


Colophon
Copyright © 2023-2024 Raspberry Pi Ltd

The documentation of the RP2350 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0

International (CC BY-ND).

Portions Copyright © 2019 Synopsys, Inc.

All rights reserved. Used with permission. Synopsys & DesignWare are registered trademarks of Synopsys, Inc.

Portions Copyright © 2000-2001, 2005, 2007, 2009, 2011-2012, 2016 Arm Limited.

All rights reserved. Used with permission.

build-date: 2024-09-06

build-version: 05c4754-clean

About the SDK

Throughout the text "the SDK" refers to our Raspberry Pi Pico SDK. More details about the SDK can be

found in the Raspberry Pi Pico-series C/C++ SDK book. Source code included in the documentation is

Copyright © 2023-2024 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.) and licensed under the 3-

Clause BSD license.

Legal disclaimer notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM

TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL”) "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO

EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the

RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for

their selection and use of the RESOURCES and any application of the products described in them. User agrees to

indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the

RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use

of the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous

environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or

communication systems, air traffic control, weapons systems or safety-critical applications (including life support

systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or

severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied

warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High

Risk Activities.

Raspberry Pi products are provided subject to RPL’s Standard Terms. RPL’s provision of the RESOURCES does not

expand or otherwise modify RPL’s Standard Terms including but not limited to the disclaimers and warranties

RP2350 Datasheet

Legal disclaimer notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/raspberrypi/pico-sdk
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/


expressed in them.

RP2350 Datasheet

Legal disclaimer notice 2



Table of contents
Colophon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Legal disclaimer notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

1.1. The Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

1.2. Pinout Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

1.2.1. Pin Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

1.2.2. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

1.2.3. GPIO Functions (Bank 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

1.2.4. GPIO Functions (Bank 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

1.3. Why is the chip called RP2350? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

2. System Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

2.1. Bus Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

2.1.1. Bus Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

2.1.2. Bus Security Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

2.1.3. Atomic Register Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

2.1.4. APB Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

2.1.5. Narrow IO Register Writes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

2.1.6. Global Exclusive Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

2.1.7. Bus Performance Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

2.2. Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

2.2.1. ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

2.2.2. XIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

2.2.3. SRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

2.2.4. APB Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

2.2.5. AHB Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

2.2.6. Core-local Peripherals (SIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

2.2.7. Cortex-M33 Private Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

3. Processor Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

3.1. SIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

3.1.1. Secure and Non-secure SIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

3.1.2. CPUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

3.1.3. GPIO Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

3.1.4. Hardware Spinlocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

3.1.5. Inter-processor FIFOs (Mailboxes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

3.1.6. Doorbells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

3.1.7. Integer Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

3.1.8. RISC-V Platform Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

3.1.9. TMDS Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

3.1.10. Interpolator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

3.1.11. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54

3.2. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82

3.2.1. Non-maskable Interrupt (NMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

3.2.2. Further Reading on Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

3.3. Event Signals (Arm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

3.4. Event Signals (RISC-V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

3.5. Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

3.5.1. Connecting to the SW-DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

3.5.2. Arm Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

3.5.3. RISC-V Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

3.5.4. Debug Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

3.5.5. Software control of SWD pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

3.5.6. Self-hosted Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

3.5.7. Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88

3.5.8. Rescue Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

3.5.9. Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

RP2350 Datasheet

Table of contents 3



3.5.10. RP-AP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92

3.6. Cortex-M33 Coprocessors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100

3.6.1. GPIO Coprocessor (GPIOC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101

3.6.2. Double-precision Coprocessor (DCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104

3.6.3. Redundancy Coprocessor (RCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112

3.6.4. Floating Point Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123

3.7. Cortex-M33 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123

3.7.1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123

3.7.2. Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124

3.7.3. Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128

3.7.4. Programmer’s model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

3.7.5. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141

3.8. Hazard3 Processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226

3.8.1. Instruction Set Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226

3.8.2. Memory Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  271

3.8.3. Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  272

3.8.4. Interrupts and Exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275

3.8.5. Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  278

3.8.6. Custom Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279

3.8.7. Instruction Cycle Counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289

3.8.8. Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295

3.8.9. Control and Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  297

3.9. Arm/RISC-V Architecture Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  328

3.9.1. Automatic Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  328

3.9.2. Mixed Architecture Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  329

4. Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  330

4.1. ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  330

4.2. SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  330

4.2.1. Other On-chip Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  331

4.3. Boot RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  332

4.3.1. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  332

4.4. External Flash and PSRAM (XIP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  333

4.4.1. XIP Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  334

4.4.2. QSPI Memory Interface (QMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  338

4.4.3. Streaming DMA Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  338

4.4.4. Performance Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339

4.4.5. List of XIP_CTRL Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339

4.4.6. List of XIP_AUX Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  343

4.5. OTP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  345

5. Bootrom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  346

5.1. Bootrom Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  347

5.1.1. Secure and Non-secure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  347

5.1.2. Partition Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  347

5.1.3. Flash Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  348

5.1.4. Image Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  348

5.1.5. Blocks And Block Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349

5.1.6. Block Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  350

5.1.7. A/B Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  350

5.1.8. Hashing and Signing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  350

5.1.9. Load Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  351

5.1.10. Packaged Binaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  351

5.1.11. Anti-rollback Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  352

5.1.12. Flash Image Boot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  352

5.1.13. Flash Partition Boot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353

5.1.14. Partition-Table-in-Image Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353

5.1.15. Flash Boot Slots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353

5.1.16. Flash Update Boot and Version Downgrade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  354

5.1.17. Try Before You Buy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  355

5.1.18. UF2 Targeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  355

5.1.19. Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  356

RP2350 Datasheet

Table of contents 4



5.1.20. Automatic Architecture Switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  357

5.2. Processor-Controlled Boot Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  357

5.2.1. Boot Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  358

5.2.2. Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  358

5.2.3. POWMAN Boot Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  363

5.2.4. Watchdog Boot Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  364

5.2.5. RAM Image Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  365

5.2.6. OTP Boot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  365

5.2.7. Flash Boot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  365

5.2.8. BOOTSEL (USB/UART) Boot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  367

5.2.9. Boot Configuration (OTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  368

5.3. Launching Code On Processor Core 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  368

5.4. Bootrom APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  369

5.4.1. Locating The API Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  369

5.4.2. API Function Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  370

5.4.3. API Function Return Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  371

5.4.4. API Functions And Exclusive Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  372

5.4.5. SDK Access To The API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  372

5.4.6. Categorised List Of API Functions and ROM Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  373

5.4.7. Alphabetical List Of API Functions and ROM Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  375

5.4.8. API Function Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  376

5.5. USB Mass Storage Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  391

5.5.1. The RP2350 Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  391

5.5.2. UF2 Format Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  392

5.5.3. UF2 Targeting Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  393

5.6. USB PICOBOOT Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  395

5.6.1. Identifying The Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  395

5.6.2. Identifying The Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  396

5.6.3. Identifying The Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  396

5.6.4. PICOBOOT Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  396

5.6.5. Control Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  401

5.7. USB White-Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  403

5.7.1. USB Device Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  404

5.7.2. USB Device Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  404

5.7.3. USB Configuration Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  404

5.7.4. MSD Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  404

5.7.5. UF2 INDEX.HTM File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  404

5.7.6. UF2 INFO_UF2.TXT File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  405

5.7.7. SCSI Inquiry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  405

5.7.8. Volume Label Simple Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  405

5.7.9. Volume Label In-Depth Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  406

5.8. UART Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  407

5.8.1. Baud Rate and Clock Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  407

5.8.2. UART Boot Shell Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  407

5.8.3. UART Boot Programming Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  408

5.8.4. Recovering from a Stuck Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  408

5.8.5. Requirements for UART Boot Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  409

5.9. Metadata Block Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  409

5.9.1. Blocks And block loops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  409

5.9.2. Common Block Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  410

5.9.3. Image Definition Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  412

5.9.4. Partition Table Items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  416

5.9.5. Minimum Viable Image Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  419

5.10. Example Boot Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  420

5.10.1. Secure Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  420

5.10.2. Signed images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  421

5.10.3. Packaged Binaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  424

5.10.4. A/B Booting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  424

5.10.5. A/B Booting with Owned Partitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  426

5.10.6. Custom Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  428

RP2350 Datasheet

Table of contents 5



5.10.7. OTP Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  430

5.10.8. Rollback Versions And Bootloaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  431

6. Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  432

6.1. Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  432

6.1.1. Digital IO Supply (IOVDD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  432

6.1.2. QSPI IO Supply (QSPI_IOVDD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  432

6.1.3. Digital Core Supply (DVDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  432

6.1.4. USB PHY and OTP Supply (USB_OTP_VDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  433

6.1.5. ADC Supply (ADC_AVDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  433

6.1.6. Core Voltage Regulator Input Supply (VREG_VIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  433

6.1.7. On-Chip Voltage Regulator Analogue Supply (VREG_AVDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  433

6.1.8. Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  434

6.2. Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  434

6.2.1. Core Power Domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  434

6.2.2. Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  435

6.2.3. Power State Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  436

6.3. Core Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  439

6.3.1. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  439

6.3.2. Software Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  440

6.3.3. Power Manager Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  440

6.3.4. Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  441

6.3.5. Current Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  441

6.3.6. Over Temperature Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  441

6.3.7. Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  441

6.3.8. External Components and PCB layout requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  442

6.3.9. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  447

6.4. Power Management (POWMAN) Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  447

6.5. Power Reduction Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  478

6.5.1. Top-level Clock Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  479

6.5.2. SLEEP State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  479

6.5.3. DORMANT State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  479

6.5.4. Memory Periphery Power Down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  480

6.5.5. Full Memory Power Down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  480

6.5.6. Programmer’s Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  481

7. Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  484

7.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  484

7.2. Changes from RP2040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  484

7.3. Chip Level Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  485

7.3.1. Chip-Level Reset table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  485

7.3.2. Chip-level Reset Destinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  486

7.3.3. Chip-level Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  486

7.4. System Resets (Power-on State Machine) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  487

7.4.1. Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  488

7.4.2. Register Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  489

7.4.3. Interaction with Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  489

7.4.4. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  489

7.5. Subsystem Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  493

7.5.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  493

7.5.2. Programmer’s Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  493

7.5.3. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  495

7.6. Power-on Reset & Brownout Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  498

7.6.1. Power-on Reset (POR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  499

7.6.2. Brownout Detection (BOD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  499

7.6.3. Supply Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  502

7.6.4. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  502

8. Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  503

8.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  503

8.1.1. Clock sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  504

8.1.2. Clock Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  508

8.1.3. Frequency Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  511

RP2350 Datasheet

Table of contents 6



8.1.4. Resus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  512

8.1.5. Programmer’s Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  512

8.1.6. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  519

8.2. Crystal Oscillator (XOSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  544

8.2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  544

8.2.2. Changes from RP2040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  545

8.2.3. Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  546

8.2.4. Startup Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  546

8.2.5. XOSC Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  546

8.2.6. DORMANT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  546

8.2.7. Programmer’s Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  547

8.2.8. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  548

8.3. Ring Oscillator (ROSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  550

8.3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  551

8.3.2. Changes from RP2040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  551

8.3.3. ROSC/XOSC trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  551

8.3.4. Modifying the frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  552

8.3.5. Randomising the frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  552

8.3.6. ROSC divider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  553

8.3.7. Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  553

8.3.8. ROSC Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  553

8.3.9. DORMANT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  553

8.3.10. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  554

8.4. Low Power Oscillator (LPOSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  558

8.4.1. Frequency Accuracy and Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  559

8.4.2. Using an External Low Power Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  559

8.4.3. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  559

8.5. Tick Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  559

8.5.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  559

8.5.2. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  560

8.6. PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  564

8.6.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  564

8.6.2. Changes from RP2040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  565

8.6.3. Calculating PLL parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  565

8.6.4. Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  570

8.6.5. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  572

9. GPIO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  576

9.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  576

9.2. Changes from RP2040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  577

9.3. Reset State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  577

9.4. Function Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  578

9.5. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  583

9.6. Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  584

9.7. Pad Isolation Latches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  585

9.8. Processor GPIO Controls (SIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  585

9.9. GPIO Coprocessor Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  586

9.10. Software Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  586

9.10.1. Select an IO function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  586

9.10.2. Enable a GPIO interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  591

9.11. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  593

9.11.1. IO - User Bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  593

9.11.2. IO - QSPI Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  747

9.11.3. Pad Control - User Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  772

9.11.4. Pad Control - QSPI Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  799

10. Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  803

10.1. Overview (Arm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  803

10.1.1. Secure Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  803

10.1.2. Encrypted Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  804

10.1.3. Isolating Trusted and Untrusted Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  805

10.2. Processor Security Features (Arm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  806

RP2350 Datasheet

Table of contents 7



10.2.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  806

10.2.2. IDAU Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  807

10.3. Overview (RISC-V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  808

10.4. Processor Security Features (RISC-V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  808

10.5. Secure Boot Enable Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  809

10.6. Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  809

10.6.1. GPIO Access Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  810

10.6.2. Bus Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  811

10.6.3. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  813

10.7. DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  854

10.7.1. Channel Security Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  855

10.7.2. Memory Protection Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  855

10.7.3. DREQ Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  855

10.7.4. IRQ Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  855

10.8. OTP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  856

10.9. Glitch Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  856

10.9.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  857

10.9.2. Trigger Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  857

10.9.3. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  858

10.10. Factory Test JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  861

10.11. Decommissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  861

11. PIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  863

11.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  863

11.1.1. Changes from RP2040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  864

11.2. Programmer’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  865

11.2.1. PIO Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  866

11.2.2. Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  866

11.2.3. Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  868

11.2.4. Autopull. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  868

11.2.5. Stalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  871

11.2.6. Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  871

11.2.7. IRQ Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  871

11.2.8. Interactions Between State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  872

11.3. PIO Assembler (pioasm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  872

11.3.1. Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  872

11.3.2. Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  874

11.3.3. Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  874

11.3.4. Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  875

11.3.5. Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  875

11.3.6. Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  875

11.3.7. Pseudoinstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  876

11.4. Instruction Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  876

11.4.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  876

11.4.2. JMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  877

11.4.3. WAIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  878

11.4.4. IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  879

11.4.5. OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  880

11.4.6. PUSH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  881

11.4.7. PULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  882

11.4.8. MOV (to RX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  883

11.4.9. MOV (from RX). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  884

11.4.10. MOV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  885

11.4.11. IRQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  887

11.4.12. SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  888

11.5. Functional Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  889

11.5.1. Side-set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  889

11.5.2. Program Wrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  890

11.5.3. FIFO Joining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  892

11.5.4. Autopush and Autopull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  893

11.5.5. Clock Dividers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  898

RP2350 Datasheet

Table of contents 8



11.5.6. GPIO Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  898

11.5.7. Forced and EXEC’d Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  900

11.6. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  902

11.6.1. Duplex SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  902

11.6.2. WS2812 LEDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  906

11.6.3. UART TX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  908

11.6.4. UART RX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  910

11.6.5. Manchester Serial TX and RX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  913

11.6.6. Differential Manchester (BMC) TX and RX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  915

11.6.7. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  918

11.6.8. PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  922

11.6.9. Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  924

11.6.10. Further Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  925

11.7. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  926

12. Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  948

12.1. UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  948

12.1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  948

12.1.2. Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  949

12.1.3. Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  951

12.1.4. UART hardware flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  953

12.1.5. UART DMA Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  954

12.1.6. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  956

12.1.7. Programmer’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  957

12.1.8. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  959

12.2. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  970

12.2.1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  971

12.2.2. IP Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  971

12.2.3. I2C Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  972

12.2.4. I2C Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  974

12.2.5. I2C Behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  975

12.2.6. I2C Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  976

12.2.7. TX FIFO Management and START, STOP and RESTART Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  980

12.2.8. Multiple Master Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  982

12.2.9. Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  982

12.2.10. Operation Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  983

12.2.11. Spike Suppression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  988

12.2.12. Fast Mode Plus Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  989

12.2.13. Bus Clear Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  989

12.2.14. IC_CLK Frequency Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  990

12.2.15. DMA Controller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  994

12.2.16. Operation of Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  995

12.2.17. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  995

12.3. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1033

12.3.1. Changes from RP2040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1034

12.3.2. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1034

12.3.3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1034

12.3.4. Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1037

12.3.5. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1047

12.4. ADC and Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1053

12.4.1. Changes from RP2040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1055

12.4.2. ADC controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1056

12.4.3. SAR ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1056

12.4.4. ADC ENOB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1060

12.4.5. INL and DNL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1060

12.4.6. Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1060

12.4.7. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1060

12.5. PWM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1063

12.5.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1064

12.5.2. Programmer’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1064

12.5.3. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1073

RP2350 Datasheet

Table of contents 9



12.6. DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1081

12.6.1. Changes from RP2040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1082

12.6.2. Configuring Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1083

12.6.3. Triggering Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1085

12.6.4. Data Request (DREQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1087

12.6.5. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1089

12.6.6. Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1089

12.6.7. Bus Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1092

12.6.8. Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1094

12.6.9. Example Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1095

12.6.10. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1099

12.7. USB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1128

12.7.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1128

12.7.2. Changes from RP2040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1129

12.7.3. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1131

12.7.4. Programmer’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1142

12.7.5. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1146

12.8. System Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1168

12.8.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1168

12.8.2. Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1169

12.8.3. Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1169

12.8.4. Programmer’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1170

12.8.5. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1174

12.9. Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1179

12.9.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1179

12.9.2. Changes from RP2040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1179

12.9.3. Watchdog Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1179

12.9.4. Control Watchdog Reset Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1180

12.9.5. Scratch Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1180

12.9.6. Programmer’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1180

12.9.7. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1182

12.10. Always-On Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1183

12.10.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1183

12.10.2. Changes from RP2040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1184

12.10.3. Accessing the AON Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1184

12.10.4. Using the Alarm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1184

12.10.5. Selecting the AON Timer Tick Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1185

12.10.6. Synchronising the AON Timer to an External 1Hz Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1187

12.10.7. Using an external clock or tick from GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1187

12.10.8. Using a Tick Faster than 1ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1187

12.10.9. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1188

12.11. HSTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1188

12.11.1. Data FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1189

12.11.2. Output Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1189

12.11.3. Bit Crossbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1190

12.11.4. Clock Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1191

12.11.5. Command Expander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1192

12.11.6. PIO-to-HSTX Coupled Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1194

12.11.7. List of Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1194

12.11.8. List of FIFO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1198

12.12. TRNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1198

12.12.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1198

12.12.2. Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1199

12.12.3. Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1199

12.12.4. Caveats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1200

12.12.5. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1201

12.13. SHA-256 Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1207

12.13.1. Message Padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1208

12.13.2. Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1208

12.13.3. Data Size and Endianness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1208

RP2350 Datasheet

Table of contents 10



12.13.4. DMA DREQ Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1208

12.13.5. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1209

12.14. QSPI Memory Interface (QMI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1212

12.14.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1212

12.14.2. QSPI Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1214

12.14.3. Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1217

12.14.4. Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1220

12.14.5. Direct Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1221

12.14.6. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1222

12.15. System Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1235

12.15.1. SYSINFO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1235

12.15.2. SYSCFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1237

12.15.3. TBMAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1240

12.15.4. BUSCTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1241

13. OTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1254

13.1. OTP Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1254

13.1.1. Guarded Reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1255

13.2. Background: OTP IP Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1255

13.3. Background: OTP Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1256

13.3.1. Lock Shim. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1256

13.3.2. External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1257

13.3.3. OTP Boot Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1258

13.3.4. Power-up State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1258

13.4. Critical Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1259

13.5. Page Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1260

13.5.1. Lock Progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1260

13.5.2. OTP Access Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1261

13.5.3. Lock Encoding in OTP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1261

13.5.4. Special Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1262

13.5.5. Permissions of Blank Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1262

13.6. Error Correction Code (ECC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1263

13.6.1. Bit repair by polarity (BRP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1263

13.6.2. Modified Hamming ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1264

13.7. Device Decommissioning (RMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1264

13.8. List of Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1265

13.9. Predefined OTP Data Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1277

14. Electrical and Mechanical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1312

14.1. QFN-60 Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1312

14.1.1. Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1313

14.1.2. Recommended PCB Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1313

14.2. QFN-80 Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1313

14.2.1. Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1314

14.2.2. Recommended PCB Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1314

14.3. Flash in Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1315

14.4. Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1316

14.5. Storage conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1316

14.6. Solder profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1316

14.7. Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1318

14.8. Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1318

14.8.1. Pin Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1318

14.8.2. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1320

14.9. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1323

14.9.1. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1323

14.9.2. ESD Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1324

14.9.3. Thermal Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1324

14.9.4. IO Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1324

14.9.5. Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1328

14.9.6. Core Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1329

14.9.7. Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1330

Appendix A: Register Field Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1334

RP2350 Datasheet

Table of contents 11



Changes from RP2040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1334

Standard types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1334

RW:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1334

RO: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1334

WO:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1334

Clear types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1334

SC: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1334

WC:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1334

FIFO types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1335

RWF:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1335

RF: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1335

WF: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1335

Appendix B: Units Used in This Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1336

Memory and Storage Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1336

Transfer Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1336

Physical Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1336

Scale Prefixes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1338

Digit Separators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1338

Appendix E: Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1339

ACCESSCTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1339

RP2350-E3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1339

Bootrom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1339

RP2350-E10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1339

DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1340

RP2350-E5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1340

RP2350-E8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1340

GPIO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1341

RP2350-E9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1341

Hazard3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1343

RP2350-E4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1344

RP2350-E6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1344

RP2350-E7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1344

SIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1345

RP2350-E1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1345

RP2350-E2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1345

Appendix H: Documentation Release History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1347

6 September 2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1347

8 August 2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1347

RP2350 Datasheet

Table of contents 12



Chapter 1. Introduction
RP2350 is a new family of microcontrollers from Raspberry Pi that offers significant enhancements over RP2040. Key

features include:

• Dual Cortex-M33 or Hazard3 processors at 150 MHz

• 520 kB on-chip SRAM, in 10 independent banks

• 8 kB of one-time-programmable storage (OTP)

• Up to 16 MB of external QSPI flash/PSRAM via dedicated QSPI bus

◦ Additional 16 MB flash/PSRAM accessible via optional second chip-select

• On-chip switched-mode power supply to generate core voltage

◦ Low-quiescent-current LDO mode can be enabled for sleep states

• 2× on-chip PLLs for internal or external clock generation

• Security features:

◦ Optional boot signing, enforced by on-chip mask ROM, with key fingerprint in OTP

◦ Protected OTP storage for optional boot decryption key

◦ Global bus filtering based on Arm or RISC-V security/privilege levels

◦ Peripherals, GPIOs and DMA channels individually assignable to security domains

◦ Hardware mitigations for fault injection attacks

◦ Hardware SHA-256 accelerator

• Peripherals:

◦ 2× UARTs

◦ 2× SPI controllers

◦ 2× I2C controllers

◦ 24× PWM channels

◦ USB 1.1 controller and PHY, with host and device support

◦ 12× PIO state machines

◦ 1× HSTX peripheral

The RP2350 family of devices is shown in table Table 1, showing options for QFN-80 (10 × 10 mm) and QFN-60 (7 ×

7 mm) packages, with and without flash-in-package.

Table 1. RP2350

device family
Product Package Internal Flash GPIO Analogue Inputs

RP2350A QFN-60 None 30 4

RP2350B QFN-80 None 48 8

RP2354A QFN-60 2 MB 30 4

RP2354B QFN-80 2 MB 48 8
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1.1. The Chip

Dual Cortex-M33 or Hazard3 processors access RP2350’s memory and peripherals via AHB and APB bus fabric.
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Figure 1. A system

overview of the

RP2350 chip

Code may execute directly from external memory through a dedicated QSPI memory interface in the execute-in-place

subsystem (XIP). The cache improves XIP performance significantly. Both flash and RAM can attach via this interface.

Debug is available via the SWD interface. This allows an external host to load, run, halt and inspect software running on

the system, or configure the execution trace output.

Internal SRAM can contain code or data. It is addressed as a single 520 kB region, but physically partitioned into 10

banks to allow simultaneous parallel access from different managers. All SRAM supports single-cycle access.

A high-bandwidth system DMA offloads repetitive data transfer tasks from the processors.

GPIO pins can be driven directly via single-cycle IO (SIO), or from a variety of dedicated logic functions such as the

hardware SPI, I2C, UART and PWM. Programmable IO controllers (PIO) can provide a wider variety of IO functions, or

supplement the number of fixed-function peripherals.

A USB controller with embedded PHY provides FS/LS Host or Device connectivity under software control.

Four or eight ADC inputs (depending on package size) are shared with GPIO pins.

Two PLLs provide a fixed 48 MHz clock for USB or ADC, and a flexible system clock up to 150 MHz. A crystal oscillator

provides a precise reference for the PLLs.

An internal voltage regulator supplies the core voltage, so you need generally only supply the IO voltage. It operates as a
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switched mode buck converter when the system is awake, providing up to 200 mA at a variable output voltage, and can

switch to a low-quiescent-current LDO mode when the system is asleep, providing up to 1 mA for state retention.

The system features low-power states where unused logic is powered off, supporting wakeup from timer or IO events.

The amount of SRAM retained during power-down is configurable.

The internal 8 kB one-time-programmable storage (OTP) contains chip information such as unique identifiers, can be

used to configure hardware and bootrom security features, and can be programmed with user-supplied code and data.

The built-in bootrom implements direct boot from flash or OTP, and serial boot from USB or UART. Code signature

enforcement is supported for all boot media, using a key fingerprint registered in internal OTP storage. OTP can also

store decryption keys for encrypted boot, preventing flash contents from being read externally.

RISC-V architecture support is implemented by dynamically swapping the Cortex-M33 (Armv8-M) processors with

Hazard3 (RV32IMAC+) processors. Both architectures are available on all RP2350-family devices. The RISC-V cores

support debug over SWD, and can be programmed with the same SDK as the Arm cores.

1.2. Pinout Reference

This section provides a quick reference for pinout and pin functions. Full details, including electrical specifications and

package drawings, can be found in Chapter 14.

1.2.1. Pin Locations

1.2.1.1. QFN-60 (RP2350A)
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Figure 2. RP2350

Pinout for QFN-60

7×7mm (reduced ePad

size)
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1.2.1.2. QFN-80 (RP2350B)
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Figure 3. RP2350

Pinout for QFN-80

10×10mm (reduced

ePad size)

1.2.2. Pin Descriptions

Table 2. The function

of each pin is briefly

described here. Full

electrical

specifications can be

found in Chapter 14.

Name Description

GPIOx General-purpose digital input and output. RP2350 can connect one of a number of internal

peripherals to each GPIO, or control GPIOs directly from software.

GPIOx/ADCy General-purpose digital input and output, with analogue-to-digital converter function. The RP2350

ADC has an analogue multiplexer which can select any one of these pins, and sample the voltage.

QSPIx Interface to a SPI, Dual-SPI or Quad-SPI flash or PSRAM device, with execute-in-place support.

These pins can also be used as software-controlled GPIOs, if they are not required for flash

access.

USB_DM and

USB_DP

USB controller, supporting Full Speed device and Full/Low Speed host. A 27Ω series termination

resistor is required on each pin, but bus pullups and pulldowns are provided internally. These pins

can be used as software-controlled GPIOs, if USB is not required.

XIN and XOUT Connect a crystal to RP2350’s crystal oscillator. XIN can also be used as a single-ended CMOS

clock input, with XOUT disconnected. The USB bootloader defaults to a 12MHz crystal or 12MHz

clock input, but this can be configured via OTP.

RUN Global asynchronous reset pin. Reset when driven low, run when driven high. If no external reset is

required, this pin can be tied directly to IOVDD.

SWCLK and

SWDIO

Access to the internal Serial Wire Debug multi-drop bus. Provides debug access to both

processors, and can be used to download code.

GND Single external ground connection, bonded to a number of internal ground pads on the RP2350 die.

RP2350 Datasheet
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Name Description

IOVDD Power supply for digital GPIOs, nominal voltage 1.8V to 3.3V

USB_OTP_VDD Power supply for internal USB Full Speed PHY and OTP storage, nominal voltage 3.3V

ADC_AVDD Power supply for analogue-to-digital converter, nominal voltage 3.3V

QSPI_IOVDD Power supply for QSPI IOs, nominal voltage 1.8V to 3.3V

VREG_AVDD Analogue power supply for internal core voltage regulator, nominal voltage 3.3V

VREG_PGND Power-ground connection for internal core voltage regulator, tie to ground externally

VREG_LX Switched-mode output for internal core voltage regulator, connected to external inductor. Max

current 200 mA, nominal voltage 1.1V after filtering.

VREG_VIN Power input for internal core voltage regulator, nominal voltage 2.7V to 5.5V

VREG_FB Voltage feedback for internal core voltage regulator, connect to filtered VREG output (e.g. to DVDD,

if the regulator is used to supply DVDD)

DVDD Digital core power supply, nominal voltage 1.1V. Must be connected externally, either to the

voltage regulator output, or an external board-level power supply.

1.2.3. GPIO Functions (Bank 0)

Each individual GPIO pin can be connected to an internal peripheral via the GPIO functions defined below. Some internal

peripheral connections appear in multiple places to allow some system level flexibility. SIO, PIO0, PIO1 and PIO2 can

connect to all GPIO pins and are controlled by software (or software controlled state machines) so can be used to

implement many functions.

RP2350 Datasheet
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Table 3. General

Purpose Input/Output

(GPIO) Bank 0

Functions

GPIO F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

0 SPI0 RX UART0 TX I2C0 SDA PWM0 A SIO PIO0 PIO1 PIO2 QMI CS1n USB OVCUR DET

1 SPI0 CSn UART0 RX I2C0 SCL PWM0 B SIO PIO0 PIO1 PIO2 TRACECLK USB VBUS DET

2 SPI0 SCK UART0 CTS I2C1 SDA PWM1 A SIO PIO0 PIO1 PIO2 TRACEDATA0 USB VBUS EN UART0 TX

3 SPI0 TX UART0 RTS I2C1 SCL PWM1 B SIO PIO0 PIO1 PIO2 TRACEDATA1 USB OVCUR DET UART0 RX

4 SPI0 RX UART1 TX I2C0 SDA PWM2 A SIO PIO0 PIO1 PIO2 TRACEDATA2 USB VBUS DET

5 SPI0 CSn UART1 RX I2C0 SCL PWM2 B SIO PIO0 PIO1 PIO2 TRACEDATA3 USB VBUS EN

6 SPI0 SCK UART1 CTS I2C1 SDA PWM3 A SIO PIO0 PIO1 PIO2 USB OVCUR DET UART1 TX

7 SPI0 TX UART1 RTS I2C1 SCL PWM3 B SIO PIO0 PIO1 PIO2 USB VBUS DET UART1 RX

8 SPI1 RX UART1 TX I2C0 SDA PWM4 A SIO PIO0 PIO1 PIO2 QMI CS1n USB VBUS EN

9 SPI1 CSn UART1 RX I2C0 SCL PWM4 B SIO PIO0 PIO1 PIO2 USB OVCUR DET

10 SPI1 SCK UART1 CTS I2C1 SDA PWM5 A SIO PIO0 PIO1 PIO2 USB VBUS DET UART1 TX

11 SPI1 TX UART1 RTS I2C1 SCL PWM5 B SIO PIO0 PIO1 PIO2 USB VBUS EN UART1 RX

12 HSTX SPI1 RX UART0 TX I2C0 SDA PWM6 A SIO PIO0 PIO1 PIO2 CLOCK GPIN0 USB OVCUR DET

13 HSTX SPI1 CSn UART0 RX I2C0 SCL PWM6 B SIO PIO0 PIO1 PIO2 CLOCK GPOUT0 USB VBUS DET

14 HSTX SPI1 SCK UART0 CTS I2C1 SDA PWM7 A SIO PIO0 PIO1 PIO2 CLOCK GPIN1 USB VBUS EN UART0 TX

15 HSTX SPI1 TX UART0 RTS I2C1 SCL PWM7 B SIO PIO0 PIO1 PIO2 CLOCK GPOUT1 USB OVCUR DET UART0 RX

16 HSTX SPI0 RX UART0 TX I2C0 SDA PWM0 A SIO PIO0 PIO1 PIO2 USB VBUS DET

17 HSTX SPI0 CSn UART0 RX I2C0 SCL PWM0 B SIO PIO0 PIO1 PIO2 USB VBUS EN

18 HSTX SPI0 SCK UART0 CTS I2C1 SDA PWM1 A SIO PIO0 PIO1 PIO2 USB OVCUR DET UART0 TX

19 HSTX SPI0 TX UART0 RTS I2C1 SCL PWM1 B SIO PIO0 PIO1 PIO2 QMI CS1n USB VBUS DET UART0 RX

20 SPI0 RX UART1 TX I2C0 SDA PWM2 A SIO PIO0 PIO1 PIO2 CLOCK GPIN0 USB VBUS EN

21 SPI0 CSn UART1 RX I2C0 SCL PWM2 B SIO PIO0 PIO1 PIO2 CLOCK GPOUT0 USB OVCUR DET

22 SPI0 SCK UART1 CTS I2C1 SDA PWM3 A SIO PIO0 PIO1 PIO2 CLOCK GPIN1 USB VBUS DET UART1 TX
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GPIO F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

23 SPI0 TX UART1 RTS I2C1 SCL PWM3 B SIO PIO0 PIO1 PIO2 CLOCK GPOUT1 USB VBUS EN UART1 RX

24 SPI1 RX UART1 TX I2C0 SDA PWM4 A SIO PIO0 PIO1 PIO2 CLOCK GPOUT2 USB OVCUR DET

25 SPI1 CSn UART1 RX I2C0 SCL PWM4 B SIO PIO0 PIO1 PIO2 CLOCK GPOUT3 USB VBUS DET

26 SPI1 SCK UART1 CTS I2C1 SDA PWM5 A SIO PIO0 PIO1 PIO2 USB VBUS EN UART1 TX

27 SPI1 TX UART1 RTS I2C1 SCL PWM5 B SIO PIO0 PIO1 PIO2 USB OVCUR DET UART1 RX

28 SPI1 RX UART0 TX I2C0 SDA PWM6 A SIO PIO0 PIO1 PIO2 USB VBUS DET

29 SPI1 CSn UART0 RX I2C0 SCL PWM6 B SIO PIO0 PIO1 PIO2 USB VBUS EN

GPIOs 30 through 47 are QFN-80 only:

30 SPI1 SCK UART0 CTS I2C1 SDA PWM7 A SIO PIO0 PIO1 PIO2 USB OVCUR DET UART0 TX

31 SPI1 TX UART0 RTS I2C1 SCL PWM7 B SIO PIO0 PIO1 PIO2 USB VBUS DET UART0 RX

32 SPI0 RX UART0 TX I2C0 SDA PWM8 A SIO PIO0 PIO1 PIO2 USB VBUS EN

33 SPI0 CSn UART0 RX I2C0 SCL PWM8 B SIO PIO0 PIO1 PIO2 USB OVCUR DET

34 SPI0 SCK UART0 CTS I2C1 SDA PWM9 A SIO PIO0 PIO1 PIO2 USB VBUS DET UART0 TX

35 SPI0 TX UART0 RTS I2C1 SCL PWM9 B SIO PIO0 PIO1 PIO2 USB VBUS EN UART0 RX

36 SPI0 RX UART1 TX I2C0 SDA PWM10 A SIO PIO0 PIO1 PIO2 USB OVCUR DET

37 SPI0 CSn UART1 RX I2C0 SCL PWM10 B SIO PIO0 PIO1 PIO2 USB VBUS DET

38 SPI0 SCK UART1 CTS I2C1 SDA PWM11 A SIO PIO0 PIO1 PIO2 USB VBUS EN UART1 TX

39 SPI0 TX UART1 RTS I2C1 SCL PWM11 B SIO PIO0 PIO1 PIO2 USB OVCUR DET UART1 RX

40 SPI1 RX UART1 TX I2C0 SDA PWM8 A SIO PIO0 PIO1 PIO2 USB VBUS DET

41 SPI1 CSn UART1 RX I2C0 SCL PWM8 B SIO PIO0 PIO1 PIO2 USB VBUS EN

42 SPI1 SCK UART1 CTS I2C1 SDA PWM9 A SIO PIO0 PIO1 PIO2 USB OVCUR DET UART1 TX

43 SPI1 TX UART1 RTS I2C1 SCL PWM9 B SIO PIO0 PIO1 PIO2 USB VBUS DET UART1 RX

44 SPI1 RX UART0 TX I2C0 SDA PWM10 A SIO PIO0 PIO1 PIO2 USB VBUS EN
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GPIO F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

45 SPI1 CSn UART0 RX I2C0 SCL PWM10 B SIO PIO0 PIO1 PIO2 USB OVCUR DET

46 SPI1 SCK UART0 CTS I2C1 SDA PWM11 A SIO PIO0 PIO1 PIO2 USB VBUS DET UART0 TX

47 SPI1 TX UART0 RTS I2C1 SCL PWM11 B SIO PIO0 PIO1 PIO2 QMI CS1n USB VBUS EN UART0 RX
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Table 4. GPIO bank 0

function descriptions
Function Name Description

SPIx Connect one of the internal PL022 SPI peripherals to GPIO

UARTx Connect one of the internal PL011 UART peripherals to GPIO

I2Cx Connect one of the internal DW I2C peripherals to GPIO

PWMx A/B Connect a PWM slice to GPIO. There are twelve PWM slices, each with two output

channels (A/B). The B pin can also be used as an input, for frequency and duty cycle

measurement.

SIO Software control of GPIO, from the single-cycle IO (SIO) block. The SIO function (F5)

must be selected for the processors to drive a GPIO, but the input is always connected,

so software can check the state of GPIOs at any time.

PIOx Connect one of the programmable IO blocks (PIO) to GPIO. PIO can implement a wide

variety of interfaces, and has its own internal pin mapping hardware, allowing flexible

placement of digital interfaces on bank 0 GPIOs. The PIO function (F6, F7, F8) must be

selected for PIO to drive a GPIO, but the input is always connected, so the PIOs can

always see the state of all pins.

HSTX Connect the high-speed transmit peripheral (HSTX) to GPIO

CLOCK GPINx General purpose clock inputs. Can be routed to a number of internal clock domains on

RP2350, e.g. to provide a 1Hz clock for the AON Timer, or can be connected to an

internal frequency counter.

CLOCK GPOUTx General purpose clock outputs. Can drive a number of internal clocks (including PLL

outputs) onto GPIOs, with optional integer divide.

TRACECLK, TRACEDATAx CoreSight TPIU execution trace output from Cortex-M33 processors (Arm-only)

USB OVCUR DET/VBUS

DET/VBUS EN

USB power control signals to/from the internal USB controller

QMI CS1n Auxiliary chip select for QSPI bus, to allow execute-in-place from an additional flash or

PSRAM device

 NOTE

GPIOs 0 through 29 are available in all package variants. GPIOs 30 through 47 are available only in QFN-80

(RP2350B) package.

 NOTE

Analogue input is available on GPIOs 26 through 29 in the QFN-60 package (RP2350A), for a total of four inputs, and

on GPIOs 40 through 47 in the QFN-80 package (RP2350B), for a total of eight inputs.

1.2.4. GPIO Functions (Bank 1)

GPIO functions are also available on the six dedicated QSPI pins, which are usually used for flash execute-in-place, and

on the USB DP/DM pins. These may become available for general-purpose use depending on the use case, for example,

QSPI pins may not be needed for code execution if RP2350 is booting from internal OTP storage, or being controlled

externally via SWD.

Table 5. GPIO Bank 1

Functions
Pin F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

USB DP UART1 TX I2C0 SDA SIO
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Pin F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

USB DM UART1 RX I2C0 SCL SIO

QSPI SCK QMI SCK UART1 CTS I2C1 SDA SIO UART1 TX

QSPI CSn QMI CS0n UART1 RTS I2C1 SCL SIO UART1 RX

QSPI SD0 QMI SD0 UART0 TX I2C0 SDA SIO

QSPI SD1 QMI SD1 UART0 RX I2C0 SCL SIO

QSPI SD2 QMI SD2 UART0 CTS I2C1 SDA SIO UART0 TX

QSPI SD3 QMI SD3 UART0 RTS I2C1 SCL SIO UART0 RX

Table 6. GPIO bank 1

function descriptions
Function Name Description

UARTx Connect one of the internal PL011 UART peripherals to GPIO

I2Cx Connect one of the internal DW I2C peripherals to GPIO

SIO Software control of GPIO, from the single-cycle IO (SIO) block. The SIO function (F5) must be selected

for the processors to drive a GPIO, but the input is always connected, so software can check the state

of GPIOs at any time.

QMI QSPI memory interface peripheral, used for execute-in-place from external QSPI flash or PSRAM

memory devices.

1.3. Why is the chip called RP2350?

RP  2  3  5  0 

Raspberry Pi

Number of cores

Type of core (e.g. Cortex-M33)

floor(log2(RAM / 16 kB))

floor(log2(nonvolatile / 128 kB))

Figure 4. An

explanation for the

name of the RP2350

chip.

The post-fix numeral on RP2350 comes from the following,

1. Number of processor cores

◦ 2 indicates a dual-core system

2. Loosely which type of processor

◦ 3 indicates Cortex-M33 or Hazard3

3. Internal memory capacity: 

◦ 5 indicates at least 25 × 16 kB = 512 kB

◦ RP2350 has 520 kB of main system SRAM

4. Internal storage capacity:  (or 0 if no onboard nonvolatile storage)
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◦ RP2350 uses external flash

◦ RP2354 has 24 × 128 kB = 2 MB of internal flash
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Chapter 2. System Bus

2.1. Bus Fabric

The RP2350 bus fabric routes addresses and data across the chip.

Figure 5 shows the high-level structure of the bus fabric. The main AHB5 crossbar routes addresses and data between

its 6 upstream ports and 17 downstream ports, with up to six bus transfers taking place each cycle. All data paths are

32 bits wide. Memories connect to multiple dedicated ports on the main crossbar, for the best possible memory

bandwidth. High-bandwidth AHB peripherals share a port on the crossbar. An APB bridge provides access to system

control registers and lower-bandwidth peripherals. The SIO peripherals are accessed via a dedicated path from each

processor.

DMA

R W

Core 0

I D

Core 1

Global Exclusivity 

Monitor

SIO UART0 UART1 I2C0 I2C1 SPI0 SPI1 PWM PIO0 PIO1 PIO2 USBTimer0QSPI Memory 
Interface

AHB5 Crossbar

APB SplitterArbiter AHB5 Splitter

XIP Cache 

16 kB WBack 

2-way 2-bank
Core 0
Port D
Only

Core 1
Port D
Only

SRAM0–3 4 × 64 kB

Word-striped

SRAM8–9 

2× 4 kB

AHB5 

to APB
ROM 32 kB

I D

Trace
FIFO

XIP 
Aux

Other 
APB

SRAM Write Kill 
(SRAM0–9)

Exclusive Query/ 
Response

DMA
Ctrl

SRAM4–7 4 × 64 k B

Word-striped

Figure 5. RP2350 bus

fabric overview.

The bus fabric connects 6 AHB5 managers, i.e. bus ports which generate addresses:

• Core 0: Instruction port (instruction fetch), and Data port (load/store access)

• Core 1: Instruction port (instruction fetch), and Data port (load/store access)

• DMA controller: Read port, Write port

The following 13 downstream ports are symmetrically accessible from all 6 upstream ports:

• Boot ROM (1 port)

• XIP (2 ports, striped)

• SRAM (10 ports, striped)

Additionally, the following 2 ports are accessible for processor load/store and DMA read/write only:

• 1 shared port for fast AHB5 peripherals: PIO0, PIO1, PIO2, USB, DMA control registers, XIP DMA FIFOs, HSTX FIFO,

CoreSight trace DMA FIFO

• 1 port for the APB bridge, to all APB peripherals and control registers
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 NOTE

Instruction fetch from peripherals is physically disconnected, to avoid this IDAU-Exempt region ever becoming both

Non-secure-writable and Secure-executable. This includes USB RAM, OTP and boot RAM. See Section 10.2.2.

The SIO block, which was connected to the Cortex-M0+ IOPORT on RP2040, provides two AHB ports, each dedicated to

load/store access from one core.

The six managers can access any six different crossbar ports simultaneously. So, at a system clock of 150 MHz, the

maximum sustained bus bandwidth is 3.6 GB/s.

2.1.1. Bus Priority

The main AHB5 crossbar implements a two-level bus priority scheme. Priority levels are configured separately for core

0, core 1, DMA read and DMA write, using the BUS_PRIORITY register in the BUSCTRL register block.

When a downstream subordinate receives multiple simultaneous access requests, the port serves high-priority (priority

level 1) managers before serving any requests from low-priority (priority 0) managers. If all requests come from

managers with the same priority level, the port applies a round-robin tie break, granting access to each manager in turn.

 NOTE

Priority arbitration only applies when multiple managers attempt to access the same subordinate on the same cycle.

When multiple managers access different subordinates, e.g. different SRAM banks, the requests proceed

simultaneously.

A subordinate with zero wait states can be accessed once per system clock cycle. When accessing a subordinate with

zero wait states (e.g. SRAM), high-priority managers never experience delays caused by accesses from low-priority

managers. This guarantees latency and throughput for real-time use cases. However, it also means that low-priority

managers may stall until there is a free cycle.

