the glitchless clocks (clk_sys, clk_ref).

60 else {

61 // Disable clock. On clk_ref and clk_sys this does nothing,

62 // all other clocks have the ENABLE bit in the same position.

63 hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_GPOUTO_CTRL_ENABLE_BITS);
64 if (configured_freq[clock] > @) {

65 // Delay for 3 cycles of the target clock, for ENABLE propagation.
66 // Note XOSC_COUNT is not helpful here because X0SC is not

67 // necessarily running, nor is timer...

68 uint delay_cyc = configured_freq[clk_sys] / configured_freq[clock] + 1;
69 busy_wait_at_least_cycles(delay_cyc * 3);

70 }

71 }

72

73 // Set aux mux first, and then glitchless mux if this clock has one

74 hw_write_masked(&clock_hw->ctrl,

75 (auxsrc << CLOCKS_CLK_SYS_CTRL_AUXSRC_LSB),

76 CLOCKS_CLK_SYS_CTRL_AUXSRC_BITS

77 IF

78

79 if (has_glitchless_mux(clock)) {

80 hw_write_masked(&clock_hw->ctrl,

81 src << CLOCKS_CLK_REF_CTRL_SRC_LSB,

82 CLOCKS_CLK_REF_CTRL_SRC_BITS

83);

84 while (!(clock_hw->selected & (Tu << src)))

85 tight_loop_contents();

86 }

87

88 // Enable clock. On clk_ref and clk_sys this does nothing,

89 // all other clocks have the ENABLE bit in the same position.

90 hw_set_bits(&clock_hw->ctrl, CLOCKS_CLK_GPOUTO_CTRL_ENABLE_BITS);

91

92 // Now that the source is configured, we can trust that the user-supplied
93 // divisor is a safe value.

94 clock_hw->div = div;

95 configured_freq[clock] = actual_freq;

96 }

97

98 bool clock_configure(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq,
uint32_t freq) {

99 assert(src_freq >= freq);

100

101 if (freq > src_freq)

102 return false;

103

104 uint64_t dive4 =((((uint64_t) src_freq) << CLOCKS_CLK_GPOUT@_DIV_INT_LSB) / freq);
105 uint32_t div, actual_freq;

106 if (dive4 >> 32) {

107 // set div to @ for maximum clock divider

108 div = 9;

109 actual_freq = src_freq >> (32 - CLOCKS_CLK_GPOUT®_DIV_INT_LSB);

110 } else {

111 div = (uint32_t) divé64;

112 // on RP2046 only clock divider of 1, or >= 2 are supported

113 if (div < (2u << CLOCKS_CLK_GPOUT@_DIV_INT_LSB)) {

114 div = (1u << CLOCKS_CLK_GPOUT®_DIV_INT_LSB);

115 }

116 actual_freq = (uint32_t) ((((uint64_t) src_freq) << CLOCKS_CLK_GPOUT@_DIV_INT_LSB) /

]
2.15. Clocks 189

RP2040 Datasheet
]

div);
117 }
118
119 clock_configure_internal(clock, src, auxsrc, actual_freq, div);
120 // Store the configured frequency
121 return true;
122 }
123

124 void clock_configure_int_divider(clock_handle_t clock, uint32_t src, uint32_t auxsrc,
uint32_t src_freq, uint32_t int_divider) {

125 clock_configure_internal(clock, src, auxsrc, src_freq / int_divider, int_divider <<
CLOCKS_CLK_GPOUTO_DIV_INT_LSB);

126 }

127

128 void clock_configure_undivided(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t
src_freq) {

129 clock_configure_internal(clock, src, auxsrc, src_freq, 1u <<
CLOCKS_CLK_GPOUT@_DIV_INT_LSB);

130 }

Itis called in clocks_init for each clock. The following example shows the clk_sys configuration:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_runtime_init/runtime_init_clocks.c Lines 100 - 104

100 // CLK SYS = PLL SYS (usually) 125MHz / 1 = 125MHz

101 clock_configure_undivided(clk_sys,

102 CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
103 CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
104 SYS_CLK_HZ) ;

Once a clock is configured, clock_get_hz can be called to get the output frequency in Hz.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c Lines 137 - 139

137 uint32_t clock_get_hz(clock_handle_t clock) {

138 return configured_freq[clock];
139 }
© WARNING

It is assumed the source frequency the programmer provides is correct. If it is not then the frequency returned by
clock_get_hz will be inaccurate.

2.15.6.2. Using the frequency counter

To use the frequency counter, the programmer must:
® Set the reference frequency: clk_ref
® Set the mux position of the source they want to measure. See FCO_SRC
® Wait for the DONE status bit in FCO_STATUS to be set
® Read the result

The SDK defines a frequency_count function which takes the source as an argument and returns the frequency in kHz:

]
2.15. Clocks 190

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_runtime_init/runtime_init_clocks.c#L100-L104
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c#L137-L139

RP2040 Datasheet
]

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c Lines 147 - 174

147 uint32_t frequency_count_khz(uint src) {

148 fc_hw_t *fc = &clocks_hw->fc@;

149

150 // If frequency counter is running need to wait for it. It runs even if the source is NULL
151 while(fc->status & CLOCKS_FCO_STATUS_RUNNING_BITS) {
152 tight_loop_contents();

153 }

154

155 // Set reference freq

156 fc->ref_khz = clock_get_hz(clk_ref) / 1000;

157

158 // FIXME: Don't pick random interval. Use best interval
159 fc->interval = 10;

160

161 // No min or max

162 fc->min_khz = 0;

163 fc->max_khz = Oxffffffff;

164

165 // Set SRC which automatically starts the measurement
166 fc->src = src;

167

168 while(!(fc->status & CLOCKS_FCO_STATUS_DONE_BITS)) {
169 tight_loop_contents();

170 }

171

172 // Return the result

173 return fc->result >> CLOCKS_FCO_RESULT_KHZ_LSB;

174 }

There is also a wrapper function to change the unit to MHz:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/include/hardware/clocks.h Lines 377 - 379

377 static inline float frequency_count_mhz(uint src) {
378 return ((float) (frequency_count_khz(src))) / KHZ;
379 }

O NoOTE

The frequency counter can also be used in a test mode. This allows the hardware to check if the frequency is within
a minimum frequency and a maximum frequency, set in FCO_MIN_KHZ and FCO_MAX_KHZ. In this mode, the PASS bit
in FCO_STATUS will be set when DONE is set if the frequency is within the specified range. Otherwise, either the FAST or
SLOW bit will be set.

If the programmer attempts to count a stopped clock, or the clock stops running then the DIED bit will be set. If any of
DIED, FAST, or SLOW are set then FAIL will be set.

2.15.6.3. Configuring a GPIO output clock

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c Lines 245 - 276

245 void clock_gpio_init_int_frac16(uint gpio, uint src, uint32_t div_int, uint16_t div_frac16)

{
246 // Bit messy but it's as much code to loop through a lookup
247 // table. The sources for each gpout generators are the same

]
2.15. Clocks 191

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c#L147-L174
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L377-L379
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c#L245-L276

RP2040 Datasheet

248
249
250
251
252
253
254
255
256
257
258

259
260
261
262
263

264
265

266
267
268
269
270
271
272

// so just call with the sources from GP@
uint gpclk = @;

if (gpio == 21) gpclk = clk_gpout®;
else if (gpio == 23) gpclk = clk_gpoutt;
else if (gpio == 24) gpclk = clk_gpout2;
else if (gpio == 25) gpclk = clk_gpout3;
else {

invalid_params_if (HARDWARE_CLOCKS, true);

invalid_params_if (HARDWARE_CLOCKS, div_int >> REG_FIELD_WIDTH(

CLOCKS_CLK_GPOUT@_DIV_INT));

// Set up the gpclk generator
clocks_hw->clk[gpclk].ctrl = (src << CLOCKS_CLK_GPOUT®_CTRL_AUXSRC_LSB) |
CLOCKS_CLK_GPOUTO_CTRL_ENABLE_BITS;

#ifdef REG_FIELD_WIDTH(CLOCKS_CLK_GPOUTO_DIV_FRAC) == 16

clocks_hw->clk[gpclk].div = (div_int << CLOCKS_CLK_GPOUT@_DIV_INT_LSB) | (div_frac16 <<

CLOCKS_CLK_GPOUT@_DIV_FRAC_LSB);
#elif REG_FIELD_WIDTH(CLOCKS_CLK_GPOUT@_DIV_FRAC) == 8

clocks_hw->clk[gpclk].div = (div_int << CLOCKS_CLK_GPOUT@_DIV_INT_LSB) | ((div_frac16

>>8u) << CLOCKS_CLK_GPOUTO_DIV_FRAC_LSB);
#else

#error unsupported number of fractional bits
#endif

}

// Set gpio pin to gpclock function
gpio_set_function(gpio, GPIO_FUNC_GPCK) ;

2.15.6.4. Configuring a GPIO input clock

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c Lines 313 - 343

313 bool clock_configure_gpin(clock_handle_t clock, uint gpio, uint32_t src_freq, uint32_t freq)

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
885
336
337
338

{

// Configure a clock to run from a GPIO input
uint gpin = ©;

if (gpio == 20) gpin = 0;
else if (gpio == 22) gpin = 1;
else {

invalid_params_if (HARDWARE_CLOCKS, true);

// Work out sources. GPIN is always an auxsrc
uint src = 0;

// GPINT == GPING + 1
uint auxsrc = gpin@_src[clock] + gpin;

if (has_glitchless_mux(clock)) {
// AUX src is always 1
sre = 1¢

// Set the GPIO function
gpio_set_function(gpio, GPIO_FUNC_GPCK) ;

// Now we have the src, auxsrc, and configured the gpio input
// call clock configure to run the clock from a gpio
return clock_configure(clock, src, auxsrc, src_freq, freq);

2.15. Clocks

192

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c#L313-L343

RP2040 Datasheet
]

339 }

2.15.6.5. Enabling resus

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c Lines 221 - 243

221 void clocks_enable_resus(resus_callback_t resus_callback) {

222 // Restart clk_sys if it is stopped by forcing it

223 // to the default source of clk_ref. If clk_ref stops running this will
224 // not work.

225

226 // Store user's resus callback

227 _resus_callback = resus_callback;

228

229 irq_set_exclusive_handler (CLOCKS_IRQ, clocks_irq_handler);

230

231 // Enable the resus interrupt in clocks

232 clocks_hw->inte = CLOCKS_INTE_CLK_SYS_RESUS_BITS;

233

234 // Enable the clocks irq

235 irg_set_enabled(CLOCKS_IRQ, true);

236

237 // 2 * clk_ref freq / clk_sys_min_freq;

238 // assume clk_ref is 3MHz and we want clk_sys to be no lower than 1MHz
239 uint timeout =2 * 3 * 1;

240

241 // Enable resus with the maximum timeout

242 clocks_hw->resus.ctrl = CLOCKS_CLK_SYS_RESUS_CTRL_ENABLE_BITS | timeout;
243 }

2.15.6.6. Configuring sleep mode

Sleep mode is active when neither processor core or the DMA are requesting clocks. For example, the DMA is not active
and both core0 and coreT are waiting for an interrupt. The SLEEP_EN registers set what clocks are running in sleep mode.
The hello_sleep example (https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_sleep/
hello_sleep_aon.c) illustrates how to put the chip to sleep until the RTC fires. In this case, only the RTC clock is enabled
in the SLEEP_ENO register.

O NoOTE

clk_sys is always sent to proc@ and proc1 during sleep mode as some logic needs to be clocked for the processor to
wake up again.

Pico Extras: https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c Lines 159 - 183

159 void sleep_goto_sleep_until(struct timespec *ts, aon_timer_alarm_handler_t callback)

160 {

161

162 // We should have already called the sleep_run_from_dormant_source function

163 // This is only needed for dormancy although it saves power running from xosc while
sleeping

164 //assert(dormant_source_valid(_dormant_source));

165

166 clocks_hw->sleep_en@ = CLOCKS_SLEEP_EN®_CLK_RTC_RTC_BITS;

167 clocks_hw->sleep_en1 = 0x0;

]
2.15. Clocks 193

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c#L221-L243
https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_sleep/hello_sleep_aon.c
https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_sleep/hello_sleep_aon.c
https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c#L159-L183

RP2040 Datasheet

168
169
170
171
172
173
174
175
176
177
178 }

aon_timer_enable_alarm(ts, callback, false);

stdio_flush();

// Enable deep sleep at the proc
processor_deep_sleep();

// Go to sleep
__wfi();

2.15.7. List of Registers

The Clocks registers start at a base address of 0x40008000 (defined as CLOCKS_BASE in SDK).

Table 207. List of
CLOCKS registers

Offset

Name

Info

0x00

CLK_GPOUTO_CTRL

Clock control, can be changed on-the-fly (except for auxsrc)

0x04

CLK_GPOUTO_DIV

Clock divisor, can be changed on-the-fly

0x08

CLK_GPOUTO_SELECTED

Indicates which SRC is currently selected by the glitchless mux
(one-hot).

0x0c

CLK_GPOUT1_CTRL

Clock control, can be changed on-the-fly (except for auxsrc)

0x10

CLK_GPOUT1_DIV

Clock divisor, can be changed on-the-fly

0x14

CLK_GPOUT1_SELECTED

Indicates which SRC is currently selected by the glitchless mux
(one-hot).

0x18

CLK_GPOUT2_CTRL

Clock control, can be changed on-the-fly (except for auxsrc)

Ox1c

CLK_GPOUT2_DIV

Clock divisor, can be changed on-the-fly

0x20

CLK_GPOUT2_SELECTED

Indicates which SRC is currently selected by the glitchless mux
(one-hot).

0x24

CLK_GPOUT3_CTRL

Clock control, can be changed on-the-fly (except for auxsrc)

0x28

CLK_GPOUT3_DIV

Clock divisor, can be changed on-the-fly

0x2c

CLK_GPOUT3_SELECTED

Indicates which SRC is currently selected by the glitchless mux
(one-hot).

0x30

CLK_REF_CTRL

Clock control, can be changed on-the-fly (except for auxsrc)

0x34

CLK_REF_DIV

Clock divisor, can be changed on-the-fly

0x38

CLK_REF_SELECTED

Indicates which SRC is currently selected by the glitchless mux
(one-hot).

0x3c

CLK_SYS_CTRL

Clock control, can be changed on-the-fly (except for auxsrc)

0x40

CLK_SYS_DIV

Clock divisor, can be changed on-the-fly

0x44

CLK_SYS_SELECTED

Indicates which SRC is currently selected by the glitchless mux
(one-hot).

0x48

CLK_PERI_CTRL

Clock control, can be changed on-the-fly (except for auxsrc)

0x50

CLK_PERI_SELECTED

Indicates which SRC is currently selected by the glitchless mux
(one-hot).

I
194

2.15. Clocks

RP2040 Datasheet

Offset Name Info

0x54 CLK_USB_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x58 CLK_USB_DIV Clock divisor, can be changed on-the-fly

0x5¢ CLK_USB_SELECTED Indicates which SRC is currently selected by the glitchless mux
(one-hot).

0x60 CLK_ADC_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x64 CLK_ADC_DIV Clock divisor, can be changed on-the-fly

0x68 CLK_ADC_SELECTED Indicates which SRC is currently selected by the glitchless mux
(one-hot).

0x6c CLK_RTC_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x70 CLK_RTC_DIV Clock divisor, can be changed on-the-fly

0x74 CLK_RTC_SELECTED Indicates which SRC is currently selected by the glitchless mux
(one-hot).

0x78 CLK_SYS_RESUS_CTRL

0x7c CLK_SYS_RESUS_STATUS

0x80 FCO_REF_KHZ Reference clock frequency in kHz

0x84 FCO_MIN_KHZ Minimum pass frequency in kHz. This is optional. Set to 0 if you
are not using the pass/fail flags

0x88 FCO_MAX_KHZ Maximum pass frequency in kHz. This is optional. Set to 0x1ffffff
if you are not using the pass/fail flags

0x8c FCO_DELAY Delays the start of frequency counting to allow the mux to settle
Delay is measured in multiples of the reference clock period

0x90 FCO_INTERVAL The test interval is 0.98us * 2**interval, but let’s call it Tus *
2**interval
The default gives a test interval of 250us

0x94 FCO_SRC Clock sent to frequency counter, set to 0 when not required
Writing to this register initiates the frequency count

0x98 FCO_STATUS Frequency counter status

0x9¢ FCO_RESULT Result of frequency measurement, only valid when
status_done=1

0xa0 WAKE_ENO enable clock in wake mode

Oxa4 WAKE_EN1 enable clock in wake mode

0xa8 SLEEP_ENO enable clock in sleep mode

Oxac SLEEP_EN1 enable clock in sleep mode

0xb0 ENABLEDO indicates the state of the clock enable

0xb4 ENABLED1 indicates the state of the clock enable

0xb8 INTR Raw Interrupts

Oxbc INTE Interrupt Enable

0xc0 INTF Interrupt Force

Oxc4 INTS Interrupt status after masking & forcing

2.15. Clocks

195

RP2040 Datasheet

Table 208.
CLK_GPOUTO_CTRL
Register

CLOCKS: CLK_GPOUTO_CTRL Register

Offset: 0x00

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Bits

Description

Type

Reset

31:21

Reserved.

20

NUDGE: An edge on this signal shifts the phase of the output by 1 cycle of the
input clock
This can be done at any time

RW

0x0

19:18

Reserved.

17:16

PHASE: This delays the enable signal by up to 3 cycles of the input clock
This must be set before the clock is enabled to have any effect

RW

0x0

15:13

Reserved.

12

DC50: Enables duty cycle correction for odd divisors

RW

0x0

11

ENABLE: Starts and stops the clock generator cleanly

RW

0x0

10

KILL: Asynchronously kills the clock generator

RW

0x0

Reserved.

8:5

AUXSRC: Selects the auxiliary clock source, will glitch when switching

RW

0x0

Enumerated values:

0x0 — CLKSRC_PLL_SYS

0x1 — CLKSRC_GPINO

0x2 — CLKSRC_GPIN1

0x3 — CLKSRC_PLL_USB

0x4 — ROSC_CLKSRC

0x5 — XOSC_CLKSRC

0x6 — CLK_SYS

0x7 — CLK_USB

0x8 — CLK_ADC

0x9 — CLK_RTC

Oxa — CLK_REF

4:0

Reserved.