2.1.2. Bus Security Filtering

Every point where the fabric connects to a downstream AHB or APB peripheral is interposed by a bus security filter,

which enforces the following access control lists as defined by the ACCESSCTRL registers (Section 10.6):

• A list of who can access the port: core 0, core 1, DMA, debugger

• A list of the security states from which the port can be accessed: the four combinations of Secure/Non-secure and

Privileged/Unprivileged.

Accesses which fail either check are prevented from accessing the downstream port, and return a bus error upstream.

There are three exceptions, which do not implement bus security filters because they implement their own security

filtering internally:

• The ACCESSCTRL block itself, which is always world-readable, but filters writes on security and privilege

• Boot RAM, which is hardwired to Secure access only

• The single-cycle IO subsystem (SIO), which is internally banked over Secure and Non-secure

The Cortex-M Private Peripheral Bus (PPB) registers also lack ACCESSCTRL permissions because they are internal to

the processors, not accessed through the system bus. The PPB registers are internally banked over Secure and Non-

secure.
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2.1.3. Atomic Register Access

Each peripheral register block is allocated 4 kB of address space, with registers accessed using one of 4 methods,

selected by address decode.

• Addr + 0x0000 : normal read write access

• Addr + 0x1000 : atomic XOR on write

• Addr + 0x2000 : atomic bitmask set on write

• Addr + 0x3000 : atomic bitmask clear on write

This allows software to modify individual fields of a control register without performing a read-modify-write sequence.

Instead, the peripheral itself modifies its contents in-place. Without this capability, it is difficult to safely access IO

registers when an interrupt service routine is concurrent with code running in the foreground, or when the two

processors run code in parallel.

The four atomic access aliases occupy a total of 16 kB. Native atomic writes take the same number of clock cycles as

normal writes. Most peripherals on RP2350 provide this functionality natively, but some peripherals (I2C, UART, SPI and

SSI) add this functionality using a bus interposer. The bus interposer translates upstream atomic writes into

downstream read-modify-write sequences at the boundary of the peripheral, at the cost of additional clock cycles.

Atomic writes that use a bus interposer take two additional clock cycles compared to normal writes.

The following registers do not support atomic register access:

• SIO (Section 3.1), though some individual registers (e.g. GPIO) have set, clear, and XOR aliases

• Any register accessed through the self-hosted CoreSight window, including Arm Mem-APs and the RISC-V Debug

Module

• Standard Arm control registers on the Cortex-M33 private peripheral bus (PPB), except for Raspberry Pi-specific

registers on the EPPB

• OTP programming registers accessed through the SBPI bridge

2.1.4. APB Bridge

The APB bridge provides an interface between the high-speed main AHB5 interconnect and the lower-bandwidth

peripherals. Unlike the AHB5 fabric, which offers zero-wait-state accesses everywhere, APB accesses take a minimum

of three cycles for a read, and four cycles for a write.

As a result, the throughput of the APB portion of the bus fabric is lower than the AHB5 portion. However, there is more

than sufficient bandwidth to saturate the APB serial peripherals.

The following APB ports contain asynchronous bus crossings, which insert additional stall cycles on top of the typical

cost of a read or write in the APB bridge:

• ADC

• HSTX_CTRL

• OTP

• POWMAN

The APB bridge implements a fixed timeout for stalled downstream transfers. The downstream bus may stall

indefinitely, such as when accessing an asynchronous bus crossing when the destination clock is stopped, or deadlock

conditions when accessing system APB registers through Mem-APs in the self-hosted debug window (Section 3.5.6).

When an APB transfer exceeds 65,535 cycles the APB bridge abandons the transfer and returns a bus fault. This keeps

the system bus available so that software or the debugger can diagnose the reason for the overly long transfer.
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2.1.5. Narrow IO Register Writes

The majority of memory-mapped IO registers on RP2350 ignore the width of bus read/write accesses. They treat all

writes as though they were 32 bits in size. This means software cannot use byte or halfword writes to modify part of an

IO register: any write to an address where the 30 address MSBs match the register address affects the contents of the

entire register.

To update part of an IO register without a read-modify-write sequence, the best solution on RP2350 is atomic

set/clear/XOR (see Section 2.1.3). This is more flexible than byte or halfword writes, as any combination of fields can be

updated in one operation.

Upon a 8-bit or 16-bit write (such as a strb instruction on the Cortex-M33), the narrow value is replicated multiple times

across the 32-bit data bus, so that it is broadcast to all 8-bit or 16-bit segments of the destination register:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/system/narrow_io_write/narrow_io_write.c Lines 19 - 62

19 int main() {
20     stdio_init_all();
21 
22     // We'll use WATCHDOG_SCRATCH0 as a convenient 32 bit read/write register
23     // that we can assign arbitrary values to
24     io_rw_32 *scratch32 = &watchdog_hw->scratch[0];
25     // Alias the scratch register as two halfwords at offsets +0x0 and +0x2
26     volatile uint16_t *scratch16 = (volatile uint16_t *) scratch32;
27     // Alias the scratch register as four bytes at offsets +0x0, +0x1, +0x2, +0x3:
28     volatile uint8_t *scratch8 = (volatile uint8_t *) scratch32;
29 
30     // Show that we can read/write the scratch register as normal:
31     printf("Writing 32 bit value\n");
32     *scratch32 = 0xdeadbeef;
33     printf("Should be 0xdeadbeef: 0x%08x\n", *scratch32);
34 
35     // We can do narrow reads just fine -- IO registers treat this as a 32 bit
36     // read, and the processor/DMA will pick out the correct byte lanes based
37     // on transfer size and address LSBs
38     printf("\nReading back 1 byte at a time\n");
39     // Little-endian!
40     printf("Should be ef be ad de: %02x ", scratch8[0]);
41     printf("%02x ", scratch8[1]);
42     printf("%02x ", scratch8[2]);
43     printf("%02x\n", scratch8[3]);
44 
45     // Byte writes are replicated four times across the 32-bit bus, and IO
46     // registers usually sample the entire write bus.
47     printf("\nWriting 8 bit value 0xa5 at offset 0\n");
48     scratch8[0] = 0xa5;
49     // Read back the whole scratch register in one go
50     printf("Should be 0xa5a5a5a5: 0x%08x\n", *scratch32);
51 
52     // The IO register ignores the address LSBs [1:0] as well as the transfer
53     // size, so it doesn't matter what byte offset we use
54     printf("\nWriting 8 bit value at offset 1\n");
55     scratch8[1] = 0x3c;
56     printf("Should be 0x3c3c3c3c: 0x%08x\n", *scratch32);
57 
58     // Halfword writes are also replicated across the write data bus
59     printf("\nWriting 16 bit value at offset 0\n");
60     scratch16[0] = 0xf00d;
61     printf("Should be 0xf00df00d: 0x%08x\n", *scratch32);
62 }

To disable this behaviour on RP2350, set bit 14 of the address by accessing the peripheral at an offset of +0x4000. This
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causes invalid byte lanes to be driven to zero, rather than being driven with replicated data. In some situations, such as

DMA of 8-bit values to the PWM peripheral, the default replication behaviour is not desirable.

2.1.6. Global Exclusive Monitor

The Global Exclusive Monitor enables standard Arm and RISC-V atomic instructions to safely access shared variables in

SRAM from both cores. This underpins software libraries for manipulating shared variables, such as stdatomic.h in C11.

For detailed rules governing the monitor’s operation, see the Armv8-M Architecture Reference Manual.

Arm describes exclusive monitor interactions in terms of a processing element, PE, which performs a sequence of bus

accesses. For RP2350 purposes, this is one AHB5 manager out of the following three: core 0 load/store, core 1

load/store, and DMA write. The DMA does not itself perform exclusive accesses, but its writes are monitored with

respect to exclusive sequences on either processor. No distinction is made between debugger and non-debugger

accesses from a processor.

The monitor observes all transfers on SRAM initiated by the DMA write and processor load/store ports, and pays

particular attention to two types of transfer:

• AHB5 exclusive reads: Arm ldrex* instructions, RISC-V lr.w instructions, and the read phase of RISC-V AMOs (The

Hazard3 cores on RP2350 implement AMOs as an exclusive read/write pair which retries until the write succeeds)

• AHB5 exclusive writes: Arm strex* instructions, RISC-V sc.w instructions, and the writeback phase of RISC-V AMOs

Based on these observations, the monitor enforces that an atomic read-modify-write sequence (formed of an exclusive

read followed by a successful exclusive write by the same PE) is not interleaved with another PE’s successful write

(exclusive or not) to the same reservation granule. A reservation granule is any 16-byte, naturally aligned area of SRAM.

An exclusive write succeeds when all of the following are true:

• It is preceded by an exclusive read by the same PE

• No other exclusive writes were performed by this PE since that exclusive read

• The exclusive read was to the same reservation granule

• The exclusive read was of the same size (byte/halfword/word)

• The exclusive read was from the same security and privilege state

• No other PEs successfully wrote to the same granule since that exclusive read

If the above conditions are not met, the Global Exclusive Monitor shoots down the exclusive write before SRAM can

commit the write data. The failure is reported to the originating PE, for example by a non-zero return value from an Arm

strex instruction.

This implementation of the Armv8-M Global Exclusive Monitor also meets the requirements for RISC-V lr/sc and amo*

instructions, with the caveat that the RsrvEventual PMA is not supported. (In practice, whilst it is quite easy to come up

with contrived examples of starvation such as the DMA writing to a shared variable on every single cycle, bounded

LR/SC and AMO sequences will generally complete quickly.)

 CAUTION

Secure software should avoid shared variables in Non-secure-accessible memory. Such variables are vulnerable to

deliberate starvation from exclusive accesses by repeatedly performing non-exclusive writes.

Exclusive accesses are only supported on SRAM. The system treats exclusive accesses to other memory regions as

normal reads and writes, reporting exclusivity failure to the originating PE, for example by a non-zero return value from

an Arm strex instruction.
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2.1.6.1. Implementation-defined Monitor Behaviour

The Armv8-M Architecture Reference Manual leaves several aspects of the Global Exclusive Monitor up to the

implementation. For completeness, the RP2350 implementation defines them as follows:

• The reservation granule size is fixed at 16 bytes

• A single reservation is tracked per PE

• The Arm clrex instruction does not affect global monitor state

• Any exclusive write by a PE clears that PE’s global reservation

• A non-exclusive write by a PE does not clear that PE’s global reservation, no matter the address

Only the following updates a PE’s reservation tag, setting its reservation state to Exclusive:

• An exclusive read on SRAM

Only the following changes a PE’s reservation state from Exclusive to Open:

• A successful exclusive write from another PE to this PE’s reservation

• A non-exclusive write from another PE to this PE’s reservation

• Any exclusive write by this PE

• An exclusive read by this PE, not on SRAM

A reservation granule can span multiple SRAM banks, so multiple operations on the same reservation granule may

complete on the same cycle. This can result in the following problematic situations:

• Multiple exclusive writes to the same reservation granule, reserved on each PE: in this case the lowest-numbered

PE succeeds (in the order DMA < core 0 < core 1), and all others fail.

• A mixture of non-exclusive and exclusive writes to the same reservation granule on the same cycle: in this case,

the exclusive writes fail.

• One PE x can write to a reservation granule on the same cycle that another PE y attempts to reserve the same

reservation granule via exclusive load: in this case, y's reservation is granted (i.e. the write takes place logically

before the load).

• One PE x can write to a reservation granule reserved by another PE y, on the same cycle that PE y makes a new

reservation on a different reservation granule: in this case, again, y's reservation is granted.

These rules can be summarised by a logical ordering of all possible events on a reservation granule that can occur on

the same cycle: first all normal writes in arbitrary order, then all exclusive writes in ascending PE order (DMA, core 0,

core 1), then all loads in arbitrary order.

2.1.6.2. Regions Without Exclusives Support

The Global Exclusive monitor only supports exclusive transactions on certain address ranges. The main system SRAM

supports exclusive transactions throughout its entire range: 0x20000000 through 0x20082000. Within ranges that support

exclusive transactions, the Global Exclusive monitor:

• tracks exclusive sequences across all participating PEs

• drives the exclusive success/failure response correctly based on the observed ordering

• shoots down failing exclusive writes so that they have no effect

Exclusive transactions are not supported outside of this range: all exclusive accesses report exclusive failure (both

exclusive reads and exclusive writes), and exclusive writes will not be suppressed.

Outside of regions with exclusive transaction support, load/store exclusive loops run forever while still affecting SRAM

contents. This applies to both Arm processors performing exclusive reads/writes and RISC-V processors performing

lr.w/sc.w instructions. However, an amo*.w instruction on Hazard3 will result in a Store/AMO Fault, as the hardware
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detects the failed exclusive read and bails out to avoid an infinite loop.

It is recommended not to perform exclusive accesses on regions outside of main SRAM. Shared variables outside of

main SRAM can be protected using either lock variables in main SRAM, the SIO spinlocks, or a locking protocol that

does not require exclusive accesses, such as a lock-free queue.

2.1.7. Bus Performance Counters

Bus performance counters automatically count accesses to the main AHB5 crossbar arbiters. These counters can help

diagnose high-traffic performance issues.

There are four performance counters, starting at PERFCTR0. Each is a 24-bit saturating counter. Counter values can be

read from BUSCTRL_PERFCTRx and cleared by writing any value to BUSCTRL_PERFCTRx. Each counter can count one of the 20

available events at a time, as selected by BUSCTRL_PERFSELx. For more information, see Section 12.15.4.

2.2. Address Map

The address map for the device is split into sections as shown in Table 7. Details are shown in the following sections.

Unmapped address ranges raise a bus error when accessed.

Each link in the left-hand column of Table 7 goes to a detailed address map for that address range. The detailed

address maps have a link for each address to the relevant documentation for that address.

Rough address decode is first performed on bits 31:28 of the address:

Table 7. Address Map

Summary
Bus Segment Base Address

ROM 0x00000000

XIP 0x10000000

SRAM 0x20000000

APB Peripherals 0x40000000

AHB Peripherals 0x50000000

Core-local Peripherals (SIO) 0xd0000000

Cortex-M33 private registers 0xe0000000

2.2.1. ROM

ROM is accessible to DMA, processor load/store, and processor instruction fetch. It is located at address zero, which is

the starting point for both Arm processors when the device is reset.

Table 8. Address map

for ROM bus segment
Bus Endpoint Base Address

ROM_BASE 0x00000000

2.2.2. XIP

XIP is accessible to DMA, processor load/store, and processor instruction fetch. This address range contains various

mirrors of a 64 MB space which is mapped to external memory devices. On RP2350 the lower 32 MB is occupied by the

QSPI Memory Interface (QMI), and the remainder is reserved. QMI controls are in the APB register section.
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Table 9. Address map

for XIP bus segment
Bus Endpoint Base Address

XIP_BASE 0x10000000

XIP_NOCACHE_NOALLOC_BASE 0x14000000

XIP_MAINTENANCE_BASE 0x18000000

XIP_NOCACHE_NOALLOC_NOTRANSLATE_BASE 0x1c000000

 NOTE

XIP_SRAM_BASE no longer exists as a separate address range. Cache-as-SRAM is now achieved by pinning cache lines

within the cached XIP address space.

2.2.3. SRAM

SRAM is accessible to DMA, processor load/store, and processor instruction fetch.

SRAM0-3 and SRAM4-7 are always striped on bits 3:2 of the address:

Table 10. Address

map for SRAM bus

segment, SRAM0-7

(striped)

Bus Endpoint Base Address

SRAM_BASE 0x20000000

SRAM_STRIPED_BASE 0x20000000

SRAM0_BASE 0x20000000

SRAM4_BASE 0x20040000

SRAM_STRIPED_END 0x20080000

There are two striped regions, each 256 kB in size, and each striped over 4 SRAM banks. SRAM0-3 are in the SRAM0

power domain, and SRAM4-7 are in the SRAM1 power domain.

SRAM 8-9 are always non-striped:

Table 11. Address

map for SRAM bus

segment, SRAM8-9

(non-striped)

Bus Endpoint Base Address

SRAM8_BASE 0x20080000

SRAM9_BASE 0x20081000

SRAM_END 0x20082000

These smaller blocks of SRAM are useful for hoisting high-bandwidth data structures like the processor stacks. They

are in the SRAM1 power domain.

2.2.4. APB Registers

APB peripheral registers are accessible to processor load/store and DMA only. Instruction fetch will always fail.

The APB peripheral segment provides access to control and configuration registers, as well as data access for lower-

bandwidth peripherals. APB writes cost a minimum of four cycles, and APB reads a minimum of three.

Table 12. Address

map for APB bus

segment

Bus Endpoint Base Address

SYSINFO_BASE 0x40000000

SYSCFG_BASE 0x40008000
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Bus Endpoint Base Address

CLOCKS_BASE 0x40010000

PSM_BASE 0x40018000

RESETS_BASE 0x40020000

IO_BANK0_BASE 0x40028000

IO_QSPI_BASE 0x40030000

PADS_BANK0_BASE 0x40038000

PADS_QSPI_BASE 0x40040000

XOSC_BASE 0x40048000

PLL_SYS_BASE 0x40050000

PLL_USB_BASE 0x40058000

ACCESSCTRL_BASE 0x40060000

BUSCTRL_BASE 0x40068000

UART0_BASE 0x40070000

UART1_BASE 0x40078000

SPI0_BASE 0x40080000

SPI1_BASE 0x40088000

I2C0_BASE 0x40090000

I2C1_BASE 0x40098000

ADC_BASE 0x400a0000

PWM_BASE 0x400a8000

TIMER0_BASE 0x400b0000

TIMER1_BASE 0x400b8000

HSTX_CTRL_BASE 0x400c0000

XIP_CTRL_BASE 0x400c8000

XIP_QMI_BASE 0x400d0000

WATCHDOG_BASE 0x400d8000

BOOTRAM_BASE 0x400e0000

ROSC_BASE 0x400e8000

TRNG_BASE 0x400f0000

SHA256_BASE 0x400f8000

POWMAN_BASE 0x40100000

TICKS_BASE 0x40108000

OTP_BASE 0x40120000

OTP_DATA_BASE 0x40130000

OTP_DATA_RAW_BASE 0x40134000

OTP_DATA_GUARDED_BASE 0x40138000
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Bus Endpoint Base Address

OTP_DATA_RAW_GUARDED_BASE 0x4013c000

CORESIGHT_PERIPH_BASE 0x40140000

CORESIGHT_ROMTABLE_BASE 0x40140000

CORESIGHT_AHB_AP_CORE0_BASE 0x40142000

CORESIGHT_AHB_AP_CORE1_BASE 0x40144000

CORESIGHT_TIMESTAMP_GEN_BASE 0x40146000

CORESIGHT_ATB_FUNNEL_BASE 0x40147000

CORESIGHT_TPIU_BASE 0x40148000

CORESIGHT_CTI_BASE 0x40149000

CORESIGHT_APB_AP_RISCV_BASE 0x4014a000

GLITCH_DETECTOR_BASE 0x40158000

TBMAN_BASE 0x40160000

2.2.5. AHB Registers

AHB peripheral registers are accessible to processor load/store and DMA only. Instruction fetch will always fail.

The AHB peripheral segment provides access to higher-bandwidth peripherals. The minimum read/write cost is one

cycle, and peripherals may insert up to one wait state.

Table 13. Address

map for AHB

peripheral bus

segment

Bus Endpoint Base Address

DMA_BASE 0x50000000

USBCTRL_BASE 0x50100000

USBCTRL_DPRAM_BASE 0x50100000

USBCTRL_REGS_BASE 0x50110000

PIO0_BASE 0x50200000

PIO1_BASE 0x50300000

PIO2_BASE 0x50400000

XIP_AUX_BASE 0x50500000

HSTX_FIFO_BASE 0x50600000

CORESIGHT_TRACE_BASE 0x50700000

2.2.6. Core-local Peripherals (SIO)

SIO is accessible to processor load/store only. It contains registers which need single-cycle access from both cores

concurrently, such as the GPIO registers. Access is always zero-wait-state.
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Table 14. Address

map for SIO bus

segment

Bus Endpoint Base Address

SIO_BASE 0xd0000000

SIO_NONSEC_BASE 0xd0020000

2.2.7. Cortex-M33 Private Peripherals

The PPB is accessible to processor load/store only.

The PPB region contains standard control registers defined by Arm, Non-secure aliases of some of those registers, and

a handful of other core-local registers defined by Raspberry Pi (the EPPB).

These addresses are only accessible to Arm processors: RISC-V processors will return a bus fault.

Table 15. Address

map for PPB bus

segment

Bus Endpoint Base Address

PPB_BASE 0xe0000000

PPB_NONSEC_BASE 0xe0020000

EPPB_BASE 0xe0080000
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Chapter 3. Processor Subsystem
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Figure 6. The RP2350

processor subsystem

connects two

processors to the

system bus, peripheral

interrupts, GPIOs, and

a Serial Wire Debug

(SWD) connection

from an external

debug host. It also

contains closely-

coupled peripherals,

and peripherals used

for synchronisation

and communication,

which are collectively

referred to as the

single-cycle IO

subsystem (SIO).

RP2350 is a symmetric dual-core system. Two cores operate simultaneously and independently, offering high

processing throughput and the ability to route interrupts to different cores to improve throughput and latency of

interrupt handling. The two cores have a symmetric view of the system bus; all memory resources on RP2350 are

accessible equally on both cores, with the same performance.

Each core has a pair of 32-bit AHB5 links to the system bus. One is used exclusively for instruction fetch, the other

exclusively for load or store instructions and debugger access. Each core can perform one instruction fetch and one

load or store access per cycle, provided there are no conflicts on the downstream bus ports.

There are two sockets for cores to attach to the system bus, referred to as core 0 and core 1 throughout this datasheet.

(They may synonymously be referred to as core0, core1, proc0 and proc1 in register documentation.) The processor

plugged into each socket is selectable at boot time:

• A Cortex-M33 processor, implementing the Armv8-M Main instruction set, plus extensions

• A Hazard3 processor, implementing the RV32IMAC instruction set, plus extensions

Cortex-M33 is the default option. Whichever processor is unused is held in reset with its clock gated at the top level.

Unused processors use zero dynamic power. See Section 3.9 for information about the architecture selection hardware.

The two Cortex-M33 instances are identical. They are configured with the Security, DSP and FPU extensions, as well as

8× SAU regions, 8× Secure MPU regions and 8× Non-secure MPU regions. Section 3.7 documents the Cortex-M33

processor as well as the specific configuration used on RP2350. The two Hazard3 instances are also identical to one

another; see Section 3.8 for the features and operation of the Hazard3 processors.

RP2350 Datasheet

Chapter 3. Processor Subsystem 35



The Cortex-M33 implementation of the Armv8-M Security extension (also known as TrustZone-M) isolates trusted and

untrusted software running on-device. RP2350 extends the strict partitioning of the Arm Secure and Non-secure states

throughout the system, including the ability to assign peripherals, GPIOs and DMA channels to each security domain.

See Section 10.2 for a high-level overview of Armv8-M Security extension features in the context of the RP2350 security

architecture.

Not shown on Figure 6 are the coprocessors for the Cortex-M33. These are closely coupled to the core, offering a

transfer rate of 64 bits per cycle in and out of the Arm register file. You may consider them to be inside the Cortex-M33

block on the diagram. RP2350 equips each Cortex-M33 with the following coprocessors:

• Coprocessor 0: GPIO coprocessor (GPIOC), described in Section 3.6.1

• Coprocessors 4 and 5: Secure and Non-secure instances of the double-precision coprocessor (DCP), described in

Section 3.6.2

• Coprocessor 7: redundancy coprocessor (RCP), described in Section 3.6.3

An external debug host can access both cores over a Serial Wire Debug (SWD) bus. The host can:

• run, halt and reset the cores

• inspect internal core state such as registers

• access memory from the core’s point of view

• load code onto the device and run it

Section 3.5 describes the debug hardware in addition to the instruction trace hardware available on the Arm processors.

Peripherals throughout the system assert interrupt requests (IRQs) to demand attention from the processors. For

example, a UART peripheral asserts its interrupt when it has received a character, so the processor can collect it from

the receive FIFO. All interrupts route to both cores, and the core’s internal interrupt controller selects the interrupt

signals it wishes to subscribe to. Section 3.2 defines the system-level IRQ numbering as well as details of the Arm non-

maskable interrupt (NMI).

The event signals described in Section 3.3 are a mechanism for processors to sleep when waiting for other processors

in the system to complete a task or free up some resource. Each processor sees events emitted by the other processor.

They also see exclusivity events generated by the Global Exclusive Monitor described in Section 2.1.6, which is the piece

of hardware that allows the processors to safely manipulate shared variables using atomic read-modify-write

sequences.

3.1. SIO

The Single-cycle IO subsystem (SIO) contains peripherals that require low-latency, deterministic access from the

processors. It is accessed via the AHB Fabric. The SIO has a dedicated bus interface for each processor, as shown in

Figure 7.
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The SIO contains:

• CPUID registers which read as 0/1 on core 0/1 (Section 3.1.2)

• Mailbox FIFOs for passing ordered messages between cores (Section 3.1.5)

• Doorbells for interrupting the opposite core on cumulative and unordered events (Section 3.1.6)

• Hardware spinlocks for implementing critical sections without using exclusive bus accesses (Section 3.1.4)

• Interpolators (Section 3.1.10) and TMDS encoders (Section 3.1.9)

• Standard RISC-V 64-bit platform timer (Section 3.1.8) which is usable by both Arm and RISC-V software

• GPIO registers for fast software bitbanging (Section 3.1.3), with shared access from both cores

Most SIO hardware is duplicated for Secure/Non-secure access. Non-secure access to the FIFO registers will see a

physically different FIFO than Secure access to the same address, so that messages belonging to Secure and Non-

secure software are not mixed: Section 3.1.1 describes this Secure/Non-secure banking in more detail.

3.1.1. Secure and Non-secure SIO

To allow isolation of Secure and Non-secure software, whilst keeping a consistent programming model for software

written to run in either domain, the SIO is duplicated into a Secure and a Non-secure bank. Most hardware is duplicated

between the two banks, including:

• Mailbox FIFOs

• Doorbell registers
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• Interrupt outputs to processors

• Spinlocks

For example, Non-secure code on core 0 can pass messages to Non-secure code on core 1 through the Non-secure

instance of the mailbox FIFO. In turn, this message will generate a Non-secure interrupt, which is separate from the

Secure FIFO interrupt line. This does not interfere with any Secure message passing which may be going on at the same

time, and Non-secure code can not snoop Secure messages because it does not have access to the Secure mailboxes.

The software running in the Secure and Non-secure domain can be identical, and the processors' bus accesses to the

SIO will automatically be routed to the Secure or Non-secure version of the mailbox registers.

The following hardware is not duplicated:

• The GPIO registers are shared, and Non-secure accesses are filtered on a per-GPIO basis by the Non-secure GPIO

mask defined in the ACCESSCTRL GPIO_NSMASK0 and GPIO_NSMASK1 registers

• The RISC-V standard platform timer (MTIME, MTIMEH), which is also usable by Arm processors, is present only in

the Secure SIO, as it is a Machine-mode peripheral on RISC-V

• The interpolator and TMDS encoder peripherals are assignable to either the Secure or Non-secure SIO using the

PERI_NONSEC register

Accesses to the SIO register address range, starting at 0xd0000000 (SIO_BASE), are mapped to the SIO bank which

matches the security attribute of the bus access. This means accesses from the Arm Secure state, or RISC-V Machine

mode, will access the Secure SIO bank, and accesses from the Arm Non-secure state, or RISC-V User mode, will access

the Non-secure SIO bank.

Additionally, Secure accesses can use the mirrored address range starting at 0xd0020000 (SIO_NONSEC_BASE) to access

the Non-secure view of SIO, for example, using the Non-secure doorbells to interrupt Non-secure code running on the

other core. Attempting to access this address range from Non-secure code will generate a bus fault.

 NOTE

The 0x20000 offset of the Secure-to-Non-secure mirror matches the PPB mirrors at 0xe0000000 (PPB_BASE) and

0xe0020000 (PPB_NONSEC_BASE), which function similarly.

 NOTE

Debug access is mapped to the Secure/Non-secure SIO using the security attribute of the debugger’s bus access,

which may differ from the security state that the core was halted in.

3.1.2. CPUID

The CPUID SIO register returns a value of 0 when read by core 0, and 1 when read by core 1. This helps software identify

the core running the current application. The initial boot sequence also relies on this check: both cores start running

simultaneously, core 1 goes into a deep sleep state, and core 0 continues the main boot sequence.

 IMPORTANT

Don’t confuse the SIO CPUID register with the Cortex-M33 CPUID register on each processor’s internal Private

Peripheral Bus, which lists the processor’s part number and version.
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 NOTE

Reading the MHARTID CSR on each Hazard3 core returns the same values as CPUID: 0 on core 0, and 1 on core 1.

3.1.3. GPIO Control

The SIO GPIO registers control GPIOs which have the SIO function selected (function 5). This function is supported on

the following pins:

• all user GPIOs (GPIOs 0 through 29, or 0 through 47, depending on package option)

• QSPI pins

• USB DP/DM pins

All SIO GPIO control registers come in pairs. The lower-addressed register in each pair (e.g. GPIO_IN) is connected to

GPIOs 0 through 31, and the higher-addressed register in each pair (e.g. GPIO_HI_IN) is connected to GPIOs 32 through

47, the QSPI pins, and the USB DP/DM pins.

 NOTE

To drive a pin with the SIO’s GPIO registers, the GPIO multiplexer for this pin must first be configured to select the

SIO GPIO function. See Table 643.

These GPIO registers are shared between the two cores: both cores can access them simultaneously. There are three

groups of registers:

• Output registers, GPIO_OUT and GPIO_HI_OUT set the output level of the GPIO. 0 for low output, 1 for high output.

• Output enable registers, GPIO_OE and GPIO_HI_OE, are used to enable the output driver. 0 for high-impedance, 1

for drive high or low based on GPIO_OUT and GPIO_HI_OUT.

• Input registers, GPIO_IN and GPIO_HI_IN, allow the processor to sample the current state of the GPIOs.

Reading GPIO_IN returns up to 32 input values in a single read, and software then masks out individual pins it is

interested in.

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 859 - 869

859 static inline bool gpio_get(uint gpio) {
860 #ifdef NUM_BANK0_GPIOS <= 32
861     return sio_hw->gpio_in & (1u << gpio);
862 #else
863     if (gpio < 32) {
864         return sio_hw->gpio_in & (1u << gpio);
865     } else {
866         return sio_hw->gpio_hi_in & (1u << (gpio - 32));
867     }
868 #endif
869 }

The OUT and OE registers also have atomic SET, CLR, and XOR aliases. This allows software to update a subset of the pins in

one operation. This ensures safety for concurrent GPIO access, both between the two cores and between a single core’s

interrupt handler and foreground code.

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 908 - 914

908 static inline void gpio_set_mask(uint32_t mask) {
909 #ifdef PICO_USE_GPIO_COPROCESSOR
910     gpioc_lo_out_set(mask);
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911 #else
912     sio_hw->gpio_set = mask;
913 #endif
914 }

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 955 - 961

955 static inline void gpio_clr_mask(uint32_t mask) {
956 #ifdef PICO_USE_GPIO_COPROCESSOR
957     gpioc_lo_out_clr(mask);
958 #else
959     sio_hw->gpio_clr = mask;
960 #endif
961 }

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 1145 - 1170

1145 static inline void gpio_put(uint gpio, bool value) {
1146 #ifdef PICO_USE_GPIO_COPROCESSOR
1147     gpioc_bit_out_put(gpio, value);
1148 #elif NUM_BANK0_GPIOS <= 32
1149     uint32_t mask = 1ul << gpio;
1150     if (value)
1151         gpio_set_mask(mask);
1152     else
1153         gpio_clr_mask(mask);
1154 #else
1155     uint32_t mask = 1ul << (gpio & 0x1fu);
1156     if (gpio < 32) {
1157         if (value) {
1158             sio_hw->gpio_set = mask;
1159         } else {
1160             sio_hw->gpio_clr = mask;
1161         }
1162     } else {
1163         if (value) {
1164             sio_hw->gpio_hi_set = mask;
1165         } else {
1166             sio_hw->gpio_hi_clr = mask;
1167         }
1168     }
1169 #endif
1170 }

If both processors write to an OUT or OE register (or any of its SET/CLR/XOR aliases) on the same clock cycle, the result is as

though core 0 wrote first, then core 1 wrote immediately afterward. For example, if core 0 SETs a bit and core 1 XORs it

on the same clock cycle, the bit ends up with a value of 0.
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 NOTE

This is a conceptual model for the result produced when two cores write to a GPIO register simultaneously. The

register never contains the intermediate values at any point. In the previous example, if the pin is initially 0, and core

0 performs a SET while core 1 performs a XOR, the GPIO output remains low throughout the clock cycle.

As well as being shared between cores, the GPIO registers are also shared between security domains. The Secure and

Non-secure SIO offer alternative views of the same GPIO registers, which are always mapped as GPIO function 5.

However, the Non-secure SIO can only access pins which are enabled in the GPIO Non-secure mask configured by the

ACCESSCTRL registers GPIO_NSMASK0 and GPIO_NSMASK1. The layout of the NSMASK registers matches the layout

of the SIO registers — for example, QSPI_SCK is bit 26 in both GPIO_HI_IN and GPIO_NSMASK1.

When a pin is not enabled in Non-secure code:

• writes to the corresponding GPIO registers from a Non-secure context have no effect

• reads from a Non-secure context return zeroes

• reads and writes from a Secure context function as usual using the Secure bank

The GPIO coprocessor port (Section 3.6.1) provides dedicated instructions for accessing the SIO GPIO registers from

the Cortex-M33 processors. This includes the ability to read and write 64 bits in a single operation.

3.1.4. Hardware Spinlocks

The SIO provides 32 hardware spinlocks, which can be used to manage mutually-exclusive access to shared software

resources. Each spinlock is a one-bit flag, mapped to a different address (from SPINLOCK0 to SPINLOCK31). Software

interacts with each spinlock with one of the following operations:

• Read: Attempt to claim the lock. Read value is non-zero if the lock was successfully claimed, or zero if the lock had

already been claimed by a previous read.

• Write (any value): Release the lock. The next attempt to claim the lock will succeed.

If both cores try to claim the same lock on the same clock cycle, core 0 succeeds.

Generally software will acquire a lock by repeatedly polling the lock bit ("spinning" on the lock) until it is successfully

claimed. This is inefficient if the lock is held for long periods, so generally the spinlocks should be used to protect short

critical sections of higher-level primitives such as mutexes, semaphores and queues.

For debugging purposes, the current state of all 32 spinlocks can be observed via SPINLOCK_ST.

 NOTE

RP2350 has separate spinlocks for Secure and Non-secure SIO banks because sharing these registers would allow

Non-secure code to deliberately starve Secure code that attempts to acquire a lock. See Section 3.1.1.

 NOTE

The processors on RP2350 support standard atomic/exclusive access instructions which, in concert with the global

exclusive monitor (Section 2.1.6), allow both cores to safely share variables in SRAM. The SIO spinlocks are still

included for compatibility with RP2040.
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 NOTE

Due to RP2350-E2, writes to new SIO registers above an offset of +0x180 alias the spinlocks, causing spurious lock

releases. The SDK by default uses atomic memory accesses to implement the hardware_sync_spin_lock API, as a

workaround on RP2350 A2.

3.1.5. Inter-processor FIFOs (Mailboxes)

The SIO contains two FIFOs for passing data, messages or ordered events between the two cores. Each FIFO is 32 bits

wide and four entries deep. One of the FIFOs can only be written by core 0 and read by core 1. The other can only be

written by core 1 and read by core 0.

Each core writes to its outgoing FIFO by writing to FIFO_WR and reads from its incoming FIFO by reading from FIFO_RD.

A status register, FIFO_ST, provides the following status signals:

• Incoming FIFO contains data (VLD).

• Outgoing FIFO has room for more data (RDY).

• The incoming FIFO was read from while empty at some point in the past (ROE).

• The outgoing FIFO was written to while full at some point in the past (WOF).

Writing to the outgoing FIFO while full, or reading from the incoming FIFO while empty, does not affect the FIFO state.

The current contents and level of the FIFO is preserved. However, this does represent some loss of data or reception of

invalid data by the software accessing the FIFO, so a sticky error flag is raised (ROE or WOF).

The SIO has a FIFO IRQ output for each core to notify the core that it has received FIFO data. This is a core-local

interrupt, mapped to the same IRQ number on each core (SIO_IRQ_FIFO, interrupt number 25). Non-secure FIFO interrupts

use a separate interrupt line, (SIO_IRQ_FIFO_NS, interrupt number 27). It is not possible to interrupt on the opposite core’s

FIFO.

Each IRQ output is the logical OR of the VLD, ROE and WOF bits in that core’s FIFO_ST register: that is, the IRQ is asserted if

any of these three bits is high, and clears again when they are all low. To clear the ROE and WOF flags, write any value to

FIFO_ST. To clear the VLD flag, read data from the FIFO until it is empty.

If the corresponding interrupt line is enabled in the processor’s interrupt controller, the processor takes an interrupt

each time data appears in its FIFO, or if it has performed some invalid FIFO operation (read on empty, write on full).

 NOTE

ROE and WOF only become set if software misbehaves in some way. Generally, the interrupt handler triggers when data

appears in the FIFO, raising the VLD flag. Then, the interrupt handler clears the IRQ by reading data from the FIFO until

VLD goes low once more.

The inter-processor FIFOs and the Event signals are used by the bootrom (Chapter 5) wait_for_vector routine, where core

1 remains in a sleep state until it is woken, and provided with its initial stack pointer, entry point and vector table through

the FIFO.

 NOTE

RP2350 has separate FIFOs and interrupts for Secure and Non-secure SIO banks. See Section 3.1.1

3.1.6. Doorbells

The doorbell registers raise an interrupt on the opposite core. There are 8 doorbell flags in each direction, combined into

a single doorbell interrupt per core. This is a core-local interrupt: the same interrupt number on each core (SIO_IRQ_BELL,

interrupt number 26) notifies that core of incoming doorbell interrupts.
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Whereas the mailbox FIFOs are used for cross-core events whose count and order is important, doorbells are used for

events which are accumulative (i.e. may post multiple times, but only answered once) and which can be responded to in

any order.

Writing a non-zero value to the DOORBELL_OUT_SET register raises the opposite core’s doorbell interrupt. The interrupt

remains raised until all bits are cleared. Generally, the opposite core enters its doorbell interrupt handler, reads its

DOORBELL_IN_CLR register to get the mask of active doorbell flags, and then writes back to acknowledge and clear the

interrupt.

The DOORBELL_IN_SET register allows a processor to ring its own doorbell. This is useful when the routine which rings

a doorbell can be scheduled on either core. Likewise, for symmetry, a processor can clear the opposite core’s doorbell

flags using the DOORBELL_OUT_CLR register: this is useful for setup code, but should be avoided in general because of

the potential for race conditions when acknowledging interrupts meant for the opposite core.

At any time, a core can read back its DOORBELL_OUT_SET or DOORBELL_OUT_CLR register (they return the same

result) to see the status of doorbell interrupts posted to the opposite core. Likewise, reading either DOORBELL_IN_SET

or DOORBELL_IN_CLR returns the status of doorbell interrupts posted to this core.

 NOTE

RP2350 has separate per-core doorbell interrupt signals and doorbell registers for Secure and Non-secure SIO

banks. Non-secure doorbells are posted on SIO_IRQ_BELL_NS, interrupt number 28. See Section 3.1.1.

3.1.7. Integer Divider

RP2040’s memory-mapped integer divider peripheral is not present on RP2350, since the processors support divide

instructions. The address space previously allocated for the divider registers is now reserved.

3.1.8. RISC-V Platform Timer

This 64-bit timer is a standard peripheral described in the RISC-V privileged specification, usable equally by the Arm and

RISC-V processors on RP2350. It drives the per-core SIO_IRQ_MTIMECMP system-level interrupt (Section 3.2), as well as the

mip.mtip timer interrupt on the RISC-V processors.

There is a single 64-bit counter, shared between both cores. The low and high half can be accessed through the MTIME

and MTIMEH SIO registers. Use the following procedure to safely read the 64-bit time using 32-bit register accesses:

1. Read the upper half, MTIMEH.

2. Read the lower half, MTIME.

3. Read the upper half again.

4. Loop if the two upper-half reads returned different values.

This is similar to the procedure for reading RP2350 system timers (Section 12.8). The loop should only happen once,

when the timer is read at exactly the instant of a 32-bit rollover, and even this is only occasional. If you require constant-

time operation, you can instead zero the lower half when the two upper-half reads differ.

Timer interrupts are generated based on a per-core 64-bit time comparison value, accessed through the MTIMECMP

and MTIMECMPH SIO registers. Each core gets its own copy of these registers, accessed at the same address. The per-

core interrupt is asserted whenever the current time indicated in the MTIME registers is greater than or equal to that

core’s MTIMECMP. Use the following sequence to write a new 64-bit timer comparison value without causing spurious

interrupts:

1. Write all-ones to MTIMECMP (guaranteed greater than or equal to the old value, and the lower half of the target

value).

2. Write the upper half of the target value to MTIMECMPH (combined 64-bit value is still greater than or equal to the

target value).
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3. Write the lower half of the target value to MTIMECMP.

The RISC-V timer can count either ticks from the system-level tick generator (Section 8.5), or system clock cycles,

selected by the MTIME_CTRL register. Use a 1 microsecond time base for compatibility with most RISC-V software.

3.1.9. TMDS Encoder

Each core is equipped with an implementation of the TMDS encode algorithm described in chapter 3 of the DVI 1.0

specification. In general, the HSTX peripheral (Section 12.11) supports lower processor overhead for DVI-D output as

well as a wider range of pixel formats, but the SIO TMDS encoders are included for use with non-HSTX-capable GPIOs.

The TMDS_CTRL register allows configuration of a number of input pixel formats, from 16-bit RGB down to 1-bit

monochrome. Once the encoder has been set up, the processor writes 32 bits of colour data at a time to TMDS_WDATA,

and then reads TMDS data symbols from the output registers. Depending on the pixel format, there may be multiple

TMDS symbols read for each write to TMDS_WDATA. There are no stalls: encoding is limited entirely by the processor’s

load/store bandwidth, up to one 32-bit read or write per cycle per core.

To allow for framebuffer/scanbuffer resolution lower than the display resolution, the output registers have both peek

and pop aliases (e.g. TMDS_PEEK_SINGLE and TMDS_POP_SINGLE). Reading either register advances the encoder’s DC

balance counter, but only the pop alias shifts the colour data in TMDS_WDATA so that multiple correctly-DC-balanced

TMDS symbols can be generated from the same input pixel.

The TMDS encoder peripherals are not duplicated over security domains. They are assigned to the Secure SIO at reset,

and can be reassigned to the Non-secure SIO using the PERI_NONSEC register.

3.1.10. Interpolator

Each core is equipped with two interpolators (INTERP0 and INTERP1) which can accelerate tasks by combining certain pre-

configured operations into a single processor cycle. Intended for cases where the pre-configured operation repeats

many times, interpolators result in code which uses both fewer CPU cycles and fewer CPU registers in time-critical

sections.

The interpolators already accelerate audio operations within the SDK. Their flexible configuration makes it possible to

optimise many other tasks, including:

• quantization

• dithering

• table lookup address generation

• affine texture mapping

• decompression

• linear feedback
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Figure 8. An

interpolator. The two

accumulator registers

and three base

registers have single-

cycle read/write

access from the

processor. The

interpolator is

organised into two

lanes, which perform

masking, shifting and

sign-extension

operations on the two

accumulators. This

produces three

possible results, by

adding the

intermediate

shift/mask values to

the three base

registers. From left to

right, the multiplexers

on each lane are

controlled by the

following flags in the

CTRL registers:

CROSS_RESULT,

CROSS_INPUT, SIGNED,

and ADD_RAW.

The processor can write or read any interpolator register in one cycle, and the results are ready on the next cycle. The

processor can also perform an addition on one of the two accumulators ACCUM0 or ACCUM1 by writing to the corresponding

ACCUMx_ADD register.

The three results are available in the read-only locations PEEK0, PEEK1, PEEK2. Reading from these locations does not

change the state of the interpolator. The results are also aliased at the locations POP0, POP1, POP2; reading from a POPx alias

returns the same result as the corresponding PEEKx, and simultaneously writes back the lane results to the

accumulators. Use the POPx aliases to advance the state of interpolator each time a result is read.

You can adjust interpolator behaviour with the following operational modes:

• fractional blending between two values

• clamping values to restrict them within a given range.

The following example shows a trivial example of popping a lane result to produce simple iterative feedback.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/interp/hello_interp/hello_interp.c Lines 11 - 23

11 void times_table() {
12     puts("9 times table:");
13 
14     // Initialise lane 0 on interp0 on this core
15     interp_config cfg = interp_default_config();
16     interp_set_config(interp0, 0, &cfg);
17 
18     interp0->accum[0] = 0;
19     interp0->base[0] = 9;
20 
21     for (int i = 0; i < 10; ++i)
22         printf("%d\n", interp0->pop[0]);
23 }

3.1.10.1. Lane Operations
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Figure 9. Each lane of

each interpolator can

be configured to

perform mask, shift

and sign-extension on

one of the

accumulators. This is

fed into adders which

produce final results,

which may optionally

be fed back into the

accumulators with

each read. The

datapath can be

configured using a

handful of 32-bit

multiplexers. From left

to right, these are

controlled by the

following CTRL flags:

CROSS_RESULT,

CROSS_INPUT, SIGNED,

and ADD_RAW.

Each lane performs these three operations, in sequence:

• A right shift by CTRL_LANEx_SHIFT (0 to 31 bits)

• A mask of bits from CTRL_LANEx_MASK_LSB to CTRL_LANEx_MASK_MSB inclusive (each ranging from bit 0 to bit 31)

• A sign extension from the top of the mask, i.e. take bit CTRL_LANEx_MASK_MSB and OR it into all more-significant bits, if

CTRL_LANEx_SIGNED is set

For example, if:

• ACCUM0 = 0xdeadbeef

• CTRL_LANE0_SHIFT = 8

• CTRL_LANE0_MASK_LSB = 4

• CTRL_LANE0_MASK_MSB = 7

• CTRL_SIGNED = 1

Then lane 0 would produce the following results at each stage:

• Right shift by 8 to produce 0x00deadbe

• Mask bits 7 to 4 to produce 0x00deadbe & 0x000000f0 = 0x000000b0

• Sign-extend up from bit 7 to produce 0xffffffb0

In software:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/interp/hello_interp/hello_interp.c Lines 25 - 46

25 void moving_mask() {
26     interp_config cfg = interp_default_config();
27     interp0->accum[0] = 0x1234abcd;
28 
29     puts("Masking:");
30     printf("ACCUM0 = %08x\n", interp0->accum[0]);
31     for (int i = 0; i < 8; ++i) {
32         // LSB, then MSB. These are inclusive, so 0,31 means "the entire 32 bit register"
33         interp_config_set_mask(&cfg, i * 4, i * 4 + 3);
34         interp_set_config(interp0, 0, &cfg);
35         // Reading from ACCUMx_ADD returns the raw lane shift and mask value, without BASEx
   added
36         printf("Nibble %d: %08x\n", i, interp0->add_raw[0]);
37     }
38 
39     puts("Masking with sign extension:");
40     interp_config_set_signed(&cfg, true);
41     for (int i = 0; i < 8; ++i) {
42         interp_config_set_mask(&cfg, i * 4, i * 4 + 3);
43         interp_set_config(interp0, 0, &cfg);
44         printf("Nibble %d: %08x\n", i, interp0->add_raw[0]);
45     }
46 }

The above example should print the following:

RP2350 Datasheet

3.1. SIO 46

https://github.com/raspberrypi/pico-examples/blob/develop/interp/hello_interp/hello_interp.c#L25-L46


ACCUM0 = 1234abcd
Nibble 0: 0000000d
Nibble 1: 000000c0
Nibble 2: 00000b00
Nibble 3: 0000a000
Nibble 4: 00040000
Nibble 5: 00300000
Nibble 6: 02000000
Nibble 7: 10000000
Masking with sign extension:
Nibble 0: fffffffd
Nibble 1: ffffffc0
Nibble 2: fffffb00
Nibble 3: ffffa000
Nibble 4: 00040000
Nibble 5: 00300000
Nibble 6: 02000000
Nibble 7: 10000000

Changing the result and input multiplexers can create feedback between the accumulators. This is useful for audio

dithering.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/interp/hello_interp/hello_interp.c Lines 48 - 66

48 void cross_lanes() {
49     interp_config cfg = interp_default_config();
50     interp_config_set_cross_result(&cfg, true);
51     // ACCUM0 gets lane 1 result:
52     interp_set_config(interp0, 0, &cfg);
53     // ACCUM1 gets lane 0 result:
54     interp_set_config(interp0, 1, &cfg);
55 
56     interp0->accum[0] = 123;
57     interp0->accum[1] = 456;
58     interp0->base[0] = 1;
59     interp0->base[1] = 0;
60     puts("Lane result crossover:");
61     for (int i = 0; i < 10; ++i) {
62         uint32_t peek0 = interp0->peek[0];
63         uint32_t pop1 = interp0->pop[1];
64         printf("PEEK0, POP1: %d, %d\n", peek0, pop1);
65     }
66 }

This should print the following :

PEEK0, POP1: 124, 456
PEEK0, POP1: 457, 124
PEEK0, POP1: 125, 457
PEEK0, POP1: 458, 125
PEEK0, POP1: 126, 458
PEEK0, POP1: 459, 126
PEEK0, POP1: 127, 459
PEEK0, POP1: 460, 127
PEEK0, POP1: 128, 460
PEEK0, POP1: 461, 128
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3.1.10.2. Blend Mode

Blend mode is available on INTERP0 on each core, and is enabled by the CTRL_LANE0_BLEND control flag. It performs linear

interpolation, which we define as follows:

Where  is the register BASE0,  is the register BASE1, and  is a fractional value formed from the least significant 8 bits

of the lane 1 shift and mask value.

Blend mode differs from normal mode in the following ways:

• PEEK0, POP0 return the 8-bit alpha value (the 8 LSBs of the lane 1 shift and mask value), with zeroes in result bits 31

down to 24.

• PEEK1, POP1 return the linear interpolation between BASE0 and BASE1

• PEEK2, POP2 do not include lane 1 result in the addition (i.e. it is BASE2 + lane 0 shift and mask value)

The result of the linear interpolation is equal to BASE0 when the alpha value is 0, and equal to BASE0 + 255/256 * (BASE1 -

BASE0) when the alpha value is all-ones.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/interp/hello_interp/hello_interp.c Lines 68 - 87

68 void simple_blend1() {
69     puts("Simple blend 1:");
70 
71     interp_config cfg = interp_default_config();
72     interp_config_set_blend(&cfg, true);
73     interp_set_config(interp0, 0, &cfg);
74 
75     cfg = interp_default_config();
76     interp_set_config(interp0, 1, &cfg);
77 
78     interp0->base[0] = 500;
79     interp0->base[1] = 1000;
80 
81     for (int i = 0; i <= 6; i++) {
82         // set fraction to value between 0 and 255
83         interp0->accum[1] = 255 * i / 6;
84         // ≈ 500 + (1000 - 500) * i / 6;
85         printf("%d\n", (int) interp0->peek[1]);
86     }
87 }

This should print the following (note the 255/256 resulting in 998 not 1000):

500
582
666
748
832
914
998

CTRL_LANE1_SIGNED controls whether BASE0 and BASE1 are sign-extended for this interpolation (this sign extension is required

because the interpolation produces an intermediate product value 40 bits in size). CTRL_LANE0_SIGNED continues to control

the sign extension of the lane 0 intermediate result in PEEK2, POP2 as normal.
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Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/interp/hello_interp/hello_interp.c Lines 90 - 121

 90 void print_simple_blend2_results(bool is_signed) {
 91     // lane 1 signed flag controls whether base 0/1 are treated as signed or unsigned
 92     interp_config cfg = interp_default_config();
 93     interp_config_set_signed(&cfg, is_signed);
 94     interp_set_config(interp0, 1, &cfg);
 95 
 96     for (int i = 0; i <= 6; i++) {
 97         interp0->accum[1] = 255 * i / 6;
 98         if (is_signed) {
 99             printf("%d\n", (int) interp0->peek[1]);
100         } else {
101             printf("0x%08x\n", (uint) interp0->peek[1]);
102         }
103     }
104 }
105 
106 void simple_blend2() {
107     puts("Simple blend 2:");
108 
109     interp_config cfg = interp_default_config();
110     interp_config_set_blend(&cfg, true);
111     interp_set_config(interp0, 0, &cfg);
112 
113     interp0->base[0] = (uint32_t) -1000;
114     interp0->base[1] = 1000;
115 
116     puts("signed:");
117     print_simple_blend2_results(true);
118 
119     puts("unsigned:");
120     print_simple_blend2_results(false);
121 }

This should print the following:

signed:
-1000
-672
-336
-8
328
656
992
unsigned:
0xfffffc18
0xd5fffd60
0xaafffeb0
0x80fffff8
0x56000148
0x2c000290
0x010003e0

Finally, in blend mode when using the BASE_1AND0 register to send a 16-bit value to each of BASE0 and BASE1 with a single

32-bit write, the sign-extension of these 16-bit values to full 32-bit values during the write is controlled by

CTRL_LANE1_SIGNED for both bases, as opposed to non-blend-mode operation, where CTRL_LANE0_SIGNED affects extension

into BASE0 and CTRL_LANE1_SIGNED affects extension into BASE1.
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Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/interp/hello_interp/hello_interp.c Lines 124 - 145

124 void simple_blend3() {
125     puts("Simple blend 3:");
126 
127     interp_config cfg = interp_default_config();
128     interp_config_set_blend(&cfg, true);
129     interp_set_config(interp0, 0, &cfg);
130 
131     cfg = interp_default_config();
132     interp_set_config(interp0, 1, &cfg);
133 
134     interp0->accum[1] = 128;
135     interp0->base01 = 0x30005000;
136     printf("0x%08x\n", (int) interp0->peek[1]);
137     interp0->base01 = 0xe000f000;
138     printf("0x%08x\n", (int) interp0->peek[1]);
139 
140     interp_config_set_signed(&cfg, true);
141     interp_set_config(interp0, 1, &cfg);
142 
143     interp0->base01 = 0xe000f000;
144     printf("0x%08x\n", (int) interp0->peek[1]);
145 }

This should print the following:

0x00004000
0x0000e800
0xffffe800

3.1.10.3. Clamp Mode

Clamp mode is available on INTERP1 on each core. To enable clamp mode, set the CTRL_LANE0_CLAMP control flag to high. In

clamp mode, the PEEK0/POP0 result is the lane value (shifted, masked, sign-extended ACCUM0) clamped between BASE0 and

BASE1. In other words, if the lane value is less than BASE0, a value of BASE0 is produced; if greater than BASE1, a value of BASE1

is produced; otherwise, the value passes through. No addition is performed. The signedness of these comparisons is

controlled by the CTRL_LANE0_SIGNED flag.

Other than this, the interpolator behaves the same as in normal mode.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/interp/hello_interp/hello_interp.c Lines 193 - 211

193 void clamp() {
194     puts("Clamp:");
195     interp_config cfg = interp_default_config();
196     interp_config_set_clamp(&cfg, true);
197     interp_config_set_shift(&cfg, 2);
198     // set mask according to new position of sign bit..
199     interp_config_set_mask(&cfg, 0, 29);
200     // ...so that the shifted value is correctly sign extended
201     interp_config_set_signed(&cfg, true);
202     interp_set_config(interp1, 0, &cfg);
203 
204     interp1->base[0] = 0;
205     interp1->base[1] = 255;
206 
207     for (int i = -1024; i <= 1024; i += 256) {
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208         interp1->accum[0] = i;
209         printf("%d\t%d\n", i, (int) interp1->peek[0]);
210     }
211 }

This should print the following:

-1024   0
-768    0
-512    0
-256    0
0       0
256     64
512     128
768     192
1024    255

3.1.10.4. Sample Use Case: Linear Interpolation

Linear interpolation combines blend mode with other interpolator functionality. In this example, ACCUM0 tracks a fixed-

point (integer/fraction) position within a list of values to be interpolated. Lane 0 is used to produce an address into the

value array for the integer part of the position. The fractional part of the position is shifted to produce a value from 0-

255 for the blend. The blend is performed between two consecutive values in the array.

Finally the fractional position is updated via a single write to ACCUM0_ADD_RAW.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/interp/hello_interp/hello_interp.c Lines 147 - 191

147 void linear_interpolation() {
148     puts("Linear interpolation:");
149     const int uv_fractional_bits = 12;
150 
151     // for lane 0
152     // shift and mask XXXX XXXX XXXX XXXX XXXX FFFF FFFF FFFF (accum 0)
153     // to             0000 0000 000X XXXX XXXX XXXX XXXX XXX0
154     // i.e. non fractional part times 2 (for uint16_t)
155     interp_config cfg = interp_default_config();
156     interp_config_set_shift(&cfg, uv_fractional_bits - 1);
157     interp_config_set_mask(&cfg, 1, 32 - uv_fractional_bits);
158     interp_config_set_blend(&cfg, true);
159     interp_set_config(interp0, 0, &cfg);
160 
161     // for lane 1
162     // shift XXXX XXXX XXXX XXXX XXXX FFFF FFFF FFFF (accum 0 via cross input)
163     // to    0000 XXXX XXXX XXXX XXXX FFFF FFFF FFFF
164 
165     cfg = interp_default_config();
166     interp_config_set_shift(&cfg, uv_fractional_bits - 8);
167     interp_config_set_signed(&cfg, true);
168     interp_config_set_cross_input(&cfg, true); // signed blending
169     interp_set_config(interp0, 1, &cfg);
170 
171     int16_t samples[] = {0, 10, -20, -1000, 500};
172 
173     // step is 1/4 in our fractional representation
174     uint step = (1 << uv_fractional_bits) / 4;
175 
176     interp0->accum[0] = 0; // initial sample_offset;
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177     interp0->base[2] = (uintptr_t) samples;
178     for (int i = 0; i < 16; i++) {
179         // result2 = samples + (lane0 raw result)
180         // i.e. ptr to the first of two samples to blend between
181         int16_t *sample_pair = (int16_t *) interp0->peek[2];
182         interp0->base[0] = sample_pair[0];
183         interp0->base[1] = sample_pair[1];
184         uint32_t peek1 = interp0->peek[1];
185         uint32_t add_raw1 = interp0->add_raw[1];
186         printf("%d\t(%d%% between %d and %d)\n", (int) peek1,
187                100 * (add_raw1 & 0xff) / 0xff,
188                sample_pair[0], sample_pair[1]);
189         interp0->add_raw[0] = step;
190     }
191 }

This should print the following:

0       (0% between 0 and 10)
2       (25% between 0 and 10)
5       (50% between 0 and 10)
7       (75% between 0 and 10)
10      (0% between 10 and -20)
2       (25% between 10 and -20)
-5      (50% between 10 and -20)
-13     (75% between 10 and -20)
-20     (0% between -20 and -1000)
-265    (25% between -20 and -1000)
-510    (50% between -20 and -1000)
-755    (75% between -20 and -1000)
-1000   (0% between -1000 and 500)
-625    (25% between -1000 and 500)
-250    (50% between -1000 and 500)
125     (75% between -1000 and 500)

This method is used for fast approximate audio upscaling in the SDK.

3.1.10.5. Sample Use Case: Simple Affine Texture Mapping

Simple affine texture mapping can be implemented by using fixed-point arithmetic for texture coordinates, and stepping

a fixed amount in each coordinate for every pixel in a scanline. The integer parts of the texture coordinates form an

address into the texture. Reading from POP2 adds the offset to the texture base pointer. The processor loads the

resulting address to sample a pixel colour from the texture.

By using two lanes, all three base values, and the CTRL_LANEx_ADD_RAW flag, you can use the interpolator to reduce an

expensive CPU operation to a single cycle iteration.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/interp/hello_interp/hello_interp.c Lines 214 - 272

214 void texture_mapping_setup(uint8_t *texture, uint texture_width_bits, uint
    texture_height_bits,
215                            uint uv_fractional_bits) {
216     interp_config cfg = interp_default_config();
217     // set add_raw flag to use raw (un-shifted and un-masked) lane accumulator value when
    adding
218     // it to the the lane base to make the lane result
219     interp_config_set_add_raw(&cfg, true);
220     interp_config_set_shift(&cfg, uv_fractional_bits);
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221     interp_config_set_mask(&cfg, 0, texture_width_bits - 1);
222     interp_set_config(interp0, 0, &cfg);
223 
224     interp_config_set_shift(&cfg, uv_fractional_bits - texture_width_bits);
225     interp_config_set_mask(&cfg, texture_width_bits, texture_width_bits +
    texture_height_bits - 1);
226     interp_set_config(interp0, 1, &cfg);
227 
228     interp0->base[2] = (uintptr_t) texture;
229 }
230 
231 void texture_mapped_span(uint8_t *output, uint32_t u, uint32_t v, uint32_t du, uint32_t dv,
    uint count) {
232     // u, v are texture coordinates in fixed point with uv_fractional_bits fractional bits
233     // du, dv are texture coordinate steps across the span in same fixed point.
234     interp0->accum[0] = u;
235     interp0->base[0] = du;
236     interp0->accum[1] = v;
237     interp0->base[1] = dv;
238     for (uint i = 0; i < count; i++) {
239         // equivalent to
240         // uint32_t sm_result0 = (accum0 >> uv_fractional_bits) & (1 << (texture_width_bits -
    1);
241         // uint32_t sm_result1 = (accum1 >> uv_fractional_bits) & (1 << (texture_height_bits -
    1);
242         // uint8_t *address = texture + sm_result0 + (sm_result1 << texture_width_bits);
243         // output[i] = *address;
244         // accum0 = du + accum0;
245         // accum1 = dv + accum1;
246 
247         // result2 is the texture address for the current pixel;
248         // popping the result advances to the next iteration
249         output[i] = *(uint8_t *) interp0->pop[2];
250     }
251 }
252 
253 void texture_mapping() {
254     puts("Affine Texture mapping (with texture wrap):");
255 
256     uint8_t texture[] = {
257             0x00, 0x01, 0x02, 0x03,
258             0x10, 0x11, 0x12, 0x13,
259             0x20, 0x21, 0x22, 0x23,
260             0x30, 0x31, 0x32, 0x33,
261     };
262     // 4x4 texture
263     texture_mapping_setup(texture, 2, 2, 16);
264     uint8_t output[12];
265     uint32_t du = 65536 / 2;  // step of 1/2
266     uint32_t dv = 65536 / 3;  // step of 1/3
267     texture_mapped_span(output, 0, 0, du, dv, 12);
268 
269     for (uint i = 0; i < 12; i++) {
270         printf("0x%02x\n", output[i]);
271     }
272 }

This should print the following:
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0x00
0x00
0x01
0x01
0x12
0x12
0x13
0x23
0x20
0x20
0x31
0x31

3.1.11. List of Registers

The SIO registers start at a base address of 0xd0000000 (defined as SIO_BASE in SDK).

Table 16. List of SIO

registers
Offset Name Info

0x000 CPUID Processor core identifier

0x004 GPIO_IN Input value for GPIO0…31.

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL)

appear as zero.

0x008 GPIO_HI_IN Input value on GPIO32…47, QSPI IOs and USB pins

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL)

appear as zero.

0x010 GPIO_OUT GPIO0…31 output value

0x014 GPIO_HI_OUT Output value for GPIO32…47, QSPI IOs and USB pins.

Write to set output level (1/0 → high/low). Reading back gives

the last value written, NOT the input value from the pins. If core 0

and core 1 both write to GPIO_HI_OUT simultaneously (or to a

SET/CLR/XOR alias), the result is as though the write from core 0

took place first, and the write from core 1 was then applied to

that intermediate result.

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL)

ignore writes, and their output status reads back as zero. This is

also true for SET/CLR/XOR aliases of this register.

0x018 GPIO_OUT_SET GPIO0…31 output value set

0x01c GPIO_HI_OUT_SET Output value set for GPIO32..47, QSPI IOs and USB pins.

Perform an atomic bit-set on GPIO_HI_OUT, i.e. GPIO_HI_OUT |=

wdata

0x020 GPIO_OUT_CLR GPIO0…31 output value clear

0x024 GPIO_HI_OUT_CLR Output value clear for GPIO32..47, QSPI IOs and USB pins.

Perform an atomic bit-clear on GPIO_HI_OUT, i.e. GPIO_HI_OUT &=

~wdata

0x028 GPIO_OUT_XOR GPIO0…31 output value XOR
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Offset Name Info

0x02c GPIO_HI_OUT_XOR Output value XOR for GPIO32..47, QSPI IOs and USB pins.

Perform an atomic bitwise XOR on GPIO_HI_OUT, i.e. GPIO_HI_OUT

^= wdata

0x030 GPIO_OE GPIO0…31 output enable

0x034 GPIO_HI_OE Output enable value for GPIO32…47, QSPI IOs and USB pins.

Write output enable (1/0 → output/input). Reading back gives

the last value written. If core 0 and core 1 both write to

GPIO_HI_OE simultaneously (or to a SET/CLR/XOR alias), the

result is as though the write from core 0 took place first, and the

write from core 1 was then applied to that intermediate result.

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL)

ignore writes, and their output status reads back as zero. This is

also true for SET/CLR/XOR aliases of this register.

0x038 GPIO_OE_SET GPIO0…31 output enable set

0x03c GPIO_HI_OE_SET Output enable set for GPIO32…47, QSPI IOs and USB pins.

Perform an atomic bit-set on GPIO_HI_OE, i.e. GPIO_HI_OE |= wdata

0x040 GPIO_OE_CLR GPIO0…31 output enable clear

0x044 GPIO_HI_OE_CLR Output enable clear for GPIO32…47, QSPI IOs and USB pins.

Perform an atomic bit-clear on GPIO_HI_OE, i.e. GPIO_HI_OE &=

~wdata

0x048 GPIO_OE_XOR GPIO0…31 output enable XOR

0x04c GPIO_HI_OE_XOR Output enable XOR for GPIO32…47, QSPI IOs and USB pins.

Perform an atomic bitwise XOR on GPIO_HI_OE, i.e. GPIO_HI_OE ^=

wdata

0x050 FIFO_ST Status register for inter-core FIFOs (mailboxes).

0x054 FIFO_WR Write access to this core’s TX FIFO

0x058 FIFO_RD Read access to this core’s RX FIFO

0x05c SPINLOCK_ST Spinlock state

0x080 INTERP0_ACCUM0 Read/write access to accumulator 0

0x084 INTERP0_ACCUM1 Read/write access to accumulator 1

0x088 INTERP0_BASE0 Read/write access to BASE0 register.

0x08c INTERP0_BASE1 Read/write access to BASE1 register.

0x090 INTERP0_BASE2 Read/write access to BASE2 register.

0x094 INTERP0_POP_LANE0 Read LANE0 result, and simultaneously write lane results to both

accumulators (POP).

0x098 INTERP0_POP_LANE1 Read LANE1 result, and simultaneously write lane results to both

accumulators (POP).

0x09c INTERP0_POP_FULL Read FULL result, and simultaneously write lane results to both

accumulators (POP).

0x0a0 INTERP0_PEEK_LANE0 Read LANE0 result, without altering any internal state (PEEK).

0x0a4 INTERP0_PEEK_LANE1 Read LANE1 result, without altering any internal state (PEEK).
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0x0a8 INTERP0_PEEK_FULL Read FULL result, without altering any internal state (PEEK).

0x0ac INTERP0_CTRL_LANE0 Control register for lane 0

0x0b0 INTERP0_CTRL_LANE1 Control register for lane 1

0x0b4 INTERP0_ACCUM0_ADD Values written here are atomically added to ACCUM0

0x0b8 INTERP0_ACCUM1_ADD Values written here are atomically added to ACCUM1

0x0bc INTERP0_BASE_1AND0 On write, the lower 16 bits go to BASE0, upper bits to BASE1

simultaneously.

0x0c0 INTERP1_ACCUM0 Read/write access to accumulator 0

0x0c4 INTERP1_ACCUM1 Read/write access to accumulator 1

0x0c8 INTERP1_BASE0 Read/write access to BASE0 register.

0x0cc INTERP1_BASE1 Read/write access to BASE1 register.

0x0d0 INTERP1_BASE2 Read/write access to BASE2 register.

0x0d4 INTERP1_POP_LANE0 Read LANE0 result, and simultaneously write lane results to both

accumulators (POP).

0x0d8 INTERP1_POP_LANE1 Read LANE1 result, and simultaneously write lane results to both

accumulators (POP).

0x0dc INTERP1_POP_FULL Read FULL result, and simultaneously write lane results to both

accumulators (POP).

0x0e0 INTERP1_PEEK_LANE0 Read LANE0 result, without altering any internal state (PEEK).

0x0e4 INTERP1_PEEK_LANE1 Read LANE1 result, without altering any internal state (PEEK).

0x0e8 INTERP1_PEEK_FULL Read FULL result, without altering any internal state (PEEK).

0x0ec INTERP1_CTRL_LANE0 Control register for lane 0

0x0f0 INTERP1_CTRL_LANE1 Control register for lane 1

0x0f4 INTERP1_ACCUM0_ADD Values written here are atomically added to ACCUM0

0x0f8 INTERP1_ACCUM1_ADD Values written here are atomically added to ACCUM1

0x0fc INTERP1_BASE_1AND0 On write, the lower 16 bits go to BASE0, upper bits to BASE1

simultaneously.

0x100 SPINLOCK0 Spinlock register 0

0x104 SPINLOCK1 Spinlock register 1

0x108 SPINLOCK2 Spinlock register 2

0x10c SPINLOCK3 Spinlock register 3

0x110 SPINLOCK4 Spinlock register 4

0x114 SPINLOCK5 Spinlock register 5

0x118 SPINLOCK6 Spinlock register 6

0x11c SPINLOCK7 Spinlock register 7

0x120 SPINLOCK8 Spinlock register 8

0x124 SPINLOCK9 Spinlock register 9
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0x128 SPINLOCK10 Spinlock register 10

0x12c SPINLOCK11 Spinlock register 11

0x130 SPINLOCK12 Spinlock register 12

0x134 SPINLOCK13 Spinlock register 13

0x138 SPINLOCK14 Spinlock register 14

0x13c SPINLOCK15 Spinlock register 15

0x140 SPINLOCK16 Spinlock register 16

0x144 SPINLOCK17 Spinlock register 17

0x148 SPINLOCK18 Spinlock register 18

0x14c SPINLOCK19 Spinlock register 19

0x150 SPINLOCK20 Spinlock register 20

0x154 SPINLOCK21 Spinlock register 21

0x158 SPINLOCK22 Spinlock register 22

0x15c SPINLOCK23 Spinlock register 23

0x160 SPINLOCK24 Spinlock register 24

0x164 SPINLOCK25 Spinlock register 25

0x168 SPINLOCK26 Spinlock register 26

0x16c SPINLOCK27 Spinlock register 27

0x170 SPINLOCK28 Spinlock register 28

0x174 SPINLOCK29 Spinlock register 29

0x178 SPINLOCK30 Spinlock register 30

0x17c SPINLOCK31 Spinlock register 31

0x180 DOORBELL_OUT_SET Trigger a doorbell interrupt on the opposite core.

Write 1 to a bit to set the corresponding bit in DOORBELL_IN on

the opposite core. This raises the opposite core’s doorbell

interrupt.

Read to get the status of the doorbells currently asserted on the

opposite core. This is equivalent to that core reading its own

DOORBELL_IN status.
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0x184 DOORBELL_OUT_CLR Clear doorbells which have been posted to the opposite core.

This register is intended for debugging and initialisation

purposes.

Writing 1 to a bit in DOORBELL_OUT_CLR clears the

corresponding bit in DOORBELL_IN on the opposite core.

Clearing all bits will cause that core’s doorbell interrupt to

deassert. Since the usual order of events is for software to send

events using DOORBELL_OUT_SET, and acknowledge incoming

events by writing to DOORBELL_IN_CLR, this register should be

used with caution to avoid race conditions.

Reading returns the status of the doorbells currently asserted on

the other core, i.e. is equivalent to that core reading its own

DOORBELL_IN status.

0x188 DOORBELL_IN_SET Write 1s to trigger doorbell interrupts on this core. Read to get

status of doorbells currently asserted on this core.

0x18c DOORBELL_IN_CLR Check and acknowledge doorbells posted to this core. This

core’s doorbell interrupt is asserted when any bit in this register

is 1.

Write 1 to each bit to clear that bit. The doorbell interrupt

deasserts once all bits are cleared. Read to get status of

doorbells currently asserted on this core.

0x190 PERI_NONSEC Detach certain core-local peripherals from Secure SIO, and

attach them to Non-secure SIO, so that Non-secure software can

use them. Attempting to access one of these peripherals from

the Secure SIO when it is attached to the Non-secure SIO, or vice

versa, will generate a bus error.

This register is per-core, and is only present on the Secure SIO.

Most SIO hardware is duplicated across the Secure and Non-

secure SIO, so is not listed in this register.

0x1a0 RISCV_SOFTIRQ Control the assertion of the standard software interrupt

(MIP.MSIP) on the RISC-V cores.

Unlike the RISC-V timer, this interrupt is not routed to a normal

system-level interrupt line, so can not be used by the Arm cores.

It is safe for both cores to write to this register on the same

cycle. The set/clear effect is accumulated across both cores,

and then applied. If a flag is both set and cleared on the same

cycle, only the set takes effect.
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0x1a4 MTIME_CTRL Control register for the RISC-V 64-bit Machine-mode timer. This

timer is only present in the Secure SIO, so is only accessible to

an Arm core in Secure mode or a RISC-V core in Machine mode.

Note whilst this timer follows the RISC-V privileged specification,

it is equally usable by the Arm cores. The interrupts are routed to

normal system-level interrupt lines as well as to the MIP.MTIP

inputs on the RISC-V cores.

0x1b0 MTIME Read/write access to the high half of RISC-V Machine-mode

timer. This register is shared between both cores. If both cores

write on the same cycle, core 1 takes precedence.

0x1b4 MTIMEH Read/write access to the high half of RISC-V Machine-mode

timer. This register is shared between both cores. If both cores

write on the same cycle, core 1 takes precedence.

0x1b8 MTIMECMP Low half of RISC-V Machine-mode timer comparator. This

register is core-local, i.e., each core gets a copy of this register,

with the comparison result routed to its own interrupt line.

The timer interrupt is asserted whenever MTIME is greater than

or equal to MTIMECMP. This comparison is unsigned, and

performed on the full 64-bit values.

0x1bc MTIMECMPH High half of RISC-V Machine-mode timer comparator. This

register is core-local.

The timer interrupt is asserted whenever MTIME is greater than

or equal to MTIMECMP. This comparison is unsigned, and

performed on the full 64-bit values.

0x1c0 TMDS_CTRL Control register for TMDS encoder.

0x1c4 TMDS_WDATA Write-only access to the TMDS colour data register.

0x1c8 TMDS_PEEK_SINGLE Get the encoding of one pixel’s worth of colour data, packed into

a 32-bit value (3x10-bit symbols).

The PEEK alias does not shift the colour register when read, but

still advances the running DC balance state of each encoder.

This is useful for pixel doubling.

0x1cc TMDS_POP_SINGLE Get the encoding of one pixel’s worth of colour data, packed into

a 32-bit value. The packing is 5 chunks of 3 lanes times 2 bits (30

bits total). Each chunk contains two bits of a TMDS symbol per

lane. This format is intended for shifting out with the HSTX

peripheral on RP2350.

The POP alias shifts the colour register when read, as well as

advancing the running DC balance state of each encoder.
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0x1d0 TMDS_PEEK_DOUBLE_L0 Get lane 0 of the encoding of two pixels' worth of colour data.

Two 10-bit TMDS symbols are packed at the bottom of a 32-bit

word.

The PEEK alias does not shift the colour register when read, but

still advances the lane 0 DC balance state. This is useful if all 3

lanes' worth of encode are to be read at once, rather than

processing the entire scanline for one lane before moving to the

next lane.

0x1d4 TMDS_POP_DOUBLE_L0 Get lane 0 of the encoding of two pixels' worth of colour data.

Two 10-bit TMDS symbols are packed at the bottom of a 32-bit

word.

The POP alias shifts the colour register when read, according to

the values of PIX_SHIFT and PIX2_NOSHIFT.

0x1d8 TMDS_PEEK_DOUBLE_L1 Get lane 1 of the encoding of two pixels' worth of colour data.

Two 10-bit TMDS symbols are packed at the bottom of a 32-bit

word.

The PEEK alias does not shift the colour register when read, but

still advances the lane 1 DC balance state. This is useful if all 3

lanes' worth of encode are to be read at once, rather than

processing the entire scanline for one lane before moving to the

next lane.

0x1dc TMDS_POP_DOUBLE_L1 Get lane 1 of the encoding of two pixels' worth of colour data.

Two 10-bit TMDS symbols are packed at the bottom of a 32-bit

word.

The POP alias shifts the colour register when read, according to

the values of PIX_SHIFT and PIX2_NOSHIFT.

0x1e0 TMDS_PEEK_DOUBLE_L2 Get lane 2 of the encoding of two pixels' worth of colour data.

Two 10-bit TMDS symbols are packed at the bottom of a 32-bit

word.

The PEEK alias does not shift the colour register when read, but

still advances the lane 2 DC balance state. This is useful if all 3

lanes' worth of encode are to be read at once, rather than

processing the entire scanline for one lane before moving to the

next lane.

0x1e4 TMDS_POP_DOUBLE_L2 Get lane 2 of the encoding of two pixels' worth of colour data.

Two 10-bit TMDS symbols are packed at the bottom of a 32-bit

word.

The POP alias shifts the colour register when read, according to

the values of PIX_SHIFT and PIX2_NOSHIFT.

SIO: CPUID Register

Offset: 0x000

Description

Processor core identifier
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Table 17. CPUID

Register
Bits Description Type Reset

31:0 Value is 0 when read from processor core 0, and 1 when read from processor

core 1.

RO -

SIO: GPIO_IN Register

Offset: 0x004

Table 18. GPIO_IN

Register
Bits Description Type Reset

31:0 Input value for GPIO0…31.

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL) appear as

zero.

RO 0x00000000

SIO: GPIO_HI_IN Register

Offset: 0x008

Description

Input value on GPIO32…47, QSPI IOs and USB pins

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL) appear as zero.

Table 19. GPIO_HI_IN

Register
Bits Description Type Reset

31:28 QSPI_SD: Input value on QSPI SD0 (MOSI), SD1 (MISO), SD2 and SD3 pins RO 0x0

27 QSPI_CSN: Input value on QSPI CSn pin RO 0x0

26 QSPI_SCK: Input value on QSPI SCK pin RO 0x0

25 USB_DM: Input value on USB D- pin RO 0x0

24 USB_DP: Input value on USB D+ pin RO 0x0

23:16 Reserved. - -

15:0 GPIO: Input value on GPIO32…47 RO 0x0000

SIO: GPIO_OUT Register

Offset: 0x010

Description

GPIO0…31 output value
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Table 20. GPIO_OUT

Register
Bits Description Type Reset

31:0 Set output level (1/0 → high/low) for GPIO0…31. Reading back gives the last

value written, NOT the input value from the pins.

If core 0 and core 1 both write to GPIO_OUT simultaneously (or to a

SET/CLR/XOR alias), the result is as though the write from core 0 took place

first, and the write from core 1 was then applied to that intermediate result.

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL) ignore writes,

and their output status reads back as zero. This is also true for SET/CLR/XOR

aliases of this register.

RW 0x00000000

SIO: GPIO_HI_OUT Register

Offset: 0x014

Description

Output value for GPIO32…47, QSPI IOs and USB pins.

Write to set output level (1/0 → high/low). Reading back gives the last value written, NOT the input value from the pins.

If core 0 and core 1 both write to GPIO_HI_OUT simultaneously (or to a SET/CLR/XOR alias), the result is as though the

write from core 0 took place first, and the write from core 1 was then applied to that intermediate result.

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL) ignore writes, and their output status reads back as

zero. This is also true for SET/CLR/XOR aliases of this register.

Table 21.

GPIO_HI_OUT Register
Bits Description Type Reset

31:28 QSPI_SD: Output value for QSPI SD0 (MOSI), SD1 (MISO), SD2 and SD3 pins RW 0x0

27 QSPI_CSN: Output value for QSPI CSn pin RW 0x0

26 QSPI_SCK: Output value for QSPI SCK pin RW 0x0

25 USB_DM: Output value for USB D- pin RW 0x0

24 USB_DP: Output value for USB D+ pin RW 0x0

23:16 Reserved. - -

15:0 GPIO: Output value for GPIO32…47 RW 0x0000

SIO: GPIO_OUT_SET Register

Offset: 0x018

Description

GPIO0…31 output value set

Table 22.

GPIO_OUT_SET

Register

Bits Description Type Reset

31:0 Perform an atomic bit-set on GPIO_OUT, i.e. GPIO_OUT |= wdata WO 0x00000000

SIO: GPIO_HI_OUT_SET Register

Offset: 0x01c

Description

Output value set for GPIO32..47, QSPI IOs and USB pins.

Perform an atomic bit-set on GPIO_HI_OUT, i.e. GPIO_HI_OUT |= wdata
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Table 23.

GPIO_HI_OUT_SET

Register

Bits Description Type Reset

31:28 QSPI_SD WO 0x0

27 QSPI_CSN WO 0x0

26 QSPI_SCK WO 0x0

25 USB_DM WO 0x0

24 USB_DP WO 0x0

23:16 Reserved. - -

15:0 GPIO WO 0x0000

SIO: GPIO_OUT_CLR Register

Offset: 0x020

Description

GPIO0…31 output value clear

Table 24.

GPIO_OUT_CLR

Register

Bits Description Type Reset

31:0 Perform an atomic bit-clear on GPIO_OUT, i.e. GPIO_OUT &= ~wdata WO 0x00000000

SIO: GPIO_HI_OUT_CLR Register

Offset: 0x024

Description

Output value clear for GPIO32..47, QSPI IOs and USB pins.

Perform an atomic bit-clear on GPIO_HI_OUT, i.e. GPIO_HI_OUT &= ~wdata

Table 25.

GPIO_HI_OUT_CLR

Register

Bits Description Type Reset

31:28 QSPI_SD WO 0x0

27 QSPI_CSN WO 0x0

26 QSPI_SCK WO 0x0

25 USB_DM WO 0x0

24 USB_DP WO 0x0

23:16 Reserved. - -

15:0 GPIO WO 0x0000

SIO: GPIO_OUT_XOR Register

Offset: 0x028

Description

GPIO0…31 output value XOR

Table 26.

GPIO_OUT_XOR

Register

Bits Description Type Reset

31:0 Perform an atomic bitwise XOR on GPIO_OUT, i.e. GPIO_OUT ^= wdata WO 0x00000000

SIO: GPIO_HI_OUT_XOR Register

Offset: 0x02c
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Description

Output value XOR for GPIO32..47, QSPI IOs and USB pins.

Perform an atomic bitwise XOR on GPIO_HI_OUT, i.e. GPIO_HI_OUT ^= wdata

Table 27.

GPIO_HI_OUT_XOR

Register

Bits Description Type Reset

31:28 QSPI_SD WO 0x0

27 QSPI_CSN WO 0x0

26 QSPI_SCK WO 0x0

25 USB_DM WO 0x0

24 USB_DP WO 0x0

23:16 Reserved. - -

15:0 GPIO WO 0x0000

SIO: GPIO_OE Register

Offset: 0x030

Description

GPIO0…31 output enable

Table 28. GPIO_OE

Register
Bits Description Type Reset

31:0 Set output enable (1/0 → output/input) for GPIO0…31. Reading back gives the

last value written.

If core 0 and core 1 both write to GPIO_OE simultaneously (or to a

SET/CLR/XOR alias), the result is as though the write from core 0 took place

first, and the write from core 1 was then applied to that intermediate result.

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL) ignore writes,

and their output status reads back as zero. This is also true for SET/CLR/XOR

aliases of this register.

RW 0x00000000

SIO: GPIO_HI_OE Register

Offset: 0x034

Description

Output enable value for GPIO32…47, QSPI IOs and USB pins.

Write output enable (1/0 → output/input). Reading back gives the last value written. If core 0 and core 1 both write to

GPIO_HI_OE simultaneously (or to a SET/CLR/XOR alias), the result is as though the write from core 0 took place first,

and the write from core 1 was then applied to that intermediate result.

In the Non-secure SIO, Secure-only GPIOs (as per ACCESSCTRL) ignore writes, and their output status reads back as

zero. This is also true for SET/CLR/XOR aliases of this register.

Table 29. GPIO_HI_OE

Register
Bits Description Type Reset

31:28 QSPI_SD: Output enable value for QSPI SD0 (MOSI), SD1 (MISO), SD2 and SD3

pins

RW 0x0

27 QSPI_CSN: Output enable value for QSPI CSn pin RW 0x0

26 QSPI_SCK: Output enable value for QSPI SCK pin RW 0x0

25 USB_DM: Output enable value for USB D- pin RW 0x0
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Bits Description Type Reset

24 USB_DP: Output enable value for USB D+ pin RW 0x0

23:16 Reserved. - -

15:0 GPIO: Output enable value for GPIO32…47 RW 0x0000

SIO: GPIO_OE_SET Register

Offset: 0x038

Description

GPIO0…31 output enable set

Table 30.

GPIO_OE_SET Register
Bits Description Type Reset

31:0 Perform an atomic bit-set on GPIO_OE, i.e. GPIO_OE |= wdata WO 0x00000000

SIO: GPIO_HI_OE_SET Register

Offset: 0x03c

Description

Output enable set for GPIO32…47, QSPI IOs and USB pins.

Perform an atomic bit-set on GPIO_HI_OE, i.e. GPIO_HI_OE |= wdata

Table 31.

GPIO_HI_OE_SET

Register

Bits Description Type Reset

31:28 QSPI_SD WO 0x0

27 QSPI_CSN WO 0x0

26 QSPI_SCK WO 0x0

25 USB_DM WO 0x0

24 USB_DP WO 0x0

23:16 Reserved. - -

15:0 GPIO WO 0x0000

SIO: GPIO_OE_CLR Register

Offset: 0x040

Description

GPIO0…31 output enable clear

Table 32.

GPIO_OE_CLR Register
Bits Description Type Reset

31:0 Perform an atomic bit-clear on GPIO_OE, i.e. GPIO_OE &= ~wdata WO 0x00000000

SIO: GPIO_HI_OE_CLR Register

Offset: 0x044

Description

Output enable clear for GPIO32…47, QSPI IOs and USB pins.

Perform an atomic bit-clear on GPIO_HI_OE, i.e. GPIO_HI_OE &= ~wdata
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Table 33.

GPIO_HI_OE_CLR

Register

Bits Description Type Reset

31:28 QSPI_SD WO 0x0

27 QSPI_CSN WO 0x0

26 QSPI_SCK WO 0x0

25 USB_DM WO 0x0

24 USB_DP WO 0x0

23:16 Reserved. - -

15:0 GPIO WO 0x0000

SIO: GPIO_OE_XOR Register

Offset: 0x048

Description

GPIO0…31 output enable XOR

Table 34.

GPIO_OE_XOR

Register

Bits Description Type Reset

31:0 Perform an atomic bitwise XOR on GPIO_OE, i.e. GPIO_OE ^= wdata WO 0x00000000

SIO: GPIO_HI_OE_XOR Register

Offset: 0x04c

Description

Output enable XOR for GPIO32…47, QSPI IOs and USB pins.

Perform an atomic bitwise XOR on GPIO_HI_OE, i.e. GPIO_HI_OE ^= wdata

Table 35.

GPIO_HI_OE_XOR

Register

Bits Description Type Reset

31:28 QSPI_SD WO 0x0

27 QSPI_CSN WO 0x0

26 QSPI_SCK WO 0x0

25 USB_DM WO 0x0

24 USB_DP WO 0x0

23:16 Reserved. - -

15:0 GPIO WO 0x0000

SIO: FIFO_ST Register

Offset: 0x050

Description

Status register for inter-core FIFOs (mailboxes).

There is one FIFO in the core 0 → core 1 direction, and one core 1 → core 0. Both are 32 bits wide and 8 words

deep.

Core 0 can see the read side of the 1→0 FIFO (RX), and the write side of 0→1 FIFO (TX).

Core 1 can see the read side of the 0→1 FIFO (RX), and the write side of 1→0 FIFO (TX).

The SIO IRQ for each core is the logical OR of the VLD, WOF and ROE fields of its FIFO_ST register.

RP2350 Datasheet

3.1. SIO 66



Table 36. FIFO_ST

Register
Bits Description Type Reset

31:4 Reserved. - -

3 ROE: Sticky flag indicating the RX FIFO was read when empty. This read was

ignored by the FIFO.

WC 0x0

2 WOF: Sticky flag indicating the TX FIFO was written when full. This write was

ignored by the FIFO.

WC 0x0

1 RDY: Value is 1 if this core’s TX FIFO is not full (i.e. if FIFO_WR is ready for

more data)

RO 0x1

0 VLD: Value is 1 if this core’s RX FIFO is not empty (i.e. if FIFO_RD is valid) RO 0x0

SIO: FIFO_WR Register

Offset: 0x054

Table 37. FIFO_WR

Register
Bits Description Type Reset

31:0 Write access to this core’s TX FIFO WF 0x00000000

SIO: FIFO_RD Register

Offset: 0x058

Table 38. FIFO_RD

Register
Bits Description Type Reset

31:0 Read access to this core’s RX FIFO RF -

SIO: SPINLOCK_ST Register

Offset: 0x05c

Table 39.