CLOCKS: CLK_GPOUTO_DIV Register

Offset: 0x04

Description

Clock divisor, can be changed on-the-fly

2.15. Clocks

196

RP2040 Datasheet

Table 209.
CLK_GPOUTO_DIV
Register

Table 210.
CLK_GPOUTO_SELECT
ED Register

Table 211.
CLK_GPOUTT_CTRL
Register

Bits Description Type Reset
31:8 INT: Integer component of the divisor, 0 — divide by 2*16 RW 0x000001
7:0 FRAC: Fractional component of the divisor RW 0x00
CLOCKS: CLK_GPOUTO_SELECTED Register
Offset: 0x08
Description
Indicates which SRC is currently selected by the glitchless mux (one-hot).
Bits Description Type Reset
31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present, |RO 0x00000001
not SRC) so this register is hardwired to 0x1.
CLOCKS: CLK_GPOUT1_CTRL Register
Offset: 0x0Oc
Description
Clock control, can be changed on-the-fly (except for auxsrc)
Bits Description Type Reset
31:21 Reserved. = =
20 NUDGE: An edge on this signal shifts the phase of the output by 1 cycle of the | RW 0x0
input clock
This can be done at any time
19:18 Reserved. = =
17:16 PHASE: This delays the enable signal by up to 3 cycles of the input clock RW 0x0
This must be set before the clock is enabled to have any effect
15:13 Reserved. = =
12 DC50: Enables duty cycle correction for odd divisors RW 0x0
11 ENABLE: Starts and stops the clock generator cleanly RW 0x0
10 KILL: Asynchronously kills the clock generator RW 0x0
9 Reserved. = =
8:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0

Enumerated values:

0x0 — CLKSRC_PLL_SYS

0x1 — CLKSRC_GPINO

0x2 — CLKSRC_GPIN1

0x3 — CLKSRC_PLL_USB

0x4 — ROSC_CLKSRC

0x5 — XOSC_CLKSRC

0x6 — CLK_SYS

0x7 — CLK_USB

2.15. Clocks

197

RP2040 Datasheet

Table 212.
CLK_GPOUT1_DIV
Register

Table 213.
CLK_GPOUT1_SELECT
ED Register

Table 214.
CLK_GPOUT2_CTRL
Register

Bits Description Type Reset
0x8 — CLK_ADC
0x9 — CLK_RTC
Oxa — CLK_REF
4:0 Reserved. = =
CLOCKS: CLK_GPOUT1_DIV Register
Offset: 0x10
Description
Clock divisor, can be changed on-the-fly
Bits Description Type Reset
31:8 INT: Integer component of the divisor, 0 — divide by 216 RW 0x000001
7:0 FRAC: Fractional component of the divisor RW 0x00
CLOCKS: CLK_GPOUT1_SELECTED Register
Offset: 0x14
Description
Indicates which SRC is currently selected by the glitchless mux (one-hot).
Bits Description Type Reset
31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present, | RO 0x00000001
not SRC) so this register is hardwired to 0x1.
CLOCKS: CLK_GPOUT2_CTRL Register
Offset: 0x18
Description
Clock control, can be changed on-the-fly (except for auxsrc)
Bits Description Type Reset
31:21 Reserved. = =
20 NUDGE: An edge on this signal shifts the phase of the output by 1 cycle of the | RW 0x0
input clock
This can be done at any time
19:18 Reserved. = =
17:16 PHASE: This delays the enable signal by up to 3 cycles of the input clock RW 0x0
This must be set before the clock is enabled to have any effect
15:13 Reserved. = =
12 DC50: Enables duty cycle correction for odd divisors RW 0x0
11 ENABLE: Starts and stops the clock generator cleanly RW 0x0
10 KILL: Asynchronously kills the clock generator RW 0x0
9 Reserved. = =

2.15. Clocks

198

RP2040 Datasheet
]

Bits Description Type Reset

8:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0

Enumerated values:

0x0 — CLKSRC_PLL_SYS

0x1 — CLKSRC_GPINO

0x2 — CLKSRC_GPIN1

0x3 — CLKSRC_PLL_USB

0x4 — ROSC_CLKSRC_PH

0x5 — XOSC_CLKSRC

0x6 — CLK_SYS

0x7 — CLK_USB

0x8 — CLK_ADC

0x9 — CLK_RTC

Oxa — CLK_REF

4.0 Reserved. - -

CLOCKS: CLK_GPOUT2_DIV Register
Offset: Ox1c

Description

Clock divisor, can be changed on-the-fly

Table 215. o -
CLK GPOUT2.DIV Bits Description Type Reset
Register 31:8 INT: Integer component of the divisor, 0 — divide by 216 RW 0x000001
7:0 FRAC: Fractional component of the divisor RW 0x00
CLOCKS: CLK_GPOUT2_SELECTED Register
Offset: 0x20
Description
Indicates which SRC is currently selected by the glitchless mux (one-hot).
Table 216, Bits Description Type Reset
CLK_GPOUT2_SELECT
ED Register 31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present, | RO 0x00000001
not SRC) so this register is hardwired to 0x1.
CLOCKS: CLK_GPOUT3_CTRL Register
Offset: 0x24
Description
Clock control, can be changed on-the-fly (except for auxsrc)
Table 217. Bits Description Type Reset
CLK_GPOUT3_CTRL
Register 31:21 |Reserved. - -

]
2.15. Clocks 199

RP2040 Datasheet
]

Bits Description Type Reset
20 NUDGE: An edge on this signal shifts the phase of the output by 1 cycle of the | RW 0x0
input clock

This can be done at any time

19:18 Reserved. - -

17:16 PHASE: This delays the enable signal by up to 3 cycles of the input clock RW 0x0
This must be set before the clock is enabled to have any effect

15:13 Reserved. - -

12 DC50: Enables duty cycle correction for odd divisors RW 0x0
11 ENABLE: Starts and stops the clock generator cleanly RW 0x0
10 KILL: Asynchronously kills the clock generator RW 0x0
9 Reserved. = =

8:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0

Enumerated values:

0x0 — CLKSRC_PLL_SYS

0x1 — CLKSRC_GPINO

0x2 — CLKSRC_GPIN1

0x3 — CLKSRC_PLL_USB

0x4 — ROSC_CLKSRC_PH

0x5 — XOSC_CLKSRC

0x6 — CLK_SYS

0x7 — CLK_USB

0x8 — CLK_ADC

0x9 — CLK_RTC

Oxa — CLK_REF

4:0 Reserved. - -

CLOCKS: CLK_GPOUT3_DIV Register
Offset: 0x28

Description

Clock divisor, can be changed on-the-fly

Table 218. . _

CLK GPOUT3.DIV Bits Description Type Reset

Register 31:8 INT: Integer component of the divisor, 0 — divide by 216 RW 0x000001
7:0 FRAC: Fractional component of the divisor RW 0x00

CLOCKS: CLK_GPOUT3_SELECTED Register

Offset: 0x2c

2.15. Clocks 200

RP2040 Datasheet
]

Description

Table 219.

Indicates which SRC is currently selected by the glitchless mux (one-hot).

Bits Description Type Reset
CLK_GPOUT3_SELECT
ED Register 31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present, | RO 0x00000001
not SRC) so this register is hardwired to 0x1.
CLOCKS: CLK_REF_CTRL Register
Offset: 0x30
Description
Clock control, can be changed on-the-fly (except for auxsrc)
Table 220. Bits Description Type Reset
CLK_REF_CTRL
Register 317 Reserved. - -
6:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0
Enumerated values:
0x0 — CLKSRC_PLL_USB
0x1 — CLKSRC_GPINO
0x2 — CLKSRC_GPIN1
4:2 Reserved. = =
1:0 SRC: Selects the clock source glitchlessly, can be changed on-the-fly RW -
Enumerated values:
0x0 — ROSC_CLKSRC_PH
0x1 — CLKSRC_CLK_REF_AUX
0x2 — XOSC_CLKSRC
CLOCKS: CLK_REF_DIV Register
Offset: 0x34
Description
Clock divisor, can be changed on-the-fly
Table 221.) Bits Description Type Reset
CLK_REF_DIV Register
31:10 Reserved. - -
9:8 INT: Integer component of the divisor, 0 — divide by 216 RW 0x1
7:0 Reserved. = =

2.15. Clocks

CLOCKS: CLK_REF_SELECTED Register

Offset: 0x38

Description

Indicates which SRC is currently selected by the glitchless mux (one-hot).

RP2040 Datasheet
]

Table 222.
CLK_REF_SELECTED
Register

Table 223.
CLK_SYS_CTRL
Register

Table 224.
CLK_SYS_DIV Register

Bits Description Type Reset
31:0 The glitchless multiplexer does not switch instantaneously (to avoid glitches), | RO 0x00000001
so software should poll this register to wait for the switch to complete. This
register contains one decoded bit for each of the clock sources enumerated in
the CTRL SRC field. At most one of these bits will be set at any time, indicating
that clock is currently present at the output of the glitchless mux. Whilst
switching is in progress, this register may briefly show all-Os.
CLOCKS: CLK_SYS_CTRL Register
Offset: 0x3c
Description
Clock control, can be changed on-the-fly (except for auxsrc)
Bits Description Type Reset
31:8 Reserved. = =
7:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0
Enumerated values:
0x0 — CLKSRC_PLL_SYS
0x1 — CLKSRC_PLL_USB
0x2 — ROSC_CLKSRC
0x3 — XOSC_CLKSRC
0x4 — CLKSRC_GPINO
0x5 — CLKSRC_GPIN1
4:1 Reserved. = =
0 SRC: Selects the clock source glitchlessly, can be changed on-the-fly RW 0x0
Enumerated values:
0x0 — CLK_REF
0x1 — CLKSRC_CLK_SYS_AUX
CLOCKS: CLK_SYS_DIV Register
Offset: 0x40
Description
Clock divisor, can be changed on-the-fly
Bits Description Type Reset
31:8 INT: Integer component of the divisor, 0 — divide by 2*16 RW 0x000001
7:0 FRAC: Fractional component of the divisor RW 0x00

CLOCKS: CLK_SYS_SELECTED Register

Offset: 0x44

Description

Indicates which SRC is currently selected by the glitchless mux (one-hot).

2.15. Clocks

202

RP2040 Datasheet

Table 225. Bits Description Type Reset
CLK_SYS_SELECTED
Register 31:0 The glitchless multiplexer does not switch instantaneously (to avoid glitches), | RO 0x00000001
so software should poll this register to wait for the switch to complete. This
register contains one decoded bit for each of the clock sources enumerated in
the CTRL SRC field. At most one of these bits will be set at any time, indicating
that clock is currently present at the output of the glitchless mux. Whilst
switching is in progress, this register may briefly show all-Os.
CLOCKS: CLK_PERI_CTRL Register
Offset: 0x48
Description
Clock control, can be changed on-the-fly (except for auxsrc)
Table 226. Bits Description Type Reset
CLK_PERI_CTRL
Register 31:12 | Reserved. - -
11 ENABLE: Starts and stops the clock generator cleanly RW 0x0
10 KILL: Asynchronously kills the clock generator RW 0x0
9:8 Reserved. - -
7:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0
Enumerated values:
0x0 — CLK_SYS
0x1 — CLKSRC_PLL_SYS
0x2 — CLKSRC_PLL_USB
0x3 — ROSC_CLKSRC_PH
0x4 — XOSC_CLKSRC
0x5 — CLKSRC_GPINO
0x6 — CLKSRC_GPIN1
4:0 Reserved. - -
CLOCKS: CLK_PERI_SELECTED Register
Offset: 0x50
Description
Indicates which SRC is currently selected by the glitchless mux (one-hot).
Table 227. Bits Description Type Reset
CLK_PERI_SELECTED
Register 31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present, | RO 0x00000001

not SRC) so this register is hardwired to 0x1.

CLOCKS: CLK_USB_CTRL Register
Offset: 0x54

Description

Clock control, can be changed on-the-fly (except for auxsrc)

2.15. Clocks 203

RP2040 Datasheet

zt/)(l_eUiZZCTRL Bits Description Type Reset
Register 31:21 | Reserved. - -
20 NUDGE: An edge on this signal shifts the phase of the output by 1 cycle of the | RW 0x0
input clock
This can be done at any time
19:18 Reserved. = =
17:16 PHASE: This delays the enable signal by up to 3 cycles of the input clock RW 0x0
This must be set before the clock is enabled to have any effect
15:12 | Reserved. = =
11 ENABLE: Starts and stops the clock generator cleanly RW 0x0
10 KILL: Asynchronously kills the clock generator RW 0x0
9:8 Reserved. = =
7:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0
Enumerated values:
0x0 — CLKSRC_PLL_USB
0x1 — CLKSRC_PLL_SYS
0x2 — ROSC_CLKSRC_PH
0x3 — XOSC_CLKSRC
0x4 — CLKSRC_GPINO
0x5 — CLKSRC_GPIN1
4:0 Reserved. = =
CLOCKS: CLK_USB_DIV Register
Offset: 0x58
Description
Clock divisor, can be changed on-the-fly
Table 229.

) Bits Description Type Reset
CLK_USB_DIV Register

31:10 Reserved. - -

9:8 INT: Integer component of the divisor, 0 — divide by 2*16 RW 0x1

7:0 Reserved. - -

CLOCKS: CLK_USB_SELECTED Register
Offset: 0x5¢

Description

Indicates which SRC is currently selected by the glitchless mux (one-hot).

2.15. Clocks 204

RP2040 Datasheet

Table 230.
CLK_USB_SELECTED
Register

Table 231.
CLK_ADC_CTRL
Register

Table 232.
CLK_ADC_DIV Register

2.15. Clocks

Bits Description Type Reset
31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present, |RO 0x00000001
not SRC) so this register is hardwired to 0x1.
CLOCKS: CLK_ADC_CTRL Register
Offset: 0x60
Description
Clock control, can be changed on-the-fly (except for auxsrc)
Bits Description Type Reset
31:21 Reserved. = =
20 NUDGE: An edge on this signal shifts the phase of the output by 1 cycle of the | RW 0x0
input clock
This can be done at any time
19:18 Reserved. = =
17:16 PHASE: This delays the enable signal by up to 3 cycles of the input clock RW 0x0
This must be set before the clock is enabled to have any effect
15:12 Reserved. = =
11 ENABLE: Starts and stops the clock generator cleanly RW 0x0
10 KILL: Asynchronously kills the clock generator RW 0x0
9:8 Reserved. = =
7:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0
Enumerated values:
0x0 — CLKSRC_PLL_USB
0x1 — CLKSRC_PLL_SYS
0x2 — ROSC_CLKSRC_PH
0x3 — XOSC_CLKSRC
0x4 — CLKSRC_GPINO
0x5 — CLKSRC_GPIN1
4:0 Reserved. = =
CLOCKS: CLK_ADC_DIV Register
Offset: 0x64
Description
Clock divisor, can be changed on-the-fly
Bits Description Type Reset
31:10 Reserved. = =
9:8 INT: Integer component of the divisor, 0 — divide by 2216 RW 0x1
7:0 Reserved. = =

RP2040 Datasheet

CLOCKS: CLK_ADC_SELECTED Register
Offset: 0x68

Description

Indicates which SRC is currently selected by the glitchless mux (one-hot).

Table 233. Bits Description Type Reset
CLK_ADC_SELECTED
Register 31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present, | RO 0x00000001
not SRC) so this register is hardwired to 0x1.
CLOCKS: CLK_RTC_CTRL Register
Offset: Ox6c¢
Description
Clock control, can be changed on-the-fly (except for auxsrc)
Table 254. Bits Description Type Reset
CLK_RTC_CTRL
Register 31:21 | Reserved. - -
20 NUDGE: An edge on this signal shifts the phase of the output by 1 cycle of the | RW 0x0
input clock

This can be done at any time

19:18 Reserved. - -

17:16 PHASE: This delays the enable signal by up to 3 cycles of the input clock RW 0x0
This must be set before the clock is enabled to have any effect

15112 Reserved. - -

11 ENABLE: Starts and stops the clock generator cleanly RW 0x0
10 KILL: Asynchronously kills the clock generator RW 0x0
9:8 Reserved. = =

7:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0

Enumerated values:

0x0 — CLKSRC_PLL_USB

0x1 — CLKSRC_PLL_SYS

0x2 — ROSC_CLKSRC_PH

0x3 — XOSC_CLKSRC

0x4 — CLKSRC_GPINO

0x5 — CLKSRC_GPIN1

4:0 Reserved. - -

CLOCKS: CLK_RTC_DIV Register
Offset: 0x70

Description

Clock divisor, can be changed on-the-fly

2.15. Clocks 206

RP2040 Datasheet

Table 235.
CLK_RTC_DIV Register

Table 236.
CLK_RTC_SELECTED
Register

Table 237.
CLK_SYS_RESUS_CTR
L Register

Table 238.
CLK_SYS_RESUS_STA
TUS Register

Bits Description Type Reset
31:8 INT: Integer component of the divisor, 0 — divide by 2*16 RW 0x000001
7:0 FRAC: Fractional component of the divisor RW 0x00
CLOCKS: CLK_RTC_SELECTED Register
Offset: 0x74
Description
Indicates which SRC is currently selected by the glitchless mux (one-hot).
Bits Description Type Reset
31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present, |RO 0x00000001
not SRC) so this register is hardwired to 0x1.
CLOCKS: CLK_SYS_RESUS_CTRL Register
Offset: 0x78
Bits Description Type Reset
31:17 Reserved. = =
16 CLEAR: For clearing the resus after the fault that triggered it has been RW 0x0
corrected
15:13 Reserved. = =
12 FRCE: Force a resus, for test purposes only RW 0x0
11:9 Reserved. = =
8 ENABLE: Enable resus RW 0x0
7:0 TIMEOUT: This is expressed as a number of clk_ref cycles RW Oxff
and must be >= 2x clk_ref_freq/min_clk_tst_freq
CLOCKS: CLK_SYS_RESUS_STATUS Register
Offset: 0x7c
Bits Description Type Reset
31:1 Reserved. = =
0 RESUSSED: Clock has been resuscitated, correct the error then send RO 0x0
ctrl_clear=1

CLOCKS: FCO_REF_KHZ Register

Offset: 0x80

2.15. Clocks

207

RP2040 Datasheet

Table 239.
FCO_REF_KHZ Register

Table 240.
FCO_MIN_KHZ
Register

Table 241.
FCO_MAX_KHZ
Register

Table 242. FCO_DELAY
Register

Table 243.
FCO_INTERVAL
Register

Table 244. FCO_SRC
Register

2.15. Clocks

Bits Description Type Reset
31:20 Reserved. = =
19:0 Reference clock frequency in kHz RW 0x00000
CLOCKS: FCO_MIN_KHZ Register
Offset: 0x84
Bits Description Type Reset
31:25 Reserved. = =
24:0 Minimum pass frequency in kHz. This is optional. Set to 0 if you are not using | RW 0x0000000
the pass/fail flags
CLOCKS: FCO_MAX_KHZ Register
Offset: 0x88
Bits Description Type Reset
31:25 Reserved. = =
24:0 Maximum pass frequency in kHz. This is optional. Set to 0x1ffffff if you are RW Ox1ffffff
not using the pass/fail flags
CLOCKS: FCO_DELAY Register
Offset: 0x8c
Bits Description Type Reset
31:3 Reserved. = =
2:0 Delays the start of frequency counting to allow the mux to settle RW 0x1
Delay is measured in multiples of the reference clock period
CLOCKS: FCO_INTERVAL Register
Offset: 0x90
Bits Description Type Reset
31:4 Reserved. = =
3:0 The test interval is 0.98us * 2**interval, but let’s call it Tus * 2**interval RW 0x8
The default gives a test interval of 250us
CLOCKS: FCO_SRC Register
Offset: 0x94
Bits Description Type Reset
31:8 Reserved. = =
7:0 Clock sent to frequency counter, set to 0 when not required RW 0x00

Writing to this register initiates the frequency count

Enumerated values:

0x00 — NULL

RP2040 Datasheet
]

Bits Description Type Reset

0x01 — PLL_SYS_CLKSRC_PRIMARY

0x02 — PLL_USB_CLKSRC_PRIMARY

0x03 — ROSC_CLKSRC

0x04 — ROSC_CLKSRC_PH

0x05 — XOSC_CLKSRC

0x06 — CLKSRC_GPINO

0x07 — CLKSRC_GPIN1

0x08 — CLK_REF

0x09 — CLK_SYS

0x0a — CLK_PERI

0x0b — CLK_USB

0x0c — CLK_ADC

0x0d — CLK_RTC

CLOCKS: FCO_STATUS Register
Offset: 0x98

Description

Frequency counter status

Table 245.