SPINLOCK_ST

Register

Bits Description Type Reset

31:0 Spinlock state

A bitmap containing the state of all 32 spinlocks (1=locked).

Mainly intended for debugging.

RO 0x00000000

SIO: INTERP0_ACCUM0 Register

Offset: 0x080

Table 40.

INTERP0_ACCUM0

Register

Bits Description Type Reset

31:0 Read/write access to accumulator 0 RW 0x00000000

SIO: INTERP0_ACCUM1 Register

Offset: 0x084

Table 41.

INTERP0_ACCUM1

Register

Bits Description Type Reset

31:0 Read/write access to accumulator 1 RW 0x00000000

SIO: INTERP0_BASE0 Register

Offset: 0x088
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Table 42.

INTERP0_BASE0

Register

Bits Description Type Reset

31:0 Read/write access to BASE0 register. RW 0x00000000

SIO: INTERP0_BASE1 Register

Offset: 0x08c

Table 43.

INTERP0_BASE1

Register

Bits Description Type Reset

31:0 Read/write access to BASE1 register. RW 0x00000000

SIO: INTERP0_BASE2 Register

Offset: 0x090

Table 44.

INTERP0_BASE2

Register

Bits Description Type Reset

31:0 Read/write access to BASE2 register. RW 0x00000000

SIO: INTERP0_POP_LANE0 Register

Offset: 0x094

Table 45.

INTERP0_POP_LANE0

Register

Bits Description Type Reset

31:0 Read LANE0 result, and simultaneously write lane results to both

accumulators (POP).

RO 0x00000000

SIO: INTERP0_POP_LANE1 Register

Offset: 0x098

Table 46.

INTERP0_POP_LANE1

Register

Bits Description Type Reset

31:0 Read LANE1 result, and simultaneously write lane results to both

accumulators (POP).

RO 0x00000000

SIO: INTERP0_POP_FULL Register

Offset: 0x09c

Table 47.

INTERP0_POP_FULL

Register

Bits Description Type Reset

31:0 Read FULL result, and simultaneously write lane results to both accumulators

(POP).

RO 0x00000000

SIO: INTERP0_PEEK_LANE0 Register

Offset: 0x0a0

Table 48.

INTERP0_PEEK_LANE

0 Register

Bits Description Type Reset

31:0 Read LANE0 result, without altering any internal state (PEEK). RO 0x00000000

SIO: INTERP0_PEEK_LANE1 Register

Offset: 0x0a4
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Table 49.

INTERP0_PEEK_LANE

1 Register

Bits Description Type Reset

31:0 Read LANE1 result, without altering any internal state (PEEK). RO 0x00000000

SIO: INTERP0_PEEK_FULL Register

Offset: 0x0a8

Table 50.

INTERP0_PEEK_FULL

Register

Bits Description Type Reset

31:0 Read FULL result, without altering any internal state (PEEK). RO 0x00000000

SIO: INTERP0_CTRL_LANE0 Register

Offset: 0x0ac

Description

Control register for lane 0

Table 51.

INTERP0_CTRL_LANE

0 Register

Bits Description Type Reset

31:26 Reserved. - -

25 OVERF: Set if either OVERF0 or OVERF1 is set. RO 0x0

24 OVERF1: Indicates if any masked-off MSBs in ACCUM1 are set. RO 0x0

23 OVERF0: Indicates if any masked-off MSBs in ACCUM0 are set. RO 0x0

22 Reserved. - -

21 BLEND: Only present on INTERP0 on each core. If BLEND mode is enabled:

- LANE1 result is a linear interpolation between BASE0 and BASE1, controlled

by the 8 LSBs of lane 1 shift and mask value (a fractional number between

0 and 255/256ths)

- LANE0 result does not have BASE0 added (yields only the 8 LSBs of lane 1

shift+mask value)

- FULL result does not have lane 1 shift+mask value added (BASE2 + lane 0

shift+mask)

LANE1 SIGNED flag controls whether the interpolation is signed or unsigned.

RW 0x0

20:19 FORCE_MSB: ORed into bits 29:28 of the lane result presented to the

processor on the bus.

No effect on the internal 32-bit datapath. Handy for using a lane to generate

sequence

of pointers into flash or SRAM.

RW 0x0

18 ADD_RAW: If 1, mask + shift is bypassed for LANE0 result. This does not

affect FULL result.

RW 0x0

17 CROSS_RESULT: If 1, feed the opposite lane’s result into this lane’s

accumulator on POP.

RW 0x0

16 CROSS_INPUT: If 1, feed the opposite lane’s accumulator into this lane’s shift

+ mask hardware.

Takes effect even if ADD_RAW is set (the CROSS_INPUT mux is before the

shift+mask bypass)

RW 0x0

15 SIGNED: If SIGNED is set, the shifted and masked accumulator value is sign-

extended to 32 bits

before adding to BASE0, and LANE0 PEEK/POP appear extended to 32 bits

when read by processor.

RW 0x0
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Bits Description Type Reset

14:10 MASK_MSB: The most-significant bit allowed to pass by the mask (inclusive)

Setting MSB < LSB may cause chip to turn inside-out

RW 0x00

9:5 MASK_LSB: The least-significant bit allowed to pass by the mask (inclusive) RW 0x00

4:0 SHIFT: Right-rotate applied to accumulator before masking. By appropriately

configuring the masks, left and right shifts can be synthesised.

RW 0x00

SIO: INTERP0_CTRL_LANE1 Register

Offset: 0x0b0

Description

Control register for lane 1

Table 52.

INTERP0_CTRL_LANE

1 Register

Bits Description Type Reset

31:21 Reserved. - -

20:19 FORCE_MSB: ORed into bits 29:28 of the lane result presented to the

processor on the bus.

No effect on the internal 32-bit datapath. Handy for using a lane to generate

sequence

of pointers into flash or SRAM.

RW 0x0

18 ADD_RAW: If 1, mask + shift is bypassed for LANE1 result. This does not

affect FULL result.

RW 0x0

17 CROSS_RESULT: If 1, feed the opposite lane’s result into this lane’s

accumulator on POP.

RW 0x0

16 CROSS_INPUT: If 1, feed the opposite lane’s accumulator into this lane’s shift

+ mask hardware.

Takes effect even if ADD_RAW is set (the CROSS_INPUT mux is before the

shift+mask bypass)

RW 0x0

15 SIGNED: If SIGNED is set, the shifted and masked accumulator value is sign-

extended to 32 bits

before adding to BASE1, and LANE1 PEEK/POP appear extended to 32 bits

when read by processor.

RW 0x0

14:10 MASK_MSB: The most-significant bit allowed to pass by the mask (inclusive)

Setting MSB < LSB may cause chip to turn inside-out

RW 0x00

9:5 MASK_LSB: The least-significant bit allowed to pass by the mask (inclusive) RW 0x00

4:0 SHIFT: Right-rotate applied to accumulator before masking. By appropriately

configuring the masks, left and right shifts can be synthesised.

RW 0x00

SIO: INTERP0_ACCUM0_ADD Register

Offset: 0x0b4
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Table 53.

INTERP0_ACCUM0_AD

D Register

Bits Description Type Reset

31:24 Reserved. - -

23:0 Values written here are atomically added to ACCUM0

Reading yields lane 0’s raw shift and mask value (BASE0 not added).

RW 0x000000

SIO: INTERP0_ACCUM1_ADD Register

Offset: 0x0b8

Table 54.

INTERP0_ACCUM1_AD

D Register

Bits Description Type Reset

31:24 Reserved. - -

23:0 Values written here are atomically added to ACCUM1

Reading yields lane 1’s raw shift and mask value (BASE1 not added).

RW 0x000000

SIO: INTERP0_BASE_1AND0 Register

Offset: 0x0bc

Table 55.

INTERP0_BASE_1AND

0 Register

Bits Description Type Reset

31:0 On write, the lower 16 bits go to BASE0, upper bits to BASE1 simultaneously.

Each half is sign-extended to 32 bits if that lane’s SIGNED flag is set.

WO 0x00000000

SIO: INTERP1_ACCUM0 Register

Offset: 0x0c0

Table 56.

INTERP1_ACCUM0

Register

Bits Description Type Reset

31:0 Read/write access to accumulator 0 RW 0x00000000

SIO: INTERP1_ACCUM1 Register

Offset: 0x0c4

Table 57.

INTERP1_ACCUM1

Register

Bits Description Type Reset

31:0 Read/write access to accumulator 1 RW 0x00000000

SIO: INTERP1_BASE0 Register

Offset: 0x0c8

Table 58.

INTERP1_BASE0

Register

Bits Description Type Reset

31:0 Read/write access to BASE0 register. RW 0x00000000

SIO: INTERP1_BASE1 Register

Offset: 0x0cc
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Table 59.

INTERP1_BASE1

Register

Bits Description Type Reset

31:0 Read/write access to BASE1 register. RW 0x00000000

SIO: INTERP1_BASE2 Register

Offset: 0x0d0

Table 60.

INTERP1_BASE2

Register

Bits Description Type Reset

31:0 Read/write access to BASE2 register. RW 0x00000000

SIO: INTERP1_POP_LANE0 Register

Offset: 0x0d4

Table 61.

INTERP1_POP_LANE0

Register

Bits Description Type Reset

31:0 Read LANE0 result, and simultaneously write lane results to both

accumulators (POP).

RO 0x00000000

SIO: INTERP1_POP_LANE1 Register

Offset: 0x0d8

Table 62.

INTERP1_POP_LANE1

Register

Bits Description Type Reset

31:0 Read LANE1 result, and simultaneously write lane results to both

accumulators (POP).

RO 0x00000000

SIO: INTERP1_POP_FULL Register

Offset: 0x0dc

Table 63.

INTERP1_POP_FULL

Register

Bits Description Type Reset

31:0 Read FULL result, and simultaneously write lane results to both accumulators

(POP).

RO 0x00000000

SIO: INTERP1_PEEK_LANE0 Register

Offset: 0x0e0

Table 64.

INTERP1_PEEK_LANE

0 Register

Bits Description Type Reset

31:0 Read LANE0 result, without altering any internal state (PEEK). RO 0x00000000

SIO: INTERP1_PEEK_LANE1 Register

Offset: 0x0e4

Table 65.

INTERP1_PEEK_LANE

1 Register

Bits Description Type Reset

31:0 Read LANE1 result, without altering any internal state (PEEK). RO 0x00000000

SIO: INTERP1_PEEK_FULL Register

Offset: 0x0e8
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Table 66.

INTERP1_PEEK_FULL

Register

Bits Description Type Reset

31:0 Read FULL result, without altering any internal state (PEEK). RO 0x00000000

SIO: INTERP1_CTRL_LANE0 Register

Offset: 0x0ec

Description

Control register for lane 0

Table 67.

INTERP1_CTRL_LANE

0 Register

Bits Description Type Reset

31:26 Reserved. - -

25 OVERF: Set if either OVERF0 or OVERF1 is set. RO 0x0

24 OVERF1: Indicates if any masked-off MSBs in ACCUM1 are set. RO 0x0

23 OVERF0: Indicates if any masked-off MSBs in ACCUM0 are set. RO 0x0

22 CLAMP: Only present on INTERP1 on each core. If CLAMP mode is enabled:

- LANE0 result is shifted and masked ACCUM0, clamped by a lower bound of

BASE0 and an upper bound of BASE1.

- Signedness of these comparisons is determined by LANE0_CTRL_SIGNED

RW 0x0

21 Reserved. - -

20:19 FORCE_MSB: ORed into bits 29:28 of the lane result presented to the

processor on the bus.

No effect on the internal 32-bit datapath. Handy for using a lane to generate

sequence

of pointers into flash or SRAM.

RW 0x0

18 ADD_RAW: If 1, mask + shift is bypassed for LANE0 result. This does not

affect FULL result.

RW 0x0

17 CROSS_RESULT: If 1, feed the opposite lane’s result into this lane’s

accumulator on POP.

RW 0x0

16 CROSS_INPUT: If 1, feed the opposite lane’s accumulator into this lane’s shift

+ mask hardware.

Takes effect even if ADD_RAW is set (the CROSS_INPUT mux is before the

shift+mask bypass)

RW 0x0

15 SIGNED: If SIGNED is set, the shifted and masked accumulator value is sign-

extended to 32 bits

before adding to BASE0, and LANE0 PEEK/POP appear extended to 32 bits

when read by processor.

RW 0x0

14:10 MASK_MSB: The most-significant bit allowed to pass by the mask (inclusive)

Setting MSB < LSB may cause chip to turn inside-out

RW 0x00

9:5 MASK_LSB: The least-significant bit allowed to pass by the mask (inclusive) RW 0x00

4:0 SHIFT: Right-rotate applied to accumulator before masking. By appropriately

configuring the masks, left and right shifts can be synthesised.

RW 0x00

SIO: INTERP1_CTRL_LANE1 Register

Offset: 0x0f0

Description

Control register for lane 1
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Table 68.

INTERP1_CTRL_LANE

1 Register

Bits Description Type Reset

31:21 Reserved. - -

20:19 FORCE_MSB: ORed into bits 29:28 of the lane result presented to the

processor on the bus.

No effect on the internal 32-bit datapath. Handy for using a lane to generate

sequence

of pointers into flash or SRAM.

RW 0x0

18 ADD_RAW: If 1, mask + shift is bypassed for LANE1 result. This does not

affect FULL result.

RW 0x0

17 CROSS_RESULT: If 1, feed the opposite lane’s result into this lane’s

accumulator on POP.

RW 0x0

16 CROSS_INPUT: If 1, feed the opposite lane’s accumulator into this lane’s shift

+ mask hardware.

Takes effect even if ADD_RAW is set (the CROSS_INPUT mux is before the

shift+mask bypass)

RW 0x0

15 SIGNED: If SIGNED is set, the shifted and masked accumulator value is sign-

extended to 32 bits

before adding to BASE1, and LANE1 PEEK/POP appear extended to 32 bits

when read by processor.

RW 0x0

14:10 MASK_MSB: The most-significant bit allowed to pass by the mask (inclusive)

Setting MSB < LSB may cause chip to turn inside-out

RW 0x00

9:5 MASK_LSB: The least-significant bit allowed to pass by the mask (inclusive) RW 0x00

4:0 SHIFT: Right-rotate applied to accumulator before masking. By appropriately

configuring the masks, left and right shifts can be synthesised.

RW 0x00

SIO: INTERP1_ACCUM0_ADD Register

Offset: 0x0f4

Table 69.

INTERP1_ACCUM0_AD

D Register

Bits Description Type Reset

31:24 Reserved. - -

23:0 Values written here are atomically added to ACCUM0

Reading yields lane 0’s raw shift and mask value (BASE0 not added).

RW 0x000000

SIO: INTERP1_ACCUM1_ADD Register

Offset: 0x0f8

Table 70.

INTERP1_ACCUM1_AD

D Register

Bits Description Type Reset

31:24 Reserved. - -

23:0 Values written here are atomically added to ACCUM1

Reading yields lane 1’s raw shift and mask value (BASE1 not added).

RW 0x000000

SIO: INTERP1_BASE_1AND0 Register

Offset: 0x0fc
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Table 71.

INTERP1_BASE_1AND

0 Register

Bits Description Type Reset

31:0 On write, the lower 16 bits go to BASE0, upper bits to BASE1 simultaneously.

Each half is sign-extended to 32 bits if that lane’s SIGNED flag is set.

WO 0x00000000

SIO: SPINLOCK0, SPINLOCK1, …, SPINLOCK30, SPINLOCK31 Registers

Offsets: 0x100, 0x104, …, 0x178, 0x17c

Table 72. SPINLOCK0,

SPINLOCK1, …,

SPINLOCK30,

SPINLOCK31

Registers

Bits Description Type Reset

31:0 Reading from a spinlock address will:

- Return 0 if lock is already locked

- Otherwise return nonzero, and simultaneously claim the lock

Writing (any value) releases the lock.

If core 0 and core 1 attempt to claim the same lock simultaneously, core 0

wins.

The value returned on success is 0x1 << lock number.

RW 0x00000000

SIO: DOORBELL_OUT_SET Register

Offset: 0x180

Table 73.

DOORBELL_OUT_SET

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 Trigger a doorbell interrupt on the opposite core.

Write 1 to a bit to set the corresponding bit in DOORBELL_IN on the opposite

core. This raises the opposite core’s doorbell interrupt.

Read to get the status of the doorbells currently asserted on the opposite

core. This is equivalent to that core reading its own DOORBELL_IN status.

RW 0x00

SIO: DOORBELL_OUT_CLR Register

Offset: 0x184
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Table 74.

DOORBELL_OUT_CLR

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 Clear doorbells which have been posted to the opposite core. This register is

intended for debugging and initialisation purposes.

Writing 1 to a bit in DOORBELL_OUT_CLR clears the corresponding bit in

DOORBELL_IN on the opposite core. Clearing all bits will cause that core’s

doorbell interrupt to deassert. Since the usual order of events is for software

to send events using DOORBELL_OUT_SET, and acknowledge incoming events

by writing to DOORBELL_IN_CLR, this register should be used with caution to

avoid race conditions.

Reading returns the status of the doorbells currently asserted on the other

core, i.e. is equivalent to that core reading its own DOORBELL_IN status.

WC 0x00

SIO: DOORBELL_IN_SET Register

Offset: 0x188

Table 75.

DOORBELL_IN_SET

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 Write 1s to trigger doorbell interrupts on this core. Read to get status of

doorbells currently asserted on this core.

RW 0x00

SIO: DOORBELL_IN_CLR Register

Offset: 0x18c

Table 76.

DOORBELL_IN_CLR

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 Check and acknowledge doorbells posted to this core. This core’s doorbell

interrupt is asserted when any bit in this register is 1.

Write 1 to each bit to clear that bit. The doorbell interrupt deasserts once all

bits are cleared. Read to get status of doorbells currently asserted on this

core.

WC 0x00

SIO: PERI_NONSEC Register

Offset: 0x190

Description

Detach certain core-local peripherals from Secure SIO, and attach them to Non-secure SIO, so that Non-secure

software can use them. Attempting to access one of these peripherals from the Secure SIO when it is attached to

the Non-secure SIO, or vice versa, will generate a bus error.

This register is per-core, and is only present on the Secure SIO.

Most SIO hardware is duplicated across the Secure and Non-secure SIO, so is not listed in this register.

Table 77.

PERI_NONSEC

Register

Bits Description Type Reset

31:6 Reserved. - -

5 TMDS: IF 1, detach TMDS encoder (of this core) from the Secure SIO, and

attach to the Non-secure SIO.

RW 0x0
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Bits Description Type Reset

4:2 Reserved. - -

1 INTERP1: If 1, detach interpolator 1 (of this core) from the Secure SIO, and

attach to the Non-secure SIO.

RW 0x0

0 INTERP0: If 1, detach interpolator 0 (of this core) from the Secure SIO, and

attach to the Non-secure SIO.

RW 0x0

SIO: RISCV_SOFTIRQ Register

Offset: 0x1a0

Description

Control the assertion of the standard software interrupt (MIP.MSIP) on the RISC-V cores.

Unlike the RISC-V timer, this interrupt is not routed to a normal system-level interrupt line, so can not be used by the Arm

cores.

It is safe for both cores to write to this register on the same cycle. The set/clear effect is accumulated across both

cores, and then applied. If a flag is both set and cleared on the same cycle, only the set takes effect.

Table 78.

RISCV_SOFTIRQ

Register

Bits Description Type Reset

31:10 Reserved. - -

9 CORE1_CLR: Write 1 to atomically clear the core 1 software interrupt flag.

Read to get the status of this flag.

RW 0x0

8 CORE0_CLR: Write 1 to atomically clear the core 0 software interrupt flag.

Read to get the status of this flag.

RW 0x0

7:2 Reserved. - -

1 CORE1_SET: Write 1 to atomically set the core 1 software interrupt flag. Read

to get the status of this flag.

RW 0x0

0 CORE0_SET: Write 1 to atomically set the core 0 software interrupt flag. Read

to get the status of this flag.

RW 0x0

SIO: MTIME_CTRL Register

Offset: 0x1a4

Description

Control register for the RISC-V 64-bit Machine-mode timer. This timer is only present in the Secure SIO, so is only

accessible to an Arm core in Secure mode or a RISC-V core in Machine mode.

Note whilst this timer follows the RISC-V privileged specification, it is equally usable by the Arm cores. The interrupts

are routed to normal system-level interrupt lines as well as to the MIP.MTIP inputs on the RISC-V cores.

Table 79.

MTIME_CTRL Register
Bits Description Type Reset

31:4 Reserved. - -

3 DBGPAUSE_CORE1: If 1, the timer pauses when core 1 is in the debug halt

state.

RW 0x1

2 DBGPAUSE_CORE0: If 1, the timer pauses when core 0 is in the debug halt

state.

RW 0x1

1 FULLSPEED: If 1, increment the timer every cycle (i.e. run directly from the

system clock), rather than incrementing on the system-level timer tick input.

RW 0x0
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Bits Description Type Reset

0 EN: Timer enable bit. When 0, the timer will not increment automatically. RW 0x1

SIO: MTIME Register

Offset: 0x1b0

Table 80. MTIME

Register
Bits Description Type Reset

31:0 Read/write access to the high half of RISC-V Machine-mode timer. This

register is shared between both cores. If both cores write on the same cycle,

core 1 takes precedence.

RW 0x00000000

SIO: MTIMEH Register

Offset: 0x1b4

Table 81. MTIMEH

Register
Bits Description Type Reset

31:0 Read/write access to the high half of RISC-V Machine-mode timer. This

register is shared between both cores. If both cores write on the same cycle,

core 1 takes precedence.

RW 0x00000000

SIO: MTIMECMP Register

Offset: 0x1b8

Table 82. MTIMECMP

Register
Bits Description Type Reset

31:0 Low half of RISC-V Machine-mode timer comparator. This register is core-

local, i.e., each core gets a copy of this register, with the comparison result

routed to its own interrupt line.

The timer interrupt is asserted whenever MTIME is greater than or equal to

MTIMECMP. This comparison is unsigned, and performed on the full 64-bit

values.

RW 0xffffffff

SIO: MTIMECMPH Register

Offset: 0x1bc

Table 83.

MTIMECMPH Register
Bits Description Type Reset

31:0 High half of RISC-V Machine-mode timer comparator. This register is core-

local.

The timer interrupt is asserted whenever MTIME is greater than or equal to

MTIMECMP. This comparison is unsigned, and performed on the full 64-bit

values.

RW 0xffffffff

SIO: TMDS_CTRL Register

Offset: 0x1c0

Description

Control register for TMDS encoder.
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Table 84. TMDS_CTRL

Register
Bits Description Type Reset

31:29 Reserved. - -

28 CLEAR_BALANCE: Clear the running DC balance state of the TMDS encoders.

This bit should be written once at the beginning of each scanline.

SC 0x0

27 PIX2_NOSHIFT: When encoding two pixels’s worth of symbols in one cycle (a

read of a PEEK/POP_DOUBLE register), the second encoder sees a shifted

version of the colour data register.

This control disables that shift, so that both encoder layers see the same pixel

data. This is used for pixel doubling.

RW 0x0

26:24 PIX_SHIFT: Shift applied to the colour data register with each read of a POP

alias register.

Reading from the POP_SINGLE register, or reading from the POP_DOUBLE

register with PIX2_NOSHIFT set (for pixel doubling), shifts by the indicated

amount.

Reading from a POP_DOUBLE register when PIX2_NOSHIFT is clear will shift

by double the indicated amount. (Shift by 32 means no shift.)

RW 0x0

Enumerated values:

0x0 → Do not shift the colour data register.

0x1 → Shift the colour data register by 1 bit

0x2 → Shift the colour data register by 2 bits

0x3 → Shift the colour data register by 4 bits

0x4 → Shift the colour data register by 8 bits

0x5 → Shift the colour data register by 16 bits

23 INTERLEAVE: Enable lane interleaving for reads of

PEEK_SINGLE/POP_SINGLE.

When interleaving is disabled, each of the 3 symbols appears as a contiguous

10-bit field, with lane 0 being the least-significant and starting at bit 0 of the

register.

When interleaving is enabled, the symbols are packed into 5 chunks of 3 lanes

times 2 bits (30 bits total). Each chunk contains two bits of a TMDS symbol

per lane, with lane 0 being the least significant.

RW 0x0

22:21 Reserved. - -

20:18 L2_NBITS: Number of valid colour MSBs for lane 2 (1-8 bits, encoded as 0

through 7). Remaining LSBs are masked to 0 after the rotate.

RW 0x0

17:15 L1_NBITS: Number of valid colour MSBs for lane 1 (1-8 bits, encoded as 0

through 7). Remaining LSBs are masked to 0 after the rotate.

RW 0x0

14:12 L0_NBITS: Number of valid colour MSBs for lane 0 (1-8 bits, encoded as 0

through 7). Remaining LSBs are masked to 0 after the rotate.

RW 0x0
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Bits Description Type Reset

11:8 L2_ROT: Right-rotate the 16 LSBs of the colour accumulator by 0-15 bits, in

order to get the MSB of the lane 2 (red) colour data aligned with the MSB of

the 8-bit encoder input.

For example, for RGB565 (red most significant), red is bits 15:11, so should be

right-rotated by 8 bits to align with bits 7:3 of the encoder input.

RW 0x0

7:4 L1_ROT: Right-rotate the 16 LSBs of the colour accumulator by 0-15 bits, in

order to get the MSB of the lane 1 (green) colour data aligned with the MSB of

the 8-bit encoder input.

For example, for RGB565, green is bits 10:5, so should be right-rotated by 3

bits to align with bits 7:2 of the encoder input.

RW 0x0

3:0 L0_ROT: Right-rotate the 16 LSBs of the colour accumulator by 0-15 bits, in

order to get the MSB of the lane 0 (blue) colour data aligned with the MSB of

the 8-bit encoder input.

For example, for RGB565 (red most significant), blue is bits 4:0, so should be

right-rotated by 13 to align with bits 7:3 of the encoder input.

RW 0x0

SIO: TMDS_WDATA Register

Offset: 0x1c4

Table 85.

TMDS_WDATA

Register

Bits Description Type Reset

31:0 Write-only access to the TMDS colour data register. WO 0x00000000

SIO: TMDS_PEEK_SINGLE Register

Offset: 0x1c8

Table 86.

TMDS_PEEK_SINGLE

Register

Bits Description Type Reset

31:0 Get the encoding of one pixel’s worth of colour data, packed into a 32-bit value

(3x10-bit symbols).

The PEEK alias does not shift the colour register when read, but still advances

the running DC balance state of each encoder. This is useful for pixel

doubling.

RF 0x00000000

SIO: TMDS_POP_SINGLE Register

Offset: 0x1cc
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Table 87.

TMDS_POP_SINGLE

Register

Bits Description Type Reset

31:0 Get the encoding of one pixel’s worth of colour data, packed into a 32-bit

value. The packing is 5 chunks of 3 lanes times 2 bits (30 bits total). Each

chunk contains two bits of a TMDS symbol per lane. This format is intended

for shifting out with the HSTX peripheral on RP2350.

The POP alias shifts the colour register when read, as well as advancing the

running DC balance state of each encoder.

RF 0x00000000

SIO: TMDS_PEEK_DOUBLE_L0 Register

Offset: 0x1d0

Table 88.

TMDS_PEEK_DOUBLE_

L0 Register

Bits Description Type Reset

31:0 Get lane 0 of the encoding of two pixels' worth of colour data. Two 10-bit

TMDS symbols are packed at the bottom of a 32-bit word.

The PEEK alias does not shift the colour register when read, but still advances

the lane 0 DC balance state. This is useful if all 3 lanes' worth of encode are to

be read at once, rather than processing the entire scanline for one lane before

moving to the next lane.

RF 0x00000000

SIO: TMDS_POP_DOUBLE_L0 Register

Offset: 0x1d4

Table 89.

TMDS_POP_DOUBLE_L

0 Register

Bits Description Type Reset

31:0 Get lane 0 of the encoding of two pixels' worth of colour data. Two 10-bit

TMDS symbols are packed at the bottom of a 32-bit word.

The POP alias shifts the colour register when read, according to the values of

PIX_SHIFT and PIX2_NOSHIFT.

RF 0x00000000

SIO: TMDS_PEEK_DOUBLE_L1 Register

Offset: 0x1d8

Table 90.

TMDS_PEEK_DOUBLE_

L1 Register

Bits Description Type Reset

31:0 Get lane 1 of the encoding of two pixels' worth of colour data. Two 10-bit

TMDS symbols are packed at the bottom of a 32-bit word.

The PEEK alias does not shift the colour register when read, but still advances

the lane 1 DC balance state. This is useful if all 3 lanes' worth of encode are to

be read at once, rather than processing the entire scanline for one lane before

moving to the next lane.

RF 0x00000000

SIO: TMDS_POP_DOUBLE_L1 Register

Offset: 0x1dc
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Table 91.

TMDS_POP_DOUBLE_L

1 Register

Bits Description Type Reset

31:0 Get lane 1 of the encoding of two pixels' worth of colour data. Two 10-bit

TMDS symbols are packed at the bottom of a 32-bit word.

The POP alias shifts the colour register when read, according to the values of

PIX_SHIFT and PIX2_NOSHIFT.

RF 0x00000000

SIO: TMDS_PEEK_DOUBLE_L2 Register

Offset: 0x1e0

Table 92.

TMDS_PEEK_DOUBLE_

L2 Register

Bits Description Type Reset

31:0 Get lane 2 of the encoding of two pixels' worth of colour data. Two 10-bit

TMDS symbols are packed at the bottom of a 32-bit word.

The PEEK alias does not shift the colour register when read, but still advances

the lane 2 DC balance state. This is useful if all 3 lanes' worth of encode are to

be read at once, rather than processing the entire scanline for one lane before

moving to the next lane.

RF 0x00000000

SIO: TMDS_POP_DOUBLE_L2 Register

Offset: 0x1e4

Table 93.

TMDS_POP_DOUBLE_L

2 Register

Bits Description Type Reset

31:0 Get lane 2 of the encoding of two pixels' worth of colour data. Two 10-bit

TMDS symbols are packed at the bottom of a 32-bit word.

The POP alias shifts the colour register when read, according to the values of

PIX_SHIFT and PIX2_NOSHIFT.

RF 0x00000000

3.2. Interrupts

Each core is equipped with an internal interrupt controller, with 52 interrupt inputs. For the most part each core has

exactly the same interrupts routed to it, though there are some exceptions, referred to as core-local interrupts, where

there is an individual per-core interrupt source mapped to the same interrupt number on each core:

• Cross-core FIFO interrupts: SIO_IRQ_FIFO and SIO_IRQ_FIFO_NS (Section 3.1.5)

• Cross-core doorbell interrupts: SIO_IRQ_BELL and SIO_IRQ_BELL_NS (Section 3.1.6)

• RISC-V platform timer (also usable by Arm cores): SIO_IRQ_MTIMECMP (Section 3.1.8)

• GPIO interrupts: IO_IRQ_BANK0, IRQ_IO_BANK0_NS, IO_IRQ_QSPI, IO_IRQ_QSPI_NS (Section 9.5)

The remaining interrupt inputs have the same interrupt source mirrored identically on both cores. Non-core-local

interrupts should only be enabled in the interrupt controller of a single core at a time, and will be serviced by the core

whose interrupt controller they are enabled in.

Table 94. System-level

interrupt numbering.

All interrupts are

routed to both

processors.

IRQ Interrupt Source IRQ Interrupt Source IRQ Interrupt Source IRQ Interrupt Source IRQ Interrupt Source

0 TIMER0_IRQ_0 11 DMA_IRQ_1 22 IO_IRQ_BANK0_NS 33 UART0_IRQ 44 POWMAN_IRQ_POW

1 TIMER0_IRQ_1 12 DMA_IRQ_2 23 IO_IRQ_QSPI 34 UART1_IRQ 45 POWMAN_IRQ_TIMER

2 TIMER0_IRQ_2 13 DMA_IRQ_3 24 IO_IRQ_QSPI_NS 35 ADC_IRQ_FIFO 46 SPAREIRQ_IRQ_0
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IRQ Interrupt Source IRQ Interrupt Source IRQ Interrupt Source IRQ Interrupt Source IRQ Interrupt Source

3 TIMER0_IRQ_3 14 USBCTRL_IRQ 25 SIO_IRQ_FIFO 36 I2C0_IRQ 47 SPAREIRQ_IRQ_1

4 TIMER1_IRQ_0 15 PIO0_IRQ_0 26 SIO_IRQ_BELL 37 I2C1_IRQ 48 SPAREIRQ_IRQ_2

5 TIMER1_IRQ_1 16 PIO0_IRQ_1 27 SIO_IRQ_FIFO_NS 38 OTP_IRQ 49 SPAREIRQ_IRQ_3

6 TIMER1_IRQ_2 17 PIO1_IRQ_0 28 SIO_IRQ_BELL_NS 39 TRNG_IRQ 50 SPAREIRQ_IRQ_4

7 TIMER1_IRQ_3 18 PIO1_IRQ_1 29 SIO_IRQ_MTIMECMP 40 PROC0_IRQ_CTI 51 SPAREIRQ_IRQ_5

8 PWM_IRQ_WRAP_0 19 PIO2_IRQ_0 30 CLOCKS_IRQ 41 PROC1_IRQ_CTI

9 PWM_IRQ_WRAP_1 20 PIO2_IRQ_1 31 SPI0_IRQ 42 PLL_SYS_IRQ

10 DMA_IRQ_0 21 IO_IRQ_BANK0 32 SPI1_IRQ 43 PLL_USB_IRQ

On RP2350, only the lower 46 IRQ signals are connected to system-level interrupt sources, and IRQs 46 to 51 are

hardwired to zero (never firing). These six spare interrupts, referred to as SPAREIRQ_IRQ_0 through SPAREIRQ_IRQ_5 in the

table, are deliberately reserved for the cores to interrupt themselves (via the Arm NVIC_ISPR0 registers or the Hazard3

MEIFA CSR), for example, when an interrupt handler wants to schedule a "bottom half" handler for work that must be

done after exiting the interrupt handler, but before returning to the code running in the foreground.

Nested interrupts are supported in hardware: a lower-priority interrupt can be pre-empted by a higher-priority interrupt or

fault, and will resume once the higher-priority handler returns. The pre-emption priority order is determined by the

interrupt priority registers starting from NVIC_IPR0 (Cortex-M33) or the MEIPRA interrupt priority array CSR (Hazard3).

When there is a choice of multiple interrupts to be entered at the same dynamic priority, the interrupt with the lowest

IRQ number is chosen as a tie-breaker. The system-level IRQ numbering has been chosen to generally put higher-priority

interrupts at lower IRQ numbers for this reason, though the true priority is often dependent on the specific application.

3.2.1. Non-maskable Interrupt (NMI)

The system IRQ signals can be routed to the Cortex-M33 non-maskable interrupt (NMI) input, by setting the bit for that

IRQ number in NMI_MASK0 or NMI_MASK1. The non-maskable interrupt ignores the processor’s interrupt

enable/disable state (PRIMASK), and can pre-empt any other active interrupt. NMIs are generally used for emergent

circumstances that require the processor’s unconditional attention, such as loss of PLL lock or power supply integrity.

The NMI mask registers are core-local, so each core can have a different combination of interrupts routed to its NMI

input. The NMI mask, along with all other EPPB registers, is reset by a warm reset of that core. This avoids an issue on

RP2040 where the NMI mask could be left set following a processor reset.

In addition to system-level interrupts, the non-maskable interrupt is asserted when an integrity check is failed in the

redundancy coprocessor (RCP, Section 3.6.3). This behaviour cannot be disabled, but a correctly-programmed RCP

does not trigger under normal voltage, frequency, and temperature conditions. Likewise, if user code does not execute

any RCP instructions, the RCP will never trigger. The RCP NMI output is asserted on both cores when an integrity check

fails, and is de-asserted by a warm processor reset.

3.2.2. Further Reading on Interrupts

This section describes the routing of system-level interrupt requests to the processor subsystem. It omits important

details such as the processor’s response to receiving an interrupt, and how processors choose which system-level

interrupt requests to subscribe to. The following is a selection of relevant information for these topics:

• Section 3.7.2.5 describes the Cortex-M33’s internal interrupt controller, the NVIC

• Register listings starting from NVIC_ISER0 describe controls for NVIC operation

• Section 3.7.4.6 is an overview of Cortex-M33 exception handling
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• The Armv8-M Architecture Reference Manual describes detailed architecture rules for exception handling

• Section 3.8.4 describes standard RISC-V trap handling

• Section 3.8.4.2 describes the standard RISC-V external, timer and software interrupt requests, and how they are

connected on RP2350

• Section 3.8.6.1 describes the Xh3irq interrupt controller, which provides priority-controlled interrupt support for the

system-level interrupts on Hazard3

• Each peripheral has its own interrupt registers which control the assertion of its system-level interrupts listed in

Table 94 — see peripheral documentation for more information

3.3. Event Signals (Arm)

Using the WFE instruction, the Cortex-M33 can enter a sleep state until an "event" (or interrupt) takes place. It can also

generate events using the SEV instruction. RP2350 cross-wires event signals between the two processors: an event sent

by one processor will be received on the other.

 NOTE

The event flag is "sticky": if both processors send an event (SEV) simultaneously, then enter the sleep state (WFE), they

will both wake immediately. This prevents the processors from getting stuck in a sleep state in this scenario.

Processors also receive an event signal from the global monitor if their reservation is lost due to a write by a different

master, in accordance with Armv8-M architecture requirements.

While in a WFE (or WFI) sleep state, the processor shuts off its internal clock gates to reduce power consumption. When

both processors are in a sleep state and the DMA is inactive, all of RP2350 can enter a sleep state, disabling clocks on

unused infrastructure such as the bus fabric. The rest of RP2350 wakes automatically when either of the processors

wakes. See Section 6.5.2.

3.4. Event Signals (RISC-V)

The Hazard3 h3.block instruction halts processor execution until an unblock signal is received. The h3.unblock instruction

sends an unblock signal to other processors. These NOP-compatible hint instructions are documented in Section

3.8.6.3.

On RP2350 the Hazard3 unblock in/out signals are cross-connected between the two processors, and each processor’s

unblock output is also fed back into its input. The global monitor also posts an unblock signal to each core when that

core loses a reservation due to an access by another core or the system DMA.

The Hazard3 MSLEEP CSR defines how deep a sleep the processor will enter when executing a h3.block instruction. By

default this is a simple pipeline stall, but the processor can also gate its own clock and negotiate the system-level clock

wake/sleep state with the clocks block (Section 6.5.2).

The h3.unblock instruction is "sticky": an h3.block will fall through immediately if any unblock signal has been received

since the last time the processor executed an h3.block instruction.

3.5. Debug

The Serial Wire Debug (SWD) bus provides access to hardware and software debug features including:

• Loading firmware into SRAM or external flash memory
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• Control of processor execution: run/halt, step, set breakpoints, other standard debug functionality

• Access to processor architectural state

• Access to memory and memory-mapped IO via the system bus

• Configuring the CoreSight trace hardware (Arm processors only)

The SWD bus is exposed on two dedicated pins, SWCLK and SWDIO. See Table 1427 for the pin definitions for SWCLK

and SWDIO, and see Table 1437 for additional information on their specifications.

A single SW-DP provides access to RP2350’s debug subsystem from the external SWCLK and SWDIO pins. The DP is

multidrop-capable, but use of multidrop SWD is not mandatory. All hardware in the debug subsystem, with the exception

of the RP-AP, can also be accessed directly from the system bus using the self-hosted debug window starting at

CORESIGHT_PERIPH_BASE.

External Pads

Self-hosted 

Debug APB

Arm

Core 0

Arm

Core 1

RISC-V

Core 0

RISC-V

Core 1

RISC-V

Debug

Module

SW-DP

ROM

Table

(0x00000)

AHB-AP:

Core 0

(0x02000)

AHB-AP:

Core 1

(0x04000)

Timestamp

Generator

(0x06000)

ATB

Funnel

(0x07000)

TPIU

(0x08000)

CTI

(0x09000)

APB-AP:

RISC-V

(0x0a000)

RP-AP

(0x80000)

APB Crossbar

SWD Mux

Internal Probe Bitbang System Bus

Figure 10. RP2350

debug topology. An

SW-DP connects the

external SWD pins to

internal debug

hardware. The ROM

table lists debug

components, for

automatic discovery.

AHB-APs provide

debug access to Arm

processors, and an

APB-AP provides

access to a standard

RISC-V Debug Module.

The RP-AP provides

Raspberry-Pi-specific

controls such as

rescue reset and

debug key entry.

Remaining

components are for

Arm trace.

The numbers in brackets in Figure 10 are the addresses of the debug components within the debug address space.

These correspond to values written to the SW-DP SELECT register for SWD accesses, or offsets from

CORESIGHT_PERIPH_BASE for self-hosted debug access. All APs are accessible through the SW-DP, and all except the

RP-AP are also accessible through self-hosted debug.

The SW-DP and RP-AP are in the always-on power domain, and are available once external power is applied and the

power-on reset (POR) time has elapsed. All other APs in Figure 10 are available only once:

1. the power manager (POWMAN) has sequenced the first power up of the switched core domain

2. the OTP PSM has read critical hardware configuration flags from OTP

3. the system clock (clk_sys) is running

3.5.1. Connecting to the SW-DP

The SW-DP defaults to the Dormant state at power-up or assertion of the external reset (RUN) pin. A Dormant-to-SWD

sequence must be issued before beginning SWD operations. See the Arm Debug Interface specification, version 6, for

details of Dormant/SWD state switching: https://developer.arm.com/documentation/ihi0074/latest/

After a power-on, the following sequence can be used to connect to the SW-DP:

1. At least 8 × SWCLK cycles with SWDIO high.
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2. The 128-bit Selection Alert sequence: 0x19bc0ea2, 0xe3ddafe9, 0x86852d95, 0x6209f392, LSB-first.

3. Four SWCLK cycles with SWDIO low.

4. SWD activation code sequence : 0x1a, LSB first.

5. At least 50 × SWCLK cycles with SWDIO high (line reset).

6. A DPIDR read to exit the Reset state

In order to wake up the system from a low power (P1.x) state, set the CDBGPWRUPREQ in the DP CTRL/STAT register,

then poll CDBGPWRUPACK in the same register until set. In low-power states, only the SW-DP and RP-AP are accessible,

as the remaining debug logic is unpowered.

3.5.2. Arm Debug

There are two AHB5 Mem-APs, at offsets 0x02000 and 0x04000 in the debug address space, which are used to debug the

two Arm Cortex-M33 processors. Each Mem-AP is an AHB5 manager which accesses a 32-bit downstream address

space. This is the same address space accessed by a processor’s load/store instructions, which includes system-level

hardware such as memory and peripherals, and processor-internal hardware on the processor’s private peripheral bus

(PPB). Certain PPB registers are visible only when accessed from the Mem-AP, not when accessed by software running

on the processor.

The AHB5 Mem-AP’s own register map is defined in Arm’s ADIv6 specification. Generally this is only of interest to those

implementing their own debug translator, and the Mem-AP can be thought of simply as a bridge between a DP (such as

RP2350’s SW-DP) and a downstream address space.

The standard Arm debug registers used to debug software running on the Cortex-M33 can be found documented in the

Armv8-M Architecture Reference Manual, or the Cortex-M33 Technical Reference Manual, available from Arm Ltd. This

datasheet also documents the core’s internal registers in Section 3.7.5.

The Mem-APs can access system peripherals and memory at exactly the same addresses they would be accessed by

software running on the processor. However, the privilege and security of Mem-AP accesses may be different from the

security state of the software running on the processor at the point it halted: the privilege and security of Mem-AP

accesses is configured explicitly via its control and status word (CSW) register. Care must be taken when debugging

Non-secure software which accesses the SIO, for example, because by default the debugger may access the Secure

alias of the SIO, not the Non-secure alias which software will have been accessing.

The bus filters configured by the ACCESSCTRL bus access permission registers (Section 10.6.2) treat bus accesses

originating from the Mem-APs as distinct from bus accesses originating from software running on the processor. This

means it is possible to lock software out from a peripheral, whilst still allowing debugger access.

3.5.3. RISC-V Debug

There is a single APB Mem-AP, at offset 0x0a000 in the debug address space, which provides access only to the RISC-V

Debug Module (DM). The DM is a standard component which the debugger uses to enumerate RISC-V harts present in

the system, debug software running on each hart, and access the system bus. It is defined in the RISC-V debug

specification, of which RP2350 implements version 0.13.2.

From the point of view of the RISC-V debug specification, the SW-DP and APB Mem-AP function jointly as the Debug

Transport Module for this system. The DM is located at offset 0x0 in the APB-AP’s downstream address space, and the

registers are word-sized and byte-addressed, meaning the DM register addresses in the debug specification must be

multiplied by 4 to get the correct APB address.

On RP2350, each core possesses exactly one hardware thread (hart). Core 0 has a hart ID of 0, and core 1 has a hart ID

of 1. These hart IDs match the hart index used in the DM. This DM is also equipped with the hart array mask select

extension, which allows multiple cores to be reset/halted/resumed simultaneously.

The DM is equipped with the System Bus Access (SBA) extension, which allows the debugger to access the system bus

without halting either core. This can be used for minimally intrusive debug techniques like Segger RTT. SBA accesses
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arbitrate with core 1’s load/store port to access the system bus, but they are treated as distinct from core 1’s accesses

for the purpose of bus filtering (Section 10.6.2), which means it is possible to lock software out of a peripheral whilst

retaining debug access. Processor load/stores in Debug mode are also treated as debug accesses for the purpose of

bus filtering.

The DM is able to reset each core individually using the dmcontrol.hartreset control. This resets only the selected

processor. The dmcontrol.ndmreset resets both processors only, which is the minimum requirement in the RISC-V debug

specification. A full system reset, which includes the DM, can be performed using the SYSRESETREQ control in the SW-

DP, a switched core domain reset configured in POWMAN and initiated by the watchdog, or any full-system reset such

as the RUN pin. A PSM reset initiated by the watchdog can reset almost all system-level hardware except for the DM,

but note that the DM becomes momentarily inaccessible whilst the system clock’s clock generator is reset, which is the

reason for dmcontrol.ndmreset resetting the processors only.

For details on the processor side of RISC-V debug, see Section 3.8.5. See also the Hazard3 source code at

github.com/Wren6991/Hazard3, which includes the DM implementation under the hdl/debug/dm/ directory.

3.5.4. Debug Power Domains

The SW-DP and the RP-AP are in the always-on power domain. This means they are available even when the system is in

its lowest-power state, with the switched core domain (which includes the processors) fully powered down.

The remainder of the debug hardware is in the switched core domain. This is the same domain as the processors and

system peripherals.

Setting the CDBGPWRUPREQ bit in the SW-DP’s CTRL/STAT register will force a power up of the switched core domain,

making the remaining debug hardware available. This power up takes some time, as it is sequenced by the 32 kHz low-

power oscillator (Section 8.4), so the CDBGPWRUPACK bit must be polled to wait for the system to power up before

attempting to access any APs other than the RP-AP. See Arm’s ADIv6 specification for the SW-DP’s register listing.

Note that the RP-AP is accessible without asserting CDBGPWRUPREQ, as it is always powered.

3.5.5. Software control of SWD pins

The DBGFORCE register in SYSCFG can be used to detach the SW-DP from the external debug pads, and instead bitbang

the internal SWD signals directly from software. This is intended for a debug probe running on one core being used to

debug the other core. For other use cases it is generally cleaner to use the self-hosted debug access to interface with

the APs directly from the system bus.

3.5.6. Self-hosted Debug

All APs shown in Figure 10, except for the RP-AP, have direct memory-mapped access from the system bus. This is

known as self-hosted debug, because with care it allows running a debug host (i.e. a debugger) directly on-system. It

can also be used to access the trace hardware, which can be used for self-hosted trace using the trace DMA FIFO. By

default only Secure access is permitted, as the processor debug presents an opportunity for Non-secure code to

interfere with the Secure context and/or perform Secure bus accesses.

The self-hosted debug window starts at address 0x40140000 (CORESIGHT_PERIPH_BASE). The offsets of the APs within

this window are the same as the APs' addresses when accessed from the SW-DP.

Because of the blocking nature of the AHB-AP’s DRW register, and its interactions with the Cortex-M33’s arbitration of

AHB-AP accesses with load/stores, certain accesses have potential to cause bus lockup due to circular bus stall

dependencies. In particular, cores may not access their own AHB-APs through the self-hosted debug window, and AHB-

APs may not access AHB-APs through the self-hosted debug window — attempting to do so will immediately return a

bus fault. To reduce the opportunities for deadlock, a full APB crossbar is used to connect the SW-DP and the self-

hosted debug port to the APs, so that for example self-hosted use of the Arm trace hardware will not interfere with an

external debugger attaching via the AHB-APs.
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There are some cases where a bus deadlock can not be avoided, such as a core using the other core’s AHB-AP, via the

self-hosted debug window, to access some other APB peripheral:

1. The access upstream of the APB’s DRW register will not complete until the downstream access completes

2. The downstream access will not complete until it is granted access to the system APB bridge

3. Access to the APB bridge will not be granted until the upstream access, which is occupying the system APB bridge,

completes

4. See point 1.

This situation can arise when running a self-hosted debugger on one core, and debugging code on the other core which

accesses APB addresses. The deadlock is eventually broken when the APB bridge’s 65536-cycle timeout expires,

abandoning the transfer and returning a bus error to the origin of the upstream access. To avoid this, software should

detect when it is about to use an AP to access an APB address (an address starting with 0x4), and perform the access

directly instead of using the Mem-AP.

This type of deadlock does not occur when the debugger accesses the bus with RISC-V System Bus Access, because

the bus transfer upstream of the DM does not block on completion of the downstream access.

3.5.7. Trace

3.5.7.1. Overview

The ATB trace subsystem is based on the Coresight SoC-600M architecture, as shown in Figure 11.
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Figure 11. Trace

Subsystem

The trace subsystem captures trace messages from each of the Cortex-M33 ITM/ETM components, merges them into

a single trace bus, and sends off-chip through the 4-bit DDR trace port for subsequent capture and analysis by a trace

port analyser.

This allows the developer to review a detailed log of software executed on the processors. The advantage over

conventional hardware debug is that it does this without halting the processors or affecting their execution timing, so

you can diagnose software issues that are hard to reproduce under a debugger.

The trace subsystem comprises the following main components:

• Timestamp Generator: Timestamps propagate to both Cortex-M33 processors, and are applied to ETM and ITM

output so that the relative timing of their trace streams can be recovered.

• Cortex-M33 ETM: Embedded Trace Macrocell, for real-time instruction flow messages generated from

observations of the Cortex-M33’s execution.

• Cortex-M33 ITM: Instruction Trace Macrocell, for software-generated messages.

• ATB Funnel: Merges the Cortex-M33 trace sources into a single trace stream using the timestamps from the

Timestamp Generator.

• TPIU: Trace Port Interface Unit, outputs trace data over trace port pins. The source-synchronous trace interface is

4-bits DDR, up to 75 MHz clock, giving a maximum trace data rate of up to 600 Mb/s.
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• Trace FIFO: Optionally captures the 32-bit TPIU trace stream on-device, from which point the DMA can transfer to

main system SRAM.

See the Arm CoreSight ETM-M33 Technical Reference Manual for information about the Cortex-M33 ETM. See the SoC-

600M Technical Reference Manual for information about the other trace components in Figure 11

The trace output clock is fixed at one half of clk_sys. At the maximum system frequency of 150 MHz this yields a

75 MHz TPIU output clock. The trace throughput is reduced at lower system clock frequencies, though this is rarely an

issue in practice as the processor instruction throughput (and therefore the demand for trace output bandwidth) scales

accordingly.

3.5.7.2. Trace FIFO

Trace output goes to one of two data sinks:

• The four-bit TPIU interface streams data out of the chip through GPIOs, for capture by an external probe

• The trace FIFO streams data into SRAM via the system DMA

The bandwidth of the DMA is greater than the bandwidth of the TPIU interface. Capturing into an on-chip buffer also

allows trace to operate through a comparatively low-speed SWD probe without restricting trace bandwidth.

The operation is similar to a micro-trace buffer (MTB). However, all of system SRAM is available for trace. You can also

use other DMA endpoints like the PIO and HSTX to implement your own trace data sinks, for example if you would

prefer a wider and lower-frequency bus than the TPIU provides.

You must enable DMA access to the trace FIFO registers by setting the DMA bit in the ACCESSCTRL CORESIGHT_TRACE

register before attempting to DMA from this FIFO. Configure the DMA for DREQ 53 to select the trace FIFO.

3.5.7.3. List of Trace FIFO Registers

The trace FIFO registers start at a base address of 0x50700000 (defined as CORESIGHT_TRACE_BASE in the SDK).

Table 95. List of

CORESIGHT_TRACE

registers

Offset Name Info

0x0 CTRL_STATUS Control and status register

0x4 TRACE_CAPTURE_FIFO FIFO for trace data captured from the TPIU

CORESIGHT_TRACE: CTRL_STATUS Register

Offset: 0x0

Description

Control and status register

Table 96.

CTRL_STATUS

Register

Bits Description Type Reset

31:2 Reserved. - -

1 TRACE_CAPTURE_FIFO_OVERFLOW: This status flag is set high when trace

data has been dropped due to the FIFO being full at the point trace data was

sampled. Write 1 to acknowledge and clear the bit.

RW 0x0
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Bits Description Type Reset

0 TRACE_CAPTURE_FIFO_FLUSH: Set to 1 to continuously hold the trace FIFO in

a flushed state and prevent overflow.

Before clearing this flag, configure and start a DMA channel with the correct

DREQ for the TRACE_CAPTURE_FIFO register.

Clear this flag to begin sampling trace data, and set once again once the trace

capture buffer is full. You must configure the TPIU in order to generate trace

packets to be captured, as well as components like the ETM further upstream

to generate the event stream propagated to the TPIU.

RW 0x1

CORESIGHT_TRACE: TRACE_CAPTURE_FIFO Register

Offset: 0x4

Description

FIFO for trace data captured from the TPIU

Table 97.

TRACE_CAPTURE_FIF

O Register

Bits Description Type Reset

31:0 RDATA: Read from an 8 x 32-bit FIFO containing trace data captured from the

TPIU.

Hardware pushes to the FIFO on rising edges of clk_sys, when either of the

following is true:

* TPIU TRACECTL output is low (normal trace data)

* TPIU TRACETCL output is high, and TPIU TRACEDATA0 and TRACEDATA1

are both low (trigger packet)

These conditions are in accordance with Arm Coresight Architecture Spec

v3.0 section D3.3.3: Decoding requirements for Trace Capture Devices

The data captured into the FIFO is the full 32-bit TRACEDATA bus output by

the TPIU. Note that the TPIU is a DDR output at half of clk_sys, therefore this

interface can capture the full 32-bit TPIU DDR output bandwidth as it samples

once per active edge of the TPIU output clock.

RF 0x00000000

3.5.8. Rescue Reset

A rescue reset is a full system reset, similar to asserting the RUN pin low, which also sets a flag telling the bootrom to

halt before running any user software. This is performed over the SWD bus using the RP-AP, and can be performed even

when system clocks are stopped and the switched core power domain is powered down. This is used in the case where

the chip has locked up, for example if code has been programmed into flash which permanently halts the system clock:

since the debugger can no longer communicate with the processors to return the system to a working state, more

drastic action is needed. This functionality was provided by the Rescue DP on RP2040, but on RP2350 it is provided by

the RP-AP, to avoid mandatory use of multidrop SWD.

A rescue is invoked by setting and then clearing the CTRL.RESCUE_RESTART bit in the RP-AP. This causes a hard reset

of the chip, and sets CHIP_RESET.RESCUE_FLAG to indicate that a rescue reset took place. The bootrom checks this

flag almost immediately in the initial boot process (before watchdog, flash or USB boot), acknowledges by clearing the

bit, then halts the processor. This leaves the system in a safe state, with the system clock running, so that the debugger

can reattach to the cores and load fresh code.
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3.5.9. Security

By default, the SWD debug access port allows an external debugger to access all system memory and peripherals, and

to observe and change the execution of software running on the processors. If boot signature enforcement is enabled

(Section 10.1.1), debug access becomes a security concern, as it is able to sidestep this protection. To account for this,

RP2350 supports progressively locking down the debug port using configuration in on-chip OTP storage.

Conceptually there are two control bits: debug disable, and secure debug disable. Debug disable is intended to

completely cut off debug access to the processors and the system bus, whilst the secure debug disable forbids Secure

bus accesses, and halting of processors in the Secure state, but still allows Non-secure software to be debugged as

normal. There are two ways to set these control bits:

• Setting the relevant OTP critical flag: CRIT1.DEBUG_DISABLE or CRIT1.SECURE_DEBUG_DISABLE to set the debug

disable or secure debug disable, respectively

• Installing a 128-bit fixed debug key as OTP key 5 or 6 (Section 3.5.9.2)

OTP configuration changes take effect at the next reset of the OTP block.

Once debug has been disabled, software can re-enable debug using the OTP DEBUGEN register, which allows the secure

and overall debug enable to be cleared individually for each processor. For example, Secure software may implement a

shell where users can authenticate using a cryptographic challenge to enable debug on systems where it is disabled by

default. The DEBUGEN register belongs to the processor cold reset domain, so it is preserved over a PSM reset starting

from as early as OTP (the second PSM stage). This allows almost a full system reset without losing debug access.

To avoid accidental writes of the DEBUGEN register, its bits can be individually locked using the matching bits in

DEBUGEN_LOCK.

This offers increasing levels of debug protection:

1. Fully open: no keys installed and no OTP debug disable flags are set. This is the most convenient configuration for

product development.

2. Access with key only: at least one key is installed, but no OTP debug disable flags are set.

3. No access even with key (an OTP debug disable flag is set), but Secure code can enable debug access by writing

to DEBUGEN.

4. No access even with key (an OTP debug disable flag is set), and DEBUGEN is locked by DEBUGEN_LOCK.

3.5.9.1. Effects of Debug Disables

The secure debug disable flag (CRIT1.SECURE_DEBUG_DISABLE) has the following effects:

• Set Secure AP enable signals for Arm core 0 and core 1 AHB-APs to 0.

◦ This prevents the APs from performing Secure bus accesses (including to the PPB).

◦ Status is reported in the SDeviceEn flag of the AHB-AP CSW register.

• Set the Cortex-M33 SPIDEN and SPNIDEN signals for both cores to 0.

◦ This prevents the cores from being halted or traced whilst in the Secure state.

• Disable the factory test JTAG interface (Section 10.10).

The debug disable flag (CRIT1.DEBUG_DISABLE) has all of the effects of the secure debug disable flag. It also has the

following additional effects:

• Set AP enable signals for Arm core 0 and core 1 AHB-APs to 0.

◦ This prevents the APs from performing any bus accesses at all (including to the PPB).

◦ Status is reported in the DeviceEn flag of the AHB-AP CSW register.

• Set AP enable signal for RISC-V DM APB-AP to 0.
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◦ This prevents the AP from accessing the RISC-V Debug Module.

◦ Status is reported in the DeviceEn flag of the APB-AP CSW register.

• Set DBGEN and NIDEN signals for the CTI to 0.

On RISC-V CRIT1.SECURE_DEBUG_DISABLE has no useful effect. Debug-mode accesses from the cores always have

Secure and Privileged bus attributes, except when reduced by FORCE_CORE_NS. Likewise, System Bus Access via the

Debug Module is always Secure and Privileged, unless FORCE_CORE_NS.CORE1 is set, in which case it is Non-secure

and Privileged. Use the CRIT1.DEBUG_DISABLE flag on RISC-V.

3.5.9.2. Debug Keys

Section 13.5.2 describes the OTP hardware access keys. Hardware reads OTP access keys into hidden registers as part

of the OTP power-up sequence which takes place after an OTP reset, and the corresponding OTP locations then

become inaccessible. OTP keys 5 and 6 are special in that they control access to the SWD debug hardware in addition to

functioning as normal OTP page keys.

A debug key is a 128-bit fixed challenge. Installing a debug key in OTP locks down debug access, and it remains locked

until the debug host writes a matching key value through the RP-AP DBGKEY register. This is a write-only interface.

To install a debug key, first program the OTP locations starting from KEY5_0 or KEY6_0. These locations are ECC-

protected. Once you have programmed the 128-bit key value and read it back to confirm the correct value is

programmed, write the raw bit pattern 0x010101 to KEY5_VALID or KEY6_VALID to mark the key as valid. The validity

takes effect at the next reset of the OTP block.

Once a key is valid, the OTP storage locations for that key become inaccessible for both reads and writes. Only the OTP

power-up state machine (Section 13.3.4) can read the key.

The effect of installing debug keys depends on which of key 5 and 6 are installed:

• If key 5 or key 6 is valid, and no matching key (either) has been entered through the RP-AP, all debug is disabled.

This has the same effect as setting CRIT1.DEBUG_DISABLE.

• If key 5 is valid, and no matching key (key 5 specifically) has been entered through the RP-AP, Secure debug is

disabled. This has the same effect as writing CRIT1.SECURE_DEBUG_DISABLE.

When both keys are installed, key 5 provides both Secure and Non-secure debug access, and key 6 provides Non-secure

debug access only. When only a single key is installed, that key provides both Secure and Non-secure debug access.

To enter a key over SWD, first write a 1 to DBGKEY.RESET. Then sequentially write 128 bits to DBGKEY.DATA, each

accompanied by a 1 written to DBGKEY.PUSH. Write the data LSB-first, starting with the lowest-numbered OTP row.

Assuming you wrote a value that matched one of the installed debug keys, debug unlocks after the 128th push. The

SDeviceEn and DeviceEn flags in the Mem-AP CSW registers indicate success or failure.

Failure to supply a matching key through the RP-AP disables debug if it would otherwise be enabled. However, supplying

a key does not enable if it is already disabled for other reasons. For example, if CRIT1.DEBUG_DISABLE is set, and

DEBUGEN is clear, debug is be disabled no matter the state of the debug keys and the RP-AP.

3.5.10. RP-AP

The RP-AP is a small register block which is always accessible over SWD. RP-AP access does not require the switched

core domain to be powered up, or any internal system clock generators to be running.

3.5.10.1. List of Registers

The RP-AP registers start at offset 0x80000 in the debug address space, which is accessed via address 0x80000 in the SW-

DP’s SELECT register. Unlike the other APs, it can not be accessed directly from the system bus.
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Table 98. List of

RP_AP registers
Offset Name Info

0x000 CTRL This register is primarily used for DFT but can also be used to

overcome some power up problems. However, it should not be

used to force power up of domains. Use DBG_POW_OVRD for

that.

0x004 DBGKEY Serial key load interface (write-only)

0x008 DBG_POW_STATE_SWCORE This register indicates the state of the power sequencer for the

switched-core domain.

The sequencer timing is managed by the POWMAN_SEQ_*

registers. See the header file for those registers for more

information on the timing.

Power up of the domain commences by clearing bit 0 (IS_PD)

then bits 1-8 are set in sequence. Bit 8 (IS_PU) indicates the

sequence is complete.

Power down of the domain commences by clearing bit 8 (IS_PU)

then bits 7-1 are cleared in sequence. Bit 0 (IS_PU) is then set to

indicate the sequence is complete.

Bits 9-11 describe the states of the power manager clocks which

change as clock generators in the switched-core become

available following switched-core power up.

This bus can be sent to GPIO for debug. See

DBG_POW_OUTPUT_TO_GPIO in the DBG_POW_OVRD register.

0x00c DBG_POW_STATE_XIP This register indicates the state of the power sequencer for the

XIP domain.

The sequencer timing is managed by the POWMAN_SEQ_*

registers. See the header file for those registers for more

information on the timing.

Power up of the domain commences by clearing bit 0 (IS_PD)

then bits 1-8 are set in sequence. Bit 8 (IS_PU) indicates the

sequence is complete.

Power down of the domain commences by clearing bit 8 (IS_PU)

then bits 7-1 are cleared in sequence. Bit 0 (IS_PU) is then set to

indicate the sequence is complete.

0x010 DBG_POW_STATE_SRAM0 This register indicates the state of the power sequencer for the

SRAM0 domain.

The sequencer timing is managed by the POWMAN_SEQ_*

registers. See the header file for those registers for more

information on the timing.

Power up of the domain commences by clearing bit 0 (IS_PD)

then bits 1-8 are set in sequence. Bit 8 (IS_PU) indicates the

sequence is complete.

Power down of the domain commences by clearing bit 8 (IS_PU)

then bits 7-1 are cleared in sequence. Bit 0 (IS_PU) is then set to

indicate the sequence is complete.
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Offset Name Info

0x014 DBG_POW_STATE_SRAM1 This register indicates the state of the power sequencer for the

SRAM1 domain.

The sequencer timing is managed by the POWMAN_SEQ_*

registers. See the header file for those registers for more

information on the timing.

Power up of the domain commences by clearing bit 0 (IS_PD)

then bits 1-8 are set in sequence. Bit 8 (IS_PU) indicates the

sequence is complete.

Power down of the domain commences by clearing bit 8 (IS_PU)

then bits 7-1 are cleared in sequence. Bit 0 (IS_PU) is then set to

indicate the sequence is complete.

0x018 DBG_POW_OVRD This register allows external control of the power sequencer

outputs for all the switched power domains. If any of the power

sequencers stall at any stage then force power up operation of

all domains by running this sequence:

- set DBG_POW_OVRD = 0x3b to force small power switches on,

large power switches off, resets on and isolation on

- allow time for the domain power supplies to reach full rail

- set DBG_POW_OVRD = 0x3b to force large power switches on

- set DBG_POW_OVRD = 0x37 to remove isolation

- set DBG_POW_OVRD = 0x17 to remove resets

0x01c DBG_POW_OUTPUT_TO_GPIO Send some, or all, bits of DBG_POW_STATE_SWCORE to gpios.

Bit 0 sends bit 0 of DBG_POW_STATE_SWCORE to GPIO 34

Bit 1 sends bit 1 of DBG_POW_STATE_SWCORE to GPIO 35

Bit 2 sends bit 2 of DBG_POW_STATE_SWCORE to GPIO 36

.

.

Bit 11 sends bit 11 of DBG_POW_STATE_SWCORE to GPIO 45

0xdfc IDR Standard Coresight ID Register

RP_AP: CTRL Register

Offset: 0x000

Description

This register is primarily used for DFT but can also be used to overcome some power up problems. However, it

should not be used to force power up of domains. Use DBG_POW_OVRD for that.

Table 99. CTRL

Register
Bits Description Type Reset

31 RESCUE_RESTART: Allows debug of boot problems by restarting the chip with

minimal boot code execution. Write to 1 to put the chip in reset then write to 0

to restart the chip with the rescue flag set. The rescue flag is in the

POWMAN_CHIP_RESET register and is read by boot code. The rescue flag is

cleared by writing 0 to POWMAN_CHIP_RESET_RESCUE_FLAG or by resetting

the chip by any means other than RESCUE_RESTART.

RW 0x0

30 SPARE: Unused RW 0x0

29:7 Reserved. - -
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Bits Description Type Reset

6 DBG_FRCE_GPIO_LPCK: Allows chip start-up when the Low Power Oscillator

(LPOSC) is inoperative or malfunctioning and also allows the initial power

sequencing rate to be adjusted. Write to 1 to force the LPOSC output to be

driven from a GPIO (gpio20 on 80-pin package, gpio34 on the 60-pin package).

If the LPOSC is inoperative or malfunctioning it may also be necessary to set

the LPOSC_STABLE_FRCE bit in this register. The user must provide a clock on

the GPIO. For normal operation use a clock running at around 32kHz.

Adjusting the frequency will speed up or slow down the initial power-up

sequence.

RW 0x0

5 LPOSC_STABLE_FRCE: Allows the chip to start-up even though the Low Power

Oscillator (LPOSC) is failing to set its stable flag. Initial power sequencing is

clocked by LPOSC at around 32kHz but does not start until the LPOSC

declares itself to be stable. If the LPOSC is otherwise working correctly the

chip will boot when this bit is set. If the LPOSC is not working then

DBG_FRCE_GPIO_LPCK must be set and an external clock provided.

RW 0x0

4 POWMAN_DFT_ISO_OFF: Holds the isolation gates between power domains in

the open state. This is intended to hold the gates open for DFT and power

manager debug. It is not intended to force the isolation gates open. Use the

overrides in DBG_POW_OVRD to force the isolation gates open or closed.

RW 0x0

3 POWMAN_DFT_PWRON: Holds the power switches on for all domains. This is

intended to keep the power on for DFT and debug, rather than for switching

the power on. The power switches are not sequenced and the sudden demand

for current could cause the always-on power domain to brown out. This

register is in the always-on domain therefore chaos could ensue. It is

recommended to use the DBG_POW_OVRD controls instead.

RW 0x0

2 POWMAN_DBGMODE: This prevents the power manager from powering down

and resetting the switched-core power domain. It is intended for DFT and for

debugging the power manager after the chip has booted. It cannot be used to

force initial power on because it simultaneously deasserts the reset.

RW 0x0

1 JTAG_FUNCSEL: Multiplexes the JTAG ports onto GPIO0-3 RW 0x0

0 JTAG_TRSTN: Resets the JTAG module. Active low. RW 0x0

RP_AP: DBGKEY Register

Offset: 0x004

Description

Serial key load interface (write-only)

Table 100. DBGKEY

Register
Bits Description Type Reset

31:3 Reserved. - -

2 RESET: Reset (before sending a new key) RW 0x0

1 PUSH RW 0x0

0 DATA RW 0x0

RP_AP: DBG_POW_STATE_SWCORE Register

Offset: 0x008
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Description

This register indicates the state of the power sequencer for the switched-core domain.

The sequencer timing is managed by the POWMAN_SEQ_* registers. See the header file for those registers for more

information on the timing.

Power up of the domain commences by clearing bit 0 (IS_PD) then bits 1-8 are set in sequence. Bit 8 (IS_PU)

indicates the sequence is complete.

Power down of the domain commences by clearing bit 8 (IS_PU) then bits 7-1 are cleared in sequence. Bit 0 (IS_PU)

is then set to indicate the sequence is complete.

Bits 9-11 describe the states of the power manager clocks which change as clock generators in the switched-core

become available following switched-core power up.

This bus can be sent to GPIO for debug. See DBG_POW_OUTPUT_TO_GPIO in the DBG_POW_OVRD register.

Table 101.

DBG_POW_STATE_SW

CORE Register

Bits Description Type Reset

31:12 Reserved. - -

11 USING_FAST_POWCK: Indicates the source of the power manager clock. On

switched-core power up the clock switches from the LPOSC to clk_ref and this

flag will be set. clk_ref will be running from the ROSC initially but will switch to

XOSC when it comes available. On switched-core power down the clock

switches to LPOSC and this flag will be cleared.

RO 0x0

10 WAITING_POWCK: Indicates the switched-core power sequencer is waiting for

the power manager clock to update. On switched-core power up the clock

switches from the LPOSC to clk_ref. clk_ref will be running from the ROSC

initially but will switch to XOSC when it comes available. On switched-core

power down the clock switches to LPOSC.

If the switched-core power up sequence stalls with this flag active then it

means clk_ref is not running which indicates a problem with the ROSC. If that

happens then set DBG_POW_RESTART_FROM_XOSC in the DBG_POW_OVRD

register to avoid using the ROSC.

If the switched-core power down sequence stalls with this flag active then it

means LPOSC is not running. The solution is to not stop LPOSC when the

switched-core power domain is powered.

RO 0x0

9 WAITING_TIMCK: Indicates that the switched-core power sequencer is waiting

for the AON-Timer to update. On switched-core power-up there is nothing to

be done. The AON-Timer continues to run from the LPOSC so this flag will not

be set. Software decides whether to switch the AON-Timer clock to XOSC (via

clk_ref). On switched-core power-down the sequencer will switch the AON-

Timer back to LPOSC if software switched it to XOSC. During the switchover

the WAITING_TIMCK flag will be set. If the switched-core power down

sequence stalls with this flag active then the only recourse is to reset the chip

and change software to not select XOSC as the AON-Timer source.

RO 0x0

8 IS_PU: Indicates the power somain is fully powered up. RO 0x0

7 RESET_FROM_SEQ: Indicates the state of the reset to the power domain. RO 0x0

6 ENAB_ACK: Indicates the state of the enable to the power domain. RO 0x0

5 ISOLATE_FROM_SEQ: Indicates the state of the isolation control to the power

domain.

RO 0x0

4 LARGE_ACK: Indicates the state of the large power switches for the power

domain.

RO 0x0
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Bits Description Type Reset

3 SMALL_ACK2: The small switches are split into 3 chains. In the power up

sequence they are switched on separately to allow management of the VDD

rise time. In the power down sequence they switch off simultaneously with the

large power switches.

This bit indicates the state of the last element in small power switch chain 2.

RO 0x0

2 SMALL_ACK1: This bit indicates the state of the last element in small power

switch chain 1.

RO 0x0

1 SMALL_ACK0: This bit indicates the state of the last element in small power

switch chain 0.

RO 0x0

0 IS_PD: Indicates the power somain is fully powered down. RO 0x0

RP_AP: DBG_POW_STATE_XIP Register

Offset: 0x00c

Description

This register indicates the state of the power sequencer for the XIP domain.

The sequencer timing is managed by the POWMAN_SEQ_* registers. See the header file for those registers for more

information on the timing.

Power up of the domain commences by clearing bit 0 (IS_PD) then bits 1-8 are set in sequence. Bit 8 (IS_PU)

indicates the sequence is complete.

Power down of the domain commences by clearing bit 8 (IS_PU) then bits 7-1 are cleared in sequence. Bit 0 (IS_PU)

is then set to indicate the sequence is complete.

Table 102.

DBG_POW_STATE_XIP

Register

Bits Description Type Reset

31:9 Reserved. - -

8 IS_PU: Indicates the power somain is fully powered up. RO 0x0

7 RESET_FROM_SEQ: Indicates the state of the reset to the power domain. RO 0x0

6 ENAB_ACK: Indicates the state of the enable to the power domain. RO 0x0

5 ISOLATE_FROM_SEQ: Indicates the state of the isolation control to the power

domain.

RO 0x0

4 LARGE_ACK: Indicates the state of the large power switches for the power

domain.

RO 0x0

3 SMALL_ACK2: The small switches are split into 3 chains. In the power up

sequence they are switched on separately to allow management of the VDD

rise time. In the power down sequence they switch off simultaneously with the

large power switches.

This bit indicates the state of the last element in small power switch chain 2.

RO 0x0

2 SMALL_ACK1: This bit indicates the state of the last element in small power

switch chain 1.

RO 0x0

1 SMALL_ACK0: This bit indicates the state of the last element in small power

switch chain 0.

RO 0x0

0 IS_PD: Indicates the power somain is fully powered down. RO 0x0

RP_AP: DBG_POW_STATE_SRAM0 Register

Offset: 0x010
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Description

This register indicates the state of the power sequencer for the SRAM0 domain.

The sequencer timing is managed by the POWMAN_SEQ_* registers. See the header file for those registers for more

information on the timing.

Power up of the domain commences by clearing bit 0 (IS_PD) then bits 1-8 are set in sequence. Bit 8 (IS_PU)

indicates the sequence is complete.

Power down of the domain commences by clearing bit 8 (IS_PU) then bits 7-1 are cleared in sequence. Bit 0 (IS_PU)

is then set to indicate the sequence is complete.

Table 103.

DBG_POW_STATE_SR

AM0 Register

Bits Description Type Reset

31:9 Reserved. - -

8 IS_PU: Indicates the power somain is fully powered up. RO 0x0

7 RESET_FROM_SEQ: Indicates the state of the reset to the power domain. RO 0x0

6 ENAB_ACK: Indicates the state of the enable to the power domain. RO 0x0

5 ISOLATE_FROM_SEQ: Indicates the state of the isolation control to the power

domain.

RO 0x0

4 LARGE_ACK: Indicates the state of the large power switches for the power

domain.

RO 0x0

3 SMALL_ACK2: The small switches are split into 3 chains. In the power up

sequence they are switched on separately to allow management of the VDD

rise time. In the power down sequence they switch off simultaneously with the

large power switches.

This bit indicates the state of the last element in small power switch chain 2.

RO 0x0

2 SMALL_ACK1: This bit indicates the state of the last element in small power

switch chain 1.

RO 0x0

1 SMALL_ACK0: This bit indicates the state of the last element in small power

switch chain 0.

RO 0x0

0 IS_PD: Indicates the power somain is fully powered down. RO 0x0

RP_AP: DBG_POW_STATE_SRAM1 Register

Offset: 0x014

Description

This register indicates the state of the power sequencer for the SRAM1 domain.

The sequencer timing is managed by the POWMAN_SEQ_* registers. See the header file for those registers for more

information on the timing.

Power up of the domain commences by clearing bit 0 (IS_PD) then bits 1-8 are set in sequence. Bit 8 (IS_PU)

indicates the sequence is complete.

Power down of the domain commences by clearing bit 8 (IS_PU) then bits 7-1 are cleared in sequence. Bit 0 (IS_PU)

is then set to indicate the sequence is complete.

Table 104.

DBG_POW_STATE_SR

AM1 Register

Bits Description Type Reset

31:9 Reserved. - -

8 IS_PU: Indicates the power somain is fully powered up. RO 0x0

7 RESET_FROM_SEQ: Indicates the state of the reset to the power domain. RO 0x0

6 ENAB_ACK: Indicates the state of the enable to the power domain. RO 0x0

5 ISOLATE_FROM_SEQ: Indicates the state of the isolation control to the power

domain.

RO 0x0
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Bits Description Type Reset

4 LARGE_ACK: Indicates the state of the large power switches for the power

domain.

RO 0x0

3 SMALL_ACK2: The small switches are split into 3 chains. In the power up

sequence they are switched on separately to allow management of the VDD

rise time. In the power down sequence they switch off simultaneously with the

large power switches.

This bit indicates the state of the last element in small power switch chain 2.

RO 0x0

2 SMALL_ACK1: This bit indicates the state of the last element in small power

switch chain 1.

RO 0x0

1 SMALL_ACK0: This bit indicates the state of the last element in small power

switch chain 0.

RO 0x0

0 IS_PD: Indicates the power somain is fully powered down. RO 0x0

RP_AP: DBG_POW_OVRD Register

Offset: 0x018

Description

This register allows external control of the power sequencer outputs for all the switched power domains. If any of

the power sequencers stall at any stage then force power up operation of all domains by running this sequence:

• set DBG_POW_OVRD = 0x3b to force small power switches on, large power switches off, resets on and

isolation on

• allow time for the domain power supplies to reach full rail

• set DBG_POW_OVRD = 0x3b to force large power switches on

• set DBG_POW_OVRD = 0x37 to remove isolation

• set DBG_POW_OVRD = 0x17 to remove resets

Table 105.

DBG_POW_OVRD

Register

Bits Description Type Reset

31:7 Reserved. - -

6 DBG_POW_RESTART_FROM_XOSC: By default the system begins boot as

soon as a clock is available from the ROSC, then it switches to the XOSC when

it is available. This is done because the XOSC takes several ms to start up. If

there is a problem with the ROSC then the default behaviour can be changed

to not use the ROSC and wait for XOSC. However, this requires a mask change

to modify the reset value of the Power Manager START_FROM_XOSC register.

To allow experimentation the default can be temporarily changed by setting

this register bit to 1. After setting this bit the core must be reset by a Coresight

dprst or a rescue reset (see RESCUE_RESTART in the RP_AP_CTRL register

above). A power-on reset, brown-out reset or RUN pin reset will reset this

control and revert to the default behaviour.

RW 0x0

5 DBG_POW_RESET: When DBG_POW_OVRD_RESET=1 this register bit controls

the resets for all domains. 1 = reset. 0 = not reset.

RW 0x0

4 DBG_POW_OVRD_RESET: Enables DBG_POW_RESET to control the resets for

the power manager and the switched-core. Essentially that is everythjing

except the Coresight 2-wire interface and the RP_AP registers.

RW 0x0

3 DBG_POW_ISO: When DBG_POW_OVRD_ISO=1 this register bit controls the

isolation gates for all domains. 1 = isolated. 0 = not isolated.

RW 0x0
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Bits Description Type Reset

2 DBG_POW_OVRD_ISO: Enables DBG_POW_ISO to control the isolation gates

between domains.

RW 0x0

1 DBG_POW_OVRD_LARGE_REQ: Turn on the large power switches for all

domains. This should not be done until sufficient time has been allowed for

the small switches to bring the supplies up. Switching the large switches on

too soon risks browning out the always-on domain and corrupting these very

registers.

RW 0x0

0 DBG_POW_OVRD_SMALL_REQ: Turn on the small power switches for all

domains. This switches on chain 0 for each domain and switches off chains 2

& 3 and the large power switch chain. This will bring the power up for all

domains without browning out the always-on power domain.

RW 0x0

RP_AP: DBG_POW_OUTPUT_TO_GPIO Register

Offset: 0x01c

Description

Send some, or all, bits of DBG_POW_STATE_SWCORE to gpios.

Bit 0 sends bit 0 of DBG_POW_STATE_SWCORE to GPIO 34

Bit 1 sends bit 1 of DBG_POW_STATE_SWCORE to GPIO 35

Bit 2 sends bit 2 of DBG_POW_STATE_SWCORE to GPIO 36

1. +

2. + Bit 11 sends bit 11 of DBG_POW_STATE_SWCORE to GPIO 45

Table 106.

DBG_POW_OUTPUT_T

O_GPIO Register

Bits Description Type Reset

31:12 Reserved. - -

11:0 ENABLE RW 0x000

RP_AP: IDR Register

Offset: 0xdfc

Table 107. IDR

Register
Bits Description Type Reset

31:0 Standard Coresight ID Register RO -

3.6. Cortex-M33 Coprocessors

The Cortex-M33 features a coprocessor port which transfers up to 64 bits per cycle between the processor and certain

closely-coupled hardware. The Cortex-M33’s built-in floating-point unit is an example of such a coprocessor, but

RP2350 adds three device-specific coprocessors to this interface. The following sections document these

coprocessors.

Before accessing a coprocessor from Secure code, that coprocessor must first be enabled by setting the corresponding

bit in the CPACR. Before accessing from the Non-secure state, the corresponding bits in the NSACR and CPACR_NS

registers must be set.

The RISC-V processors on RP2350 do not have access to the Cortex-M33 coprocessors.
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3.6.1. GPIO Coprocessor (GPIOC)

Coprocessor port 0 provides low-overhead access from the Cortex-M33 processors to the GPIO registers in the SIO

(Section 3.1.3). This enables a single coprocessor instruction to sample all 48 GPIOs, or to set/clear/write any single

GPIO, among other functionality.

Non-secure accesses are filtered according to the GPIO_NSMASK0 and GPIO_NSMASK1 registers in ACCESSCTRL.

GPIOs not granted for Non-secure use will ignore writes from the Non-secure state, and read back as zero when read

from the Non-secure state.

3.6.1.1. OUT Mask Write Instructions

These instructions write to multiple bits in the SIO GPIO_OUT and GPIO_HI_OUT registers.

Mnemonic Armv8-M Instruction Operation

gpioc_lo_out_put mcr p0, #0, Rt, c0, c0 sio_hw→gpio_out = Rt;

gpioc_lo_out_xor mcr p0, #1, Rt, c0, c0 sio_hw→gpio_togl = Rt;

gpioc_lo_out_set mcr p0, #2, Rt, c0, c0 sio_hw→gpio_set = Rt;

gpioc_lo_out_clr mcr p0, #3, Rt, c0, c0 sio_hw→gpio_clr = Rt;

gpioc_hi_out_put mcr p0, #0, Rt, c0, c1 sio_hw→gpio_hi_out = Rt;

gpioc_hi_out_xor mcr p0, #1, Rt, c0, c1 sio_hw→gpio_hi_togl = Rt;

gpioc_hi_out_set mcr p0, #2, Rt, c0, c1 sio_hw→gpio_hi_set = Rt;

gpioc_hi_out_clr mcr p0, #3, Rt, c0, c1 sio_hw→gpio_hi_clr = Rt;

gpioc_hilo_out_put mcrr p0, #0, Rt, Rt2, c0 Simultaneously: sio_hw→gpio_out = Rt; sio_hw→gpio_hi_out = Rt2;

gpioc_hilo_out_xor mcrr p0, #1, Rt, Rt2, c0 Simultaneously: sio_hw→gpio_togl = Rt; sio_hw→gpio_hi_togl = Rt2;

gpioc_hilo_out_set mcrr p0, #2, Rt, Rt2, c0 Simultaneously: sio_hw→gpio_set = Rt; sio_hw→gpio_hi_set = Rt2;

gpioc_hilo_out_clr mcrr p0, #3, Rt, Rt2, c0 Simultaneously: sio_hw→gpio_clr = Rt; sio_hw→gpio_hi_clr = Rt2;

3.6.1.2. OE Mask Write Instructions

These instructions write to multiple bits in the SIO GPIO_OE and GPIO_HI_OE registers.

Mnemonic Armv8-M Instruction Operation

gpioc_lo_oe_put mcr p0, #0, Rt, c0, c4 sio_hw→gpio_oe = Rt;

gpioc_lo_oe_xor mcr p0, #1, Rt, c0, c4 sio_hw→gpio_oe_togl = Rt;

gpioc_lo_oe_set mcr p0, #2, Rt, c0, c4 sio_hw→gpio_oe_set = Rt;

gpioc_lo_oe_clr mcr p0, #3, Rt, c0, c4 sio_hw→gpio_oe_clr = Rt;

gpioc_hi_oe_put mcr p0, #0, Rt, c0, c5 sio_hw→gpio_hi_oe = Rt;

gpioc_hi_oe_xor mcr p0, #1, Rt, c0, c5 sio_hw→gpio_hi_oe_togl = Rt;

gpioc_hi_oe_set mcr p0, #2, Rt, c0, c5 sio_hw→gpio_hi_oe_set = Rt;

gpioc_hi_oe_clr mcr p0, #3, Rt, c0, c5 sio_hw→gpio_hi_oe_clr = Rt;

gpioc_hilo_oe_put mcrr p0, #0, Rt, Rt2, c4 Simultaneously: sio_hw→gpio_oe = Rt; sio_hw→gpio_hi_oe = Rt2;

gpioc_hilo_oe_xor mcrr p0, #1, Rt, Rt2, c4 Simultaneously: sio_hw→gpio_oe_togl = Rt; sio_hw→gpio_hi_oe_togl =

Rt2;
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Mnemonic Armv8-M Instruction Operation

gpioc_hilo_oe_set mcrr p0, #2, Rt, Rt2, c4 Simultaneously: sio_hw→gpio_oe_set = Rt; sio_hw→gpio_hi_oe_set =

Rt2;

gpioc_hilo_oe_clr mcrr p0, #3, Rt, Rt2, c4 Simultaneously: sio_hw→gpio_oe_clr = Rt; sio_hw→gpio_hi_oe_clr =

Rt2;

3.6.1.3. Single-bit Write Instructions

These instructions write to a single, indexed bit in either the GPIO_OUT and GPIO_HI_OUT registers, or the GPIO_OE and

GPIO_HI_OE registers.

Mnemonic Armv8-M Instruction Operation

gpioc_bit_out_put mcrr p0, #4, Rt, Rt2, c0 Write a 1-bit value to any output. Equivalent to: if (Rt2 & 1)

gpioc_hilo_out_set(1ull << Rt); else gpioc_hilo_out_clr(1ull << Rt);

gpioc_bit_out_xor mcr p0, #5, Rt, c0, c0 Unconditionally toggle any single output. Equivalent to:

gpioc_hilo_out_xor(1ull << Rt);

gpioc_bit_out_set mcr p0, #6, Rt, c0, c0 Unconditionally set any single output. Equivalent to:

gpioc_hilo_out_set(1ull << Rt);

gpioc_bit_out_clr mcr p0, #7, Rt, c0, c0 Unconditionally clear any single output. Equivalent to:

gpioc_hilo_out_clr(1ull << Rt);

gpioc_bit_out_xor2 mcrr p0, #5, Rt, Rt2, c0 Conditionally toggle any single output. Equivalent to:

gpioc_hilo_out_xor((uint64_t)(Rt2 & 1) << Rt);

gpioc_bit_out_set2 mcrr p0, #6, Rt, Rt2, c0 Conditionally set any single output. Equivalent to:

gpioc_hilo_out_set((uint64_t)(Rt2 & 1) << Rt);

gpioc_bit_out_clr2 mcrr p0, #7, Rt, Rt2, c0 Conditionally clear any single output. Equivalent to:

gpioc_hilo_out_clr((uint64_t)(Rt2 & 1) << Rt);

gpioc_bit_oe_put mcrr p0, #4, Rt, Rt2, c4 Write a 1-bit value to any output enable. Equivalent to: if (Rt2 & 1)

gpioc_hilo_oe_set(1ull << Rt); else gpioc_hilo_oe_clr(1ull << Rt);

gpioc_bit_oe_xor mcr p0, #5, Rt, c0, c4 Unconditionally toggle any output enable. Equivalent to:

gpioc_hilo_oe_xor(1ull << Rt);

gpioc_bit_oe_set mcr p0, #6, Rt, c0, c4 Unconditionally set any output enable (set to output). Equivalent to:

gpioc_hilo_oe_set(1ull << Rt);

gpioc_bit_oe_clr mcr p0, #7, Rt, c0, c4 Unconditionally clear any output enable (set to input). Equivalent to:

gpioc_hilo_oe_clr(1ull << Rt);

gpioc_bit_oe_xor2 mcrr p0, #5, Rt, Rt2, c4 Conditionally toggle any output enable. Equivalent to:

gpioc_hilo_oe_xor((uint64_t)(Rt2 & 1) << Rt);

gpioc_bit_oe_set2 mcrr p0, #6, Rt, Rt2, c4 Conditionally set any output enable (set to output). Equivalent to:

gpioc_hilo_oe_set((uint64_t)(Rt2 & 1) << Rt);

gpioc_bit_oe_clr2 mcrr p0, #7, Rt, Rt2, c4 Conditionally clear any output enable (set to input). Equivalent to:

gpioc_hilo_oe_clr((uint64_t)(Rt2 & 1) << Rt);

3.6.1.4. Indexed Mask Write Instructions

These instructions write to a single, dynamically selected 32-bit GPIO register.