) Bits Description Type Reset
FCO_STATUS Register

31:29 Reserved. - -

28 DIED: Test clock stopped during test RO 0x0

27:25 Reserved. - -

24 FAST: Test clock faster than expected, only valid when status_done=1 RO 0x0

23:21 Reserved. - -

20 SLOW: Test clock slower than expected, only valid when status_done=1 RO 0x0

19:17 Reserved. - -

16 FAIL: Test failed RO 0x0

15:13 Reserved. - -

12 WAITING: Waiting for test clock to start RO 0x0

11:9 Reserved. - -

8 RUNNING: Test running RO 0x0
7:5 Reserved. = =
4 DONE: Test complete RO 0x0
3:1 Reserved. - -
0 PASS: Test passed RO 0x0

CLOCKS: FCO_RESULT Register

]
2.15. Clocks 209

RP2040 Datasheet
]

Offset: 0x9¢c

Description

Result of frequency measurement, only valid when status_done=1

Table 246. Bits Description Type Reset
FCO_RESULT Register
31:30 Reserved. - -
29:5 KHZ RO 0x0000000
4:0 FRAC RO 0x00

CLOCKS: WAKE_ENO Register
Offset: 0xa0

Description

enable clock in wake mode

Table 247. WAKE_ENO

— Bits Description Type Reset
31 CLK_SYS_SRAM3 RW 0x1
30 CLK_SYS_SRAM2 RW 0x1
29 CLK_SYS_SRAM1 RW 0x1
28 CLK_SYS_SRAMO RW 0x1
27 CLK_SYS_SPI1 RW 0x1
26 CLK_PERI_SPI1 RW 0x1
25 CLK_SYS_SPIO RW 0x1
24 CLK_PERI_SPIO RW 0x1
23 CLK_SYS_SIO RW 0x1
22 CLK_SYS_RTC RW 0x1
21 CLK_RTC_RTC RW 0x1
20 CLK_SYS_ROSC RW 0x1
19 CLK_SYS_ROM RW 0x1
18 CLK_SYS_RESETS RW 0x1
17 CLK_SYS_PWM RW 0x1
16 CLK_SYS_PSM RW 0x1
15 CLK_SYS_PLL_USB RW 0x1
14 CLK_SYS_PLL_SYS RW 0x1
13 CLK_SYS_PIO1 RW 0x1
12 CLK_SYS_PIOO RW 0x1
11 CLK_SYS_PADS RW 0x1
10 CLK_SYS_VREG_AND_CHIP_RESET RW 0x1
9 CLK_SYS_JTAG RW 0x1
8 CLK_SYS_I0 RW 0x1

]
2.15. Clocks 210

RP2040 Datasheet

Bits Description Type Reset
7 CLK_SYsS_l2C1 RW 0x1
6 CLK_SYS_I2C0 RW 0x1
5 CLK_SYS_DMA RW 0x1
4 CLK_SYS_BUSFABRIC RW 0x1
3 CLK_SYS_BUSCTRL RW 0x1
2 CLK_SYS_ADC RW 0x1
1 CLK_ADC_ADC RW 0x1
0 CLK_SYS_CLOCKS RW 0x1

CLOCKS: WAKE_EN1 Register

Offset: Oxa4

Description

enable clock in wake mode
;ZSZ;‘:& WAKELENT | Bijts Description Type Reset

31:15 Reserved. = =
14 CLK_SYS_X0sC RW 0x1
13 CLK_SYS_XIP RW 0x1
12 CLK_SYS_WATCHDOG RW 0x1
11 CLK_USB_USBCTRL RW 0x1
10 CLK_SYS_USBCTRL RW 0x1
9 CLK_SYS_UART1 RW 0x1
8 CLK_PERI_UART1 RW 0x1
7 CLK_SYS_UARTO RW 0x1
6 CLK_PERI_UARTO RW 0x1
5 CLK_SYS_TIMER RW 0x1
4 CLK_SYS_TBMAN RW 0x1
3 CLK_SYS_SYSINFO RW 0x1
2 CLK_SYS_SYSCFG RW 0x1
1 CLK_SYS_SRAM5 RW 0x1
0 CLK_SYS_SRAM4 RW 0x1

CLOCKS: SLEEP_ENO Register

Offset: 0xa8

Description

enable clock in sleep mode
;ZZ;;ZQ‘ SLEEP-ENO | Bits Description Type Reset

31 CLK_SYS_SRAM3 RW 0x1

2.15. Clocks

211

RP2040 Datasheet
]

Bits Description Type Reset
30 CLK_SYS_SRAM2 RW 0x1
29 CLK_SYS_SRAM1 RW 0x1
28 CLK_SYS_SRAMO RW 0x1
27 CLK_SYS_SPI1 RW 0x1
26 CLK_PERI_SPI1 RW 0x1
25 CLK_SYS_SPIO RW 0x1
24 CLK_PERI_SPIO RW 0x1
23 CLK_SYS_SIO RW 0x1
22 CLK_SYS_RTC RW 0x1
21 CLK_RTC_RTC RW 0x1
20 CLK_SYS_ROSC RW 0x1
19 CLK_SYS_ROM RW 0x1
18 CLK_SYS_RESETS RW 0x1
17 CLK_SYS_PWM RW 0x1
16 CLK_SYS_PSM RW 0x1
15 CLK_SYS_PLL_USB RW 0x1
14 CLK_SYS_PLL_SYS RW 0x1
13 CLK_SYS_PIO1 RW 0x1
12 CLK_SYS_PIO0 RW 0x1
11 CLK_SYS_PADS RW 0x1
10 CLK_SYS_VREG_AND_CHIP_RESET RW 0x1
9 CLK_SYS_JTAG RW 0x1
8 CLK_SYS_lo RW 0x1
7 CLK_SsYsS_l2C1 RW 0x1
6 CLK_sYs_I2Co0 RW 0x1
5 CLK_SYS_DMA RW 0x1
4 CLK_SYS_BUSFABRIC RW 0x1
3 CLK_SYS_BUSCTRL RW 0x1
2 CLK_SYS_ADC RW 0x1
1 CLK_ADC_ADC RW 0x1
0 CLK_SYS_CLOCKS RW 0x1

CLOCKS: SLEEP_EN1 Register
Offset: Oxac

Description

enable clock in sleep mode

]
2.15. Clocks 212

RP2040 Datasheet
]

Table 250. SLEEP_ENT
Register

Table 251. ENABLEDO
Register

Bits Description Type Reset
31:15 Reserved. = -
14 CLK_SYS_XO0SC RW 0x1
13 CLK_SYS_XIP RW 0x1
12 CLK_SYS_WATCHDOG RW 0x1
11 CLK_USB_USBCTRL RW 0x1
10 CLK_SYS_USBCTRL RW 0x1
9 CLK_SYS_UART1 RW 0x1
8 CLK_PERI_UART1 RW 0x1
7 CLK_SYS_UARTO RW 0x1
6 CLK_PERI_UARTO RW 0x1
5 CLK_SYS_TIMER RW 0x1
4 CLK_SYS_TBMAN RW 0x1
3 CLK_SYS_SYSINFO RW 0x1
2 CLK_SYS_SYSCFG RW 0x1
1 CLK_SYS_SRAMS RW 0x1
0 CLK_SYS_SRAM4 RW 0x1

CLOCKS: ENABLEDO Register

Offset: 0xb0

Description

indicates the state of the clock enable

Bits Description Type Reset
31 CLK_SYS_SRAM3 RO 0x0
30 CLK_SYS_SRAM2 RO 0x0
29 CLK_SYS_SRAM1 RO 0x0
28 CLK_SYS_SRAMO RO 0x0
27 CLK_SYS_SPI1 RO 0x0
26 CLK_PERI_SPI1 RO 0x0
25 CLK_SYS_SPIO RO 0x0
24 CLK_PERI_SPIO RO 0x0
23 CLK_SYS_SIO RO 0x0
22 CLK_SYS_RTC RO 0x0
21 CLK_RTC_RTC RO 0x0
20 CLK_SYS_ROSC RO 0x0
19 CLK_SYS_ROM RO 0x0
18 CLK_SYS_RESETS RO 0x0

2.15. Clocks

213

RP2040 Datasheet
]

Bits Description Type Reset
17 CLK_SYS_PWM RO 0x0
16 CLK_SYS_PSM RO 0x0
15 CLK_SYS_PLL_USB RO 0x0
14 CLK_SYS_PLL_SYS RO 0x0
13 CLK_SYS_PIO1 RO 0x0
12 CLK_SYS_PIO0 RO 0x0
11 CLK_SYS_PADS RO 0x0
10 CLK_SYS_VREG_AND_CHIP_RESET RO 0x0
9 CLK_SYS_JTAG RO 0x0
8 CLK_SYs_lo RO 0x0
7 CLK_SYS_I2C1 RO 0x0
6 CLK_SYsS_I2Co0 RO 0x0
5 CLK_SYS_DMA RO 0x0
4 CLK_SYS_BUSFABRIC RO 0x0
3 CLK_SYS_BUSCTRL RO 0x0
2 CLK_SYS_ADC RO 0x0
1 CLK_ADC_ADC RO 0x0
0 CLK_SYS_CLOCKS RO 0x0

CLOCKS: ENABLED1 Register
Offset: Oxb4

Description

indicates the state of the clock enable

Table 252. ENABLEDT

Register Bits Description Type Reset
31:15 Reserved. - =
14 CLK_SYS_XO0SC RO 0x0
13 CLK_SYS_XIP RO 0x0
12 CLK_SYS_WATCHDOG RO 0x0
11 CLK_USB_USBCTRL RO 0x0
10 CLK_SYS_USBCTRL RO 0x0
9 CLK_SYS_UART1 RO 0x0
8 CLK_PERI_UART1 RO 0x0
7 CLK_SYS_UARTO RO 0x0
6 CLK_PERI_UARTO RO 0x0
5 CLK_SYS_TIMER RO 0x0
4 CLK_SYS_TBMAN RO 0x0

]
2.15. Clocks 214

RP2040 Datasheet

Table 253. INTR
Register

Table 254. INTE
Register

Table 255. INTF
Register

3 CLK_SYS_SYSINFO RO 0x0
2 CLK_SYS_SYSCFG RO 0x0
1 CLK_SYS_SRAMS RO 0x0
0 CLK_SYS_SRAM4 RO 0x0

CLOCKS: INTR Register
Offset: 0xb8

Description

Raw Interrupts

31:1 Reserved. - -

0 CLK_SYS_RESUS RO 0x0

CLOCKS: INTE Register
Offset: Oxbc

Description

Interrupt Enable

31:1 Reserved. - -

0 CLK_SYS_RESUS RW 0x0

CLOCKS: INTF Register
Offset: 0xcO

Description

Interrupt Force

31:1 Reserved. - -

0 CLK_SYS_RESUS RW 0x0

CLOCKS: INTS Register
Offset: Oxc4

Description

Interrupt status after masking & forcing

2.15. Clocks

215

RP2040 Datasheet
]

Table 256. INTS
Register

Figure 33. X0SC
overview

Table 257. Key Crystal
Specifications.

Bits Description Type Reset
31:1 Reserved. = -
0 CLK_SYS_RESUS RO 0x0

2.16. Crystal Oscillator (XOSC)

2.16.1. Overview

The Crystal Oscillator (XOSC) uses an external crystal to produce an accurate reference clock. The RP2040 supports
1MHz to 15MHz crystals and the RP2040 reference design (see the Minimal Design Example in Hardware design with
RP2040) uses a 12MHz crystal. The reference clock is distributed to the PLLs, which can be used to multiply the XOSC
frequency to provide accurate high speed clocks. For example, they can generate a 48MHz clock which meets the
frequency accuracy requirement of the USB interface and a 133MHz maximum speed system clock. The XOSC clock is
also a clock source for the clock generators, so can be used directly if required.

If the user already has an accurate clock source then it is possible to drive an external clock directly into XIN (aka XI),
and disable the oscillator circuit. In this mode XIN can be driven at up to 50MHz.

If the user wants to use the XOSC clock outside the RP2040 then it must be routed out to a GPIO via a clk_gpout clock
generator. It is not recommended to take it directly from XIN (aka XI) or XOUT (aka XO).

xout

0

X0SC —— Startup delay xosc_clkre

counter

control & status |

2.16.1.1. Recommended Crystals

For the best performance and stability across typical operating temperature ranges, it is recommended to use the
Abracon ABM8-272-T3. You can source the ABM8-272-T3 directly from Abracon or from an authorised reseller. The
Abracon ABM8-272-T3 has the following specifications:

Parameters Minimum Typical Maximum Units | Notes
Center Frequency 12.000 12.000 12.000 MHz
Operation Mode Fundamental-AT | Fundamental-AT | Fundamental-AT

Operating Temperature -40 +85 °C

Storage Temperature -55 +125 °C
Frequency Tolerance (25°C) -30 +30 ppm
Frequency Stability (25°C) -30 +30 ppm
Equivalent Series Resistance (R1) 50 Q

Shunt Capacitance (C0) 3.0 pF

Load Capacitance (CL) 10 10 10 pF

Drive Level 10 200 pW

Aging -5 +5 ppm | @25+3°C, 1st year

]
2.16. Crystal Oscillator (XOSC) 216

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040#minimal-design-example
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040#minimal-design-example

RP2040 Datasheet
]

Parameters Minimum Typical Maximum Units | Notes

Insulation Resistance 500 MQ | @100Vdct15V

Even if you use a crystal with similar specifications, you will need to test the circuit over a range of temperatures to
ensure stability.

The crystal oscillator is powered from the VDDIO voltage. As a result, the Abracon crystal and that particular damping
resistor are tuned for 3.3V operation. If you use a different 10 voltage, you will need to re-tune.

Any changes to crystal parameters risk instability across any components connected to the crystal circuit.
If you can't source the recommended crystal directly from Abracon or a reseller, contact applications@raspberrypi.com.

Raspberry Pi Pico has been specifically tuned for the specifications of the Abracon ABM8-272-T3 crystal. For an
example of how to use a crystal with RP2040, see the Raspberry Pi Pico board schematic in Appendix B of the
Raspberry Pi Pico Datasheet and the Raspberry Pi Pico design files.

2.16.2. Usage

The XOSC is disabled on chip startup and the RP2040 boots using the Ring Oscillator (ROSC). To start the XOSC, the
programmer must set the CTRL_ENABLE register. The XOSC is not immediately usable because it takes time for the
oscillations to build to sufficient amplitude. This time will be dependent on the chosen crystal but will be of the order of
a few milliseconds. The XOSC incorporates a timer controlled by the STARTUP_DELAY register for automatically
managing this and setting a flag (STATUS_STABLE) when the XOSC clock is usable.

2.16.3. Startup Delay

The STARTUP_DELAY register specifies how many clock cycles must be seen from the crystal before it can be used.
This is specified in multiples of 256. The SDK xosc_init function sets this value. The Tms default is sufficient for the
RP2040 reference design (see the Minimal Design Example in Hardware design with RP2040) which runs the XOSC at
12MHz. When the timer expires, the STATUS_STABLE flag will be set to indicate the XOSC output can be used.

Before starting the XOSC the programmer must ensure the STARTUP_DELAY register is correctly configured. The
required value can be calculated by:

(fCrystal x tStable) + 256
So with a 12MHz crystal and a Tms wait time, the calculation is:
(12 x106-1x 10-3) + 256 = 47

O NOTE

The value is rounded up to the nearest integer so the wait time will be just over Tms

2.16.4. XOSC Counter

The COUNT register provides a method of managing short software delays. Writing a value to the COUNT register
automatically triggers it to start counting down to zero at the XOSC frequency. The programmer then simply polls the
register until it reaches zero. This is preferable to using NOPs in software loops because it is independent of the core
clock frequency, the compiler and the execution time of the compiled code.

]
2.16. Crystal Oscillator (XOSC) 217

mailto:applications@raspberrypi.com
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf#pico-schematic-diagram
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf#pico-schematic-diagram
https://datasheets.raspberrypi.com/pico/RPi-Pico-R3-PUBLIC-20200119.zip
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040#minimal-design-example

RP2040 Datasheet

2.16.5. DORMANT mode

In DORMANT mode (see Section 2.11.3) all of the on-chip clocks can be paused to save power. This is particularly
useful in battery-powered applications. The RP2040 is woken from DORMANT mode by an interrupt either from an
external event such as an edge on a GPIO pin or from the on-chip RTC. This must be configured before entering
DORMANT mode. If the RTC is being used to trigger wake-up then it must be clocked from an external source. To enter
DORMANT mode the programmer must then switch all internal clocks to be driven from XOSC or ROSC and stop the
PLLs. Then a specific 32-bit value must be written to the DORMANT register in the chosen oscillator (XOSC or ROSC) to
stop it oscillating. When exiting DORMANT mode the chosen oscillator will restart. If XOSC is chosen then the frequency
will be more precise but the restart time is longer due to the startup delay (>1ms on the RP2040 reference design (see
the Minimal Design Example in Hardware design with RP2040)). If ROSC is chosen then the frequency is less precise
but the start-up time is very short (approximately 1ps).

© NoOTE

The PLLs must be stopped before entering DORMANT mode

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_xosc/xosc.c Lines 56 - 63

56 void xosc_dormant(void) {

57 // WARNING: This stops the xosc until woken up by an irq
58 xosc_hw->dormant = XOSC_DORMANT_VALUE_DORMANT ;
59 // Wait for it to become stable once woken up
60 while(!(xosc_hw->status & XOSC_STATUS_STABLE_BITS)) {
61 tight_loop_contents();
62 }
63 }
© WARNING

If no IRQ is configured before going into DORMANT mode the XOSC or ROSC will never restart.

See Section 2.11.5.2 for a complete example of DORMANT mode using the XOSC.