Mnemonic Armv8-M Instruction Operation

gpioc_index_out_put mcrr p0, #8, Rt, Rt2, c0 Write Rt to a GPIO output register selected by Rt2.

RP2350 Datasheet

3.6. Cortex-M33 Coprocessors 102



Mnemonic Armv8-M Instruction Operation

gpioc_index_out_xor mcrr p0, #9, Rt, Rt2, c0 Toggle bits Rt in a GPIO output register selected by Rt2.

gpioc_index_out_set mcrr p0, #10, Rt, Rt2, c0 Set bits Rt in a GPIO output register selected by Rt2.

gpioc_index_out_clr mcrr p0, #11, Rt, Rt2, c0 Clear bits Rt in a GPIO output register selected by Rt2.

gpioc_index_oe_put mcrr p0, #8, Rt, Rt2, c4 Write Rt to a GPIO output enable register selected by Rt2

gpioc_index_oe_xor mcrr p0, #9, Rt, Rt2, c4 Toggle bits Rt in a GPIO output enable register selected by Rt2.

gpioc_index_oe_set mcrr p0, #10, Rt, Rt2, c4 Set bits Rt in a GPIO output enable register selected by Rt2 (i.e. set

to output).

gpioc_index_oe_clr mcrr p0, #11, Rt, Rt2, c4 Clear bits Rt in a GPIO output enable register selected by Rt2 (i.e. set

to input).

3.6.1.5. Read Instructions

These instructions read from either the GPIO_OUT and GPIO_HI_OUT registers; the GPIO_OE and GPIO_HI_OE registers;

or the GPIO_IN and GPIO_HI_IN registers.

Mnemonic Armv8-M Instruction Operation

gpioc_lo_out_get mrc p0, #0, Rt, c0, c0 Read back the lower 32-bit output register. Equivalent to: Rt =

sio_hw→gpio_out;

gpioc_hi_out_get mrc p0, #0, Rt, c0, c1 Read back the upper 32-bit output register. Equivalent to: Rt =

sio_hw→gpio_hi_out;

gpioc_hilo_out_get mrrc p0, #0, Rt, Rt2, c0 Read back two 32-bit output registers in a single operation.

Equivalent to: Rt = sio_hw→gpio_out; and simultaneously Rt2 =

sio_hw→gpio_hi_out << 32);

gpioc_lo_oe_get mrc p0, #0, Rt, c0, c4 Read back the lower 32-bit output enable register. Equivalent to: Rt

= sio_hw→gpio_oe;

gpioc_hi_oe_get mrc p0, #0, Rt, c0, c5 Read back the upper 32-bit output enable register. Equivalent to: Rt

= sio_hw→gpio_hi_oe;

gpioc_hilo_oe_get mrrc p0, #0, Rt, Rt2, c4 Read back two 32-bit output enable registers in a single operation.

Equivalent to: Rt = sio_hw→gpio_oe; and simultaneously Rt2 =

sio_hw→gpio_hi_oe << 32);

gpioc_lo_in_get mrc p0, #0, Rt, c0, c8 Sample the lower 32 GPIOs. Equivalent to: Rt = sio_hw→gpio_in;

gpioc_hi_in_get mrc p0, #0, Rt, c0, c9 Sample the upper 32 GPIOs. Equivalent to: Rt = sio_hw→gpio_hi_in;

gpioc_hilo_in_get mrrc p0, #0, Rt, Rt2, c8 Sample 64 GPIOs on the same cycle. Equivalent to: Rt =

sio_hw→gpio_in; and simultaneously Rt2 = sio_hw→gpio_hi_in << 32);

3.6.1.6. Interpreting Instruction Fields

The type of coprocessor instruction — mrc, mrrc, mcr and mcrr — specifies the direction of the transfer (read/write) and the

number of Arm registers being transferred (one or two).

Bits 3:2 of the first coprocessor register number field, CRm, identify the group of registers being accessed. Values 0, 1 and

2 refer to the output, output enable and input registers respectively.

Bit 0 of the first coprocessor register number field, CRm, may be used to distinguish which register in a group is being

accessed. Bit 1 is reserved to allow more registers to be indexed on future chips with more GPIOs.

For writes, bits 1:0 of the instruction’s opc1 field specify the type of write operation: values 0, 1, 2, 3 map to normal write,
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XOR, set and clear operations respectively. Bits 3:2 of the opc1 field are used to indicate the addressing mode for the

register or individual bit being accessed. Their exact interpretation depends on the instruction.

Any combinations not listed in the preceding tables are reserved for future use.

3.6.2. Double-precision Coprocessor (DCP)

Each Cortex-M33 CPU core is equipped with two instances of a double-precision coprocessor that provides acceleration

of double-precision floating point operations including add, subtract, multiply, divide and square root. The design is

implemented in just a few thousand gates and so occupies much less silicon die area than a full double-precision

floating-point unit. Nevertheless, these coprocessors considerably speed up basic double-precision operations

compared to pure software implementations. The coprocessors also offer support for some single-precision operations

and conversions.

The two coprocessor instances are assigned to the Secure and Non-secure domains. Coprocessor number 4 always

maps to the coprocessor used for the current processor security state. Coprocessor number 5 always maps to the Non-

secure coprocessor instance, but is accessible only from Secure code. This duplication avoids saving and restoring the

coprocessor context during Secure/Non-secure state transitions.

3.6.2.1. CPU Interface

As with the other coprocessors, the accelerator connects to the CPU over a 64-bit bus. Two words of data can be

transferred per cycle over that bus using the following instructions:

• MCRR: move two integer registers to coprocessor

• MRRC: move two integer registers from coprocessor

There are also single-register versions of these instructions, including ones that allow the CPU’s flags to be loaded from

the coprocessor. The CPU issues CDP instructions to trigger operations within the coprocessor without transferring any

data.

3.6.2.2. Internal architecture

A block diagram of the accelerator is shown in Figure 12.
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Figure 12. Block

diagram of double-

precision accelerator

At the heart of the design are:

• two sets of registers, each designed to hold an unpacked double-precision value

• a 9-bit status register

Unlike a conventional FPU, the accelerator does not contain a full register bank. Not only does this save die area, it also

means that saving and restoring the coprocessor’s state is very fast: in fact, the entire state fits within six 32-bit words

and hence can be saved to, or restored from, the CPU in three instructions.

The accelerator contains a wide adder, capable of adding two mantissa values and three exponent values

simultaneously. There is also a shifter that can either perform a logical right shift by a given amount, or normalise a

denormalised mantissa and report the amount of shift required to do so. A considerable amount of hardware in the

shifter is shared between these two operating modes.

Control logic, shown at the top of the diagram, decodes coprocessor instructions and configures the accelerator’s

functional units and datapath multiplexers in order to execute the desired operation. Each coprocessor instruction takes

a single cycle, so coprocessor operations cannot stall the CPU.

A floating-point operation such as addition or subtraction is carried out by executing a fixed (or 'canned') sequence of

instructions as follows:

1. One or two MCRR instructions to write the operands to the coprocessor.

2. A number of CDP (and possibly other) instructions that together perform the operation itself.

3. An MRRC or MRC instruction to read back the result.

The hardware handles special cases involving zeroes, NaNs, and infinities, as well as rounding, underflow and overflow.
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The accelerator does not contain a multiplier array, as that would occupy a considerable amount of die area. Instead,

the mantissas of the operands of a multiplication operation are brought back into the CPU to take advantage of the fast

long multiply instructions available there. The coprocessor handles the processing of exponents.

Division and square root operations also involve data moving back and forth between coprocessor and CPU. To assist

with these operations, the coprocessor contains two small lookup tables (implemented as random logic) that provide

initial approximations used in the divide and square root algorithms. The coprocessor handles the processing of

exponents.

The accelerator is only meant to be used with the canned instruction sequences that implement basic floating-point

operations. The state of the accelerator is not guaranteed to be preserved from the end of one canned sequence to the

beginning of the next: see the discussion of the 'engaged' flag in the status register below.

3.6.2.3. Registers

X and Y mantissa registers

The X and Y mantissa registers (xm and ym) are each 64 bits wide. They can be read and written directly by the CPU;

the xm register can also store the lower part of the result from the adder. When a value is written to the coprocessor

using a 'write unpacked' MCRR instruction, the top two bits of the mantissa register are set to 01 and the next most

significant bits are filled from the mantissa field of the floating-point operand. The low-order bits of the mantissa

register are cleared.

X and Y exponent registers

The X and Y exponent registers (xe and ye) are each 14 bits wide. They can be read and written directly by the CPU;

the xe register can also store the higher part of the result from the adder. When a value is written to the coprocessor

using a 'write unpacked' MCRR instruction, the exponent register is set from the exponent field of the floating-point

operand.

X and Y flag registers

The X and Y flag registers (xf and yf) are each four bits wide. They can be read and written directly by the CPU. The

flag register stores information about the type of floating-point number represented in the corresponding mantissa

and exponent registers: its sign, whether it is a zero, whether it is an infinity, and whether it is a NaN. When a value

is written to the coprocessor using a 'write unpacked' MCRR instruction, the bits of the flag register are updated

according to the type of the floating-point operand.

Status register

The status register contains nine bits. It can be read and written directly by the CPU. The least significant six bits of

the register store the shift required to align the two operands of an addition or subtraction; the next two bits

indicate whether the value represented by (xe, xm) is greater than, equal to, or less than the value represented by

(ye, ym) - in other words, whether the magnitude of the value stored in the X registers is greater than, equal to, or

less than the magnitude of the value stored in the Y registers. These status bits are set in the first step of an

addition, subtraction or comparison operation after the operands have been loaded.

The final bit of the status register indicates whether the coprocessor is 'engaged'. The engaged flag is set by all

coprocessor instructions that occur at the beginning or in the middle of the canned instruction sequences. It is cleared

by those instructions used at the end of a canned sequence to read back a final result.

3.6.2.4. State save and restore

An interrupt handler can test the engaged flag to determine whether it has pre-empted an in-progress operation on the

same coprocessor. If the engaged flag is set, the handler can save (and restore) the coprocessor state before using the

coprocessor. If the engaged flag is clear, the save (and restore) step can be skipped. If this approach is implemented,

the state of the accelerator must be regarded as undefined when not within one of the canned instruction sequences.

Three MRRC instructions are provided to copy the six words of state in the coprocessor into integer registers in the CPU,

from where they can, for example, be pushed onto the stack. The last of these instructions clears the engaged flag.
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Similarly, three MCRR instructions are provided to restore the state of the coprocessor from integer registers, including the

state of the engaged flag.

3.6.2.5. Instruction summary

As mentioned above, it is intended that the coprocessor instructions are only used as part of canned sequences.

Nevertheless, for completeness, a list of the available instructions is given here with an outline of their effects.

MCRR instructions are shown in Table 108.

Table 108. MCRR

instructions
Mnemonic Effect Used by

WXMD write xm direct restore status

WYMD write ym direct restore status

WEFD write xe,xf,ye,yf,other status direct restore status

WXUP write xm,xe,xf unpacked double-precision double-precision binary

operations

WYUP write ym,ye,yf unpacked double-precision double-precision binary

operations

WXYU write xm,xe,xf,ym,ye,yf two unpacked single-precision single-precision binary

operations

WXMS write xm bit 0=0/1 if data zero/nonzero dmul

WXMO write xm direct OR into b0, add exponents, XOR signs dmul

WXDD write xm direct; subtract exponents, XOR signs ddiv

WXDQ write xm direct, offset exponent dsqrt

WXUC write X unsigned int+252+232, Y=252+232 conversions from

unsigned int

WXIC write X signed int+252+232, Y=252+232 conversions from signed

int

WXDC write X unpacked double-precision, Y=252+232 conversions from double-

precision

WXFC write X unpacked single-precision, Y=252+232 conversions from single-

precision

WXFM write xm direct, add exponents, XOR signs fmul

WXFD write xm direct, subtract exponents, XOR signs fdiv

WXFQ write xm direct, offset exponent fsqrt

CDP instructions are shown in Table 109.

Table 109. CDP

instructions
Mnemonic Effect Used by

INIT zero all registers

ADD0 compare X-Y, set status add, sub, cmp

ADD1 xm:=±xm+±ym>>s or ±ym+±xm>>s add

SUB1 xm:=±xm–±ym>>s or –±ym±xm>>s sub

SQR0 xe=xe/2, xm=xm<<0:1 sqrt
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Mnemonic Effect Used by

NORM normalise

NRDF normalise and round single-precision single-precision

operations, conversions

to single-precision

NRDD normalise and round double-precision double-precision

operations, conversions

to double-precision

NTDC normalise and truncate double-precision pre-integer conversion truncating conversions to

int

NRDC normalise and round double-precision pre-integer conversion rounding conversions to

int

MRRC and MRC instructions are shown in Table 110.

Table 110. MRRC and

MRC instructions
Mnemonic Effect Used by

RXVD read xf,VERSION direct dclassify, check version

RCMP read processed status dcmp

RDFA read FADD result packed from X fadd

RDFS read FSUB result packed from X fsub

RDFM read FMUL result packed from X fmul

RDFD read FDIV result packed from X fdiv

RDFQ read FSQRT result packed from X fsqrt

RDFG read general float result packed from X double-precision to

single-precision

conversion

RDUC read unsigned integer conversion result from X conversions to unsigned

int

RDIC read signed integer conversion result from X conversions to signed int

RXMD read xm direct save status

RYMD read ym direct, engaged=0 save status

REFD read xe,xf,ye,yf,other status direct save status

RXMS read xm Q62-s dmul, ddiv, dsqrt

RYMS read ym Q62-s dmul, ddiv

RXYH read ym hi, xm hi fmul, fdiv

RYMR read ym hi, recip approximation lo fdiv, ddiv

RXMQ read xm hi, rsqrt approximation lo fsqrt, dsqrt

RDDA read DADD result packed from X dadd

RDDS read DSUB result packed from X dsub

RDDM read DMUL result packed from X dmul

RDDD read DDIV result packed from X ddiv
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Mnemonic Effect Used by

RDDQ read DSQRT result packed from X dsqrt

RDDG read general double result packed from X single-precision to

double-precision

conversion

Alongside each MRRC and MRC instruction is a variant starting P (for 'peek') instead of R that has the same function but

preserves the engaged flag. RXMD is identical to PXMD; REFD is identical to PEFD.

The SDK includes macros to generate Arm assembler from the mnemonics above in the file dcp_instr.inc.S in the SDK,

for example turning WXUP r0,r1 into mcrr p4,#1,r0,r1,c0.

3.6.2.6. Example canned sequence

The assembly code sequence to implement a callable double-precision addition operation is shown in Table 111.

Table 111. Assembly

code sequence to

implement a callable

double-precision

addition operation

Arm assembler Coprocessor mnemonic Action

mcrr p4,#1,r0,r1,c0 WXUP r0,r1 write R0 and R1 unpacked double-precision into X

mcrr p4,#1,r2,r3,c1 WYUP r2,r3 write R2 and R3 unpacked double-precision into Y

cdp p4,#0,c0,c0,c1,#0 ADD0 compare X and Y; set status and alignment shift

cdp p4,#1,c0,c0,c1,#0 ADD1 add/subtract (depending on status and signs) xm and ym

aligned, write result to xm

cdp p4,#8,c0,c0,c0,#1 NRDD normalise and round double-precision result

mrrc p4,#1,r0,r1,c0 RDDA r0,r1 read R0 and R1 packed double-precision from X, including

special-value processing for addition

bx r14 return from function

Logic in the coprocessor ensures, for example, that the ADD1 instruction shifts the smaller argument, that xm and ym are

negated as required before being sent to the adder, and that the larger exponent is used as the basis for the subsequent

normalisation.

3.6.2.7. Using the coprocessor via the SDK library

The SDK pico_double library automatically uses the coprocessor for double-precision floating-point calculations. This is

the simplest way to take advantage of the coprocessor, but it entails a few cycles of overhead for each operation. Not

only is there the overhead involved in a function call and return, but for safety the general-purpose implementations in

the SDK always test the engaged flag, saving and restoring the coprocessor state to and from the stack as needed. That

ensures that the functions work correctly if used in interrupt handlers, without additional intervention.

3.6.2.8. Using the coprocessor directly

The SDK includes macros to generate canned sequences for standard operations in the file dcp_canned.inc.S in the SDK.

These allow the callable double-precision addition operation listed above, for example, to be written as:

dcp_dadd_m r0,r1, r0,r1,r2,r3  @ result in r0,r1; operands in r0,r1 and r2,r3
bx r14
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dcp_dadd_m is a macro which expands into the sequence of coprocessor instructions given above. This macro allows you

to specify the integer registers to be used for the operands and the result, which means that using these macros directly

not only avoids function call and return overhead, it also avoids the extra overhead associated with argument

marshalling.

The more complex macros also require you to specify 'scratch' registers that they can use for storing intermediate

results. The following function, which calculates the dot product of two three-element vectors of doubles pointed to by

R0 and R1, illustrates this:

push {r4-r9,r14}
ldrd r3,r4,[r0],#8                                     @ load x₀
ldrd r5,r6,[r1],#8                                     @ load y₀
dcp_dmul_m r7,r8, r3,r4,r5,r6, r3,r4,r5,r6,r12,r14,r9  @ compute x₀y₀ ①
ldrd r3,r4,[r0],#8                                     @ load x₁
ldrd r5,r6,[r1],#8                                     @ load y₁
dcp_dmul_m r3,r4, r3,r4,r5,r6, r3,r4,r5,r6,r12,r14,r9  @ compute x₁y₁ ①
dcp_dadd_m r7,r8, r3,r4,r7,r8                          @ compute x₀y₀+x₁y₁
ldrd r3,r4,[r0],#8                                     @ load x₂
ldrd r5,r6,[r1],#8                                     @ load y₂
dcp_dmul_m r3,r4, r3,r4,r5,r6, r3,r4,r5,r6,r12,r14,r9  @ compute x₂y₂ ①
dcp_dadd_m r0,r1, r3,r4,r7,r8                          @ compute x₀y₀+x₁y₁+x₂y₂ ②
pop {r4-r9,r15}

1. r3, r4, r5, r6, r12, r14, and r9 are scratch registers.

2. stores the result in r0, r1.

 NOTE

This example does not check the engaged flag. If used in interrupt handlers or in multi-threaded applications, a

suitable test would have to be added. For example, see the SDK implementation of __aeabi_dadd for an efficient way

to do this. The test only needs to be performed once, at the beginning of the function, so the overhead in this case

would be relatively small.

The following example demonstrates how to use the coprocessor:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/dcp/hello_dcp/hello_dcp.c Lines 18 - 109

 18 extern double dcp_dot                          (double*p,double*q,int n);
 19 extern double dcp_dotx                         (float*p,float*q,int n);
 20 extern float  dcp_iirx                         (float x,float*temp,float*coeff,int order);
 21 extern void   dcp_butterfly_radix2             (double*x,double*y);
 22 extern void   dcp_butterfly_radix2_twiddle_dif (double*x,double*y,double*tf);
 23 extern void   dcp_butterfly_radix2_twiddle_dit (double*x,double*y,double*tf);
 24 extern void   dcp_butterfly_radix4             (double*w,double*x,double*y,double*z);
 25 
 26 static void dcp_test0() {
 27     double u[3]={1,2,3};
 28     double v[3]={4,5,6};
 29     double w;
 30     w=dcp_dot(u,v,3);
 31     printf("(1,2,3).(4,5,6)=%g\n",w);
 32 }
 33 
 34 static void dcp_test1() {
 35     float u[3]={1+pow(2,-20),2,3};
 36     float v[3]={1-pow(2,-20),5,6};
 37     double w;
 38     w=dcp_dotx(u,v,3);
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 39     printf("(1+pow(2,-20),2,3).(1-pow(2,-20),5,6)=%.17g\n",w);
 40 }
 41 
 42 static void dcp_test2() {
 43   int t;
 44   float w;
 45 // filter coefficients calculated using Octave as follows:
 46 // octave> pkg load signal
 47 // octave> format long
 48 // octave> [b,a]=cheby1(2,1,.5)
 49 // b = 0.307043201259064   0.614086402518128   0.307043201259064
 50 // a = 1.000000000000000e+00   6.406405700380895e-02   3.139684953186774e-01
 51 // and tested as follows:
 52 // octave> filter(b,a,[1 zeros(1,19)])
 53     float coeff[5]={0.3070432,0.3139685,0.6140864,0.06406406,0.3070432};
 54     float temp[4]={0};
 55     printf("IIR filter impulse response:\n");
 56     for(t=0;t<20;t++) {
 57         w=dcp_iirx(t?0:1,temp,coeff,2);
 58         printf("y[%2d]=%g\n",t,w);
 59     }
 60 }
 61 
 62 static void dcp_test3() {
 63     double x[2]={2,3};
 64     double y[2]={5,7};
 65     dcp_butterfly_radix2(x,y);
 66     printf("Radix-2 butterfly of (2+3j,5+7j)=(%g%+gj,%g%+gj)\n",x[0],x[1],y[0],y[1]);
 67 }
 68 
 69 static void dcp_test4() {
 70     double x[2]={2,3};
 71     double y[2]={5,7};
 72     double t[2]={1.5,2.5};
 73     dcp_butterfly_radix2_twiddle_dif(x,y,t);
 74     printf("Radix-2 DIF butterfly of (2+3j,5+7j) with twiddle factor
    (1.5+2.5j)=(%g%+gj,%g%+gj)\n",x[0],x[1],y[0],y[1]);
 75 }
 76 
 77 static void dcp_test5() {
 78     double x[2]={2,3};
 79     double y[2]={5,7};
 80     double t[2]={1.5,2.5};
 81     dcp_butterfly_radix2_twiddle_dit(x,y,t);
 82     printf("Radix-2 DIT butterfly of (2+3j,5+7j) with twiddle factor
    (1.5+2.5j)=(%g%+gj,%g%+gj)\n",x[0],x[1],y[0],y[1]);
 83 }
 84 
 85 static void dcp_test6() {
 86     double w[2]={2,3};
 87     double x[2]={5,7};
 88     double y[2]={11,17};
 89     double z[2]={41,43};
 90     dcp_butterfly_radix4(w,x,y,z);
 91     printf("Radix-4 butterfly of (2+3j,5+7j,11+17j,41+43j)=(%g%+gj,%g%+gj,%g%+gj,%g%+gj)\n"
    ,w[0],w[1],x[0],x[1],y[0],y[1],z[0],z[1]);
 92 }
 93 
 94 int main() {
 95     stdio_init_all();
 96 
 97     printf("Hello, DCP!\n");
 98 
 99     dcp_test0();
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100     dcp_test1();
101     dcp_test2();
102     dcp_test3();
103     dcp_test4();
104     dcp_test5();
105     dcp_test6();
106 
107     return 0;
108 }

There are also further examples in the dcp/ directory in the Pico Examples repository.

3.6.2.9. IEEE 754 compliance

The canned instruction sequences provide IEEE-compliant operations with the exception that denormals are flushed to

zero on input and output. Zeroes, NaNs and infinities are correctly handled. Rounding is to nearest, even on tie.

Faster versions of division and square root operations, named ddiv_fast and dsqrt_fast respectively, are available. These

do not always give correctly rounded results but do have a guaranteed error before rounding of less than 0.5ulp ('units in

last place'), which in particular means that if there is an exact representation of the result then that is what is returned.

3.6.2.10. Benchmarks

Table 112 gives cycle counts for various floating-point operations using the accelerator with inlined code, compared to

some typical ranges of benchmarks for (a) fully-fledged hardware double-precision FPUs; and (b) pure software

implementations.

Table 112. Cycle

counts for floating-

point operations using

the accelerator

Operation Using

coprocessor

Full hardware (latency) Software only

dadd 6 2-6 70-90

dsub 6 2-6 70-90

dmul 17 3-7 75-90

ddiv 51 13-60 135-600

ddiv_fast 32

dsqrt 49 15-62 130-650

dsqrt_fast 38

dcmp 4

dclassify 2

integer to/from double 5

3.6.3. Redundancy Coprocessor (RCP)
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The redundancy coprocessor (RCP) is used in the RP2350 bootrom to provide hardware-assisted mitigation against

fault injection and return-oriented programming attacks. This includes the following instructions:

• generate and validate stack canary values based on a per-boot random seed

• assert that certain points in the program are executed in the correct order without missing steps

• validate booleans stored as one of two valid bit patterns in a 32-bit word

• validate 32-bit integers stored redundantly in two words with an XOR parity mask

• halt the processor upon reaching a software-detected panic condition

Section 3.6.3.7 lists the RCP instruction set in full. RCP instruction encodings contain a parity bit; executing an invalid

instruction or an instruction with bad parity triggers an RCP fault.

Each Cortex-M33 processor is equipped with a single RCP instance, mapped as coprocessor number 7 in the

coprocessor opcode space. The two RCP instances are linked: an RCP fault on one core immediately triggers a fault on

the other. RCP faults have two steps:

1. The non-maskable interrupt (NMI) is asserted. It remains asserted until a warm reset of the processor.

2. Any further RCP instructions stall the coprocessor port until a warm reset of the processor. This stall cannot be

interrupted, as the processor is already in the NMI state.

The RP2350 bootrom implements the NMI and HardFault vectors with an rcp_panic instruction. This instruction

unconditionally stalls the coprocessor port. This prevents the processor from retiring any more instructions until either

a debugger connects to reset the processors, or the processors reset through some other mechanism (such as the

system watchdog timer). The processor quickly reaches a quiescent state that reduces vulnerability to further fault

injection (deliberate or otherwise).

Each core’s RCP has a 64-bit seed value (Section 3.6.3.1). The RCP uses this value to generate stack canary values and

to add short pseudorandom delays to RCP instructions. Both RCP instances are seeded by core 0 during the early boot

path in the bootrom using the system true-random number generator (Section 12.12). Running any RCP instruction

before providing a salt value triggers an RCP fault. The use of random data in stack canary values makes it difficult to

reuse return-oriented-programming stack payloads across multiple boots.

Figure 13 gives a dataflow-level overview of the RCP hardware. The RCP is structured as a two-phase pipeline which

overlays the Cortex-M33 execution pipeline. It exchanges data with the core via a 64-bit incoming bus (CPWDATA) and

a 32-bit outgoing bus (CPRDATA). The Cortex-M33 can issue two register reads to the coprocessor in one cycle through

the CPWDATA bus. The RCP leverages this throughput for some of its assertion instructions, such as rcp_iequal, which

raises a fault when two Arm registers do not contain the same 32-bit value.
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The 8-bit tag value in Figure 13 is an 8-bit instruction immediate value encoded by the instruction CRn and CRm fields.

These 8-bit values are used to uniquely identify functions for canary value generation so that stack frames are not

interchangeable between functions. They also provide 8-bit counter values for rcp_count_set and rcp_count_check

instructions. Encoding the tags using the CRn and CRm fields makes RCP instruction sequences more compact, as it

obviates additional instructions to materialise these small constants in registers and pass them through CPWDATA.

This also makes the tag values less vulnerable to glitching, because the instruction opcode fields are available earlier in

the cycle than the register values passed on CPWDATA.

RCP instructions may also execute in the Non-secure state, with certain differences to prevent Non-secure code from

triggering RCP faults or observing the value of the salt register. This supports Non-secure software executing shared

ROM routines which contain RCP instructions, but does not allow probing of the RCP’s internal state from a Non-secure

context. Section 3.6.3.2 gives further details and rationale for Non-secure execution support.

Certain details are elided from Figure 13 for clarity, such as the delay counter used for pseudorandom instruction

delays, and the logic for suppressing faults under Non-secure execution. This behaviour is described in full in the

following sections.

3.6.3.1. Salt Register

Each RCP instance is provisioned with a 64-bit salt register, which provides a seed for stack canary values and random

instruction delays. This is expected to be initialised with a random value early in the boot process: the RP2350 bootrom

uses the true random number generator to generate the salt values.

Initially the salt register is in the invalid state. This state only allows the following operations:

• Checking the valid state of the salt register, via rcp_canary_status

• Writing a salt via rcp_salt_core0 or rcp_salt_core1, which writes a 64-bit value to that core’s salt register, and

changes its state to valid

When the salt register is in the invalid state, executing any RCP instruction other than those listed above unconditionally

triggers an RCP fault. This makes it difficult to skip RCP initialisation via fault injection, because the RP2350 bootrom

contains a high density of RCP instructions.

Similarly, attempting to write to an already-valid RCP salt register triggers an RCP fault. There is no reason to initialise

the RCP salt register twice, so this case is detected as an anomaly that indicates loss of control flow integrity.

Core 0’s coprocessor port writes the salt registers for both cores' RCP instances to simplify multicore interactions

during early boot. In the RP2350 bootrom, core 1’s first steps lock down its MPU execute permissions to a small region

of the ROM containing its wait-for-launch code, and then poll for its RCP salt to become valid once core 0 has cleared

boot memory, performed some minimal hardware setup, and generated the RCP salts.

When core 0 is switched to RISC-V architecture and core 1 is Arm, the core 1 salt register is forcibly marked as valid to

permit core 1 to execute the ROM. This has no impact on secure boot because RISC-V cores are only enabled when

secure boot is disabled; the ability to set core 0 to RISC-V already implies subversion of secure boot.

3.6.3.2. Access from Non-secure

Setting bit 7 of the Cortex-M33 NSACR register permits Non-secure code to set bit 7 of CPACR_NS, which in turn enables Non-

secure access to the RCP. Non-secure RCP access is useful for executing shared Secure/Non-secure routines which

contain RCP instructions. For example, the memcpy implementation in the RP2350 bootrom is shared by Secure code in

the main boot path, and Non-secure code such as the USB bootloader.

Since an RCP fault is fatal for all software running on the system, Non-secure must not be able to trigger RCP faults at

will. Similarly, if Non-secure code were able to read out the RCP salt register, it would make it easier to engineer stack

payloads which can control Secure execution without triggering RCP faults. Therefore the RCP handles Non-secure

accesses differently from Secure:

• Masks read data to all-zeroes
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• Ignores write data: any instruction which would generate a data-dependent RCP fault becomes a no-op

• Reports coprocessor errors instead of RCP faults for invalid instructions, which the processor maps to the Non-

secure UNDEFINSTR UsageFault

• Skips the pseudorandom instruction delay: all RCP instructions execute in one cycle, assuming the Cortex-M33 is

able to issue them at one instruction per cycle

The lack of pseudorandom instruction delays makes it more difficult for Non-secure code to extract the seed value used

to add delays to Secure execution of RCP instructions.

3.6.3.3. Instruction Validation

The RCP applies the following rules to all coprocessor instructions which target coprocessor 7:

• The number of 1 bits in the Opc1 field, plus the instruction parity bit, must be an even number.

◦ For mcr, mrc and cdp instructions, bit 0 of the Opc2 field encodes the parity bit.

◦ For mcrr, bit 3 of the CRm field encodes the parity bit.

• The instruction must not be an mrrc (64-bit coprocessor-to-core)

• For mcr instructions (32-bit core-to-coprocessor):

◦ The Opc1 field must be in the range 0 through 6.

◦ If there is no 8-bit tag (i.e. any other than rcp_canary_check, rcp_count_check, rcp_count_set), the CRn and CRm

opcode fields must be all-zeroes.

• For mrc instructions (32-bit coprocessor-to-core):

◦ The Opc1 field must be in the range 0 through 2.

◦ For instructions other than rcp_canary_get and rcp_canary_check, the CRn and CRm opcode fields must be all-

zeroes.

• For mcrr instructions (64-bit core-to-coprocessor):

◦ The Opc1 field must be in the range 0 through 8.

◦ For rcp_salt_core* instructions, bits 2:0 of the CRm field must be 0 or 1 (referred to as rcp_salt_core0 and

rcp_salt_core1 respectively).

◦ For all other mcrr instructions, bits 2:0 of the CRm field must be 0.

The terms Opc1, Opc2, CRm and CRn in the description above refer to standard encoding fields in the Arm T32 instruction

encoding for coprocessor instructions. See the Armv8-M Architecture Reference Manual for full details of the encoding

and assembler syntax.

Any coprocessor instruction targeting coprocessor 7 that fails these validation rules will result in one of two outcomes,

depending on the security domain in which the instruction is executed:

• Secure execution of an invalid instruction is an immediate, unconditional RCP fault. The RCP asserts the core’s

non-maskable interrupt signal, and any further RCP instructions stall the coprocessor port indefinitely. This

continues until the core receives a warm reset. This also triggers RCP faults on other cores: for more information,

see Section 3.6.3.4.

• Non-secure execution of an invalid instruction returns an error on the opcode-phase coprocessor interface, which

is interpreted as a Non-secure UNDEFINSTR UsageFault by the core. For a full description of this Armv8-M-specific

fault, see the Armv8-M Architecture Reference Manual.

3.6.3.4. Cross-core Triggering

An RCP fault indicates that the integrity of the software environment is compromised. Though the fault may originate on
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a single processor, all processors which share the same trusted memory may behave unpredictably if they continue to

execute, since:

• The physical condition which caused one processor to misexecute in a detectable way, such as low supply voltage,

may cause other processors to misexecute in a manner which was not detected.

• The processor which triggered an RCP fault may already have corrupted shared, trusted memory contents in a way

that interferes with the other processor’s operation, (e.g. corrupting the other core’s stack).

Therefore, an RCP fault on one core also triggers an RCP fault on other cores. Because RP2350 has two cores, an RCP

fault on core 0 always triggers a fault on core 1, and an RCP fault on core 1 always triggers a fault on core 0.

Core 0 

Trigger

Core 0 

NMICore 0 

Fault

D Q

Core 1 

NMICore 1 

Trigger
Core 1 

Fault

D Q

Figure 14. Triggering

an RCP fault on one

core also triggers a

fault on the other

core. Triggers

accumulate into a

fault register, which

remains set until the

core resets. The NMI

asserts when the fault

register is set.

Each core locally ORs in the trigger signal from the other core. The outputs of the two OR gates on the left are logically

equivalent, but the gates are kept local to the core to minimise delay routing the core’s own fault trigger to its own fault

register.

3.6.3.5. Stack Canary Values

Canaries are values written to the stack on function entry and validated on function exit, to assure that:

• The exit matches the entry (i.e. when leaving through the back door, you entered through the front door)

• The stack was not completely overwritten in the course of executing the function

This helps to mitigate two classes of attack:

• Fault injection: any physical fault condition which corrupts the program counter or causes a wild indirect branch is

likely to cause the processor to execute a function epilogue which does not match the prologue. Any branch into

the middle of a function is likely to eventually reach the epilogue.

• Return-oriented programming: deliberate stack corruption can redirect control flow through a sequence of function

tails which perform arbitrary operations. The stack may be corrupted by exploiting missing bounds checks on

stack buffer operations. Random canary values make it difficult to craft such a stack payload.

Return-oriented programming mitigation is particularly important to account for in the bootrom because the bootrom

exposes an API surface that is mapped at a known location at runtime (it is physically always mapped at 0x00000000).

This provides a well-known exploit surface similar to the C standard library.

The RCP supports canary values with two canary-specific instructions:

• rcp_canary_get generates a 32-bit value for an 8-bit tag as a function of the salt register

• rcp_canary_check validates a 32-bit value for an 8-bit tag and raises an RCP fault if the value does not match that

produced by an rcp_canary_get for the same tag.

The 32-bit canary value is as follows:

• Bits 7:0: all-zero

• Bits 15:8: XOR of bits 7:0 of the salt with (AND of bits 31:24 of the salt with the 8-bit tag)

RP2350 Datasheet

3.6. Cortex-M33 Coprocessors 116



• Bits 23:16: XOR of bits 15:8 of the salt with (AND of bits 39:32 of the salt with the bitwise NOT of the 8-bit tag)

• Bits 31:24: XOR of bits 23:16 of the salt with the 8-bit tag

The following code demonstrates how you might calculate the 32-bit canary value in C:

uint32_t canary_value(uint64_t salt, uint8_t tag) {
    uint32_t tag_expanded =
        (uint32_t)tag |
        ((uint32_t)~tag << 8)
        ((uint32_t)tag << 16);
    tag_expanded &= (0xff0000u | ((salt >> 24) & 0x00ffffu));
    uint32_t result24 = tag_expanded ^ salt;
    return result24 << 8;
}

This canary value is chosen such that:

• Different tags are guaranteed to yield different canary values

• For any two different tags, each is a function of at least one salt bit that the other is not a function of (so it is

difficult to calculate canaries for different tags even if one value is known)

• Null-terminated string operations on the stack terminate before reading or writing a canary

Each function should use a different canary tag, to prevent a stack frame for one function being used to return through

another function’s epilogue. Avoid using canary values for purposes other than stack canaries.

The RP2350 bootrom uses 8-bit tags in the range 0x40 through 0xbf. The remaining tags are free for use in user code.

3.6.3.6. Pseudorandom Instruction Delays

By default, all RCP instructions execute with a pseudorandom delay in the range of 0 to 127 cycles. These delays make

it more difficult for an outside observer to precisely time a fault injection event with respect to an RCP instruction, or the

critical code path it protects.

Setting bit 12 of the first halfword of an instruction disables the pseudorandom delay for that instruction only. The

instruction executes in a single cycle, assuming the Cortex-M33 does not insert stall cycles due to other micro-

architectural constraints. To set this bit, assemble the *2 variant of any given coprocessor instruction ( e.g. mrc2 rather

than mrc). In the Non-secure state, RCP instructions always execute without delay.

The RCP implements instruction execution delays by stalling the coprocessor opcode interface during the opcode

phase (shown in the Figure 13 pipeline diagram). The Cortex-M33 may choose to abandon a stalled coprocessor

instruction due to an interrupt. When this happens, the delay counter continues counting down, waiting for the delay

period to elapse. If the Cortex-M33 issues another RCP instruction whilst the delay counter is still running (either in the

interrupt, or after returning to the interrupted RCP instruction), this instruction executes once the existing countdown

completes. However, if the delay counter of an abandoned instruction has already expired before the next RCP

instruction executes, the next instruction samples a pseudorandom delay count, and begins a new countdown.

The pseudorandom delay sequence is a function of bits 63:40 of the salt value. As such, the pattern of delays is unique

per-boot, provided each boot writes a different 64-bit value to the salt register.

The pseudorandom number generator (PRNG) used for delays implements a number of small linear feedback shift

registers (LFSRs) in bits 63:40 of the salt register, and returns a nonlinear function of the 24-bit state. The LFSR feedback

functions on the 24-bit state are:

• Bits 23:20: 4-bit LFSR with taps 0xc

• Bits 19:15: 5-bit LFSR with taps 0x14

• Bits 14:8: 7-bit LFSR with taps 0x60
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• Bits 7:0: 8-bit LFSR with taps 0xb4

The LFSRs are implemented by shifting the XOR reduction of (state AND taps) into the LSB with each state update.

When an LFSR’s state is all-zeroes, a one bit is shifted into the LSB. The LFSR state advances each time a random

number is generated: this happens when executing an instruction with a pseudorandom delay, or when executing a

rcp_random_byte instruction.

Each bit of the pseudorandom output is the XOR of six bits of the 24-bit state, XORed with the majority-3 vote of three

other bits of the state:

Output Bit XOR Taps Majority-3 Taps

7 7 17 6 16 13 8 9 12 21

6 14 21 19 6 16 13 4 14 6

5 7 5 2 18 11 1 18 14 7

4 4 19 17 0 18 7 18 11 3

3 23 12 7 16 14 5 17 3 15

2 15 13 20 21 8 12 7 22 9

1 4 16 11 18 9 6 14 21 16

0 11 3 4 19 10 14 1 2 9

Bits 6:0 of this function are used for pseudorandom instruction delays, producing delays in the range of 0 to 127 cycles.

The delay is applied in addition to the one-cycle base cost of executing a coprocessor instruction. The full 8-bit result is

available through the rcp_random_byte instruction.

This is a simple pseudorandom number generator which makes it difficult to recover the initial 24-bit state from a small

number of observations. It accomplishes this by making the observation size much smaller than the state size and

using a non-linear combination function for the output. It has a number of statistical aberrations which make it

unsuitable for general random number generation (not to mention its small state size). For high-quality random number

generation, either use the system true-random number generator (TRNG) directly, or use a high-quality software PRNG

with a large state seeded from the TRNG.

Note that the 24 MSBs of the salt value used to seed the delay PRNG do not overlap with the 40 LSBs used to generate

stack canary values. Therefore measuring the random delays externally provides no information on the canary values.

3.6.3.7. Instruction Listing

The Cortex-M33 processors access the RCP using mcr, mcrr, mrc, and cdp instructions. The Armv8-M Architecture

Reference Manual describes the intricacies of these instructions in relation to the processor’s architectural state, but

from the coprocessor’s point of view:

• mcr writes a 32-bit value to the coprocessor from a single Arm integer register

• mcrr writes a 64-bit value to the coprocessor from a pair of Arm integer registers

• mrc reads a 32-bit value from the coprocessor, writing to either a single Arm integer register or to the processor

status flags

• cdp performs some internal coprocessor operation without exchanging data with the processor

For each mcr, mcrr, mrc and cdp instruction, the RCP also accepts the matching mcr2, mcrr2, mrc2, and cdp2 opcode variant.

These opcodes differ only in bit 12. The plain versions have a pseudorandom delay of up to 127 cycles on their

execution, whereas the 2-suffixed versions have no such delay.

Most RCP instructions are in the form of hardware-checked assertions. The phrase "asserts that" in the following

instruction listings means that, if some asserted condition is not true, the coprocessor raises an RCP fault.
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3.6.3.7.1. Initialisation

rcp_salt_core0

Asserts that the core 0 salt register is currently invalid. Writes a 64-bit value, and marks it as valid.

Opcode:

mcrr p7, #8, Rt, Rt2, c0

Rt is the 32 LSBs of the salt, Rt2 is the 32 MSBs.

rcp_salt_core1

Asserts that the core 1 salt register is currently invalid. Writes a 64-bit value, and marks it as valid.

Opcode:

mcrr p7, #8, Rt, Rt2, c1

rcp_canary_status

Returns a true or false bit pattern (0xa500a500 or 0x00c300c3 respectively) that indicates whether the salt register for

this core has been initialised.

Opcode:

mrc p7, #1, Rt, c0, c0, #0

Invoking with Rt = 0xf sets the Arm N and C flags if and only if the salt register is valid.

If the salt has not been initialised, any operation other than initialising the salt or checking the canary status triggers

an RCP fault.

This opcode is used on core 0 to skip the RCP initialisation sequence if the bootrom has been re-entered without a

reset under debugger control, and on core 1 to wait for its RCP salt to be initialised.

3.6.3.7.2. Canary

rcp_canary_get

Gets a 32-bit canary value as a function of the salt register and the 8-bit tag encoded by two 4-bit coprocessor

register numbers CRn and CRm. CRn contains the four MSBs, CRm the four LSBs.

Opcode:

mrc p7, #0, Rt, CRn, CRm, #1

Section 3.6.3.5 specifies the 32-bit value returned by this instruction, but you should treat this as an opaque value to

be consumed by rcp_canary_check.

rcp_canary_check

Asserts that a value matches the result of an rcp_canary_get with the same 8-bit tag. The tag is encoded by two 4-bit

coprocessor register numbers, CRn and CRm. CRn contains the four MSBs, CRm the four LSBs.

Opcode:
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mcr p7, #0, Rt, CRn, CRm, #1

3.6.3.7.3. Boolean Validation

The RCP defines 0xa500a500 as the true value for 32-bit booleans, and 0x00c300c3 as the false value. All other bit patterns

are poison, and trigger an RCP fault when consumed by any RCP boolean instructions. These values are chosen as they

are valid immediates in Armv8-M Main.

This provides limited runtime type checking to ensure that boolean values are used in boolean contexts. The RP2350

bootrom occasionally uses redundant operations to generate booleans in a way that results in an invalid bit pattern if

the two redundant operations do not return the same value, such as when checking boot flags in OTP.

rcp_bvalid

Asserts that Rt is a valid boolean (0xa500a500 or 0x00c300c3).

Opcode:

mcr p7, #1, Rt, c0, c0, #0

rcp_btrue

Asserts that Rt is true (0xa500a500).

Opcode:

mcr p7, #2, Rt, c0, c0, #0

rcp_bfalse

Asserts that Rt is false (0x00c300c3).

Opcode:

mcr p7, #3, Rt, c0, c0, #1

rcp_b2valid

Asserts that Rt and Rt2 are both valid booleans.

Opcode:

mcrr p7, #0, Rt, Rt2, c8

rcp_b2and

Asserts that Rt and Rt2 are both true.

Opcode:
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mcrr p7, #1, Rt, Rt2, c0

rcp_b2or

Asserts that both Rt and Rt2 are valid, and at least one is true.

mcrr p7, #2, Rt, Rt2, c0

rcp_bxorvalid

Asserts that Rt XOR Rt2 is a valid boolean. The XOR mask is generally a fixed bit pattern used to validate the origin

of the boolean, such as a return value from a critical function.

Opcode:

mcrr p7, #3, Rt, Rt2, c8

rcp_bxortrue

Asserts that Rt XOR Rt2 is true.

Opcode:

mcrr p7, #4, Rt, Rt2, c0

rcp_bxorfalse

Asserts that Rt XOR Rt2 is false.

Opcode:

mcrr p7, #5, Rt, Rt2, c8

3.6.3.7.4. Integer Validation

rcp_ivalid

Asserts that Rt XOR Rt2 is equal to 0x96009600. This is used to validate 32-bit integers stored redundantly in two

memory words. The XOR difference provides assurance that two parallel chains of integer operations have not

mixed.

Opcode:

mcrr p7, #6, Rt, Rt2, c8

rcp_iequal

Asserts that Rt is equal to Rt2. Useful for general software assertions that are worth checking in hardware.
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Opcode:

mcrr p7, #7, Rt, Rt2, c0

3.6.3.7.5. Random

rcp_random_byte

Returns a random 8-bit value generated from the upper 24 bits of the 64-bit salt value. Bits 31:8 of the result are all-

zero.

Opcode:

mrc p7, #2, Rt, c0, c0, #0

This is the same PRNG used for random delay values. It is mainly exposed for debugging purposes, and should not

be used for general software RNG purposes because the 24-bit state space is inadequate for scenarios where the

quality and predictability of the random numbers is important.

This instruction never has an execution delay. Once the Cortex-M33 issues the coprocessor access, it always

completes in one cycle.

3.6.3.7.6. Sequence Count Checking

These instructions are used to assert that a sequence of operations happens in the correct order. The count is

initialised to an 8-bit value at the beginning of such a sequence, then repeatedly checked, incrementing with each check.

If the 8-bit check value does not match the current counter value, the coprocessor raises an RCP fault.

rcp_count_set

Writes an 8-bit count value to the RCP sequence counter. Encodes the 8-bit value using two 4-bit coprocessor

numbers: CRn provides the MSBs, CRm the LSBs.

Opcode:

mcr p7, #4, r0, CRn, CRm, #0

rcp_count_check

Asserts that an 8-bit count value matches the current value of the RCP sequence counter. Increments the counter

by one, wrapping back to 0x00 after reaching 0xff. Encodes the 8-bit count value using two 4-bit coprocessor

numbers: CRn provides the MSBs, CRm the LSBs.

Opcode:

mcr p7, #5, r0, CRn, CRm, #1
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3.6.3.7.7. Panic

rcp_panic

Stalls the coprocessor port forever. If the processor abandons the coprocessor access, asserts NMI and continues

stalling the coprocessor port. Also immediately raises an RCP fault on other cores.

Opcode:

cdp p7, #0, c0, c0, c0, #1

Software executes an rcp_panic instruction when it detects a condition that makes it unsafe to continue executing

the current program. The RCP responds by stalling the processor’s CDP access forever, which should cause the

processor to stop fetching and executing instructions.

The processor is allowed to abandon a stalled coprocessor instruction when interrupted, which may cause it to

continue executing in an unsafe state. The RCP responds to an abandoned transfer by asserting the non-maskable

interrupt, pre-empting the interrupt handler that caused the coprocessor access to be abandoned. This should

swiftly encounter another RCP instruction and once again stall the processor, this time without allowing

interruption.

Panic is specified in this way, instead of gating the processor clock, so the debugger can still attach cleanly to the

processor after a panic.

3.6.4. Floating Point Unit

The Cortex-M33 cores on RP2350 are configured with the standard Arm single-precision floating point unit (FPU).

Coprocessor ports 10 and 11 access the FPU.

The Arm floating point extension is documented in the Armv8-M Architecture Reference Manual.

Applications built with the SDK use the FPU automatically by default. For example, calculations with the float data type

in C automatically use the standard FPU, while calculations with the double data type automatically use the RP2350

double-precision coprocessor (Section 3.6.2).

3.7. Cortex-M33 Processor

Arm Documentation

Excerpted from the Cortex-M33 Technical Reference Manual. Used with permission.

The Arm Cortex-M33 processor is a low gate count, highly energy-efficient processor intended for microcontroller and

embedded applications. The processor is based on the Armv8-M architecture and is primarily for use in environments

where security is an important consideration.

 NOTE

Full details of the Arm Cortex-M33 processor can be found in the Technical Reference Manual.

3.7.1. Features

The Arm Cortex-M33 processor provides the following features and benefits:
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• An in-order issue pipeline

• Thumb-2 technology; for more information, see the Armv8-M Architecture Reference Manual

• Little-endian data accesses

• A Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor

• A Floating Point Unit (FPU) supporting single-precision arithmetic

• Support for exception-continuable instructions, such as LDM, LDMDB, STM, STMDB, PUSH, POP, VLDM, VSTM,

VPUSH, and VPOP

• A low-cost debug solution that provides the ability to implement:

◦ breakpoints

◦ watchpoints

◦ tracing

◦ system profiling

◦ Support for printf() style debugging through an Instrumentation Trace Macrocell (ITM)

• Support for the Embedded Trace Macrocell (ETM) instruction trace option. For more information, see the Arm

CoreSight ETM-M33 Technical Reference Manual

• A coprocessor interface for external hardware accelerators

• Low-power features including architectural clock gating, sleep mode, and a power-aware system with Wake-up

Interrupt Controller (WIC)

• A memory system that includes memory protection and security attribution

3.7.2. Configuration

Each Arm Cortex-M33 processor in RP2350 is configured with the following features:

• FPU: Single precision FPU

• DSP: DSP extension

• SECEXT: Security extensions

• CPIF: coprocessor interface

• MPU_NS: 8 non-secure MPU regions

• MPU_S: 8 secure MPU regions

• SAU: 8 SAU regions

• IRQ: 52 external interrupts

• IRQLVL: 4 exception priority bits

• DBGLVL: Full debug set: 4 watchpoint, 8 breakpoint comparators, debug monitor

• ITM: DWT and ITM trace

• ETM: ETM trace

• MTB: no MTB trace

• WIC: Wake up interrupt controller

• WICLINES: 55: All external interrupts and 3 internal events: NMI, RVEX, Debug

• CTI: Cross trigger interface
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• RAR: reset all registers on power up

• UNCROSS_I_D: Modify internal address map

• SBIST: no SBIST features

• CDE modules not used

• CDERTLID: RTL ID for system with multi Cortex-M33: 16

Architectural clock gating allows the processor core to support SLEEP and DEEPSLEEP power states by disabling the

clock to parts of the processor core. Power gating is not supported.

Each Cortex-M33 core has its own interrupt controller which can individually mask out interrupt sources as required.

The same interrupts route to both Cortex-M33 cores.

The processor supports the following interfaces:

• Code AHB (C-AHB) interface

• System AHB (S-AHB) interface

• External PPB (EPPB) APB interface

• Debug AHB (D-AHB) interface

The processor implements the following optional interfaces:

• Arm TrustZone technology, using the Armv8-M Security Extension supporting Secure and Non-secure states

• Memory Protection Units (MPUs), which you can configure to protect regions of memory

• Floating-point arithmetic functionality with support for single precision arithmetic

• Support for ETM trace

3.7.2.1. Modifications by Raspberry Pi

3.7.2.1.1. UNCROSS_I_D

The original Cortex-M33 processor design routes the following operations to either the Code or System port:

• instruction fetch

• load/stores

• debugger accesses

Accesses below address 0x20000000 route to the Code port. All other accesses route to the System port.

This routing strategy makes contention possible on both the internal bus matrix and the main system AHB5 crossbar.

The Cortex-M33 Technical Reference Manual describes this strategy in detail.

In RP2350, Raspberry Pi modified the Cortex-M33 bus matrix to:

• route all instruction fetch operations to the Code port

• route all load/stores and debugger accesses to the System port

This eliminates internal conflicts and improves performance in certain software use cases, e.g. when allocating both

code and data from a single unified SRAM pool.

In Section 3.7.2, we refer to this feature as UNCROSS_I_D.

There are no other modifications to the Cortex-M33 processor.
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 NOTE

This datasheet may refer to the Cortex-M33 Code and System ports as the instruction and data ports respectively (I

and D), to reflect this modification to the core’s integrated bus matrix.

3.7.2.2. Interfaces

The processor has various external interfaces:

Code and System AHB interfaces

Harvard AHB bus architecture supporting exclusive transactions and security state.

System AHB interface

The System AHB (S-AHB) interface is used for any instruction fetch and data access to the memory-mapped SRAM,

Peripheral, External RAM and External device, or Vendor_SYS regions of the Armv8-M memory map.

Code AHB interface

The Code AHB (C-AHB) interface is used for any instruction fetch and data access to the Code region of the Armv8-

M memory map.

External Private Peripheral Bus

The External PPB (EPPB) APB interface enables access to CoreSight-compatible debug and trace components in a

system connected to the processor.

Secure attribution interface

The processor has an interface that connects to an external Implementation Defined Attribution Unit (IDAU), which

enables your system to set security attributes based on address.

ATB interfaces

The ATB interfaces output trace data for debugging. The ATB interfaces are compatible with the CoreSight

architecture. See the Arm CoreSight Architecture Specification v2.0 for more information. The instruction ATB

interface is used by the ETM, and the instrumentation ATB interface is used by the Instrumentation Trace Macrocell

(ITM).

Micro Trace Buffer interfaces

The Micro Trace Buffer (MTB) AHB slave interface and SRAM interface are for the CoreSight Micro Trace Buffer.

Coprocessor interface

The coprocessor interface is designed for closely coupled external accelerator hardware.

Debug AHB interface

The Debug AHB (D-AHB) slave interface allows a debugger access to registers, memory, and peripherals. The D-

AHB interface provides debug access to the processor and the complete memory map.

Cross Trigger Interface

The processor includes a Cross Trigger Interface (CTI) Unit that has an interface that is suitable for connection to

external CoreSight components using a Cross Trigger Matrix (CTM).

Power control interface

The processor supports a number of internal power domains which can be enabled and disabled using Q-channel

interfaces connected to a Power Management Unit (PMU) in the system.

3.7.2.3. Security attribution and memory protection

The Cortex-M33 processor supports the Armv8-M Protected Memory System Architecture (PMSA) that provides

programmable support for memory protection using a number of software controllable regions. RP2350 supports 8

programmable regions.
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PMSA allows privileged software to assign access permissions to a memory region. When unprivileged software

attempts to access the region, a fault exception is triggered. PMSA includes fault status registers that allow an

exception handler to determine the source of the fault, apply corrective action, and notify the system. This reduces the

potential impact of incorrectly-written application code.

The Cortex-M33 processor also includes support for defining memory regions as Secure or Non-secure, as defined in

the Armv8-M Security Extension. This protects memory regions from accesses with an inappropriate level of security.

3.7.2.4. Floating-Point Unit (FPU)

The FPU provides:

• Instructions for single-precision (C programming language float type) data-processing operations

• Instructions for double-precision (C programming language double type) load and store operations

• Combined multiply-add instructions for increased precision (Fused MAC)

• Hardware support for conversion, addition, subtraction, multiplication, accumulate, division, and square-root

• Hardware support for denormals and all IEEE Standard 754-2008 rounding modes

• Thirty-two 32-bit single-precision registers or sixteen 64-bit double-precision registers

• Lazy floating-point context save

3.7.2.4.1. Lazy floating-point context save

This FPU function delays automated stacking of floating-point state until the ISR attempts to execute a floating-point

instruction. This reduces the latency to enter the ISR and removes floating-point context save for ISRs that do not use

floating-point.

3.7.2.5. NVIC

The Nested Vectored Interrupt Controller NVIC prioritizes external interrupt signals. Software can set the priority of each

interrupt. The NVIC and the Cortex-M33 processor core are closely coupled, providing low latency interrupt processing

and efficient processing of late arriving interrupts.

 NOTE

"Nested" refers to the fact that interrupts can themselves be interrupted, by higher-priority interrupts. "Vectored"

refers to the hardware dispatching each interrupt to a distinct handler routine specified by a vector table. For more

details about nesting and vectoring behaviour, see the Armv8-M Architecture Reference Manual.

All NVIC registers are only accessible using word transfers. Any attempt to read or write a halfword or byte individually

is unpredictable.

NVIC registers are always little-endian.

The Nested Vectored Interrupt Controller (NVIC) is closely integrated with the core to achieve low-latency interrupt

processing.

Functions of the NVIC include:

• External interrupts, configurable from 1 to 480 using a contiguous or non-contiguous mapping. This is configured

at implementation.

• Configurable levels of interrupt priority from 8 to 256. This is configured at implementation.

• Dynamic reprioritisation of interrupts.
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• Priority grouping. This enables selection of pre-empting interrupt levels and non-pre-empting interrupt levels.

• Support for tail-chaining and late arrival of interrupts. This enables back-to-back interrupt processing without the

overhead of state saving and restoration between interrupts.

• Support for the Armv8-M Security Extension. Secure interrupts can be prioritized above any Non-secure interrupt.

3.7.2.6. Cross Trigger Interface Unit (CTI)

The CTI enables the debug logic, MTB, and ETM to interact with each other and with other CoreSightTM components.

3.7.2.7. ETM

The ETM provides instruction-only capabilities.

3.7.2.8. MTB

The MTB provides a simple low-cost execution trace solution for the Cortex-M33 processor.

Trace is written to an SRAM interface, and can be extracted using a dedicated AHB slave interface (M-AHB) on the

processor. The MTB can be controlled by memory-mapped registers in the PPB region or by events generated by the

DWT or through the CTI.

See the Arm CoreSight MTB-M33 Technical Reference Manual for more information.

3.7.2.9. Debug and Trace

Debug and trace components include a configurable Breakpoint Unit (BPU) used to implement breakpoints and a

configurable Data Watchpoint and Trace (DWT) unit used to implement watchpoints, data tracing, and system profiling.

Other debug and trace components include:

• ITM for support of printf() style debugging, using instrumentation trace

• Interfaces suitable for:

◦ Passing on-chip data through a Trace Port Interface Unit (TPIU) to a Trace Port Analyzer (TPA) via a 4-bit DDR

output selected as a GPIO function (see Section 3.5.7)

◦ A ROM table to allow debuggers to determine which components are implemented in the Cortex-M33

processor

◦ Debugger access to all memory and registers in the system, including access to memory-mapped devices,

access to internal core registers when the core is halted, and access to debug control registers even when

reset is asserted

3.7.3. Compliance

The processor complies with, or implements, the relevant Arm architectural standards and protocols, and relevant

external standards.

3.7.3.1. Arm architecture

The processor is compliant with the following:

• Armv8-M Main Extension
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• Armv8-M Security Extension

• Armv8-M Protected Memory System Architecture (PMSA)

• Armv8-M Floating-point Extension

• Armv8-M Digital Signal Processing (DSP) Extension

• Armv8-M Debug Extension

• Armv8-M Flash Patch Breakpoint (FPB) architecture version 2.0

3.7.3.2. Bus architecture

The processor provides external interfaces that comply with the AMBA 5 AHB5 protocol. The processor also

implements interfaces for CoreSight and other debug components using the APB4 protocol and ATBv1.1 part of the

AMBA 4 ATB protocol.

For more information, see the:

• Arm AMBA 5 AHB Protocol Specification

• AMBA APB Protocol Version 2.0 Specification

• Arm AMBA 4 ATB Protocol Specification ATBv1.0 and ATBv1.1

The processor also provides a Q-Channel interface. For more information, see the AMBA Low Power Interface

Specification.

3.7.3.3. Debug

The debug features of the processor implement the Arm Debug Interface Architecture. For more information, see the

Arm Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2.

3.7.3.4. Embedded Trace Macrocell

The trace features of the processor implement the Arm Embedded Trace Macrocell (ETM) v4.2 architecture.

For more information, see the Arm CoreSight ETM-M33 Technical Reference Manual.

3.7.3.5. Floating-Point Unit

The Cortex-M33 processor with FPU supports single-precision arithmetic as defined by the FPv5 architecture that is part

of the Armv8-M architecture. The FPU provides floating-point computation functionality compliant with ANSI/IEEE

Standard 754-2008, IEEE Standard for Binary Floating-Point Arithmetic.

The FPU supports single-precision add, subtract, multiply, divide, multiply and accumulate, and square root operations.

It also provides conversions between fixed-point and floating-point data formats, and floating-point constant

instructions.

The FPU provides an extension register file containing 32 single-precision registers.

The registers can be viewed as:

• Thirty-two 32-bit single-word registers, S0-S31

• Sixteen 64-bit double-word registers, D0-D15

• A combination of registers from these views
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3.7.3.5.1. FPU modes

The FPU provides full-compliance, flush-to-zero, and Default NaN modes of operation. In full-compliance mode, the FPU

processes all operations according to the IEEE 754 standard in hardware.

Modes of operation are controlled using the Floating-Point Status and Control Register, FPSCR.

Setting the FPSCR.FZ bit enables Flush-to-Zero (FZ) mode. In FZ mode, the FPU treats all subnormal input operands of

arithmetic operations as zeros. Exceptions that result from a zero operand are signalled appropriately. VABS, VNEG, and

VMOV are not considered arithmetic operations and are not affected by FZ mode. When an operation yields a tiny result

(as described in the IEEE 754 standard, where the destination precision is smaller in magnitude than the minimum

normal value before rounding) FZ mode replaces the result with a zero.

The FPSCR.IDC bit indicates when an input flush occurs.

The FPSCR.UFC bit indicates when a result flush occurs.

Setting the FPSCR.DN bit enables Default NaN (DN) mode. In NaN mode, the result of any arithmetic data processing

operation that involves an input NaN, or that generates a NaN result, returns the default NaN. All arithmetic operations

except for VABS, VNEG, and VMOV ignore the fraction bits of an input NaN.

Setting neither the FPSCR.DN bit nor the FPSCR.FZ bit enables full-compliance mode. In full-compliance mode, FPv5

functionality is compliant with the IEEE 754 standard in hardware.

For more information about the FPU and FPSCR, see the Armv8-M Architecture Reference Manual.

3.7.3.5.2. FPU Exceptions

The FPU sets the cumulative exception status flag in the FPSCR register as required for each instruction, in accordance

with the FPv5 architecture. The FPU does not support exception traps.

The processor has six output pins. By default, they are disconnected. Each reflect the status of one of the cumulative

exception flags:

FPIXC

Masked floating-point inexact exception.

FPUFC

Masked floating-point underflow exception.

FPOFC

Masked floating-point overflow exception.

FPDZC

Masked floating-point divide by zero exception.

FPIDC

Masked floating-point input denormal exception.

FPIOC

Invalid operation.

When a floating-point context is active, the stack frame extends to accommodate the floating-point registers. To reduce

the additional interrupt latency associated with writing the larger stack frame on exception entry, the processor

supports lazy stacking. This means that the processor reserves space on the stack for the FP state, but does not save

that state information to the stack unless the processor executes an FPU instruction inside the exception handler.

The lazy save of the FP state is interruptible by a higher priority exception. The FP state saving operation starts over

after that exception returns.
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3.7.3.5.3. Low power FPU operation

If the FPU is in a separate power domain, the way the FPU domain powers down depends on whether the FPU domain

includes state retention logic.

To power down the FPU:

• If FPU domain includes state retention logic, disable the FPU by clearing the CPACR.CP10 and CPACR.CP11 bitfields.

• If FPU domain does not include state retention logic, disable the FPU by clearing the CPACR.CP10 and CPACR.CP11

bitfields and set both the CPPWR.SU10 and CPPWR.SU11 bitfields to 1.

 WARNING

Setting the CPPWR.SU10 and CPPWR.SU11 bitfields indicates that FPU state can be lost.

3.7.4. Programmer’s model

The Cortex-M33 programmer’s model is an implementation of the Armv8-M Main Extension architecture.

For a complete description of the programmers model, refer to the Armv8-M Architecture Reference Manual, which also

contains the Armv8-M Thumb instructions. In addition, other options of the programmers model are described in the

System Control, MPU, NVIC, FPU, Debug, DWT, ITM, and TPIU feature topics.

3.7.4.1. Modes of operation and execution

The Cortex-M33 processor supports Secure and Non-secure security states, Thread and Handler operating modes, and

can run in either Thumb or Debug operating states. In addition, the processor can limit or exclude access to some

resources by executing code in privileged or unprivileged mode.

See the Armv8-M Architecture Reference Manual for more information about the modes of operation and execution.

3.7.4.1.1. Security states

With the Armv8-M Security Extension, the programmer’s model includes two orthogonal security states: Secure state

and Non-secure state. The processor always resets into Secure state. Each security state includes a set of independent

operating modes and supports both privileged and unprivileged user access. Registers in the System Control Space are

banked across Secure and Non-secure state, with a Non-secure register view available to Secure state at an aliased

address.

3.7.4.1.2. Operating modes

For each security state, the processor can operate in Thread or Handler mode. The following conditions cause the

processor to enter Thread or Handler mode:

• The processor enters Thread mode on reset, or as a result of an exception return to Thread mode. Privileged and

Unprivileged code can run in Thread mode.

• The processor enters Handler mode as a result of an exception. In Handler mode, all code is privileged.

The processor can change security state on taking an exception, for example when a Secure exception is taken from

Non-secure state, the Thread mode enters the Secure state Handler mode. The processor can also call Secure functions

from Non-secure state and Non-secure functions from Secure state. The Security Extension includes requirements for

these calls to prevent Secure data from being accessed in Non-secure state.
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3.7.4.1.3. Operating states

The processor can operate in Thumb or Debug state:

• Thumb state is the state of normal execution running 16-bit and 32-bit halfword- aligned Thumb instructions.

• Debug state is the state when the processor is in Halting debug.

3.7.4.1.4. Privileged access and unprivileged user access

Code can execute as privileged or unprivileged. Unprivileged execution limits resource access appropriate to the current

security state. Privileged execution has access to all resources available to the security state. Handler mode is always

privileged. Thread mode can be privileged or unprivileged.

3.7.4.2. Instruction set summary

The processor implements the following instruction from Armv8-M:

• All base instructions

• All instructions in the Main Extension

• All instructions in the Security Extension

• All instructions in the DSP Extension

• All single-precision instructions and double precision load/store instructions in the Floating-point Extension

For more information about Armv8-M instructions, see the Armv8-M Architecture Reference Manual.

3.7.4.3. Memory model

The processor contains a bus matrix that arbitrates instruction fetches and memory accesses from the processor core

between the external memory system and the internal System Control Space (SCS) and debug components.

Priority is usually given to the processor to keep debug accesses as non-intrusive as possible.

The system memory map is Armv8-M Main Extension compliant, and is common both to the debugger and processor

accesses.

The default memory map provides user and privileged access to all regions except for the Private Peripheral Bus (PPB).

The PPB space only allows privileged access.

The following table shows the default memory map. This is the memory map used when the included MPUs are

disabled. The attributes and permissions of all regions, except that targeting the NVIC and debug components, can be

modified using an implemented MPU.

Table 113. Default

memory map
Address Range (inclusive) Region Interface

0x00000000 - 0x1FFFFFFF Code Instruction and data accesses.

0x20000000 - 0x3FFFFFFF SRAM Instruction and data accesses.

0x40000000 - 0x5FFFFFFF Peripheral Instruction and data accesses. Any attempt to execute instructions

from the peripheral and external device region results in a

MemManage fault.

0x60000000 - 0x9FFFFFFF External RAM Instruction and data accesses. Any attempt to execute instructions

from the peripheral and external device region results in a

MemManage fault.
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Address Range (inclusive) Region Interface

0xA0000000 - 0xDFFFFFFF External device Instruction and data accesses. Any attempt to execute instructions

from the peripheral and external device region results in a

MemManage fault.

0xE0000000 - 0xE00FFFFF PPB Reserved for system control and debug. Cannot be used for

exception vector tables. Data accesses are either performed

internally or on EPPB. Accesses in the range 0xE0000000 - 0xE0043FFF

are handled within the processor. Accesses in the range 0xE0044000

- 0xE00FFFFF appear as APB transactions on the EPPB interface of

the processor. Any attempt to execute instructions from the region

results in a MemManage fault.

0xE0100000 - 0xFFFFFFFF Vendor_SYS Partly reserved for future processor feature expansion. Any

attempt to execute instructions from the region results in a

MemManage fault.

The internal Secure Attribution Unit (SAU) determines the security level associated with an address. Some internal

peripherals have memory-mapped registers in the PPB region which are banked between Secure and Non-secure state.

When the processor is in Secure state, software can access both the Secure and Non-secure versions of these

registers. The Non-secure versions are accessed using an aliased address.

For more information about the memory model, see the Armv8-M Architecture Reference Manual.

3.7.4.3.1. Private Peripheral Bus (PPB)

The Private Peripheral Bus (PPB) memory region provides access to internal and external processor resources.

The internal PPB provides access to:

• The System Control Space (SCS), including the Memory Protection Unit (MPU), Secure Attribution Unit (SAU), and

the Nested Vectored Interrupt Controller (NVIC).

• The Data Watchpoint and Trace (DWT) unit.

• The Breakpoint Unit (BPU).

• The Embedded Trace Macrocell (ETM).

• CoreSight Micro Trace Buffer (MTB).

• Cross Trigger Interface (CTI).

• The ROM table.

The external PPB (EPPB) provides access to implementation-specific external areas of the PPB memory map.

3.7.4.3.2. Unaligned accesses

The Cortex-M33 processor supports unaligned accesses. They are converted into two or more aligned AHB transactions

on the C-AHB or S-AHB master ports on the processor.

Unaligned support is only available for load/store singles (LDR, LDRH, STR, STRH, TBH) to addresses in Normal

memory. Load/store double and load/store multiple instructions already support word aligned accesses, but do not

permit other unaligned accesses, and generate a fault if this is attempted. Unaligned accesses in Device memory are

not permitted and fault. Unaligned accesses that cross memory map boundaries are architecturally UNPREDICTABLE.
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 NOTE

If CCR.UNALIGN_TRP for the current Security state is set, any unaligned accesses generate a fault.

3.7.4.4. Exclusive monitor

The Cortex-M33 processor implements a local exclusive monitor. The local monitor within the processor has been

constructed so that it does not hold any physical address, but instead treats any store-exclusive access as matching the

address of the previous load-exclusive. This means that the implemented exclusives reservation granule is the entire

memory address range. For more information about semaphores and the local exclusive monitor, see the Armv8-M

Architecture Reference Manual.

3.7.4.5. Processor core registers summary

The following table shows the processor core register set summary. Each of these registers is 32 bits wide. When the

Armv8-M Security Extension is included, some of the registers are banked. The Secure view of these registers is

available when the Cortex-M33 processor is in Secure state and the Non-secure view when Cortex-M33 processor is in

Non-secure state.

Table 114. Processor

core register set

summary

Name Description

R0-R12 R0-R12 are general-purpose registers for data operations.

MSP (R13) The Stack Pointer (SP) is register R13. In Thread mode, the

CONTROL register indicates the stack pointer to use, Main

Stack Pointer (MSP) or Process Stack Pointer (PSP).

There are two MSP registers in the Cortex-M33 processor:

MSP_NS for the Non-secure state, and MSP_S for the Secure

state. There are two PSP registers in the Cortex-M33

processor: PSP_NS for the Non-secure state, and PSP_S for

the Secure state.

PSP (R13) The Stack Pointer (SP) is register R13. In Thread mode, the

CONTROL register indicates the stack pointer to use, Main

Stack Pointer (MSP) or Process Stack Pointer (PSP).

There are two MSP registers in the Cortex-M33 processor:

MSP_NS for the Non-secure state, and MSP_S for the Secure

state. There are two PSP registers in the Cortex-M33

processor: PSP_NS for the Non-secure state, and PSP_S for

the Secure state.

MSPLIM The stack limit registers limit the extent to which the MSP

and PSP registers can descend respectively. There are

two MSPLIM registers in the Cortex-M33 processor:

MSPLIM_NS for the Non-secure state, and MSPLIM_S for the

Secure state. There are two PSPLIM registers in the

Cortex-M33 processor: PSPLIM_NS for the Non-secure state,

and PSPLIM_S for the Secure state.

PSPLIM The stack limit registers limit the extent to which the MSP

and PSP registers can descend respectively. There are

two MSPLIM registers in the Cortex-M33 processor:

MSPLIM_NS for the Non-secure state, and MSPLIM_S for the

Secure state. There are two PSPLIM registers in the

Cortex-M33 processor: PSPLIM_NS for the Non-secure state,

and PSPLIM_S for the Secure state.

RP2350 Datasheet

3.7. Cortex-M33 Processor 134

https://developer.arm.com/documentation/ddi0553/latest/
https://developer.arm.com/documentation/ddi0553/latest/


Name Description

LR (R14) The Link Register (LR) is register R14. It stores the return

information for subroutines, function calls, and

exceptions.

PC (R15) The Program Counter (PC) is register R15. It contains the

current program address.

PSR The Program Status Register (PSR) combines the

Application Program Status Register (APSR), Interrupt

Program Status Register (IPSR), and Execution Program

Status Register (EPSR). These registers provide different

views of the PSR.

PRIMASK The PRIMASK register prevents activation of exceptions with

configurable priority. When the Armv8-M Security

Extension is included, there are two PRIMASK registers in the

Cortex-M33 processor: PRIMASK_NS for the Non-secure state

and PRIMASK_S for the Secure state.

BASEPRI The BASEPRI register defines the minimum priority for

exception processing. There are two BASEPRI registers in

the Cortex-M33 processor: BASEPRI_NS for the Non-secure

state, and BASEPRI_S for the Secure state.

FAULTMASK The FAULTMASK register prevents activation of all exceptions

except for NON-MASKABLE INTERRUPT (NMI) and

Secure HardFault. There are two FAULTMASK registers in the

Cortex-M33 processor: FAULTMASK_NS for the Non-secure

state, and FAULTMASK_S for the Secure state.

CONTROL The CONTROL register controls the stack used, and optionally

the privilege level, when the processor is in Thread mode.

There are two CONTROL registers in the Cortex-M33

processor: CONTROL_NS for the Non-secure state and

CONTROL_S for the Secure state.

3.7.4.6. Exceptions

Exceptions are handled and prioritized by the processor and the NVIC. In addition to architecturally defined behaviour,

the processor implements advanced exception and interrupt handling that reduces interrupt latency and includes

implementation defined behaviour.

The processor core and the Nested Vectored Interrupt Controller (NVIC) together prioritize and handle all exceptions.

When handling exceptions:

• All exceptions are handled in Handler mode.

• Processor state is automatically stored to the stack on an exception, and automatically restored from the stack at

the end of the Interrupt Service Routine (ISR).

• The vector is fetched in parallel to the state saving, enabling efficient interrupt entry.

The processor supports tail-chaining that enables back-to-back interrupts without the overhead of state saving and

restoration.

Software can choose only to enable a subset of the configured number of interrupts, and can choose how many bits of

the configured priorities to use.

Exceptions can be specified as either Secure or Non-secure. When an exception occurs the processor switches to the

associated security state. The priority of Secure and Non-secure exceptions can be programmed independently. You
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can deprioritise Non-secure configurable exceptions using the AIRCR.PRIS bit field to enable Secure interrupts to take

priority.

When taking and returning from an exception, the register state is always stored using the stack pointer associated with

the background security state. When taking a Non-secure exception from Secure state, all the register state is stacked

and then registers are cleared to prevent Secure data being available to the Non-secure handler. The vector base

address is banked between Secure and Non-secure state. VTOR_S contains the Secure vector base address, and VTOR_NS

contains the Non-secure vector base address. These registers can be programmed by software, and also initialized at

reset by the system.

 NOTE

Vector table entries are compatible with interworking between Arm and Thumb instructions. This causes bit[0] of the

vector value to load into the Execution Program Status Register (EPSR) T-bit on exception entry. All populated

vectors in the vector table entries must have bit[0] set. Creating a table entry with bit[0] clear generates an INVSTATE

fault on the first instruction of the handler corresponding to this vector.

3.7.4.7. Security Attribution and Memory Protection

Security attribution and memory protection in the processor is provided by the Security Attribution Unit (SAU) and the

Memory Protection Units (MPUs).

The SAU is a programmable unit that determines the security of an address. RP2350 includes 8 memory regions.

For instructions and data, the SAU returns the security attribute that is associated with the address.

For instructions, the attribute determines the allowable Security state of the processor when the instruction is executed.

It can also identify whether code at a Secure address can be called from Non-secure state.

For data, the attribute determines whether a memory address can be accessed from Non-secure state, and also whether

the external memory request is marked as Secure or Non-secure.

If a data access is made from Non-secure state to an address marked as Secure, then a SecureFault exception is taken

by the processor. If a data access is made from Secure state to an address marked as Non-secure, then the associated

memory access is marked as Non-secure.

The security level returned by the SAU is a combination of the region type defined in the internal SAU, if configured, and

the type that is returned on the associated Implementation Defined Attribution Unit (IDAU). If an address maps to

regions defined by both internal and external attribution units, the region of the highest security level is selected.

The register fields SAU_CTRL.EN and SAU_CTRL.ALLNS control the enable state of the SAU and the default security level when

the SAU is disabled. Both SAU_CTRL.EN and SAU_CTRL.ALLNS reset to zero disabling the SAU and setting all memory, apart

from some specific regions in the PPB space to Secure level. If the SAU is not enabled, and SAU_CTRL.ALLNS is zero, then

the IDAU cannot set any regions of memory to a security level lower than Secure, for example Secure NSC or NS. If the

SAU is enabled, then SAU_CTRL.ALLNS does not affect the Security level of memory.

RP2350 supports the Armv8-M Protected Memory System Architecture (PMSA). The MPU provides full support for:

• protection regions

• access permissions

• exporting memory attributes to the system

MPU mismatches and permission violations invoke the MemManage handler. For more information, see the Armv8-M

Architecture Reference Manual.

You can use the MPU to:

• enforce privilege rules

• separate processes
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• manage memory attributes

The MPU supports 16 memory regions: 8 secure and 8 non-secure. The MPU is banked between Secure and Non-secure

states. The number of regions in the Secure and Non-secure MPU can be configured independently and each can be

programmed to protect memory for the associated Security state.

3.7.4.8. External coprocessors

The external coprocessor interface:

• Supports low-latency data transfer from the processor to and from the accelerator components.

• Has a sustained bandwidth up to twice of the processor memory interface.

The following instruction types are supported:

• Register transfer from the Cortex-M33 processor to the coprocessor MCR, MCRR, MCR2, MCRR2.

• Register transfer from the coprocessor to the Cortex-M33 processor MRC, MRRC, MRC2, MRRC2.

• Data processing instructions CDP, CDP2.

 NOTE

The regular and extension forms of the coprocessor instructions for example, MCR and MCRR2, have the same

functionality but different encodings. The MRC and MRC2 instructions support the transfer of APSR.NZVC flags when the

processor register field is set to PC, for example Rt == 0xF.

3.7.4.8.1. Restrictions

The following restrictions apply when to coprocessor instructions:

• The LDC(2) or STC(2) instructions are not supported. If these are included in software with the <coproc> field set to a

value between 0-7 and the coprocessor is present and enabled in the appropriate fields in the CPACR/NSACR registers,

the Cortex-M33 processor always attempts to take an Undefined instruction (UNDEFINSTR) UsageFault exception.

• The processor register fields for data transfer instructions must not include the stack pointer (Rt == 0xD), this

encoding is UNPREDICTABLE in the Armv8-M architecture and results in an Undefined instruction (UNDEFINSTR)

UsageFault exception in the CPACR/NSACR registers.

• If any coprocessor instruction is executed when the corresponding coprocessor is disabled in the CPACR/NSACR

register, the Cortex-M33 processor always attempts to take a No coprocessor (NOCP) UsageFault exception.

3.7.4.8.2. Data transfer rates

The following table shows the ideal data transfer rates for the coprocessor interface. This means that the coprocessor

responds immediately to an instruction. The ideal data transfer rates are sustainable if the corresponding coprocessor

instructions are executed consecutively.

The following instructions have the following data transfer rates:

MCR, MCR2 (Processor to coprocessor)

32 bits per cycle

MRC, MRC2 (Coprocessor to processor)

32 bits per cycle

MCRR, MCRR2 (Processor to coprocessor)

64 bits per cycle
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MRRC, MRRC2 (Coprocessor to processor)

64 bits per cycle

3.7.4.9. Debug

Cortex-M33 debug functionality includes processor halt, single-step, processor core register access, Vector Catch,

unlimited software breakpoints, and full system memory access.

The processor also includes support for hardware breakpoints and watchpoints configured during implementation:

• A breakpoint unit supporting eight instruction comparators

• A watchpoint unit supporting four data watchpoint comparators

The Cortex-M33 processor supports system level debug authentication to control access from a debugger to resources

and memory. Authentication via the Armv8-M Security Extension can be used to allow a debugger full access to Non-

secure code and data without exposing any Secure information.

The processor implementation can be partitioned to place the debug components in a separate power domain from the

processor core and NVIC.

All debug registers are accessible by the D-AHB interface.

For more information, see the Armv8-M Architecture Reference Manual.

3.7.4.10. Data Watchpoint and Trace unit (DWT)

The DWT is a full configuration, containing four comparators (DWT_COMP0 to DWT_COMP3). These comparators support the

following features:

• Hardware watchpoint support

• Hardware trace packet support

• CMPMATCH support for ETM/MTB/CTI triggers

• Cycle counter matching support (DWT_COMP0 only)

• Instruction address matching support

• Data address matching support

• Data value matching support (DWT_COMP1 only in a reduced DWT, DWT_COMP3 only in a Full DWT)

• Linked/limit matching support (DWT_COMP1 and DWT_COMP3 only)

The DWT contains counters for:

• Cycles (DWT_CYCCNT.CYCCNT)

• Folded Instructions (FOLDCNT)

• Additional cycles required to execute all load/store instructions (LSUCNT)

• Processor sleep cycles (SLEEPCNT)

• Additional cycles required to execute multi-cycle instructions and instruction fetch stalls (CPICNT)

• Cycles spent in exception processing (EXCCNT)

Before using DWT, set the DEMCR.TRCENA bit to 1.

The DWT provides periodic requests for protocol synchronization to the ITM and the TPIU.
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3.7.4.11. Cross Trigger Interface (CTI)

The CTI enables the debug logic, MTB, and ETM to interact with each other and with other CoreSight components. This

is called cross triggering. For example, you can configure the CTI to generate an interrupt when the ETM trigger event

occurs or to start tracing when a DWT comparator match is detected.

The following figure shows the debug system components and the available trigger inputs and trigger outputs:

Figure 15 shows the components of the debug system.

Figure 15. Debug

system components

The following table shows how the CTI trigger inputs are connected to the Cortex-M33 processor:

Table 115. Trigger

signals to the CTI
Signal Description Connection Acknowledge, handshake

CTITRIGIN[7] ETM to CTI Pulsed

CTITRIGIN[6] ETM to CTI Pulsed

CTITRIGIN[5] ETM Event Output 1 ETM to CTI Pulsed

CTITRIGIN[4] ETM Event Output 0 or Comparator Output

3

ETM/Processor to CTI Pulsed

CTITRIGIN[3] DWT Comparator Output 2 Processor to CTI Pulsed

CTITRIGIN[2] DWT Comparator Output 1 Processor to CTI Pulsed

CTITRIGIN[1] DWT Comparator Output 0 Processor to CTI Pulsed

CTITRIGIN[0] Processor Halted Processor to CTI Pulsed

The following table shows how the CTI trigger outputs are connected to the processor and ETM:

Table 116. Trigger

signals from the CTI
Signal Description Connection Acknowledge, handshake

CTITRIGOUT[

7]

ETM Event Input 3 CTI to ETM Pulsed

CTITRIGOUT[

6]

ETM Event Input 2 CTI to ETM Pulsed

CTITRIGOUT[

5]

ETM Event Input 1 or MTB Trace stop CTI to ETM or MTB Pulsed

CTITRIGOUT[

4]

ETM Event Input 1 or MTB Trace start CTI to ETM or MTB Pulsed
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Signal Description Connection Acknowledge, handshake

CTITRIGOUT[

3]

Interrupt request 1 CTI to system Acknowledged by writing to

the CTIINTACK register in ISR

CTITRIGOUT[

2]

Interrupt request 0 CTI to system Acknowledged by writing to

the CTIINTACK register in ISR

CTITRIGOUT[

1]

Processor Restart CTI to Processor Processor Restarted

CTITRIGOUT[

0]

Processor debug request CTI to Processor Acknowledged by the

debugger writing to the

CTIINTACK register

After the processor is halted using CTI Trigger Output 0, the Processor Debug Request signal remains asserted. The

debugger must write to CTIINTACK to clear the halting request before restarting the processor.

After asserting an interrupt using the CTI Trigger Output 1 or 2, the Interrupt Service Routine (ISR) must clear the

interrupt request by writing to the CTI Interrupt Acknowledge, CTIINTACK.

Interrupt requests from the CTI to the system are only asserted when invasive debug is enabled in the processor.

3.7.4.11.1. CTI programmers model

The following table shows the CTI programmable registers, with address offset, type, and reset value for each register.

See the Arm CoreSightTM SoC-400 Technical Reference Manual for register descriptions.

Table 117. Cortex-M33

CTI register summary
Address offset Name Type Reset value Description

0xE0042000 CTICONTROL RW 0x00000000 CTI Control Register

0xE0042010 CTIINTACK WO UNKNOWN CTI Interrupt Acknowledge

Register

0xE0042014 CTIAPPSET RW 0x00000000 CTI Application Trigger Set

Register

0xE0042018 CTIAPPCLEAR RW 0x00000000 CTI Application Trigger Clear

Register

0xE004201C CTIAPPPULSE WO UNKNOWN CTI Application Pulse Register

0xE0042020-0xE004203C CTIINEN[7:0] RW 0x00000000 CTI Trigger to Channel Enable

Registers

0xE00420A0-0xE00420BC CTIOUTEN[7:0] RW 0x00000000 CTI Channel to Trigger Enable

Registers

0xE0042130 CTITRIGINSTATUS RO 0x00000000 CTI Trigger In Status Register

0xE0042134 CTITRIGOUTSTATUS RO 0x00000000 CTI Trigger Out Status Register

0xE0042138 CTICHINSTATUS RO 0x00000000 CTI Channel In Status Register

0xE0042140 CTIGATE RW 0x0000000F Enable CTI Channel Gate Register

0xE0042144 ASICCTL RW 0x00000000 External Multiplexer Control

Register

0xE0042EE4 ITCHOUT WO UNKNOWN Integration Test Channel Output

Register

0xE0042EE8 ITTRIGOUT WO UNKNOWN Integration Test Trigger Output

Register
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Address offset Name Type Reset value Description

0xE0042EF4 ITCHIN RO 0x00000000 Integration Test Channel Input

Register

0xE0042F00 ITCTRL RW 0x00000000 Integration Mode Control Register

0xE0042FC8 DEVID RO 0x00040800 Device Configuration Register

0xE0042FBC DEVARCH RO 0x47701A14 Device Architecture Register

0xE0042FCC DEVTYPE RO 0x00000014 Device Type Identifier Register

0xE0042FD0 PIDR4 RO 0x00000004 Peripheral ID4 Register

0xE0042FD4 PIDR5 RO 0x00000000 Peripheral ID5 Register

0xE0042FD8 PIDR6 RO 0x00000000 Peripheral ID6 Register

0xE0042FDC PIDR7 RO 0x00000000 Peripheral ID7 Register

0xE0042FE0 PIDR0 RO 0x00000021 Peripheral ID0 Register

0xE0042FE4 PIDR1 RO 0x000000BD Peripheral ID1 Register

0xE0042FE8 PIDR2 RO 0x0000000B Peripheral ID2 Register

0xE0042FEC PIDR3 RO 0x00000001 Peripheral ID3 Register

0xE0042FF0 CIDR0 RO 0x0000000D Component ID0 Register

0xE0042FF4 CIDR1 RO 0x00000090 Component ID1 Register

0xE0042FF8 CIDR2 RO 0x00000005 Component ID2 Register

0xE0042FFC CIDR3 RO 0x000000B1 Component ID3 Register

3.7.5. List of Registers

The Arm Cortex-M33 registers start at a base address of 0xe0000000, defined as PPB_BASE in the SDK.