2.16.6. Programmer’s Model

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/xosc.h Lines 27 - 59

27 typedef struct {

28 _REG_(XOSC_CTRL_OFFSET) // X0SC_CTRL

29 // Crystal Oscillator Control

30 // 6x00fffeee [23:12] ENABLE (-) On power-up this field is initialised to DISABLE and
the. ..

31 // 6x00000fff [11:0] FREQ_RANGE (-) Frequency range

32 io_rw_32 ctrl;

35

34 _REG_(XOSC_STATUS_OFFSET) // XOSC_STATUS

35 // Crystal Oscillator Status

36 // 0x80000000 [31] STABLE (8) Oscillator is running and stable

37 // 6x01000000 [24] BADWRITE (8) An invalid value has been written to CTRL_ENABLE
or...

38 // 6x00001000 [12] ENABLED (-) Oscillator is enabled but not necessarily running
and. ..

39 // 0x00000003 [1:0] FREQ_RANGE (-) The current frequency range setting, always reads 6

40 io_rw_32 status;

41

]
2.16. Crystal Oscillator (XOSC) 218

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040#minimal-design-example
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_xosc/xosc.c#L56-L63
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/xosc.h#L27-L59

RP2040 Datasheet
]

42 _REG_(XOSC_DORMANT_OFFSET) // XOSC_DORMANT

43 // Crystal Oscillator pause control

44 // Oxffffffff [31:0] DORMANT (-) This is used to save power by pausing the X0SC +
45 io_rw_32 dormant;

46

47 _REG_(XOSC_STARTUP_OFFSET) // XOSC_STARTUP

48 // Controls the startup delay

49 // 6x001600000 [20] X4 (-) Multiplies the startup_delay by 4

50 // 6x00003fff [13:0] DELAY (-) in multiples of 256*xtal_period

51 io_rw_32 startup;

52

53 uint32_t _pade[3];

54

55 _REG_(XOSC_COUNT_OFFSET) // XOSC_COUNT

56 // A down counter running at the XO0SC frequency which counts to zero and stops.
57 // 6x000000ff [7:0] COUNT (6x00)

58 io_rw_32 count;

59 } xosc_hw_t;

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_xosc/xosc.c Lines 29 - 43

29 void xosc_init(void) {

30 // Assumes 1-15 MHz input, checked above.

31 xosc_hw->ctrl = XOSC_CTRL_FREQ_RANGE_VALUE_1_15MHZ;

32

38 // Set xosc startup delay

34 xosc_hw->startup = STARTUP_DELAY;

35

36 // Set the enable bit now that we have set freq range and startup delay
37 hw_set_bits(&xosc_hw->ctrl, XOSC_CTRL_ENABLE_VALUE_ENABLE << XOSC_CTRL_ENABLE_LSB);
38

39 // Wait for XOSC to be stable

40 while(!(xosc_hw->status & XOSC_STATUS_STABLE_BITS)) {

41 tight_loop_contents();

42 }

43 }

2.16.7. List of Registers

The XOSC registers start at a base address of 0x40024000 (defined as XOSC_BASE in SDK).

Table 258. List of Offset Name iz
XOSC registers
0x00 CTRL Crystal Oscillator Control
0x04 STATUS Crystal Oscillator Status
0x08 DORMANT Crystal Oscillator pause control
0x0c STARTUP Controls the startup delay
OxT1c COUNT A down counter running at the XOSC frequency which counts to
zero and stops.

XOSC: CTRL Register

Offset: 0x00

]
2.16. Crystal Oscillator (XOSC) 219

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_xosc/xosc.c#L29-L43

RP2040 Datasheet
]

Description

Crystal Oscillator Control

Table 259. CTRL

) Bits Description Type Reset
Register

31:24 Reserved. - -

23:12 ENABLE: On power-up this field is initialised to DISABLE and the chip runs RW -
from the ROSC.

If the chip has subsequently been programmed to run from the XOSC then
setting this field to DISABLE may lock-up the chip. If this is a concern then run
the clk_ref from the ROSC and enable the clk_sys RESUS feature.

The 12-bit code is intended to give some protection against accidental writes.
An invalid setting will enable the oscillator.

Enumerated values:

Oxd1e — DISABLE

Oxfab — ENABLE

11:0 FREQ_RANGE: Frequency range. This resets to 0xAAO0 and cannot be changed. | RW -

Enumerated values:

Oxaa0 — 1_15MHZ

Oxaal — RESERVED_1

Oxaa2 — RESERVED_2

Oxaa3 — RESERVED_3

XOSC: STATUS Register
Offset: 0x04

Description

Crystal Oscillator Status

Table 260. STATUS

) Bits Description Type Reset
Register

31 STABLE: Oscillator is running and stable RO 0x0

30:25 Reserved. - -

24 BADWRITE: An invalid value has been written to CTRL_ENABLE or WC 0x0
CTRL_FREQ_RANGE or DORMANT

23:13 Reserved. - -

12 ENABLED: Oscillator is enabled but not necessarily running and stable, resets | RO -
to0

11:2 Reserved. - -

1:0 FREQ_RANGE: The current frequency range setting, always reads 0 RO -

Enumerated values:

0x0 — 1_15MHZ

0x1 — RESERVED_1

0x2 — RESERVED_2

0x3 — RESERVED_3

]
2.16. Crystal Oscillator (XOSC) 220

RP2040 Datasheet

Table 261. DORMANT
Register

Table 262. STARTUP
Register

Table 263. COUNT
Register

XOSC: DORMANT Register
Offset: 0x08

Description

Crystal Oscillator pause control

Bits Description Type Reset

31:0 This is used to save power by pausing the XOSC RW -
On power-up this field is initialised to WAKE

An invalid write will also select WAKE

WARNING: stop the PLLs before selecting dormant mode
WARNING: setup the irq before selecting dormant mode

Enumerated values:

0x636f6d61 — DORMANT

0x77616b65 — WAKE

XOSC: STARTUP Register
Offset: 0x0c

Description

Controls the startup delay

Bits Description Type Reset

31:21 Reserved. - -

20 X4: Multiplies the startup_delay by 4. This is of little value to the user given RW 0x0
that the delay can be programmed directly.

19:14 Reserved. - -

13:0 DELAY: in multiples of 256*xtal_period. The reset value of Oxc4 corresponds | RW 0x00c4
to approx 50 000 cycles.
XOSC: COUNT Register
Offset: Ox1c
Bits Description Type Reset

31:8 Reserved. - -

7:0 A down counter running at the xosc frequency which counts to zero and stops. | RW 0x00
To start the counter write a non-zero value.

Can be used for short software pauses when setting up time sensitive
hardware.

2.17. Ring Oscillator (ROSC)

2.17.1. Overview

The Ring Oscillator (ROSC) is an on-chip oscillator built from a ring of inverters. It requires no external components and
is started automatically during RP2040 power up. It provides the clock to the cores during boot. The frequency of the

2.17. Ring Oscillator (ROSC) 221

RP2040 Datasheet
]

Figure 34. ROSC
overview.

ROSC is programmable and it can directly provide a high speed clock to the cores, but the frequency varies with
Process, Voltage and Temperature (PVT) so it cannot provide clocks for components which require an accurate
frequency such as the RTC, USB and ADC. Methods for mitigating the frequency variation are discussed in Section 2.15
but these are only relevant to very low power design. For most applications requiring accurate clock frequencies it is
recommended to switch to the XOSC and PLLs. During boot the ROSC runs at a nominal 6.5MHz and is guaranteed to
be in the range 1.8MHz to 12MHz.

Once the chip has booted the programmer can choose to continue running from the ROSC and increase its frequency or
start the Crystal Oscillator (XOSC) and PLLs. The ROSC can be disabled after the system clocks have been switched to
the XOSC. Each oscillator has advantages and the programmer can switch between them to achieve the best solution
for the application.

‘ ROSC divider I rosc_clksrc
\—{ phase shift l—rosc_clksrc_ph

| random bit | | counter |

‘ control & status |

2.17.2. ROSC/XOSC trade-offs

The advantages of the ROSC are its flexibility and its low power. Also, there is no requirement for internal or external
components when using the ROSC to provide clocks. Its frequency is programmable so it can be used to provide a fast
core clock without starting the PLLs and can be divided by clock generators (Section 2.15) to generate slower peripheral
clocks. The ROSC starts immediately and responds immediately to the frequency controls. It will retain the frequency
setting when entering and exiting the DORMANT state (see Section 2.11.3). However, the user must be aware that the
frequency may have drifted when exiting the DORMANT state due to changes in the supply voltage and the chip
temperature.

The disadvantage of the ROSC is its frequency variation with PVT (Process, Voltage & Temperature) which makes it
unsuitable for generating precise clocks or for applications where software execution timing is important. However, the
PVT frequency variation can be exploited to provide automatic frequency scaling to maximise performance. This is
discussed in Section 2.15.

The only advantage of the XOSC is its accurate frequency, but this is an overriding requirement in many applications.

The disadvantages of the XOSC are its requirement for external components (a crystal etc), its higher power
consumption, slow startup time (>1ms) and fixed, low frequency. PLLs are required to produce higher frequency clocks.
They consume more power and take significant time to start up and to change frequency. Exiting DORMANT mode is
much slower than for ROSC because the XOSC must be restarted and the PLLs must be reconfigured.

2.17.3. Modifying the frequency

The ROSC is arranged as 8 stages, each with programmable drive. There are 2 methods of controlling the frequency.
The frequency range controls the number of stages in the ROSC loop and the FREQA & FREQB registers control the drive
strength of the stages.

The frequency range is changed by writing to the FREQ_RANGE register which controls the number of stages in the
ROSC loop. The default LOW range has 8 (stages 0-7), MEDIUM has 6 (stages 2-7), HIGH has 4 (stages 4-7) and
TOOHIGH has 2 (stages 6-7). It is recommended to change FREQ_RANGE one step at a time until the desired range is
reached. The ROSC output will not glitch when increasing the frequency range, so the output clock can continue to be
used. However, that is not true when going back down the frequency range. An alternate clock source must be selected
for the modules clocked by ROSC, or they must be held in reset during the transition. The behaviour has not been fully
characterised but the MEDIUM range will be approximately 1.33 times the LOW RANGE, the HIGH range will be 2 times

]
2.17. Ring Oscillator (ROSC) 222

RP2040 Datasheet
]

the LOW range and the TOOHIGH range will be 4 times the LOW range. The TOOHIGH range is aptly named. It should
not be used because the internal logic of the ROSC will not run at that frequency.

The FREQA & FREQB registers control the drive strength of the stages in the ROSC loop. Increasing the drive strength
reduces the delay through the stage and increases the oscillation frequency. Each stage has 3 drive strength control
bits. Each bit turns on additional drive, therefore each stage has 4 drive strength settings equal to the number of bits
set, with 0 being the default, 1 being double drive, 2 being triple drive and 3 being quadruple drive. Turning on extra drive
will not have a linear effect on frequency, setting a second bit will have less impact than setting the first bit and so on.
To ensure smooth transitions it is recommended to change one drive strength bit at a time. When FREQ_RANGE is used
to shorten the ROSC loop, the bypassed stages still propagate the signal and therefore their drive strengths must be set
to at least the same level as the lowest drive strength in the stages that are in the loop. This will not affect the
oscillation frequency.

2.17.4. ROSC divider

The ROSC frequency is too fast to be used directly so is divided in an integer divider controlled by the DIV register. DIV
can be changed while the ROSC is running, the output clock will change frequency without glitching. The default divisor
is 16 which ensures the output clock is in the range 1.8 to 12MHz on chip startup.

The divider has 2 outputs, rosc_clksrc and rosc_clksrc_ph, the second being a phase shifted version of the first. This is
primarily intended for use during product development and the outputs will be identical if the PHASE register is left in its
default state.

2.17.5. Random Number Generator

If the system clocks are running from the XOSC and/or PLLs the ROSC can be used to generate random numbers.
Simply enable the ROSC and read the RANDOMBIT register to get a 1-bit random number and read it n times to get an n-
bit value. This does not meet the requirements of randomness for security systems because it can be compromised,
but it may be useful in less critical applications. If the cores are running from the ROSC then the value will not be
random because the timing of the register read will be correlated to the phase of the ROSC.

2.17.6. ROSC Counter

The COUNT register provides a method of managing short software delays. Writing a value to the COUNT register
automatically triggers it to start counting down to zero at the ROSC frequency. The programmer then simply polls the
register until it reaches zero. This is preferable to using NOPs in software loops because it is independent of the core
clock frequency, the compiler and the execution time of the compiled code.

2.17.7. DORMANT mode

In DORMANT mode (see Section 2.11.3) all of the on-chip clocks can be paused to save power. This is particularly
useful in battery-powered applications. The RP2040 is woken from DORMANT mode by an interrupt either from an
external event such as an edge on a GPIO pin or from the on-chip RTC. This must be configured before entering
DORMANT mode. If the RTC is being used to trigger wake-up then it must be clocked from an external source. To enter
DORMANT mode the programmer must then switch all internal clocks to be driven from XOSC or ROSC and stop the
PLLs. Then a specific 32-bit value must be written to the DORMANT register in the chosen oscillator (XOSC or ROSC) to
stop it oscillating. When exiting DORMANT mode the chosen oscillator will restart. If XOSC is chosen then the frequency
will be more precise but the restart time is longer due to the startup delay (>1ms on the RP2040 reference design (see
the Minimal Design Example in Hardware design with RP2040)). If ROSC is chosen then the frequency is less precise
but the start-up time is very short (approximately 1ps).

]
2.17. Ring Oscillator (ROSC) 223

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040#minimal-design-example

RP2040 Datasheet
]

Pico Extras: https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/hardware_rosc/rosc.c Lines 56 - 61

56 void rosc_set_dormant(void) {

57 // WARNING: This stops the rosc until woken up by an irqg
58 rosc_write(&rosc_hw->dormant, ROSC_DORMANT_VALUE_DORMANT) ;
59 // Wait for it to become stable once woken up
60 while(!(rosc_hw->status & ROSC_STATUS_STABLE_BITS));
61 }
@ WARNING

If no IRQ is configured before going into dormant mode the ROSC will never restart.

See Section 2.11.5.2 for a some examples of dormant mode.

2.17.8. List of Registers

The ROSC registers start at a base address of 0x40060000 (defined as ROSC_BASE in SDK).

Table 264. List of Offset Name o

ROSC registers
0x00 CTRL Ring Oscillator control
0x04 FREQA Ring Oscillator frequency control A
0x08 FREQB Ring Oscillator frequency control B
0x0c DORMANT Ring Oscillator pause control
0x10 DIV Controls the output divider
0x14 PHASE Controls the phase shifted output
0x18 STATUS Ring Oscillator Status
Ox1c RANDOMBIT Returns a 1 bit random value
0x20 COUNT A down counter running at the ROSC frequency which counts to

zero and stops.

ROSC: CTRL Register
Offset: 0x00

Description

Ring Oscillator control

Table 265. CTRL

) Bits Description Type Reset
Register

31:24 Reserved. - -

23:12 ENABLE: On power-up this field is initialised to ENABLE RW -
The system clock must be switched to another source before setting this field
to DISABLE otherwise the chip will lock up
The 12-bit code is intended to give some protection against accidental writes.
An invalid setting will enable the oscillator.

Enumerated values:

Oxd1e — DISABLE

Oxfab — ENABLE

]
2.17. Ring Oscillator (ROSC) 224

https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/hardware_rosc/rosc.c#L56-L61

RP2040 Datasheet
]

Bits Description Type Reset

11:0 FREQ_RANGE: Controls the number of delay stages in the ROSC ring RW Oxaa0l
LOW uses stages 0to 7

MEDIUM uses stages 2 to 7

HIGH uses stages 4 to 7

TOOHIGH uses stages 6 to 7 and should not be used because its frequency
exceeds design specifications

The clock output will not glitch when changing the range up one step at a time
The clock output will glitch when changing the range down

Note: the values here are gray coded which is why HIGH comes before
TOOHIGH

Enumerated values:

Oxfa4 — LOW

0xfa5 — MEDIUM

Oxfa7 — HIGH

Oxfa6 — TOOHIGH

ROSC: FREQA Register
Offset: 0x04

Description

The FREQA & FREQB registers control the frequency by controlling the drive strength of each stage
The drive strength has 4 levels determined by the number of bits set

Increasing the number of bits set increases the drive strength and increases the oscillation frequency
0 bits set is the default drive strength

1 bit set doubles the drive strength

2 bits set triples drive strength

3 bits set quadruples drive strength

Table 266. FREQA

) Bits Description Type Reset
Register

31:16 PASSWD: Set to 0x9696 to apply the settings RW 0x0000
Any other value in this field will set all drive strengths to 0

Enumerated values:

0x9696 — PASS

15 Reserved. = =
14:12 DS3: Stage 3 drive strength RW 0x0
11 Reserved. = =
10:8 DS2: Stage 2 drive strength RW 0x0
7 Reserved. = =
6:4 DS1: Stage 1 drive strength RW 0x0
3 Reserved. = =
2:0 DSO0: Stage 0 drive strength RW 0x0

ROSC: FREQB Register

Offset: 0x08

]
2.17. Ring Oscillator (ROSC) 225

RP2040 Datasheet

Table 267. FREQB
Register

Table 268. DORMANT
Register

Table 269. DIV
Register

Description

For a detailed description see freqa register

div = 0 divides by 32

div = 1-31 divides by div

any other value sets div=31
this register resets to div=16

Bits Description Type Reset
31:16 PASSWD: Set to 0x9696 to apply the settings RW 0x0000
Any other value in this field will set all drive strengths to 0
Enumerated values:
0x9696 — PASS
15 Reserved. = =
14:12 DS7: Stage 7 drive strength RW 0x0
11 Reserved. = =
10:8 DS6: Stage 6 drive strength RW 0x0
7 Reserved. = =
6:4 DS5: Stage 5 drive strength RW 0x0
3 Reserved. = =
2:0 DS4: Stage 4 drive strength RW 0x0
ROSC: DORMANT Register
Offset: 0x0Oc
Description
Ring Oscillator pause control
Bits Description Type Reset
31:0 This is used to save power by pausing the ROSC RW -
On power-up this field is initialised to WAKE
An invalid write will also select WAKE
Warning: setup the irq before selecting dormant mode
Enumerated values:
0x636f6d61 — DORMANT
0x77616b65 — WAKE
ROSC: DIV Register
Offset: 0x10
Description
Controls the output divider
Bits Description Type Reset
31:12 | Reserved. = =
11:0 set to Oxaa0 + div where RW -

Enumerated values:

2.17. Ring Oscillator (ROSC)

226

RP2040 Datasheet
]

Table 270. PHASE
Register

Table 271. STATUS
Register

Table 272.
RANDOMBIT Register

Bits Description Type Reset
Oxaa0 — PASS
ROSC: PHASE Register
Offset: 0x14
Description
Controls the phase shifted output
Bits Description Type Reset
31:12 Reserved. - -
11:4 PASSWD: set to Oxaa RW 0x00
any other value enables the output with shift=0
3 ENABLE: enable the phase-shifted output RW 0x1
this can be changed on-the-fly
2 FLIP: invert the phase-shifted output RW 0x0
this is ignored when div=1
1:0 SHIFT: phase shift the phase-shifted output by SHIFT input clocks RW 0x0
this can be changed on-the-fly
must be set to 0 before setting div=1
ROSC: STATUS Register
Offset: 0x18
Description
Ring Oscillator Status
Bits Description Type Reset
31 STABLE: Oscillator is running and stable RO 0x0
30:25 Reserved. - -
24 BADWRITE: An invalid value has been written to CTRL_ENABLE or WC 0x0
CTRL_FREQ_RANGE or FREQA or FREQB or DIV or PHASE or DORMANT
23:17 Reserved. - -
16 DIV_RUNNING: post-divider is running RO -
this resets to 0 but transitions to 1 during chip startup
15:13 Reserved. - -
12 ENABLED: Oscillator is enabled but not necessarily running and stable RO -
this resets to 0 but transitions to 1 during chip startup
11:0 Reserved. - -
ROSC: RANDOMBIT Register
Offset: Ox1c
Bits Description Type Reset
31:1 Reserved. = =

2.17. Ring Oscillator (ROSC)

227

RP2040 Datasheet
]

Table 273. COUNT
Register

Figure 35. On both
PLLs, the FREF
(reference) input is
connected to the
crystal oscillator’s X/
input. The PLL
contains a VCO, which
is locked to a constant
ratio of the reference
clock via the feedback
loop (phase-frequency
detector and loop
filter). This can
synthesise very high
frequencies, which
may be divided down
by the post-dividers.

Bits Description Type Reset
0 This just reads the state of the oscillator output so randomness is RO 0x1
compromised if the ring oscillator is stopped or run at a harmonic of the bus
frequency
ROSC: COUNT Register
Offset: 0x20
Bits Description Type Reset
31:8 Reserved. = =
7:0 A down counter running at the ROSC frequency which counts to zero and RW 0x00

stops.

To start the counter write a non-zero value.

Can be used for short software pauses when setting up time sensitive
hardware.

2.1

8. PLL

2.18.1. Overview

The PLL is designed to take a reference clock, and multiply it using a VCO (Voltage Controlled Oscillator) with a
feedback loop. The VCO must run at high frequencies (between 750 and 1600MHz), so there are two dividers, known as
post dividers that can divide the VCO frequency before it is distributed to the clock generators on the chip.

There

are two PLLs in RP2040. They are:

® pll_sys - Used to generate up to a 133MHz system clock

® pll_ush - Used to generate a 48MHz USB reference clock

FREF

Lock Detect LOCK
FOUuTVCO

REFDIV

FOUTPOSTDIV

BYPASS

FBDIV

POSTDIV1 POSTDIV2

12b Feedback Divide

+16-320

CLKSSCG

D Analog circuits
I:‘ Post divider rate circuits

|:| Reference rate circuits

2.18.2. Calculating PLL parameters

To configure the PLL, you must know the frequency of the reference clock, which on RP2040 is routed directly from the
crystal oscillator. This will often be a 12MHz crystal, for compatibility with RP2040’s USB bootrom. The PLL’s final
output frequency FOUTPOSTDIV can then be calculated as (FREF / REFDIV) x FBDIV / (POSTDIV1 x POSTDIV2). With a desired

output frequency in mind, you must select PLL parameters according to the following constraints of the PLL design:

® Minimum reference frequency (FREF / REFDIV) is 5SMHz

2.18. PLL

228

RP2040 Datasheet

® Oscillator frequency (FouTvc0) must be in the range 750MHz — 1600MHz

* Feedback divider (FBDIV) must be in the range 16 — 320

® The post dividers POSTDIV1 and POSTDIV2 must be in therange 1 — 7

® Maximum input frequency (FREF / REFDIV) is VCO frequency divided by 16, due to minimum feedback divisor

Additionally, the maximum frequencies of the chip’s clock generators (attached to FOUTPOSTDIV) must be respected. For
the system PLL this is 133MHz, and for the USB PLL, 48MHz.

O NoOTE

The crystal oscillator on RP2040 is designed for crystals between 5 and 15MHz, so typically REFDIV should be 1. If the
application circuit drives a faster reference directly into the Xl input, and a low VCO frequency is desired, the
reference divisor can be increased to keep the PLL input within a suitable range.

@ TP

When two different values are required for POSTDIV1 and POSTDIV2, it's preferable to assign the higher value to POSTDIV1,
for lower power consumption.

In the RP2040 reference design (see the Minimal Design Example in Hardware design with RP2040), which attaches a
12MHz crystal to the crystal oscillator, this implies that the minimum achievable and legal VCO frequency is 12MHz x
63 = 756MHz, and the maximum VCO is 12MHz x 133 = 1596MHz, so FBDIV must remain in the range 63 — 133. For
example, setting FBDIV to 100 would synthesise a 1200MHz VCO frequency. A POSTDIV1 value of 6 and a POSTDIV?2 value of
2 would divide this by 12 in total, producing a clean T00MHz at the PLL's final output.

2.18.2.1. Jitter vs Power Consumption

There are often several sets of PLL configuration parameters which achieve, or are very close to, the desired output
frequency. It is up to the programmer to decide whether to prioritise low PLL power consumption, or lower jitter, which
is cycle-to-cycle variation in the PLL’s output clock period. This is not a concern as far as system stability is concerned,
because RP2040’s digital logic is designed with margin for the worst-case possible jitter on the system clock, but a
highly accurate clock is often needed for audio and video applications, or where data is being transmitted and received
in accordance with a specification. For example, the USB specification defines a maximum amount of allowable jitter.

Jitter is minimised by running the VCO at the highest possible frequency, so that higher post-divide values can be used.
For example, 1500MHz VCO / 6 / 2 = 125MHz. To reduce power consumption, the VCO frequency should be as low as
possible. For example: 750MHz VCO / 6 / 1 = 125MHz.

Another consideration here is that slightly adjusting the output frequency may allow a much lower VCO frequency to be
achieved, by bringing the output to a closer rational multiple of the input. Indeed the exact desired frequency may not be
exactly achievable with any allowable VCO frequency, or combination of divisors.

SDK provides a Python script that searches for the best VCO and post divider options for a desired output frequency:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/scripts/vcocalc.py

#!/usr/bin/env python3

import argparse
import sys

fbdiv_range = range(16, 320 + 1)
postdiv_range = range(1, 7 + 1)
ref_min = 5

refdiv_min = 1

1
2

3

4

5

6 # Fixed hardware parameters
7

8

9

%]

1 refdiv_max = 63

2.18. PLL 229

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040#minimal-design-example
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/scripts/vcocalc.py

RP2040 Datasheet
]

12

13 def validRefdiv(string):

14 if ((int(string) < refdiv_min) or (int(string) > refdiv_max)):

15 raise ValueError("REFDIV must be in the range {} to {}".format(refdiv_min,
refdiv_max))

16 return int(string)

17

18 parser = argparse.ArgumentParser(description="PLL parameter calculator")

19 parser.add_argument("--input", "-i", default=12, help="Input (reference) frequency. Default

12 MHz", type=float)

20 parser.add_argument("--ref-min", default=5, help="Override minimum reference frequency.
Default 5 MHz", type=float)

21 parser.add_argument("--vco-max", default=16008, help="Override maximum VCO frequency. Default
1600 MHz", type=float)

22 parser.add_argument("--vco-min", default=750, help="Override minimum VCO frequency. Default
750 MHz", type=float)

23 parser.add_argument("--cmake", action="store_true", help="Print out a CMake snippet to apply
the selected PLL parameters to your program")

24 parser.add_argument("--cmake-only", action="store_true", help="Same as --cmake, but do not
print anything other than the CMake output")

25 parser.add_argument("--cmake-executable-name", default="<program>", help="Set the executable
name to use in the generated CMake output")

26 parser.add_argument("--lock-refdiv", help="Lock REFDIV to specified number in the range {} to
{}".format(refdiv_min, refdiv_max), type=validRefdiv)

27 parser.add_argument("--low-vco", "-1", action="store_true", help="Use a lower VCO frequency
when possible. This reduces power consumption, at the cost of increased jitter")

28 parser.add_argument("output", help="Output frequency in MHz.", type=float)

29 args = parser.parse_args()

30

31 refdiv_range = range(refdiv_min, max(refdiv_min, min(refdiv_max, int(args.input / args
.ref_min))) + 1)

32 if args.lock_refdiv:

33 print("Locking REFDIV to", args.lock_refdiv)
34 refdiv_range = [args.lock_refdiv]
35

36 best = (0, 0, 8, 0, 0, 0)
37 best_margin = args.output

38

39 for refdiv in refdiv_range:

40 for fbdiv in fbdiv_range:

41 vco = args.input / refdiv * fbdiv

42 if vco < args.vco_min or vco > args.vco_max:

43 continue

44 # pd1 is inner loop so that we prefer higher ratios of pd7:pd2

45 for pd2 in postdiv_range:

46 for pd1 in postdiv_range:

47 out = vco / pdl / pd2

48 margin = abs(out - args.output)

49 vco_is_better = vco < best[5] if args.low_vco else vco > best[5]

50 if ((vco * 1000) % (pd1 * pd2)):

51 continue

52 if margin < best_margin or (abs(margin - best_margin) < 1e-9 and
vco_is_better):

53 best = (out, fbdiv, pd1, pd2, refdiv, vco)

54 best_margin = margin

55!

56 best_out, best_fbdiv, best_pd1, best_pd2, best_refdiv, best_vco = best

57

58 if best[0] > ©@:

59 cmake_output = \

60 f"""target_compile_definitions({args.cmake_executable_name} PRIVATE

61 PLL_SYS_REFDIV={best_refdiv}

62 PLL_SYS_VCO_FREQ_HZ={int((args.input * 1_.000_000) / best_refdiv * best_fbdiv)}

63 PLL_SYS_POSTDIV1={best_pd1}

I
2.18. PLL 230

RP2040 Datasheet
]

64 PLL_SYS_POSTDIV2={best_pd2}

65 SYS_CLK_HZ={int((args.input * 1_000_000) / (best_refdiv * best_pd1 * best_pd2) *
best_fbdiv)}

66)

67 """

68 if not args.cmake_only:

69 print("Requested: {} MHz".format(args.output))

70 print("Achieved: {} MHz".format(best_out))

71 print("REFDIV: {}".format(best_refdiv))

72 print("FBDIV: {} (VCO = {} MHz)".format(best_fbdiv, args.input / best_refdiv *
best_fbdiv))

73 print("PD1: {}".format(best_pd1))

74 print("PD2: {}".format(best_pd2))

75 if best_refdiv != 1:

76 print(

77 "\nThis requires a non-default REFDIV value.\n"

78 "Add the following to your CMakelLists.txt to apply the REFDIV:\n"

79)

80 elif args.cmake or args.cmake_only:

81 print("")

82 if args.cmake or args.cmake_only or best_refdiv != 1:

83 print(cmake_output)

84 else:

85 sys.exit("No solution found")

Given an input and output frequency, this script will find the best possible set of PLL parameters to get as close as
possible. Where multiple equally good combinations are found, it returns the parameters which yield the highest VCO
frequency, for best output stability. The -1 or --low-vco flag will instead prefer lower frequencies, for reduced power
consumption.

Here a 48MHz output is requested:

$./vcocalc.py 48
Requested: 48.0 MHz
Achieved: 48.0 MHz

FBDIV: 120 (VCO = 1440 MHz)
PD1: 6

PD2: 5

Asking for a 48MHz output with a lower VCO frequency, if possible:

$./vcocalc.py -1 48
Requested: 48.0 MHz
Achieved: 48.0 MHz

FBDIV: 64 (VCO = 768 MHz)
PD1: 4

PD2: 4

For a 125MHz system clock with a 172MHz input, the minimum VCO frequency is quite high.

$./vcocalc.py -1 125
Requested: 125.0 MHz
Achieved: 125.0 MHz

FBDIV: 125 (VCO = 1560 MHz)
PD1: 6

I
2.18. PLL 231

RP2040 Datasheet

PD2:

2

We can restrict the search to lower VCO frequencies, so that the script will consider looser frequency matches. Note
that, whilst a 750MHz VCO would be ideal here, we can't achieve exactly 750MHz by multiplying the 12MHz input by an

integer, which is why the previous invocation returned such a high VCO frequency.

$./vcocalc.py -1 125 --vco-max 8600
Requested: 125.0 MHz

Achieved: 126.0 MHz

FBDIV: 63 (VCO = 756 MHz)

PD1:
PD2:

6
1

A 126MHz system clock may be a tolerable deviation from the desired 125MHz, and generating this clock consumes

less power at the PLL.

2.18.

3. Configuration

The SDK uses the following PLL settings:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/include/hardware/clocks.h Lines 143 - 164

143
144
145
146
147

148

149
150
151
152
153
154

155
156
157
158
159
160
161
162
163
164

// There are two PLLs in RP-series microcontrollers:

// 1. The 'SYS PLL' generates the system clock, the frequency is defined by "SYS_CLK_KHZ'.
// 2. The 'USB PLL' generates the USB clock, the frequency is defined by "USB_CLK_KHZ .

//

// The two PLLs use the crystal oscillator output directly as their reference frequency input;
the PLLs reference

// frequency cannot be reduced by the dividers present in the clocks block. The crystal
frequency is defined by ‘X0SC_HZ (or

// "XOSC_KHZ' or 'XOSC_MHZ').

//

// The system's default definitions are correct for the above frequencies with a 12MHz

// crystal frequency. If different frequencies are required, these must be defined in

// the board configuration file together with the revised PLL settings

// Use “vcocalc.py' to check and calculate new PLL settings if you change any of these

frequencies.

//

// Default PLL configuration RP2046:

// REF FBDIV VCO POSTDIV

// PLL SYS: 12 / 1 = 12MHz * 125 = 1500MHz / 6 / 2 = 125MHz
// PLL USB: 12 / 1 = 12MHz * 100 = 1200MHz / 5 / 5 = 48MHz

//
// Default PLL configuration RP2350:
// REF FBDIV VCO POSTDIV

// PLL SYS: 12 / 1 = 12MHz * 125 = 1500MHz / 5 / 2 = 156MHz
// PLL USB: 12 / 1 = 12MHz * 100 = 1206MHz / 5 / 5 = 48MHz

The pll_init function in the SDK, which we will examine below, asserts that all of these conditions are true before

attempting to configure the PLL.

The SDK defines the PLL control registers as a struct. It then maps them into memory for each instance of the PLL.

2.18. PLL

232

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L143-L164

RP2040 Datasheet

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/pll.h Lines 27 - 53

27 typedef struct {

28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

REG(PLL_CS_OFFSET) // PLL_CS
// Control and Status

the..

// 0x80000000 [31] LOCK (8) PLL is locked
// 6x00000100 [8] BYPASS (0) Passes the reference clock to the output instead of
// 0x0000003f [5:0] REFDIV (6x01) Divides the PLL input reference clock

io_rw_32 cs;

REG(PLL_PWR_OFFSET) // PLL_PWR
// Controls the PLL power modes

// 6x00000020 [5] VCOPD (1) PLL VCO powerdown +

// 6x00000008 [3] POSTDIVPD (1) PLL post divider powerdown +
// 6x00000004 [2] DSMPD (1) PLL DSM powerdown +

// 6x00000001 [0] PD (1) PLL powerdown +

io_rw_32 pwr;

REG(PLL_FBDIV_INT_OFFSET) // PLL_FBDIV_INT

// Feedback divisor

// 6x00000fff [11:0] FBDIV_INT (6x000) see ctrl reg description for constraints
io_rw_32 fbdiv_int;

REG(PLL_PRIM_OFFSET) // PLL_PRIM

// Controls the PLL post dividers for the primary output
// 0x00070000 [18:16] POSTDIV1 (6x7) divide by 1-7
// 0x00007000 [14:12] POSTDIV2 (6x7) divide by 1-7
io_rw_32 prim;

53 } pll_hw_t;

The SDK defines p11_init which is used to configure, or reconfigure a PLL. It starts by clearing any previous power state
in the PLL, then calculates the appropriate feedback divider value. There are assertions to check these values satisfy the
constraints above.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pll/pll.c Lines 13 - 21

13 void pll_init(PLL pll, uint refdiv, uint vco_freq, uint post_div1, uint post_div2) {

14
15
16
17
18
19
20

21

uint32_t ref_freq = XOSC_HZ / refdiv;

// Check vco freq is in an acceptable range
assert(vco_freq >= PICO_PLL_VCO_MIN_FREQ_HZ && vco_freq <= PICO_PLL_VCO_MAX_FREQ_HZ);

// What are we multiplying the reference clock by to get the vco freq
// (The regs are called div, because you divide the vco output and compare it to the

refclk)

uint32_t fbdiv = vco_freq / ref_freq;

The programming sequence for the PLL is as follows:

® Program the reference clock divider (is a divide by 1 in the RP2040 case)

® Program the feedback divider

® Turn on the main power and VCO

* Wait for the VCO to lock (i.e. keep its output frequency stable)

® Set up post dividers and turn them on

2.18. PLL

233

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/pll.h#L27-L53
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pll/pll.c#L13-L21

RP2040 Datasheet

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pll/pll.c Lines 42 - 69

42 if ((pll->cs & PLL_CS_LOCK_BITS) &&

43 (refdiv == (pll->cs & PLL_CS_REFDIV_BITS)) &&

44 (fbdiv == (pll->fbdiv_int & PLL_FBDIV_INT_BITS)) &&

45 (pdiv == (pll->prim & (PLL_PRIM_POSTDIV1_BITS | PLL_PRIM_POSTDIV2_BITS)))) {
46 // do not disrupt PLL that is already correctly configured and operating
47 return;

48 }

49

50 reset_unreset_block_num_wait_blocking(PLL_RESET_NUM(p1l));
51

52 // Load VCO-related dividers before starting VCO

58 pll->cs = refdiv;

54 pll->fbdiv_int = fbdiv;

55/

56 // Turn on PLL

57 uint32_t power = PLL_PWR_PD_BITS | // Main power

58 PLL_PWR_VCOPD_BITS; // VCO Power

59

60 hw_clear_bits(&pll->pwr, power);

61

62 // Wait for PLL to lock

63 while (!(pll->cs & PLL_CS_LOCK_BITS)) tight_loop_contents();
64

65 // Set up post dividers

66 pll->prim = pdiv;

67

68 // Turn on post divider

69 hw_clear_bits(&pll->pwr, PLL_PWR_POSTDIVPD_BITS);

Note the VCO is turned on first, followed by the post dividers so the PLL does not output a dirty clock while the VCO is
locking.

2.18.4. List of Registers

The PLL_SYS and PLL_USB registers start at base addresses of 0x40028000 and 0x4002c000 respectively (defined as
PLL_SYS_BASE and PLL_USB_BASE in SDK).

Tab_le 274.Listof PLL | st Name Info
registers
0x0 Cs Control and Status
0x4 PWR Controls the PLL power modes.
0x8 FBDIV_INT Feedback divisor
Oxc PRIM Controls the PLL post dividers for the primary output
PLL: CS Register
Offset: 0x0
Description

Control and Status

GENERAL CONSTRAINTS:

Reference clock frequency min=5MHz, max=800MHz
Feedback divider min=16, max=320

VCO frequency min=750MHz, max=1600MHz

2.18. PLL 234

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pll/pll.c#L42-L69

RP2040 Datasheet

Table 275. CS Register Bits Description Type Reset

31 LOCK: PLL is locked RO 0x0

30:9 Reserved. - -

8 BYPASS: Passes the reference clock to the output instead of the divided VCO. | RW 0x0
The VCO continues to run so the user can switch between the reference clock
and the divided VCO but the output will glitch when doing so.

7:6 Reserved. - -

5:0 REFDIV: Divides the PLL input reference clock. RW 0x01
Behaviour is undefined for div=0.

PLL output will be unpredictable during refdiv changes, wait for lock=1 before
using it.

PLL: PWR Register
Offset: 0x4

Description

Controls the PLL power modes.

Table 276. PWR

) Bits Description Type Reset
Register

31:6 Reserved. - -

5 VCOPD: PLL VCO powerdown RW 0x1
To save power set high when PLL output not required or bypass=1.

4 Reserved. - -

3 POSTDIVPD: PLL post divider powerdown RW 0x1
To save power set high when PLL output not required or bypass=1.

2 DSMPD: PLL DSM powerdown RW 0x1
Nothing is achieved by setting this low.

1 Reserved. - -

0 PD: PLL powerdown RW 0x1
To save power set high when PLL output not required.

PLL: FBDIV_INT Register
Offset: 0x8

Description

Feedback divisor
(note: this PLL does not support fractional division)

Table 277. FBDIV_INT

) Bits Description Type Reset
Register

31:12 Reserved. - -

11:0 see ctrl reg description for constraints RW 0x000

PLL: PRIM Register
Offset: Oxc

Description

Controls the PLL post dividers for the primary output

2.18. PLL 235

RP2040 Datasheet

Table 278. PRIM
Register

(note: this PLL does not have a secondary output)
the primary output is driven from VCO divided by postdivi*postdiv2

Bits Description Type Reset

31:19 Reserved. - -

18:16 POSTDIV1: divide by 1-7 RW 0x7
15 Reserved. - -
14:12 POSTDIV2: divide by 1-7 RW 0x7

11:.0 Reserved. - -

2.19. GPIO

2.19.1. Overview

RP2040 has 36 multi-functional General Purpose Input / Output (GPIO) pins, divided into two banks. In a typical use
case, the pins in the QSPI bank (QSPI_SS, QSPI_SCLK and QSPI_SDO to QSPI_SD3) are used to execute code from an
external flash device, leaving the User bank (GPIO0 to GPI029) for the programmer to use. All GPIOs support digital
input and output, but GP1026 to GPI029 can also be used as inputs to the chip’s Analogue to Digital Converter (ADC).
Each GPIO can be controlled directly by software running on the processors, or by a number of other functional blocks.

The User GPIO bank supports the following functions:

Software control via SIO (Single-Cycle 10) - Section 2.3.1.2, “GPIO Control”
Programmable 10 (PI0) - Chapter 3, PIO

2 x SPI - Section 4.4, “SPI”

2 x UART - Section 4.2, “UART”

2 x 12C (two-wire serial interface) - Section 4.3, “12C”

8 x two-channel PWM - Section 4.5, “PWM”

2 x external clock inputs - Section 2.15.2.3, “External Clocks”
4 x general purpose clock output - Section 2.15, “Clocks”

4 x input to ADC - Section 4.9, “ADC and Temperature Sensor”

USB VBUS management - Section 4.1.2.10, “VBUS Control”

External interrupt requests, level or edge-sensitive

The QSPI bank supports the following functions:

Software control via SIO (Single-Cycle 10) - Section 2.3.1.2, “GPIO Control”

Flash execute in place (XIP) - Section 2.6.3, “Flash”

The logical structure of an example 10 is shown in Figure 36.

2.19. GPIO

236

RP2040 Datasheet
]

Figure 36. Logical
structure of a GPIO.
Each GPIO can be
controlled by one of a
number of peripherals,
or by software control
registers in the SI0.
The function select
(FSEL) selects which
peripheral output is in
control of the GPIO’s
direction and output
level, and/or which
peripheral input can
see this GPIO’s input
level. These three
signals (output level,
output enable, input
level) can also be
inverted, or forced
high or low, using the
GPIO control registers.

Table 279. General
Purpose Input/Output
(GPIO) User Bank
Functions

GPIO

PIO

SPI

UART

PWM

GPCLK

Buixniy

IRQ

Logic

Inversion / Override,

Logic

Inversion / Override

Logic

Inversion / Override|

> Output Value

——Output Enable

2.19.2. Function Select

Logic

Inversion / Override

Input

10 PAD

The function allocated to each GPIO is selected by writing to the FUNCSEL field in the GPIO’s CTRL register. See
GPIOO_CTRL as an example. The functions available on each 10 are shown in Table 279 and Table 281.

Function
GPIO |F1 F2 F3 F4 F5 |F6 F7 F8 F9
0 SPI0 RX UARTO TX 12CO SDA |PWMOA |SIO |PIOO |PIO1 USB OVCUR DET
1 SPI0O CSn | UARTO RX 12C0SCL |[PWMOB |SIO |PIOO |PIO1 USB VBUS DET
2 SPI0O SCK | UARTOCTS |[12C1 SDA |PWM1A |[SIO |PIO0O |PIO1 USB VBUS EN
3 SPIO TX UARTORTS |I12C1SCL |PWM1B |[SIO |PIOO |PIO1 USB OVCUR DET
4 SPI0 RX UART1 TX 12CO SDA |PWM2A |SIO |PIOO |PIO1 USB VBUS DET
5 SPIO CSn | UART1 RX 12C0SCL |[PWM2B |SIO |PIOO |PIO1 USB VBUS EN
6 SPI0O SCK | UART1CTS |[I2C1SDA |PWM3 A |SIO |PIOO |PIO1 USB OVCUR DET
7 SPIO TX UART1RTS |12C1SCL |PWM3B |[SIO |PIOO |PIO1 USB VBUS DET
8 SPIT RX UART1 TX 12CO SDA |PWM4 A |SIO [PIOO |PIO1 USB VBUS EN
9 SPI1 CSn | UART1 RX 12CO0SCL |[PWM4B |SIO |PIOO |PIO1 USB OVCUR DET
10 SPIT SCK |UART1CTS |[I2C1SDA |PWM5SA |SIO |PIOO |PIO1 USB VBUS DET
11 SPIT TX UART1 RTS |I12C1SCL |PWMS5B |[SIO |PIOO |PIO1 USB VBUS EN
12 SPIT RX UARTO TX 12CO SDA |PWM6 A |SIO [PIO0 |PIO1 USB OVCUR DET
13 SPIT CSn | UARTO RX 12CO0SCL |[PWM6B |SIO |PIO0 |PIO1 USB VBUS DET
14 SPIT SCK |UARTOCTS |[I2C1SDA |PWM7A |SIO |PIOO |PIO1 USB VBUS EN
15 SPIT TX UARTORTS |12C1SCL |PWM7B |[SIO |PIOO |PIO1 USB OVCUR DET
16 SPI0 RX UARTO TX 12CO SDA |[PWMOA |SIO |PIOO |PIO1 USB VBUS DET
17 SPI0O CSn | UARTO RX 12CO0SCL |[PWMOB |SIO |PIOO |PIO1 USB VBUS EN
18 SPI0O SCK | UARTOCTS |[I2C1SDA |PWM1A |SIO |PIOO |PIO1 USB OVCUR DET
19 SPIO TX UARTORTS |I12C1SCL |PWM1B |[SIO |PIOO |PIO1 USB VBUS DET
20 SPI0 RX UART1 TX 12COSDA |PWM2A |SIO |PIOO |[PIOT |CLOCK GPINO USB VBUS EN

2.19. GPIO

237

RP2040 Datasheet
]

Function

21 SPI0O CSn | UART1 RX [2COSCL |PWM2B |SIO |PIOO |PIO1T |CLOCKGPOUTO |USBOVCURDET
22 SPIO SCK | UART1 CTS |12C1 SDA |PWM3 A |[SIO |PIO0 |PIOT |CLOCK GPIN1 USB VBUS DET
23 SPIO TX UART1RTS [I2C1SCL |PWM3B |SIO |PIOO |PIOT |CLOCKGPOUT1 |USBVBUSEN
24 SPIT RX UART1 TX I2CO SDA |PWM4 A |[SIO |PIOO |PIOT |CLOCKGPOUT2 |USB OVCURDET
25 SPIT CSn | UART1 RX [2COSCL |PWM4B |SIO |PIOO |PIO1T |CLOCKGPOUT3 |USB VBUSDET
26 SPI1 SCK | UART1 CTS |12C1 SDA |PWM5SA ([SIO |PIOO |PIO1 USB VBUS EN
27 SPIT TX UART1RTS [I2C1SCL |PWM5B |[SIO |PIOO |PIO1 USB OVCUR DET
28 SPIT RX UARTO TX [2CO SDA |PWM6 A |[SIO |PIOO |PIO1 USB VBUS DET
29 SPI1 CSn | UARTO RX [2C0SCL |PWM6B |SIO |PIOO |PIO1 USB VBUS EN

Each GPIO can have one function selected at a time. Likewise, each peripheral input (e.g. UARTO RX) should only be
selected on one GPIO at a time. If the same peripheral input is connected to multiple GPIOs, the peripheral sees the
logical OR of these GPIO inputs.

Table 250. FPIO User | Function Name Description
Bank function
descriptions SPIx Connect one of the internal PL022 SPI peripherals to GPIO

UARTX Connect one of the internal PL011 UART peripherals to GPIO

12Cx Connect one of the internal DW 12C peripherals to GPIO

PWMx A/B Connect a PWM slice to GPIO. There are eight PWM slices, each with two output
channels (A/B). The B pin can also be used as an input, for frequency and duty cycle
measurement.

[e] Software control of GPIO, from the single-cycle 10 (SIO) block. The SIO function (F5)
must be selected for the processors to drive a GPIO, but the input is always connected,
so software can check the state of GPIOs at any time.

PIOx Connect one of the programmable 10 blocks (PI0) to GPIO. PIO can implement a wide
variety of interfaces, and has its own internal pin mapping hardware, allowing flexible
placement of digital interfaces on user bank GPIOs. The PIO function (F6, F7) must be
selected for PIO to drive a GPIO, but the input is always connected, so the PIOs can
always see the state of all pins.

CLOCK GPINx General purpose clock inputs. Can be routed to a number of internal clock domains on
RP2040, e.g. to provide a THz clock for the RTC, or can be connected to an internal
frequency counter.

CLOCK GPOUTx General purpose clock outputs. Can drive a number of internal clocks onto GPIOs, with
optional integer divide.

USB OVCUR DET/VBUS USB power control signals to/from the internal USB controller

DET/VBUS EN

Table 281. General Function

Purpose Input/Output

(6PIo) @SPIBank | 19 FO F1 F2 F3 F4 F5 F6 F7 F8 F9
Functions

QSPI SCK XIP SCK SIo

QSPI CSn XIP CSn N[0]

QSPI SDO XIP SDO SIo

2.19. GPIO

238

RP2040 Datasheet
]

Function
QSPI SD1 XIP SD1 SIO
QSPI SD2 XIP SD2 SIO
QSPI SD3 XIP SD3 SIO

Table 282. GPIO QSPI

Function Name | Description
Bank function

descriptions XIP Connection to the synchronous serial interface (SSI) inside the flash execute in place (XIP) subsystem.
This allows processors to execute code directly from an external SPI, Dual-SPI or Quad-SPI flash
SIo Software control of GPIO, from the single-cycle 10 (SIO) block. The SIO function (F5) must be selected

for the processors to drive a GPIO, but the input is always connected, so software can check the state
of GPIOs at any time. The QSPI I0s are controlled via the SI0_GPI0_HI_x registers, and are mapped to
register bits in the order SCK, CSn, SDO, SD1, SD2, SD3, starting at the LSB.

The six QSPI Bank GPIO pins are typically used by the XIP peripheral to communicate with an external flash device.
However, there are two scenarios where the pins can be used as software-controlled GPIOs:

* |f a SPI or Dual-SPI flash device is used for execute-in-place, then the SD2 and SD3 pins are not used for flash
access, and can be used for other GPIO functions on the circuit board.

® |f RP2040 is used in a flashless configuration (USB boot only), then all six pins can be used for software-controlled
GPIO functions

2.19.3. Interrupts

An interrupt can be generated for every GPIO pin in four scenarios:
® | evel High: the GPIO pin is a logical 1
® |evel Low: the GPIO pin is a logical 0
® Edge High: the GPIO has transitioned from a logical 0 to a logical 1
® Edge Low: the GPIO has transitioned from a logical 1 to a logical 0

The level interrupts are not latched. This means that if the pin is a logical 1 and the level high interrupt is active, it will
become inactive as soon as the pin changes to a logical 0. The edge interrupts are stored in the INTR register and can be
cleared by writing to the INTR register.

There are enable, status, and force registers for three interrupt destinations: proc 0, proc 1, and dormant_wake. For proc
0 the registers are enable (PROCO_INTED), status (PROCO_INTSO0), and force (PROCO_INTFO). Dormant wake is used to
wake the ROSC or XOSC up from dormant mode. See Section 2.11.5.2 for more information on dormant mode.

All interrupts are ORed together per-bank per-destination resulting in a total of six GPIO interrupts:
® |0 bank 0 to dormant wake
® |0 bank 0 to proc 0
® |0 bank 0 to proc 1
® |0 QSPI to dormant wake
® |0 QSPIto proc 0
® |0 QSPIto proc 1

This means the user can watch for several GPIO events at once.

'
2.19. GPIO 239

RP2040 Datasheet
]

2.19.4. Pads

Each GPIO is connected to the off-chip world via a "pad". Pads are the electrical interface between the chip’s internal
logic and external circuitry. They translate signal voltage levels, support higher currents and offer some protection
against electrostatic discharge (ESD) events. Pad electrical behaviour can be adjusted to meet the requirements of the
external circuitry. The following adjustments are available:

® Qutput drive strength can be set to 2mA, 4mA, 8mA or 12mA

® Qutput slew rate can be set to slow or fast

* Input hysteresis (schmitt trigger mode) can be enabled

® A pull-up or pull-down can be enabled, to set the output signal level when the output driver is disabled

® The input buffer can be disabled, to reduce current consumption when the pad is unused, unconnected or
connected to an analogue signal.

An example pad is shown in Figure 37.

Figure 37. Diagram of
a single 10 pad.
Slew Rate

GPI0 > Output Enable

Muxing L— output Data [_} ! D PP

Drive Strength

Input Enable
Input Data D

Schmitt Trigger I

Pull-Up / Pull-Down[_| ,

The pad’s Output Enable, Output Data and Input Data ports are connected, via the 10 mux, to the function controlling the
pad. All other ports are controlled from the pad control register. The register also allows the pad’s output driver to be
disabled, by overriding the Output Enable signal from the function controlling the pad. See GPIOO0 for an example of a
pad control register.

Both the output signal level and acceptable input signal level at the pad are determined by the digital 10 supply (IOVDD).
I0VDD can be any nominal voltage between 1.8V and 3.3V, but to meet specification when powered at 1.8V, the pad
input thresholds must be adjusted by writing a 1 to the pad VOLTAGE_SELECT registers. By default the pad input thresholds
are valid for an I0VDD voltage between 2.5V and 3.3V. Using a voltage of 1.8V with the default input thresholds is a safe
operating mode, though it will result in input thresholds that don't meet specification.

@ WARNING

Using IOVDD voltages greater than 1.8V, with the input thresholds set for 1.8V may result in damage to the chip.

Pad input threshold are adjusted on a per bank basis, with separate VOLTAGE_SELECT registers for the pads associated with
the User 10 bank (10 Bank 0) and the QSPI 10 bank. However, both banks share the same digital 10 supply (I0VDD), so
both register should always be set to the same value.

Pad register details are available in Section 2.19.6.3, “Pad Control - User Bank” and Section 2.19.6.4, “Pad Control - QSPI
Bank”.

2.19.4.1. Bus Keeper Mode

For each pad, only the pull-up or the pull-down resistor can be enabled at any given time. It is impossible to enable both
simultaneously. Instead, if you set both the GPIO0.PDE and GPIO0.PUE bits simultaneously then you enable bus keeper

I
2.19. GPIO 240

RP2040 Datasheet
]

mode, where the pad is:

® pulled up when its input is high, and

¢ pulled down when its input is low

When the output buffer is disabled, and the pad is not driven by any external source, this mode weakly retains the pad’s
current logical state. The pad does not float to mid-rail.

2.19.5. Software Examples

2.19.5.1. Select an 10 function

An 10 pin can perform many different functions and must be configured before use. For example, you may want it to be
a UART_TX pin, or a PWM output. The SDK provides gpio_set_function for this purpose. Many SDK examples will call

gpio_set_function at the beginning so that it can print to a UART.

The SDK starts by defining a structure to represent the registers of 10 bank 0, the User |0 bank. Each 10 has a status

register, followed by a control register. There are 30 10s, so the structure containing a status and control register is
instantiated as i0[30] to repeat it 30 times.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/io_bank0.h Lines 181 - 229

181 typedef struct {
io_bank@_status_ctrl_hw_t io[30];

182
183
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

// (Description copied from array index 6 register IO_BANKO_INTRO applies similarly to

other array indexes)

REG(IO_BANKO@_INTRO_OFFSET) // IO_BANKO_INTRO

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Raw Interrupts

0x80000000
0x40000000
0x20000000
0x10000000
0x08000000
0x04000000
0x02000000
0x01000000
0x00800000
0x00400000
0x00200000
0x00100000
0x00080000
0x00040000
0x00020000
0x00010000
0x00008000
0x00004000
0x00002000
0x00001000
0x00000800
0x00000400
0x00000200
0x00000100
0x00000080
0x00000040
0x00000020
0x00000010
0x00000008
0x00000004

[31]
[36]
[29]
[28]
[27]
[26]
[25]
[24]
[23]
[22]
[21]
[26]
[19]
[18]
[17]
[16]
[15]
[14]
[13]
[12]
[17]
[16]
[91

[8]

[71

[61

[5]

[4]

[31

[2]

GPI07_EDGE_HIGH (8)
GPIO7_EDGE_LOW (8)
GPIO7_LEVEL_HIGH (8)
GPIO7_LEVEL_LOW (8)
GPI06_EDGE_HIGH (8)
GPIO6_EDGE_LOW (8)
GPIO6_LEVEL_HIGH (8)
GPIO6_LEVEL_LOW (8)
GPIO5_EDGE_HIGH (8)
GPIO5_EDGE_LOW (8)
GPIO5_LEVEL_HIGH (9)
GPIO5_LEVEL_LOW (8)
GPI04_EDGE_HIGH (8)
GPIO4_EDGE_LOW (8)
GPIO4_LEVEL_HIGH (9)
GPIO4_LEVEL_LOW (8)
GPI03_EDGE_HIGH (8)
GPIO3_EDGE_LOW (0)
GPIO3_LEVEL_HIGH (8)
GPIO3_LEVEL_LOW (8)
GPI02_EDGE_HIGH (8)
GPI02_EDGE_LOW (8)
GPI02_LEVEL_HIGH (8)
GPIO2_LEVEL_LOW (8)
GPIOT1_EDGE_HIGH (8)
GPIOT_EDGE_LOW (8)
GPIOT_LEVEL_HIGH (9)
GPIOT_LEVEL_LOW (8)
GPI0O_EDGE_HIGH (8)
GPIOO_EDGE_LOW (8)

2.19. GPIO

241

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/io_bank0.h#L181-L229

RP2040 Datasheet

217
218
219
220
221
222
223
224
225
226
227
228

// 0x00000002 [1] GPIOO_LEVEL_HIGH (@)
// 0x00000001 [0] GPIOO_LEVEL_LOW (©)
io_rw_32 intr[4];

union {
struct {
io_bank@_irq_ctrl_hw_t proc@_irq_ctrl;
io_bank@_irq_ctrl_hw_t procl_irq_ctrl;
io_bank@_irq_ctrl_hw_t dormant_wake_irq_ctrl;
IE
io_bank@_irq_ctrl_hw_t irq_ctrl[3];
R

229 } io_bank@_hw_t;

A similar structure is defined for the pad control registers for 10 bank 1. By default, all pads come out of reset ready to
use, with their input enabled and output disable set to 0. Regardless, gpio_set_function in the SDK sets these to make
sure the pad is ready to use by the selected function. Finally, the desired function select is written to the 10 control
register (see GPIOO_CTRL for an example of an 10 control register).

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/gpio.c Lines 36 - 53

36 // Select function for this GPIO, and ensure input/output are enabled at the pad.
37 // This also clears the input/output/irq override bits.
38 void gpio_set_function(uint gpio, gpio_function_t fn) {

39
40

check_gpio_param(gpio);
invalid_params_if (HARDWARE_GPIO, ((uint32_t)fn << IO_BANKO_GPIOO_CTRL_FUNCSEL_LSB) &

~I0_BANKO_GPIOO_CTRL_FUNCSEL_BITS);

41
42
43
44
45
46
47
48
49 }

// Set input enable on, output disable off
hw_write_masked(&pads_bank@_hw->io[gpio],

PADS_BANKO_GPIOO_IE_BITS,

PADS_BANKO_GPIOO_IE_BITS | PADS_BANKO_GPIOO_OD_BITS
OE
// Zero all fields apart from fsel; we want this IO to do what the peripheral tells it.
// This doesn't affect e.g. pullup/pulldown, as these are in pad controls.
io_bank@_hw->io[gpio].ctrl = fn << IO_BANK@_GPIOO_CTRL_FUNCSEL_LSB;

2.19.5.2. Enable a GPIO interrupt

The SDK provides a method of being interrupted when a GPIO pin changes state:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/gpio.c Lines 186 - 196

186 void gpio_set_irqg_enabled(uint gpio, uint32_t events, bool enabled) {

187
188
189
190
191
192
193
194

// either this call disables the interrupt or callback should already be set.
// this protects against enabling the interrupt without callback set
assert('enabled || irg_has_handler(IO_IRQ_BANK®));

// Separate mask/force/status per-core, so check which core called, and

// set the relevant IRQ controls.

io_bank@_irq_ctrl_hw_t *irq_ctrl_base = get_core_num() ?
&io_bank@_hw->proc1_irq_ctrl : &io_bank@_hw-

>proc@_irq_ctrl;

195
196 }

_gpio_set_irq_enabled(gpio, events, enabled, irq_ctrl_base);

gpio_set_irq_enabled uses a lower level function _gpio_set_irq_enabled:

2.19. GPIO

242

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/gpio.c#L36-L53
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/gpio.c#L186-L196

RP2040 Datasheet

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/gpio.c Lines 173 - 184

173 static void _gpio_set_irq_enabled(uint gpio, uint32_t events, bool enabled,
io_bank@_irq_ctrl_hw_t *irq_ctrl_base) {

174 // Clear stale events which might cause immediate spurious handler entry
175 gpio_acknowledge_irq(gpio, events);

176

177 io_rw_32 *en_reg = &irq_ctrl_base->inte[gpio / 8];
178 events <<= 4 * (gpio % 8);

179

180 if (enabled)

181 hw_set_bits(en_reg, events);

182 else

183 hw_clear_bits(en_reg, events);

184 }

The user provides a pointer to a callback function that is called when the GPIO event happens. An example application
that uses this system is hello_gpio_irq:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/gpio/hello_gpio_irq/hello_gpio_irg.c

U e
2 * Copyright (c) 20626 Raspberry Pi (Trading) Ltd.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 #*/
6
7 #include <stdio.h>
8 #include "pico/stdlib.h"
9 #include "hardware/gpio.h"
10
11 #define GPIO_WATCH_PIN 2
12
13 static char event_str[128];
14
15 void gpio_event_string(char *buf, uint32_t events);
16
17 void gpio_callback(uint gpio, uint32_t events) {
18 // Put the GPIO event(s) that just happened into event_str
19 // so we can print it
20 gpio_event_string(event_str, events);
21 printf("GPIO %d %s\n", gpio, event_str);
22 }
23
24 int main() {
25 stdio_init_all();
26
27 printf("Hello GPIO IRQ\n");
28 gpio_init(GPIO_WATCH_PIN);
29 gpio_set_irq_enabled_with_callback(GPIO_WATCH_PIN, GPIO_IRQ_EDGE_RISE |
GPIO_IRQ_EDGE_FALL, true, &gpio_callback);
30
31 // Wait forever
32 while (1);
33 }
34
35
36 static const char *gpio_irqg_str[] = {
37 "LEVEL_LOW", // ox1
38 "LEVEL_HIGH", // 6x2
39 "EDGE_FALL", // 0x4
40 "EDGE_RISE" // 0x8

I
2.19. GPIO 243

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/gpio.c#L173-L184
https://github.com/raspberrypi/pico-examples/blob/master/gpio/hello_gpio_irq/hello_gpio_irq.c

RP2040 Datasheet
]

Z’f’;:flﬁ‘ g;:;:;s Offset Name Info
0x000 GPIOO_STATUS GPIO status
0x004 GPIO0_CTRL GPIO control including function select and overrides.
0x008 GPIO1_STATUS GPIO status
0x00c GPIO1_CTRL GPIO control including function select and overrides.
0x010 GPIO2_STATUS GPIO status
0x014 GPI0O2_CTRL GPIO control including function select and overrides.
0x018 GPIO3_STATUS GPIO status
0x01c GPIO3_CTRL GPIO control including function select and overrides.
0x020 GPIO4_STATUS GPIO status
0x024 GPIO4_CTRL GPIO control including function select and overrides.
0x028 GPIOS_STATUS GPIO status
0x02c GPIO5_CTRL GPIO control including function select and overrides.
0x030 GPIO6_STATUS GPIO status
0x034 GPIO6_CTRL GPIO control including function select and overrides.
0x038 GPIO7_STATUS GPIO status
0x03c GPIO7_CTRL GPIO control including function select and overrides.
0x040 GPIO8_STATUS GPIO status

41 };

42

43 void gpio_event_string(char *buf, uint32_t events) {
44 for (uint i = 0; 1 < 4; i++) {

45 uint mask = (1 << 1i);

46 if (events & mask) {

47 // Copy this event string into the user string
48 const char *event_str = gpio_irq_str[i];
49 while (*event_str != '\0') {

50 *buf++ = *event_str++;

51 }

52 events &= ~mask;

58

54 // If more events add ",

55 if (events) {

56 *buf++ = '

57 *buf++ = '

58 }

59 }

60 }

61 *buf++ = "\@';

62 }

2.19.6. List of Registers

2.19.6.1. 10 - User Bank

The User Bank 10 registers start at a base address of 0x40014000 (defined as I0_BANKO_BASE in SDK).

2.19. GPIO

244

RP2040 Datasheet
]

Offset Name Info

0x044 GPIO8_CTRL GPIO control including function select and overrides.
0x048 GPIO9_STATUS GPIO status

0x04c GPIO9_CTRL GPIO control including function select and overrides.
0x050 GPIOT0_STATUS GPIO status

0x054 GPIO10_CTRL GPIO control including function select and overrides.
0x058 GPIO11_STATUS GPIO status

0x05¢ GPIO11_CTRL GPIO control including function select and overrides.
0x060 GPIO12_STATUS GPIO status

0x064 GPIO12_CTRL GPIO control including function select and overrides.
0x068 GPIO13_STATUS GPIO status

0x06¢ GPIO13_CTRL GPIO control including function select and overrides.
0x070 GPIO14_STATUS GPIO status

0x074 GPIO14_CTRL GPIO control including function select and overrides.
0x078 GPIOT5_STATUS GPIO status

0x07¢c GPIO15_CTRL GPIO control including function select and overrides.
0x080 GPIO16_STATUS GPIO status

0x084 GPIO16_CTRL GPIO control including function select and overrides.
0x088 GPIO17_STATUS GPIO status

0x08c GPIO17_CTRL GPIO control including function select and overrides.
0x090 GPIO18_STATUS GPIO status

0x094 GPIO18_CTRL GPIO control including function select and overrides.
0x098 GPIOT9_STATUS GPIO status

0x09¢c GPIO19_CTRL GPIO control including function select and overrides.
0x0a0 GPIO20_STATUS GPIO status

0x0a4 GPIO20_CTRL GPIO control including function select and overrides.
0x0a8 GPIO21_STATUS GPIO status

0x0ac GPI021_CTRL GPIO control including function select and overrides.
0x0b0 GPIO22_STATUS GPIO status

0x0b4 GPI022_CTRL GPIO control including function select and overrides.
0x0b8 GPIO23_STATUS GPIO status

0x0bc GPI023_CTRL GPIO control including function select and overrides.
0x0c0 GPIO24_STATUS GPIO status

0x0c4 GPI024_CTRL GPIO control including function select and overrides.
0x0c8 GPIO25_STATUS GPIO status

0x0cc GPI025_CTRL GPIO control including function select and overrides.
0x0d0 GPIO26_STATUS GPIO status

2.19. GPIO

245

RP2040 Datasheet
]

Offset Name Info

0x0d4 GPI026_CTRL GPIO control including function select and overrides.
0x0d8 GPI027_STATUS GPIO status

0x0dc GPI027_CTRL GPIO control including function select and overrides.
0x0e0 GPIO28_STATUS GPIO status

0x0e4 GPI028_CTRL GPIO control including function select and overrides.
0x0e8 GPIO29_STATUS GPIO status

0x0ec GPI029_CTRL GPIO control including function select and overrides.
0x0f0 INTRO Raw Interrupts

0x0f4 INTR1 Raw Interrupts

0x0f8 INTR2 Raw Interrupts

0x0fc INTR3 Raw Interrupts

0x100 PROCO_INTEO Interrupt Enable for procO

0x104 PROCO_INTE1 Interrupt Enable for proc0

0x108 PROCO_INTE2 Interrupt Enable for procO

0x10c PROCO_INTE3 Interrupt Enable for procO

0x110 PROCO_INTFO Interrupt Force for proc0

0x114 PROCO_INTF1 Interrupt Force for proc0

0x118 PROCO_INTF2 Interrupt Force for proc0

0x11c PROCO_INTF3 Interrupt Force for proc0

0x120 PROCO_INTSO Interrupt status after masking & forcing for procO
0x124 PROCO_INTS1 Interrupt status after masking & forcing for procO
0x128 PROCO_INTS2 Interrupt status after masking & forcing for procO
0x12¢c PROCO_INTS3 Interrupt status after masking & forcing for procO
0x130 PROCT_INTEO Interrupt Enable for proc1

0x134 PROCT_INTE1 Interrupt Enable for proc1

0x138 PROC1_INTE2 Interrupt Enable for proc1

0x13c PROC1_INTE3 Interrupt Enable for proc1

0x140 PROC1T_INTFO Interrupt Force for proc1

0x144 PROCT_INTF1 Interrupt Force for proc1

0x148 PROC1T_INTF2 Interrupt Force for proc1

O0x14c PROCT_INTF3 Interrupt Force for proc1

0x150 PROC1_INTSO Interrupt status after masking & forcing for proc1
0x154 PROCT_INTS1 Interrupt status after masking & forcing for proc1
0x158 PROC1_INTS2 Interrupt status after masking & forcing for proc1
0x15¢ PROC1_INTS3 Interrupt status after masking & forcing for proc1
0x160 DORMANT_WAKE_INTEOQ Interrupt Enable for dormant_wake

2.19. GPIO

246

RP2040 Datasheet
]

Offset Name Info

0x164 DORMANT_WAKE_INTE1 Interrupt Enable for dormant_wake

0x168 DORMANT_WAKE_INTE2 Interrupt Enable for dormant_wake

Ox16¢ DORMANT_WAKE_INTE3 Interrupt Enable for dormant_wake

0x170 DORMANT_WAKE_INTFO Interrupt Force for dormant_wake

0x174 DORMANT_WAKE_INTF1 Interrupt Force for dormant_wake

0x178 DORMANT_WAKE_INTF2 Interrupt Force for dormant_wake

0x17c DORMANT_WAKE_INTF3 Interrupt Force for dormant_wake

0x180 DORMANT_WAKE_INTSO Interrupt status after masking & forcing for dormant_wake
0x184 DORMANT_WAKE_INTS1 Interrupt status after masking & forcing for dormant_wake
0x188 DORMANT_WAKE_INTS2 Interrupt status after masking & forcing for dormant_wake
0x18c DORMANT_WAKE_INTS3 Interrupt status after masking & forcing for dormant_wake

IO_BANKO: GPIOO_STATUS, GPIO1_STATUS, .., GPIO28_STATUS,
GPI029_STATUS Registers

Offsets: 0x000, 0x008, .., 0x0e0, 0x0e8

Description
GPIO status
Table 264. Bits Description Type Reset
GPI00_STATUS,
GPIOTSTATUS, .. 31:27 |Reserved. - -
GPI028_STATUS,
2P IQZtQ_STATUS 26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0
egisters
25 Reserved. - -
24 IRQFROMPAD: interrupt from pad before override is applied RO 0x0

23:20 Reserved. - -

19 INTOPERI: input signal to peripheral, after override is applied RO 0x0
18 Reserved. = =
17 INFROMPAD: input signal from pad, before override is applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0
12 OEFROMPERI: output enable from selected peripheral, before register override | RO 0x0
is applied

11:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8 OUTFROMPERI: output signal from selected peripheral, before register RO 0x0
override is applied

7:0 Reserved. - -

IO_BANKO: GPIOO_CTRL, GPIO1_CTRL, .., GPIO28_CTRL, GPIO29_CTRL

I
2.19. GPIO 247

RP2040 Datasheet
]

Table 285.
GPIOO_CTRL,
GPIO1_CTRL, ..,
GPI028_CTRL,
GPI029_CTRL
Registers

Registers

Offsets: 0x004, 0x00c, ..., 0x0e4, 0x0ec

Description

GPIO control including function select and overrides.

Bits Description Type Reset
31:30 Reserved. = =
29:28 IRQOVER RW 0x0

Enumerated values:

0x0 — NORMAL: don't invert the interrupt

0x1 — INVERT: invert the interrupt

0x2 — LOW: drive interrupt low

0x3 — HIGH: drive interrupt high
27:18 Reserved. - -
17:16 INOVER RW 0x0

Enumerated values:

0x0 — NORMAL: don't invert the peri input

0x1 — INVERT: invert the peri input

0x2 — LOW: drive peri input low

0x3 — HIGH: drive peri input high
15:14 | Reserved. = =
13:12 | OEOVER RW 0x0

Enumerated values:

0x0 — NORMAL: drive output enable from peripheral signal selected by

funcsel

0x1 — INVERT: drive output enable from inverse of peripheral signal selected

by funcsel

0x2 — DISABLE: disable output

0x3 — ENABLE: enable output
11:10 Reserved. = =
9:8 OUTOVER RW 0x0

Enumerated values:

0x0 — NORMAL: drive output from peripheral signal selected by funcsel

0x1 — INVERT: drive output from inverse of peripheral signal selected by

funcsel

0x2 — LOW: drive output low

0x3 — HIGH: drive output high
7:5 Reserved. = =

2.19. GPIO

248

RP2040 Datasheet

Bits Description Type Reset
4:0 FUNCSEL: Function select. 31 == NULL. See GPIO function table for available |RW ox1f
functions.

I0O_BANKO: INTRO Register

Offset: 0x0f0

Description

Raw Interrupts
;:Z:zrif6‘ INTRO Bits Description Type Reset

31 GP107_EDGE_HIGH wC 0x0
30 GPIO7_EDGE_LOW WC 0x0
29 GPIO7_LEVEL_HIGH RO 0x0
28 GPIO7_LEVEL_LOW RO 0x0
27 GP106_EDGE_HIGH wC 0x0
26 GPI06_EDGE_LOW WC 0x0
25 GPIO6_LEVEL_HIGH RO 0x0
24 GPIO6_LEVEL_LOW RO 0x0
23 GPI05_EDGE_HIGH wC 0x0
22 GPIO5_EDGE_LOW wC 0x0
21 GPIO5_LEVEL_HIGH RO 0x0
20 GPIO5_LEVEL_LOW RO 0x0
19 GPI04_EDGE_HIGH wC 0x0
18 GPI04_EDGE_LOW wC 0x0
17 GPIO4_LEVEL_HIGH RO 0x0
16 GPIO4_LEVEL_LOW RO 0x0
15 GPI03_EDGE_HIGH WC 0x0
14 GPIO3_EDGE_LOW wcC 0x0
13 GPIO3_LEVEL_HIGH RO 0x0
12 GPIO3_LEVEL_LOW RO 0x0
11 GP102_EDGE_HIGH WC 0x0
10 GPI02_EDGE_LOW wcC 0x0
9 GPI02_LEVEL_HIGH RO 0x0
8 GPIO2_LEVEL_LOW RO 0x0
7 GPI01_EDGE_HIGH wC 0x0
6 GPIO1_EDGE_LOW wcC 0x0
5 GPIO1_LEVEL_HIGH RO 0x0
4 GPIO1_LEVEL_LOW RO 0x0
3 GPIO0_EDGE_HIGH wC 0x0

2.19. GPIO

249

RP2040 Datasheet

Bits Description Type Reset
2 GPIO0_EDGE_LOW WC 0x0
1 GPIOO_LEVEL_HIGH RO 0x0
0 GPIOO_LEVEL_LOW RO 0x0

I0O_BANKO: INTR1 Register

Offset: 0x0f4

Description

Raw Interrupts
;:Z;zéfz INTRT Bits Description Type Reset

31 GPIO15_EDGE_HIGH WC 0x0
30 GPIO15_EDGE_LOW WC 0x0
29 GPIO15_LEVEL_HIGH RO 0x0
28 GPIO15_LEVEL_LOW RO 0x0
27 GPIO14_EDGE_HIGH WC 0x0
26 GPIO14_EDGE_LOW WC 0x0
25 GPIO14_LEVEL_HIGH RO 0x0
24 GPIO14_LEVEL_LOW RO 0x0
23 GPIO13_EDGE_HIGH WC 0x0
22 GPIO13_EDGE_LOW wcC 0x0
21 GPIO13_LEVEL_HIGH RO 0x0
20 GPIO13_LEVEL_LOW RO 0x0
19 GPIO12_EDGE_HIGH WC 0x0
18 GPIO12_EDGE_LOW wcC 0x0
17 GPIO12_LEVEL_HIGH RO 0x0
16 GPIO12_LEVEL_LOW RO 0x0
15 GPIO11_EDGE_HIGH WC 0x0
14 GPIO11_EDGE_LOW wcC 0x0
13 GPIO11_LEVEL_HIGH RO 0x0
12 GPIO11_LEVEL_LOW RO 0x0
11 GPIO10_EDGE_HIGH WC 0x0
10 GPIO10_EDGE_LOW wcC 0x0
9 GPIO10_LEVEL_HIGH RO 0x0
8 GPIO10_LEVEL_LOW RO 0x0
7 GPIO9_EDGE_HIGH wcC 0x0
6 GPIO9_EDGE_LOW WC 0x0
5 GPIO9_LEVEL_HIGH RO 0x0

2.19. GPIO

250

RP2040 Datasheet

Bits Description Type Reset
4 GPIO9_LEVEL_LOW RO 0x0
3 GPIO8_EDGE_HIGH WC 0x0
2 GPIO8_EDGE_LOW WC 0x0
1 GPIO8_LEVEL_HIGH RO 0x0
0 GPIO8_LEVEL_LOW RO 0x0
I0O_BANKO: INTR2 Register

Offset: 0x0f8

Description

Raw Interrupts
;:zﬁztzfa‘ INTR2 Bits Description Type Reset

31 GPI023_EDGE_HIGH WC 0x0
30 GPIO23_EDGE_LOW WC 0x0
29 GPIO23_LEVEL_HIGH RO 0x0
28 GPIO23_LEVEL_LOW RO 0x0
27 GPI022_EDGE_HIGH WC 0x0
26 GPI022_EDGE_LOW WC 0x0
25 GPIO22_LEVEL_HIGH RO 0x0
24 GPIO22_LEVEL_LOW RO 0x0
23 GPIO21_EDGE_HIGH WC 0x0
22 GPIO21_EDGE_LOW WC 0x0
21 GPIO21_LEVEL_HIGH RO 0x0
20 GPIO21_LEVEL_LOW RO 0x0
19 GPIO20_EDGE_HIGH WC 0x0
18 GPIO20_EDGE_LOW WC 0x0
17 GPIO20_LEVEL_HIGH RO 0x0
16 GPIO20_LEVEL_LOW RO 0x0
15 GPIO19_EDGE_HIGH WC 0x0
14 GPIO19_EDGE_LOW WC 0x0
13 GPIO19_LEVEL_HIGH RO 0x0
12 GPIO19_LEVEL_LOW RO 0x0
11 GPIO18_EDGE_HIGH WC 0x0
10 GPIO18_EDGE_LOW WC 0x0
9 GPIO18_LEVEL_HIGH RO 0x0
8 GPIO18_LEVEL_LOW RO 0x0
7 GPIO17_EDGE_HIGH WC 0x0

2.19. GPIO

251

RP2040 Datasheet

Bits Description Type Reset
6 GPIO17_EDGE_LOW WC 0x0
5 GPIO17_LEVEL_HIGH RO 0x0
4 GPIO17_LEVEL_LOW RO 0x0
3 GPIO16_EDGE_HIGH WC 0x0
2 GPIO16_EDGE_LOW WC 0x0
1 GPIO16_LEVEL_HIGH RO 0x0
0 GPIO16_LEVEL_LOW RO 0x0

I0O_BANKO: INTR3 Register

Offset: 0x0fc

Description

Raw Interrupts
;:Z;ztifg‘ INTRS Bits Description Type Reset

31:24 Reserved. = =
23 GPI029_EDGE_HIGH WC 0x0
22 GPI029_EDGE_LOW wcC 0x0
21 GPIO29_LEVEL_HIGH RO 0x0
20 GPIO29_LEVEL_LOW RO 0x0
19 GPI028_EDGE_HIGH wcC 0x0
18 GPIO28_EDGE_LOW WC 0x0
17 GP1028_LEVEL_HIGH RO 0x0
16 GPIO28_LEVEL_LOW RO 0x0
15 GPI027_EDGE_HIGH wcC 0x0
14 GPI027_EDGE_LOW WC 0x0
13 GPIO27_LEVEL_HIGH RO 0x0
12 GPIO27_LEVEL_LOW RO 0x0
11 GPI026_EDGE_HIGH wcC 0x0
10 GPI026_EDGE_LOW WC 0x0
9 GPIO26_LEVEL_HIGH RO 0x0
8 GPIO26_LEVEL_LOW RO 0x0
7 GPI025_EDGE_HIGH wcC 0x0
6 GPIO25_EDGE_LOW WC 0x0
5 GPIO25_LEVEL_HIGH RO 0x0
4 GPIO25_LEVEL_LOW RO 0x0
3 GPI024_EDGE_HIGH WC 0x0
2 GPI024_EDGE_LOW WC 0x0

2.19. GPIO

252

RP2040 Datasheet

Bits Description Type Reset
1 GP1024_LEVEL_HIGH RO 0x0
0 GPI024_LEVEL_LOW RO 0x0

I0O_BANKO: PROCO_INTEO Register

Offset: 0x100

Description

Interrupt Enable for procO
;ZIZZZQIZTEO Register Bits Description Type Reset

31 GPI107_EDGE_HIGH RW 0x0
30 GP107_EDGE_LOW RW 0x0
29 GPI07_LEVEL_HIGH RW 0x0
28 GPIO7_LEVEL_LOW RW 0x0
27 GPI106_EDGE_HIGH RW 0x0
26 GPI06_EDGE_LOW RW 0x0
25 GPI06_LEVEL_HIGH RW 0x0
24 GPIO6_LEVEL_LOW RW 0x0
23 GPIO5_EDGE_HIGH RW 0x0
22 GPIO5_EDGE_LOW RW 0x0
21 GPIO5_LEVEL_HIGH RW 0x0
20 GPIOS_LEVEL_LOW RW 0x0
19 GPI04_EDGE_HIGH RW 0x0
18 GPI04_EDGE_LOW RW 0x0
17 GPI04_LEVEL_HIGH RW 0x0
16 GPIO4_LEVEL_LOW RW 0x0
15 GPI03_EDGE_HIGH RW 0x0
14 GPIO3_EDGE_LOW RW 0x0
13 GPIO3_LEVEL_HIGH RW 0x0
12 GPIO3_LEVEL_LOW RW 0x0
11 GP102_EDGE_HIGH RW 0x0
10 GP102_EDGE_LOW RW 0x0
9 GPI02_LEVEL_HIGH RW 0x0
8 GPIO2_LEVEL_LOW RW 0x0
7 GPI01_EDGE_HIGH RW 0x0
6 GPIO1_EDGE_LOW RW 0x0
5 GPIO1_LEVEL_HIGH RW 0x0
4 GPIO1_LEVEL_LOW RW 0x0

2.19. GPIO

253

RP2040 Datasheet

Bits Description Type Reset
3 GPIO0_EDGE_HIGH RW 0x0
2 GPIO0_EDGE_LOW RW 0x0
1 GPIOO_LEVEL_HIGH RW 0x0
0 GPIOO_LEVEL_LOW RW 0x0

I0O_BANKO: PROCO_INTE1 Register

Offset: 0x104

Description

Interrupt Enable for proc0
;:[;Zit‘;;l‘m Register Bits Description Type Reset

31 GPIO15_EDGE_HIGH RW 0x0
30 GPIO15_EDGE_LOW RW 0x0
29 GPIO15_LEVEL_HIGH RW 0x0
28 GPIO15_LEVEL_LOW RW 0x0
27 GPIO14_EDGE_HIGH RW 0x0
26 GPIO14_EDGE_LOW RW 0x0
25 GPIO14_LEVEL_HIGH RW 0x0
24 GPIO14_LEVEL_LOW RW 0x0
23 GPIO13_EDGE_HIGH RW 0x0
22 GPIO13_EDGE_LOW RW 0x0
21 GPIO13_LEVEL_HIGH RW 0x0
20 GPIO13_LEVEL_LOW RW 0x0
19 GPIO12_EDGE_HIGH RW 0x0
18 GPIO12_EDGE_LOW RW 0x0
17 GPIO12_LEVEL_HIGH RW 0x0
16 GPIO12_LEVEL_LOW RW 0x0
15 GPIO11_EDGE_HIGH RW 0x0
14 GPIO11_EDGE_LOW RW 0x0
13 GPIO11_LEVEL_HIGH RW 0x0
12 GPIO11_LEVEL_LOW RW 0x0
11 GPIO10_EDGE_HIGH RW 0x0
10 GPIO10_EDGE_LOW RW 0x0
9 GPIO10_LEVEL_HIGH RW 0x0
8 GPIO10_LEVEL_LOW RW 0x0
7 GPIO9_EDGE_HIGH RW 0x0
6 GPIO9_EDGE_LOW RW 0x0

2.19. GPIO

254

RP2040 Datasheet

Bits Description Type Reset
5 GPIO9_LEVEL_HIGH RW 0x0
4 GPIO9_LEVEL_LOW RW 0x0
3 GPI08_EDGE_HIGH RW 0x0
2 GPIO8_EDGE_LOW RW 0x0
1 GPIO8_LEVEL_HIGH RW 0x0
0 GPIO8_LEVEL_LOW RW 0x0

I0_BANKO: PROCO_INTE2 Register

Offset: 0x108

Description

Interrupt Enable for proc0
;;[gzoz_gl;rfz Register Bits Description Type Reset

31 GPIO23_EDGE_HIGH RW 0x0
30 GPIO23_EDGE_LOW RW 0x0
29 GPIO23_LEVEL_HIGH RW 0x0
28 GPIO23_LEVEL_LOW RW 0x0
27 GPI022_EDGE_HIGH RW 0x0
26 GPI022_EDGE_LOW RW 0x0
25 GPI022_LEVEL_HIGH RW 0x0
24 GPIO22_LEVEL_LOW RW 0x0
23 GPIO21_EDGE_HIGH RW 0x0
22 GPIO21_EDGE_LOW RW 0x0
21 GPIO21_LEVEL_HIGH RW 0x0
20 GPIO21_LEVEL_LOW RW 0x0
19 GPIO20_EDGE_HIGH RW 0x0
18 GPIO20_EDGE_LOW RW 0x0
17 GPIO20_LEVEL_HIGH RW 0x0
16 GPIO20_LEVEL_LOW RW 0x0
15 GPIO19_EDGE_HIGH RW 0x0
14 GPIO19_EDGE_LOW RW 0x0
13 GPIO19_LEVEL_HIGH RW 0x0
12 GPIO19_LEVEL_LOW RW 0x0
11 GPIO18_EDGE_HIGH RW 0x0
10 GPIO18_EDGE_LOW RW 0x0
9 GPI018_LEVEL_HIGH RW 0x0
8 GPIO18_LEVEL_LOW RW 0x0

2.19. GPIO

255

RP2040 Datasheet

Bits Description Type Reset
7 GPI017_EDGE_HIGH RW 0x0
6 GPIO17_EDGE_LOW RW 0x0
5 GPIO17_LEVEL_HIGH RW 0x0
4 GPIO17_LEVEL_LOW RW 0x0
3 GPI016_EDGE_HIGH RW 0x0
2 GPIO16_EDGE_LOW RW 0x0
1 GPIO16_LEVEL_HIGH RW 0x0
0 GPIO16_LEVEL_LOW RW 0x0
I0O_BANKO: PROCO_INTE3 Register

Offset: 0x10c

Description

Interrupt Enable for proc0
;:ngtszm regster Bits Description Type Reset

31:24 Reserved. = =
23 GPI1029_EDGE_HIGH RW 0x0
22 GP1029_EDGE_LOW RW 0x0
21 GPIO29_LEVEL_HIGH RW 0x0
20 GPIO29_LEVEL_LOW RW 0x0
19 GP1028_EDGE_HIGH RW 0x0
18 GPI028_EDGE_LOW RW 0x0
17 GPI028_LEVEL_HIGH RW 0x0
16 GPI028_LEVEL_LOW RW 0x0
15 GPI1027_EDGE_HIGH RW 0x0
14 GPI027_EDGE_LOW RW 0x0
13 GPI027_LEVEL_HIGH RW 0x0
12 GPI027_LEVEL_LOW RW 0x0
11 GPI1026_EDGE_HIGH RW 0x0
10 GP1026_EDGE_LOW RW 0x0
9 GPI026_LEVEL_HIGH RW 0x0
8 GPIO26_LEVEL_LOW RW 0x0
7 GPI025_EDGE_HIGH RW 0x0
6 GPI025_EDGE_LOW RW 0x0
5 GPIO25_LEVEL_HIGH RW 0x0
4 GPI025_LEVEL_LOW RW 0x0
3 GPI1024_EDGE_HIGH RW 0x0

2.19. GPIO

256

RP2040 Datasheet

Bits Description Type Reset
2 GPI024_EDGE_LOW RW 0x0
1 GPIO024_LEVEL_HIGH RW 0x0
0 GPIO24_LEVEL_LOW RW 0x0

I0_BANKO: PROCO_INTFO Register

Offset: 0x110

Description

Interrupt Force for procO
;:)’Zigl;ﬁo Register Bits Description Type Reset

31 GPIO7_EDGE_HIGH RW 0x0
30 GPIO7_EDGE_LOW RW 0x0
29 GPIO7_LEVEL_HIGH RW 0x0
28 GPIO7_LEVEL_LOW RW 0x0
27 GPIO6_EDGE_HIGH RW 0x0
26 GPIO6_EDGE_LOW RW 0x0
25 GPIO6_LEVEL_HIGH RW 0x0
24 GPIO6_LEVEL_LOW RW 0x0
23 GPIO5_EDGE_HIGH RW 0x0
22 GPIO5_EDGE_LOW RW 0x0
21 GPIOS_LEVEL_HIGH RW 0x0
20 GPIOS_LEVEL_LOW RW 0x0
19 GPIO4_EDGE_HIGH RW 0x0
18 GPIO4_EDGE_LOW RW 0x0
17 GPI04_LEVEL_HIGH RW 0x0
16 GPIO4_LEVEL_LOW RW 0x0
15 GPIO3_EDGE_HIGH RW 0x0
14 GPIO3_EDGE_LOW RW 0x0
13 GPIO3_LEVEL_HIGH RW 0x0
12 GPIO3_LEVEL_LOW RW 0x0
11 GPIO2_EDGE_HIGH RW 0x0
10 GPIO2_EDGE_LOW RW 0x0
9 GPI02_LEVEL_HIGH RW 0x0
8 GPIO2_LEVEL_LOW RW 0x0
7 GPIO1_EDGE_HIGH RW 0x0
6 GPIO1_EDGE_LOW RW 0x0
5 GPIO1_LEVEL_HIGH RW 0x0

2.19. GPIO

257

RP2040 Datasheet
]

Table 295.
PROCO_INTF1 Register

Bits Description Type Reset
4 GPIO1_LEVEL_LOW RW 0x0
3 GPIO0_EDGE_HIGH RW 0x0
2 GPIOO0_EDGE_LOW RW 0x0
1 GPIOO_LEVEL_HIGH RW 0x0
0 GPIOO_LEVEL_LOW RW 0x0

I0O_BANKO: PROCO_INTF1 Register

Offset: 0x114

Description

Interrupt Force for proc0

Bits Description Type Reset
31 GPIO15_EDGE_HIGH RW 0x0
30 GPIO15_EDGE_LOW RW 0x0
29 GPIO15_LEVEL_HIGH RW 0x0
28 GPIO15_LEVEL_LOW RW 0x0
27 GP1014_EDGE_HIGH RW 0x0
26 GPIO14_EDGE_LOW RW 0x0
25 GPIO14_LEVEL_HIGH RW 0x0
24 GPIO14_LEVEL_LOW RW 0x0
23 GPI1013_EDGE_HIGH RW 0x0
22 GPI0O13_EDGE_LOW RW 0x0
21 GPIO13_LEVEL_HIGH RW 0x0
20 GPIO13_LEVEL_LOW RW 0x0
19 GP1012_EDGE_HIGH RW 0x0
18 GPI0O12_EDGE_LOW RW 0x0
17 GPI012_LEVEL_HIGH RW 0x0
16 GPIO12_LEVEL_LOW RW 0x0
15 GP1011_EDGE_HIGH RW 0x0
14 GPI011_EDGE_LOW RW 0x0
13 GPI011_LEVEL_HIGH RW 0x0
12 GPIO11_LEVEL_LOW RW 0x0
11 GPI010_EDGE_HIGH RW 0x0
10 GPIO10_EDGE_LOW RW 0x0
9 GPIO10_LEVEL_HIGH RW 0x0
8 GPIO10_LEVEL_LOW RW 0x0
7 GPI09_EDGE_HIGH RW 0x0

2.19. GPIO

258

RP2040 Datasheet

Bits Description Type Reset
6 GPIO9_EDGE_LOW RW 0x0
5 GPIO9_LEVEL_HIGH RW 0x0
4 GPIO9_LEVEL_LOW RW 0x0
3 GPIO8_EDGE_HIGH RW 0x0
2 GPIO8_EDGE_LOW RW 0x0
1 GPIO8_LEVEL_HIGH RW 0x0
0 GPIO8_LEVEL_LOW RW 0x0

I0O_BANKO: PROCO_INTF2 Register

Offset: 0x118

Description

Interrupt Force for procO
;??IZ)IZ()Z_Q/ZTFZ Register Bits Description Type Reset

31 GPI023_EDGE_HIGH RW 0x0
30 GPIO23_EDGE_LOW RW 0x0
29 GPIO23_LEVEL_HIGH RW 0x0
28 GPIO23_LEVEL_LOW RW 0x0
27 GPI022_EDG