Table 118. List of M33

registers
Offset Name Info

0x00000 ITM_STIM0 ITM Stimulus Port Register 0

0x00004 ITM_STIM1 ITM Stimulus Port Register 1

0x00008 ITM_STIM2 ITM Stimulus Port Register 2

0x0000c ITM_STIM3 ITM Stimulus Port Register 3

0x00010 ITM_STIM4 ITM Stimulus Port Register 4

0x00014 ITM_STIM5 ITM Stimulus Port Register 5

0x00018 ITM_STIM6 ITM Stimulus Port Register 6

0x0001c ITM_STIM7 ITM Stimulus Port Register 7

0x00020 ITM_STIM8 ITM Stimulus Port Register 8

0x00024 ITM_STIM9 ITM Stimulus Port Register 9

0x00028 ITM_STIM10 ITM Stimulus Port Register 10

0x0002c ITM_STIM11 ITM Stimulus Port Register 11

0x00030 ITM_STIM12 ITM Stimulus Port Register 12
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Offset Name Info

0x00034 ITM_STIM13 ITM Stimulus Port Register 13

0x00038 ITM_STIM14 ITM Stimulus Port Register 14

0x0003c ITM_STIM15 ITM Stimulus Port Register 15

0x00040 ITM_STIM16 ITM Stimulus Port Register 16

0x00044 ITM_STIM17 ITM Stimulus Port Register 17

0x00048 ITM_STIM18 ITM Stimulus Port Register 18

0x0004c ITM_STIM19 ITM Stimulus Port Register 19

0x00050 ITM_STIM20 ITM Stimulus Port Register 20

0x00054 ITM_STIM21 ITM Stimulus Port Register 21

0x00058 ITM_STIM22 ITM Stimulus Port Register 22

0x0005c ITM_STIM23 ITM Stimulus Port Register 23

0x00060 ITM_STIM24 ITM Stimulus Port Register 24

0x00064 ITM_STIM25 ITM Stimulus Port Register 25

0x00068 ITM_STIM26 ITM Stimulus Port Register 26

0x0006c ITM_STIM27 ITM Stimulus Port Register 27

0x00070 ITM_STIM28 ITM Stimulus Port Register 28

0x00074 ITM_STIM29 ITM Stimulus Port Register 29

0x00078 ITM_STIM30 ITM Stimulus Port Register 30

0x0007c ITM_STIM31 ITM Stimulus Port Register 31

0x00e00 ITM_TER0 Provide an individual enable bit for each ITM_STIM register

0x00e40 ITM_TPR Controls which stimulus ports can be accessed by unprivileged

code

0x00e80 ITM_TCR Configures and controls transfers through the ITM interface

0x00ef0 INT_ATREADY Integration Mode: Read ATB Ready

0x00ef8 INT_ATVALID Integration Mode: Write ATB Valid

0x00f00 ITM_ITCTRL Integration Mode Control Register

0x00fbc ITM_DEVARCH Provides CoreSight discovery information for the ITM

0x00fcc ITM_DEVTYPE Provides CoreSight discovery information for the ITM

0x00fd0 ITM_PIDR4 Provides CoreSight discovery information for the ITM

0x00fd4 ITM_PIDR5 Provides CoreSight discovery information for the ITM

0x00fd8 ITM_PIDR6 Provides CoreSight discovery information for the ITM

0x00fdc ITM_PIDR7 Provides CoreSight discovery information for the ITM

0x00fe0 ITM_PIDR0 Provides CoreSight discovery information for the ITM

0x00fe4 ITM_PIDR1 Provides CoreSight discovery information for the ITM

0x00fe8 ITM_PIDR2 Provides CoreSight discovery information for the ITM

0x00fec ITM_PIDR3 Provides CoreSight discovery information for the ITM
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Offset Name Info

0x00ff0 ITM_CIDR0 Provides CoreSight discovery information for the ITM

0x00ff4 ITM_CIDR1 Provides CoreSight discovery information for the ITM

0x00ff8 ITM_CIDR2 Provides CoreSight discovery information for the ITM

0x00ffc ITM_CIDR3 Provides CoreSight discovery information for the ITM

0x01000 DWT_CTRL Provides configuration and status information for the DWT unit,

and used to control features of the unit

0x01004 DWT_CYCCNT Shows or sets the value of the processor cycle counter, CYCCNT

0x0100c DWT_EXCCNT Counts the total cycles spent in exception processing

0x01014 DWT_LSUCNT Increments on the additional cycles required to execute all load

or store instructions

0x01018 DWT_FOLDCNT Increments on the additional cycles required to execute all load

or store instructions

0x01020 DWT_COMP0 Provides a reference value for use by watchpoint comparator 0

0x01028 DWT_FUNCTION0 Controls the operation of watchpoint comparator 0

0x01030 DWT_COMP1 Provides a reference value for use by watchpoint comparator 1

0x01038 DWT_FUNCTION1 Controls the operation of watchpoint comparator 1

0x01040 DWT_COMP2 Provides a reference value for use by watchpoint comparator 2

0x01048 DWT_FUNCTION2 Controls the operation of watchpoint comparator 2

0x01050 DWT_COMP3 Provides a reference value for use by watchpoint comparator 3

0x01058 DWT_FUNCTION3 Controls the operation of watchpoint comparator 3

0x01fbc DWT_DEVARCH Provides CoreSight discovery information for the DWT

0x01fcc DWT_DEVTYPE Provides CoreSight discovery information for the DWT

0x01fd0 DWT_PIDR4 Provides CoreSight discovery information for the DWT

0x01fd4 DWT_PIDR5 Provides CoreSight discovery information for the DWT

0x01fd8 DWT_PIDR6 Provides CoreSight discovery information for the DWT

0x01fdc DWT_PIDR7 Provides CoreSight discovery information for the DWT

0x01fe0 DWT_PIDR0 Provides CoreSight discovery information for the DWT

0x01fe4 DWT_PIDR1 Provides CoreSight discovery information for the DWT

0x01fe8 DWT_PIDR2 Provides CoreSight discovery information for the DWT

0x01fec DWT_PIDR3 Provides CoreSight discovery information for the DWT

0x01ff0 DWT_CIDR0 Provides CoreSight discovery information for the DWT

0x01ff4 DWT_CIDR1 Provides CoreSight discovery information for the DWT

0x01ff8 DWT_CIDR2 Provides CoreSight discovery information for the DWT

0x01ffc DWT_CIDR3 Provides CoreSight discovery information for the DWT

0x02000 FP_CTRL Provides FPB implementation information, and the global enable

for the FPB unit
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Offset Name Info

0x02004 FP_REMAP Indicates whether the implementation supports Flash Patch

remap and, if it does, holds the target address for remap

0x02008 FP_COMP0 Holds an address for comparison. The effect of the match

depends on the configuration of the FPB and whether the

comparator is an instruction address comparator or a literal

address comparator

0x0200c FP_COMP1 Holds an address for comparison. The effect of the match

depends on the configuration of the FPB and whether the

comparator is an instruction address comparator or a literal

address comparator

0x02010 FP_COMP2 Holds an address for comparison. The effect of the match

depends on the configuration of the FPB and whether the

comparator is an instruction address comparator or a literal

address comparator

0x02014 FP_COMP3 Holds an address for comparison. The effect of the match

depends on the configuration of the FPB and whether the

comparator is an instruction address comparator or a literal

address comparator

0x02018 FP_COMP4 Holds an address for comparison. The effect of the match

depends on the configuration of the FPB and whether the

comparator is an instruction address comparator or a literal

address comparator

0x0201c FP_COMP5 Holds an address for comparison. The effect of the match

depends on the configuration of the FPB and whether the

comparator is an instruction address comparator or a literal

address comparator

0x02020 FP_COMP6 Holds an address for comparison. The effect of the match

depends on the configuration of the FPB and whether the

comparator is an instruction address comparator or a literal

address comparator

0x02024 FP_COMP7 Holds an address for comparison. The effect of the match

depends on the configuration of the FPB and whether the

comparator is an instruction address comparator or a literal

address comparator

0x02fbc FP_DEVARCH Provides CoreSight discovery information for the FPB

0x02fcc FP_DEVTYPE Provides CoreSight discovery information for the FPB

0x02fd0 FP_PIDR4 Provides CoreSight discovery information for the FP

0x02fd4 FP_PIDR5 Provides CoreSight discovery information for the FP

0x02fd8 FP_PIDR6 Provides CoreSight discovery information for the FP

0x02fdc FP_PIDR7 Provides CoreSight discovery information for the FP

0x02fe0 FP_PIDR0 Provides CoreSight discovery information for the FP

0x02fe4 FP_PIDR1 Provides CoreSight discovery information for the FP

0x02fe8 FP_PIDR2 Provides CoreSight discovery information for the FP

0x02fec FP_PIDR3 Provides CoreSight discovery information for the FP
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Offset Name Info

0x02ff0 FP_CIDR0 Provides CoreSight discovery information for the FP

0x02ff4 FP_CIDR1 Provides CoreSight discovery information for the FP

0x02ff8 FP_CIDR2 Provides CoreSight discovery information for the FP

0x02ffc FP_CIDR3 Provides CoreSight discovery information for the FP

0x0e004 ICTR Provides information about the interrupt controller

0x0e008 ACTLR Provides IMPLEMENTATION DEFINED configuration and control

options

0x0e010 SYST_CSR SysTick Control and Status Register

0x0e014 SYST_RVR SysTick Reload Value Register

0x0e018 SYST_CVR SysTick Current Value Register

0x0e01c SYST_CALIB SysTick Calibration Value Register

0x0e100 NVIC_ISER0 Enables or reads the enabled state of each group of 32 interrupts

0x0e104 NVIC_ISER1 Enables or reads the enabled state of each group of 32 interrupts

0x0e180 NVIC_ICER0 Clears or reads the enabled state of each group of 32 interrupts

0x0e184 NVIC_ICER1 Clears or reads the enabled state of each group of 32 interrupts

0x0e200 NVIC_ISPR0 Enables or reads the pending state of each group of 32 interrupts

0x0e204 NVIC_ISPR1 Enables or reads the pending state of each group of 32 interrupts

0x0e280 NVIC_ICPR0 Clears or reads the pending state of each group of 32 interrupts

0x0e284 NVIC_ICPR1 Clears or reads the pending state of each group of 32 interrupts

0x0e300 NVIC_IABR0 For each group of 32 interrupts, shows the active state of each

interrupt

0x0e304 NVIC_IABR1 For each group of 32 interrupts, shows the active state of each

interrupt

0x0e380 NVIC_ITNS0 For each group of 32 interrupts, determines whether each

interrupt targets Non-secure or Secure state

0x0e384 NVIC_ITNS1 For each group of 32 interrupts, determines whether each

interrupt targets Non-secure or Secure state

0x0e400 NVIC_IPR0 Sets or reads interrupt priorities

0x0e404 NVIC_IPR1 Sets or reads interrupt priorities

0x0e408 NVIC_IPR2 Sets or reads interrupt priorities

0x0e40c NVIC_IPR3 Sets or reads interrupt priorities

0x0e410 NVIC_IPR4 Sets or reads interrupt priorities

0x0e414 NVIC_IPR5 Sets or reads interrupt priorities

0x0e418 NVIC_IPR6 Sets or reads interrupt priorities

0x0e41c NVIC_IPR7 Sets or reads interrupt priorities

0x0e420 NVIC_IPR8 Sets or reads interrupt priorities

0x0e424 NVIC_IPR9 Sets or reads interrupt priorities
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0x0e428 NVIC_IPR10 Sets or reads interrupt priorities

0x0e42c NVIC_IPR11 Sets or reads interrupt priorities

0x0e430 NVIC_IPR12 Sets or reads interrupt priorities

0x0e434 NVIC_IPR13 Sets or reads interrupt priorities

0x0e438 NVIC_IPR14 Sets or reads interrupt priorities

0x0e43c NVIC_IPR15 Sets or reads interrupt priorities

0x0ed00 CPUID Provides identification information for the PE, including an

implementer code for the device and a device ID number

0x0ed04 ICSR Controls and provides status information for NMI, PendSV,

SysTick and interrupts

0x0ed08 VTOR Vector Table Offset Register

0x0ed0c AIRCR Application Interrupt and Reset Control Register

0x0ed10 SCR System Control Register

0x0ed14 CCR Sets or returns configuration and control data

0x0ed18 SHPR1 Sets or returns priority for system handlers 4 - 7

0x0ed1c SHPR2 Sets or returns priority for system handlers 8 - 11

0x0ed20 SHPR3 Sets or returns priority for system handlers 12 - 15

0x0ed24 SHCSR Provides access to the active and pending status of system

exceptions

0x0ed28 CFSR Contains the three Configurable Fault Status Registers.

31:16 UFSR: Provides information on UsageFault exceptions

15:8 BFSR: Provides information on BusFault exceptions

7:0 MMFSR: Provides information on MemManage exceptions

0x0ed2c HFSR Shows the cause of any HardFaults

0x0ed30 DFSR Shows which debug event occurred

0x0ed34 MMFAR Shows the address of the memory location that caused an MPU

fault

0x0ed38 BFAR Shows the address associated with a precise data access

BusFault

0x0ed40 ID_PFR0 Gives top-level information about the instruction set supported

by the PE

0x0ed44 ID_PFR1 Gives information about the programmers' model and Extensions

support

0x0ed48 ID_DFR0 Provides top level information about the debug system

0x0ed4c ID_AFR0 Provides information about the IMPLEMENTATION DEFINED

features of the PE

0x0ed50 ID_MMFR0 Provides information about the implemented memory model and

memory management support
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0x0ed54 ID_MMFR1 Provides information about the implemented memory model and

memory management support

0x0ed58 ID_MMFR2 Provides information about the implemented memory model and

memory management support

0x0ed5c ID_MMFR3 Provides information about the implemented memory model and

memory management support

0x0ed60 ID_ISAR0 Provides information about the instruction set implemented by

the PE

0x0ed64 ID_ISAR1 Provides information about the instruction set implemented by

the PE

0x0ed68 ID_ISAR2 Provides information about the instruction set implemented by

the PE

0x0ed6c ID_ISAR3 Provides information about the instruction set implemented by

the PE

0x0ed70 ID_ISAR4 Provides information about the instruction set implemented by

the PE

0x0ed74 ID_ISAR5 Provides information about the instruction set implemented by

the PE

0x0ed7c CTR Provides information about the architecture of the caches. CTR

is RES0 if CLIDR is zero.

0x0ed88 CPACR Specifies the access privileges for coprocessors and the FP

Extension

0x0ed8c NSACR Defines the Non-secure access permissions for both the FP

Extension and coprocessors CP0 to CP7

0x0ed90 MPU_TYPE The MPU Type Register indicates how many regions the MPU

`FTSSS supports

0x0ed94 MPU_CTRL Enables the MPU and, when the MPU is enabled, controls

whether the default memory map is enabled as a background

region for privileged accesses, and whether the MPU is enabled

for HardFaults, NMIs, and exception handlers when FAULTMASK

is set to 1

0x0ed98 MPU_RNR Selects the region currently accessed by MPU_RBAR and

MPU_RLAR

0x0ed9c MPU_RBAR Provides indirect read and write access to the base address of

the currently selected MPU region `FTSSS

0x0eda0 MPU_RLAR Provides indirect read and write access to the limit address of

the currently selected MPU region `FTSSS

0x0eda4 MPU_RBAR_A1 Provides indirect read and write access to the base address of

the MPU region selected by MPU_RNR[7:2]:(1[1:0]) `FTSSS

0x0eda8 MPU_RLAR_A1 Provides indirect read and write access to the limit address of

the currently selected MPU region selected by

MPU_RNR[7:2]:(1[1:0]) `FTSSS

0x0edac MPU_RBAR_A2 Provides indirect read and write access to the base address of

the MPU region selected by MPU_RNR[7:2]:(2[1:0]) `FTSSS
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0x0edb0 MPU_RLAR_A2 Provides indirect read and write access to the limit address of

the currently selected MPU region selected by

MPU_RNR[7:2]:(2[1:0]) `FTSSS

0x0edb4 MPU_RBAR_A3 Provides indirect read and write access to the base address of

the MPU region selected by MPU_RNR[7:2]:(3[1:0]) `FTSSS

0x0edb8 MPU_RLAR_A3 Provides indirect read and write access to the limit address of

the currently selected MPU region selected by

MPU_RNR[7:2]:(3[1:0]) `FTSSS

0x0edc0 MPU_MAIR0 Along with MPU_MAIR1, provides the memory attribute

encodings corresponding to the AttrIndex values

0x0edc4 MPU_MAIR1 Along with MPU_MAIR0, provides the memory attribute

encodings corresponding to the AttrIndex values

0x0edd0 SAU_CTRL Allows enabling of the Security Attribution Unit

0x0edd4 SAU_TYPE Indicates the number of regions implemented by the Security

Attribution Unit

0x0edd8 SAU_RNR Selects the region currently accessed by SAU_RBAR and

SAU_RLAR

0x0eddc SAU_RBAR Provides indirect read and write access to the base address of

the currently selected SAU region

0x0ede0 SAU_RLAR Provides indirect read and write access to the limit address of

the currently selected SAU region

0x0ede4 SFSR Provides information about any security related faults

0x0ede8 SFAR Shows the address of the memory location that caused a

Security violation

0x0edf0 DHCSR Controls halting debug

0x0edf4 DCRSR With the DCRDR, provides debug access to the general-purpose

registers, special-purpose registers, and the FP extension

registers. A write to the DCRSR specifies the register to transfer,

whether the transfer is a read or write, and starts the transfer

0x0edf8 DCRDR With the DCRSR, provides debug access to the general-purpose

registers, special-purpose registers, and the FP Extension

registers. If the Main Extension is implemented, it can also be

used for message passing between an external debugger and a

debug agent running on the PE

0x0edfc DEMCR Manages vector catch behavior and DebugMonitor handling

when debugging

0x0ee08 DSCSR Provides control and status information for Secure debug

0x0ef00 STIR Provides a mechanism for software to generate an interrupt

0x0ef34 FPCCR Holds control data for the Floating-point extension

0x0ef38 FPCAR Holds the location of the unpopulated floating-point register

space allocated on an exception stack frame

0x0ef3c FPDSCR Holds the default values for the floating-point status control data

that the PE assigns to the FPSCR when it creates a new floating-

point context
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0x0ef40 MVFR0 Describes the features provided by the Floating-point Extension

0x0ef44 MVFR1 Describes the features provided by the Floating-point Extension

0x0ef48 MVFR2 Describes the features provided by the Floating-point Extension

0x0efbc DDEVARCH Provides CoreSight discovery information for the SCS

0x0efcc DDEVTYPE Provides CoreSight discovery information for the SCS

0x0efd0 DPIDR4 Provides CoreSight discovery information for the SCS

0x0efd4 DPIDR5 Provides CoreSight discovery information for the SCS

0x0efd8 DPIDR6 Provides CoreSight discovery information for the SCS

0x0efdc DPIDR7 Provides CoreSight discovery information for the SCS

0x0efe0 DPIDR0 Provides CoreSight discovery information for the SCS

0x0efe4 DPIDR1 Provides CoreSight discovery information for the SCS

0x0efe8 DPIDR2 Provides CoreSight discovery information for the SCS

0x0efec DPIDR3 Provides CoreSight discovery information for the SCS

0x0eff0 DCIDR0 Provides CoreSight discovery information for the SCS

0x0eff4 DCIDR1 Provides CoreSight discovery information for the SCS

0x0eff8 DCIDR2 Provides CoreSight discovery information for the SCS

0x0effc DCIDR3 Provides CoreSight discovery information for the SCS

0x41004 TRCPRGCTLR Programming Control Register

0x4100c TRCSTATR The TRCSTATR indicates the ETM-Teal status

0x41010 TRCCONFIGR The TRCCONFIGR sets the basic tracing options for the trace

unit

0x41020 TRCEVENTCTL0R The TRCEVENTCTL0R controls the tracing of events in the trace

stream. The events also drive the ETM-Teal external outputs.

0x41024 TRCEVENTCTL1R The TRCEVENTCTL1R controls how the events selected by

TRCEVENTCTL0R behave

0x4102c TRCSTALLCTLR The TRCSTALLCTLR enables ETM-Teal to stall the processor if

the ETM-Teal FIFO goes over the programmed level to minimize

risk of overflow

0x41030 TRCTSCTLR The TRCTSCTLR controls the insertion of global timestamps into

the trace stream. A timestamp is always inserted into the

instruction trace stream

0x41034 TRCSYNCPR The TRCSYNCPR specifies the period of trace synchronization of

the trace streams. TRCSYNCPR defines a number of bytes of

trace between requests for trace synchronization. This value is

always a power of two

0x41038 TRCCCCTLR The TRCCCCTLR sets the threshold value for instruction trace

cycle counting. The threshold represents the minimum interval

between cycle count trace packets

0x41080 TRCVICTLR The TRCVICTLR controls instruction trace filtering
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0x41140 TRCCNTRLDVR0 The TRCCNTRLDVR defines the reload value for the reduced

function counter

0x41180 TRCIDR8 TRCIDR8

0x41184 TRCIDR9 TRCIDR9

0x41188 TRCIDR10 TRCIDR10

0x4118c TRCIDR11 TRCIDR11

0x41190 TRCIDR12 TRCIDR12

0x41194 TRCIDR13 TRCIDR13

0x411c0 TRCIMSPEC The TRCIMSPEC shows the presence of any IMPLEMENTATION

SPECIFIC features, and enables any features that are provided

0x411e0 TRCIDR0 TRCIDR0

0x411e4 TRCIDR1 TRCIDR1

0x411e8 TRCIDR2 TRCIDR2

0x411ec TRCIDR3 TRCIDR3

0x411f0 TRCIDR4 TRCIDR4

0x411f4 TRCIDR5 TRCIDR5

0x411f8 TRCIDR6 TRCIDR6

0x411fc TRCIDR7 TRCIDR7

0x41208 TRCRSCTLR2 The TRCRSCTLR controls the trace resources

0x4120c TRCRSCTLR3 The TRCRSCTLR controls the trace resources

0x412a0 TRCSSCSR Controls the corresponding single-shot comparator resource

0x412c0 TRCSSPCICR Selects the PE comparator inputs for Single-shot control

0x41310 TRCPDCR Requests the system to provide power to the trace unit

0x41314 TRCPDSR Returns the following information about the trace unit: - OS Lock

status. - Core power domain status. - Power interruption status

0x41ee4 TRCITATBIDR Trace Intergration ATB Identification Register

0x41ef4 TRCITIATBINR Trace Integration Instruction ATB In Register

0x41efc TRCITIATBOUTR Trace Integration Instruction ATB Out Register

0x41fa0 TRCCLAIMSET Claim Tag Set Register

0x41fa4 TRCCLAIMCLR Claim Tag Clear Register

0x41fb8 TRCAUTHSTATUS Returns the level of tracing that the trace unit can support

0x41fbc TRCDEVARCH TRCDEVARCH

0x41fc8 TRCDEVID TRCDEVID

0x41fcc TRCDEVTYPE TRCDEVTYPE

0x41fd0 TRCPIDR4 TRCPIDR4

0x41fd4 TRCPIDR5 TRCPIDR5

0x41fd8 TRCPIDR6 TRCPIDR6
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0x41fdc TRCPIDR7 TRCPIDR7

0x41fe0 TRCPIDR0 TRCPIDR0

0x41fe4 TRCPIDR1 TRCPIDR1

0x41fe8 TRCPIDR2 TRCPIDR2

0x41fec TRCPIDR3 TRCPIDR3

0x41ff0 TRCCIDR0 TRCCIDR0

0x41ff4 TRCCIDR1 TRCCIDR1

0x41ff8 TRCCIDR2 TRCCIDR2

0x41ffc TRCCIDR3 TRCCIDR3

0x42000 CTICONTROL CTI Control Register

0x42010 CTIINTACK CTI Interrupt Acknowledge Register

0x42014 CTIAPPSET CTI Application Trigger Set Register

0x42018 CTIAPPCLEAR CTI Application Trigger Clear Register

0x4201c CTIAPPPULSE CTI Application Pulse Register

0x42020 CTIINEN0 CTI Trigger to Channel Enable Registers

0x42024 CTIINEN1 CTI Trigger to Channel Enable Registers

0x42028 CTIINEN2 CTI Trigger to Channel Enable Registers

0x4202c CTIINEN3 CTI Trigger to Channel Enable Registers

0x42030 CTIINEN4 CTI Trigger to Channel Enable Registers

0x42034 CTIINEN5 CTI Trigger to Channel Enable Registers

0x42038 CTIINEN6 CTI Trigger to Channel Enable Registers

0x4203c CTIINEN7 CTI Trigger to Channel Enable Registers

0x420a0 CTIOUTEN0 CTI Trigger to Channel Enable Registers

0x420a4 CTIOUTEN1 CTI Trigger to Channel Enable Registers

0x420a8 CTIOUTEN2 CTI Trigger to Channel Enable Registers

0x420ac CTIOUTEN3 CTI Trigger to Channel Enable Registers

0x420b0 CTIOUTEN4 CTI Trigger to Channel Enable Registers

0x420b4 CTIOUTEN5 CTI Trigger to Channel Enable Registers

0x420b8 CTIOUTEN6 CTI Trigger to Channel Enable Registers

0x420bc CTIOUTEN7 CTI Trigger to Channel Enable Registers

0x42130 CTITRIGINSTATUS CTI Trigger to Channel Enable Registers

0x42134 CTITRIGOUTSTATUS CTI Trigger In Status Register

0x42138 CTICHINSTATUS CTI Channel In Status Register

0x42140 CTIGATE Enable CTI Channel Gate register

0x42144 ASICCTL External Multiplexer Control register

0x42ee4 ITCHOUT Integration Test Channel Output register
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0x42ee8 ITTRIGOUT Integration Test Trigger Output register

0x42ef4 ITCHIN Integration Test Channel Input register

0x42f00 ITCTRL Integration Mode Control register

0x42fbc DEVARCH Device Architecture register

0x42fc8 DEVID Device Configuration register

0x42fcc DEVTYPE Device Type Identifier register

0x42fd0 PIDR4 CoreSight Periperal ID4

0x42fd4 PIDR5 CoreSight Periperal ID5

0x42fd8 PIDR6 CoreSight Periperal ID6

0x42fdc PIDR7 CoreSight Periperal ID7

0x42fe0 PIDR0 CoreSight Periperal ID0

0x42fe4 PIDR1 CoreSight Periperal ID1

0x42fe8 PIDR2 CoreSight Periperal ID2

0x42fec PIDR3 CoreSight Periperal ID3

0x42ff0 CIDR0 CoreSight Component ID0

0x42ff4 CIDR1 CoreSight Component ID1

0x42ff8 CIDR2 CoreSight Component ID2

0x42ffc CIDR3 CoreSight Component ID3

M33: ITM_STIM0, ITM_STIM1, …, ITM_STIM30, ITM_STIM31 Registers

Offsets: 0x00000, 0x00004, …, 0x00078, 0x0007c

Description

Provides the interface for generating Instrumentation packets

Table 119.

ITM_STIM0,

ITM_STIM1, …,

ITM_STIM30,

ITM_STIM31 Registers

Bits Description Type Reset

31:0 STIMULUS: Data to write to the Stimulus Port FIFO, for forwarding as an

Instrumentation packet. The size of write access determines the type of

Instrumentation packet generated.

RW 0x00000000

M33: ITM_TER0 Register

Offset: 0x00e00

Description

Provide an individual enable bit for each ITM_STIM register

Table 120. ITM_TER0

Register
Bits Description Type Reset

31:0 STIMENA: For STIMENA[m] in ITM_TER*n, controls whether ITM_STIM(32*n +

m) is enabled

RW 0x00000000

M33: ITM_TPR Register

Offset: 0x00e40
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Description

Controls which stimulus ports can be accessed by unprivileged code

Table 121. ITM_TPR

Register
Bits Description Type Reset

31:4 Reserved. - -

3:0 PRIVMASK: Bit mask to enable tracing on ITM stimulus ports RW 0x0

M33: ITM_TCR Register

Offset: 0x00e80

Description

Configures and controls transfers through the ITM interface

Table 122. ITM_TCR

Register
Bits Description Type Reset

31:24 Reserved. - -

23 BUSY: Indicates whether the ITM is currently processing events RO 0x0

22:16 TRACEBUSID: Identifier for multi-source trace stream formatting. If multi-

source trace is in use, the debugger must write a unique non-zero trace ID

value to this field

RW 0x00

15:12 Reserved. - -

11:10 GTSFREQ: Defines how often the ITM generates a global timestamp, based on

the global timestamp clock frequency, or disables generation of global

timestamps

RW 0x0

9:8 TSPRESCALE: Local timestamp prescaler, used with the trace packet

reference clock

RW 0x0

7:6 Reserved. - -

5 STALLENA: Stall the PE to guarantee delivery of Data Trace packets. RW 0x0

4 SWOENA: Enables asynchronous clocking of the timestamp counter RW 0x0

3 TXENA: Enables forwarding of hardware event packet from the DWT unit to

the ITM for output to the TPIU

RW 0x0

2 SYNCENA: Enables Synchronization packet transmission for a synchronous

TPIU

RW 0x0

1 TSENA: Enables Local timestamp generation RW 0x0

0 ITMENA: Enables the ITM RW 0x0

M33: INT_ATREADY Register

Offset: 0x00ef0

Description

Integration Mode: Read ATB Ready

Table 123.

INT_ATREADY

Register

Bits Description Type Reset

31:2 Reserved. - -

1 AFVALID: A read of this bit returns the value of AFVALID RO 0x0

0 ATREADY: A read of this bit returns the value of ATREADY RO 0x0
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M33: INT_ATVALID Register

Offset: 0x00ef8

Description

Integration Mode: Write ATB Valid

Table 124.

INT_ATVALID Register
Bits Description Type Reset

31:2 Reserved. - -

1 AFREADY: A write to this bit gives the value of AFREADY RW 0x0

0 ATREADY: A write to this bit gives the value of ATVALID RW 0x0

M33: ITM_ITCTRL Register

Offset: 0x00f00

Description

Integration Mode Control Register

Table 125.

ITM_ITCTRL Register
Bits Description Type Reset

31:1 Reserved. - -

0 IME: Integration mode enable bit - The possible values are: 0 - The trace unit is

not in integration mode. 1 - The trace unit is in integration mode. This mode

enables: A debug agent to perform topology detection. SoC test software to

perform integration testing.

RW 0x0

M33: ITM_DEVARCH Register

Offset: 0x00fbc

Description

Provides CoreSight discovery information for the ITM

Table 126.

ITM_DEVARCH

Register

Bits Description Type Reset

31:21 ARCHITECT: Defines the architect of the component. Bits [31:28] are the

JEP106 continuation code (JEP106 bank ID, minus 1) and bits [27:21] are the

JEP106 ID code.

RO 0x23b

20 PRESENT: Defines that the DEVARCH register is present RO 0x1

19:16 REVISION: Defines the architecture revision of the component RO 0x0

15:12 ARCHVER: Defines the architecture version of the component RO 0x1

11:0 ARCHPART: Defines the architecture of the component RO 0xa01

M33: ITM_DEVTYPE Register

Offset: 0x00fcc

Description

Provides CoreSight discovery information for the ITM

Table 127.

ITM_DEVTYPE

Register

Bits Description Type Reset

31:8 Reserved. - -

7:4 SUB: Component sub-type RO 0x4
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Bits Description Type Reset

3:0 MAJOR: Component major type RO 0x3

M33: ITM_PIDR4 Register

Offset: 0x00fd0

Description

Provides CoreSight discovery information for the ITM

Table 128. ITM_PIDR4

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 SIZE: See CoreSight Architecture Specification RO 0x0

3:0 DES_2: See CoreSight Architecture Specification RO 0x4

M33: ITM_PIDR5 Register

Offset: 0x00fd4

Description

Provides CoreSight discovery information for the ITM

Table 129. ITM_PIDR5

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: ITM_PIDR6 Register

Offset: 0x00fd8

Description

Provides CoreSight discovery information for the ITM

Table 130. ITM_PIDR6

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: ITM_PIDR7 Register

Offset: 0x00fdc

Description

Provides CoreSight discovery information for the ITM

Table 131. ITM_PIDR7

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: ITM_PIDR0 Register

Offset: 0x00fe0

Description

Provides CoreSight discovery information for the ITM
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Table 132. ITM_PIDR0

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PART_0: See CoreSight Architecture Specification RO 0x21

M33: ITM_PIDR1 Register

Offset: 0x00fe4

Description

Provides CoreSight discovery information for the ITM

Table 133. ITM_PIDR1

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 DES_0: See CoreSight Architecture Specification RO 0xb

3:0 PART_1: See CoreSight Architecture Specification RO 0xd

M33: ITM_PIDR2 Register

Offset: 0x00fe8

Description

Provides CoreSight discovery information for the ITM

Table 134. ITM_PIDR2

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 REVISION: See CoreSight Architecture Specification RO 0x0

3 JEDEC: See CoreSight Architecture Specification RO 0x1

2:0 DES_1: See CoreSight Architecture Specification RO 0x3

M33: ITM_PIDR3 Register

Offset: 0x00fec

Description

Provides CoreSight discovery information for the ITM

Table 135. ITM_PIDR3

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 REVAND: See CoreSight Architecture Specification RO 0x0

3:0 CMOD: See CoreSight Architecture Specification RO 0x0

M33: ITM_CIDR0 Register

Offset: 0x00ff0

Description

Provides CoreSight discovery information for the ITM

RP2350 Datasheet

3.7. Cortex-M33 Processor 156



Table 136. ITM_CIDR0

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_0: See CoreSight Architecture Specification RO 0x0d

M33: ITM_CIDR1 Register

Offset: 0x00ff4

Description

Provides CoreSight discovery information for the ITM

Table 137. ITM_CIDR1

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 CLASS: See CoreSight Architecture Specification RO 0x9

3:0 PRMBL_1: See CoreSight Architecture Specification RO 0x0

M33: ITM_CIDR2 Register

Offset: 0x00ff8

Description

Provides CoreSight discovery information for the ITM

Table 138. ITM_CIDR2

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_2: See CoreSight Architecture Specification RO 0x05

M33: ITM_CIDR3 Register

Offset: 0x00ffc

Description

Provides CoreSight discovery information for the ITM

Table 139. ITM_CIDR3

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_3: See CoreSight Architecture Specification RO 0xb1

M33: DWT_CTRL Register

Offset: 0x01000

Description

Provides configuration and status information for the DWT unit, and used to control features of the unit

Table 140. DWT_CTRL

Register
Bits Description Type Reset

31:28 NUMCOMP: Number of DWT comparators implemented RO 0x7

27 NOTRCPKT: Indicates whether the implementation does not support trace RO 0x0

26 NOEXTTRIG: Reserved, RAZ RO 0x0

25 NOCYCCNT: Indicates whether the implementation does not include a cycle

counter

RO 0x1
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Bits Description Type Reset

24 NOPRFCNT: Indicates whether the implementation does not include the

profiling counters

RO 0x1

23 CYCDISS: Controls whether the cycle counter is disabled in Secure state RW 0x0

22 CYCEVTENA: Enables Event Counter packet generation on POSTCNT

underflow

RW 0x1

21 FOLDEVTENA: Enables DWT_FOLDCNT counter RW 0x1

20 LSUEVTENA: Enables DWT_LSUCNT counter RW 0x1

19 SLEEPEVTENA: Enable DWT_SLEEPCNT counter RW 0x0

18 EXCEVTENA: Enables DWT_EXCCNT counter RW 0x1

17 CPIEVTENA: Enables DWT_CPICNT counter RW 0x0

16 EXTTRCENA: Enables generation of Exception Trace packets RW 0x0

15:13 Reserved. - -

12 PCSAMPLENA: Enables use of POSTCNT counter as a timer for Periodic PC

Sample packet generation

RW 0x1

11:10 SYNCTAP: Selects the position of the synchronization packet counter tap on

the CYCCNT counter. This determines the Synchronization packet rate

RW 0x2

9 CYCTAP: Selects the position of the POSTCNT tap on the CYCCNT counter RW 0x0

8:5 POSTINIT: Initial value for the POSTCNT counter RW 0x1

4:1 POSTPRESET: Reload value for the POSTCNT counter RW 0x2

0 CYCCNTENA: Enables CYCCNT RW 0x0

M33: DWT_CYCCNT Register

Offset: 0x01004

Description

Shows or sets the value of the processor cycle counter, CYCCNT

Table 141.

DWT_CYCCNT

Register

Bits Description Type Reset

31:0 CYCCNT: Increments one on each processor clock cycle when

DWT_CTRL.CYCCNTENA == 1 and DEMCR.TRCENA == 1. On overflow,

CYCCNT wraps to zero

RW 0x00000000

M33: DWT_EXCCNT Register

Offset: 0x0100c

Description

Counts the total cycles spent in exception processing

Table 142.

DWT_EXCCNT

Register

Bits Description Type Reset

31:8 Reserved. - -
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Bits Description Type Reset

7:0 EXCCNT: Counts one on each cycle when all of the following are true: -

DWT_CTRL.EXCEVTENA == 1 and DEMCR.TRCENA == 1. - No instruction is

executed, see DWT_CPICNT. - An exception-entry or exception-exit related

operation is in progress. - Either SecureNoninvasiveDebugAllowed() == TRUE,

or NS-Req for the operation is set to Non-secure and

NoninvasiveDebugAllowed() == TRUE.

RW 0x00

M33: DWT_LSUCNT Register

Offset: 0x01014

Description

Increments on the additional cycles required to execute all load or store instructions

Table 143.

DWT_LSUCNT Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 LSUCNT: Counts one on each cycle when all of the following are true: -

DWT_CTRL.LSUEVTENA == 1 and DEMCR.TRCENA == 1. - No instruction is

executed, see DWT_CPICNT. - No exception-entry or exception-exit operation

is in progress, see DWT_EXCCNT. - A load-store operation is in progress. -

Either SecureNoninvasiveDebugAllowed() == TRUE, or NS-Req for the

operation is set to Non-secure and NoninvasiveDebugAllowed() == TRUE.

RW 0x00

M33: DWT_FOLDCNT Register

Offset: 0x01018

Description

Increments on the additional cycles required to execute all load or store instructions

Table 144.

DWT_FOLDCNT

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 FOLDCNT: Counts on each cycle when all of the following are true: -

DWT_CTRL.FOLDEVTENA == 1 and DEMCR.TRCENA == 1. - At least two

instructions are executed, see DWT_CPICNT. - Either

SecureNoninvasiveDebugAllowed() == TRUE, or the PE is in Non-secure state

and NoninvasiveDebugAllowed() == TRUE. The counter is incremented by the

number of instructions executed, minus one

RW 0x00

M33: DWT_COMP0 Register

Offset: 0x01020

Table 145.

DWT_COMP0 Register
Bits Description Type Reset

31:0 Provides a reference value for use by watchpoint comparator 0 RW 0x00000000

M33: DWT_FUNCTION0 Register

Offset: 0x01028

Description

Controls the operation of watchpoint comparator 0
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Table 146.

DWT_FUNCTION0

Register

Bits Description Type Reset

31:27 ID: Identifies the capabilities for MATCH for comparator *n RO 0x0b

26:25 Reserved. - -

24 MATCHED: Set to 1 when the comparator matches RO 0x0

23:12 Reserved. - -

11:10 DATAVSIZE: Defines the size of the object being watched for by Data Value

and Data Address comparators

RW 0x0

9:6 Reserved. - -

5:4 ACTION: Defines the action on a match. This field is ignored and the

comparator generates no actions if it is disabled by MATCH

RW 0x0

3:0 MATCH: Controls the type of match generated by this comparator RW 0x0

M33: DWT_COMP1 Register

Offset: 0x01030

Table 147.

DWT_COMP1 Register
Bits Description Type Reset

31:0 Provides a reference value for use by watchpoint comparator 1 RW 0x00000000

M33: DWT_FUNCTION1 Register

Offset: 0x01038

Description

Controls the operation of watchpoint comparator 1

Table 148.

DWT_FUNCTION1

Register

Bits Description Type Reset

31:27 ID: Identifies the capabilities for MATCH for comparator *n RO 0x11

26:25 Reserved. - -

24 MATCHED: Set to 1 when the comparator matches RO 0x1

23:12 Reserved. - -

11:10 DATAVSIZE: Defines the size of the object being watched for by Data Value

and Data Address comparators

RW 0x2

9:6 Reserved. - -

5:4 ACTION: Defines the action on a match. This field is ignored and the

comparator generates no actions if it is disabled by MATCH

RW 0x2

3:0 MATCH: Controls the type of match generated by this comparator RW 0x8

M33: DWT_COMP2 Register

Offset: 0x01040
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Table 149.

DWT_COMP2 Register
Bits Description Type Reset

31:0 Provides a reference value for use by watchpoint comparator 2 RW 0x00000000

M33: DWT_FUNCTION2 Register

Offset: 0x01048

Description

Controls the operation of watchpoint comparator 2

Table 150.

DWT_FUNCTION2

Register

Bits Description Type Reset

31:27 ID: Identifies the capabilities for MATCH for comparator *n RO 0x0a

26:25 Reserved. - -

24 MATCHED: Set to 1 when the comparator matches RO 0x0

23:12 Reserved. - -

11:10 DATAVSIZE: Defines the size of the object being watched for by Data Value

and Data Address comparators

RW 0x0

9:6 Reserved. - -

5:4 ACTION: Defines the action on a match. This field is ignored and the

comparator generates no actions if it is disabled by MATCH

RW 0x0

3:0 MATCH: Controls the type of match generated by this comparator RW 0x0

M33: DWT_COMP3 Register

Offset: 0x01050

Table 151.

DWT_COMP3 Register
Bits Description Type Reset

31:0 Provides a reference value for use by watchpoint comparator 3 RW 0x00000000

M33: DWT_FUNCTION3 Register

Offset: 0x01058

Description

Controls the operation of watchpoint comparator 3

Table 152.

DWT_FUNCTION3

Register

Bits Description Type Reset

31:27 ID: Identifies the capabilities for MATCH for comparator *n RO 0x04

26:25 Reserved. - -

24 MATCHED: Set to 1 when the comparator matches RO 0x0

23:12 Reserved. - -

11:10 DATAVSIZE: Defines the size of the object being watched for by Data Value

and Data Address comparators

RW 0x2

9:6 Reserved. - -

5:4 ACTION: Defines the action on a match. This field is ignored and the

comparator generates no actions if it is disabled by MATCH

RW 0x0

3:0 MATCH: Controls the type of match generated by this comparator RW 0x0
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M33: DWT_DEVARCH Register

Offset: 0x01fbc

Description

Provides CoreSight discovery information for the DWT

Table 153.

DWT_DEVARCH

Register

Bits Description Type Reset

31:21 ARCHITECT: Defines the architect of the component. Bits [31:28] are the

JEP106 continuation code (JEP106 bank ID, minus 1) and bits [27:21] are the

JEP106 ID code.

RO 0x23b

20 PRESENT: Defines that the DEVARCH register is present RO 0x1

19:16 REVISION: Defines the architecture revision of the component RO 0x0

15:12 ARCHVER: Defines the architecture version of the component RO 0x1

11:0 ARCHPART: Defines the architecture of the component RO 0xa02

M33: DWT_DEVTYPE Register

Offset: 0x01fcc

Description

Provides CoreSight discovery information for the DWT

Table 154.

DWT_DEVTYPE

Register

Bits Description Type Reset

31:8 Reserved. - -

7:4 SUB: Component sub-type RO 0x0

3:0 MAJOR: Component major type RO 0x0

M33: DWT_PIDR4 Register

Offset: 0x01fd0

Description

Provides CoreSight discovery information for the DWT

Table 155.

DWT_PIDR4 Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 SIZE: See CoreSight Architecture Specification RO 0x0

3:0 DES_2: See CoreSight Architecture Specification RO 0x4

M33: DWT_PIDR5 Register

Offset: 0x01fd4

Description

Provides CoreSight discovery information for the DWT
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Table 156.

DWT_PIDR5 Register
Bits Description Type Reset

31:0 Reserved. - -

M33: DWT_PIDR6 Register

Offset: 0x01fd8

Description

Provides CoreSight discovery information for the DWT

Table 157.

DWT_PIDR6 Register
Bits Description Type Reset

31:0 Reserved. - -

M33: DWT_PIDR7 Register

Offset: 0x01fdc

Description

Provides CoreSight discovery information for the DWT

Table 158.

DWT_PIDR7 Register
Bits Description Type Reset

31:0 Reserved. - -

M33: DWT_PIDR0 Register

Offset: 0x01fe0

Description

Provides CoreSight discovery information for the DWT

Table 159.

DWT_PIDR0 Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PART_0: See CoreSight Architecture Specification RO 0x21

M33: DWT_PIDR1 Register

Offset: 0x01fe4

Description

Provides CoreSight discovery information for the DWT

Table 160.

DWT_PIDR1 Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 DES_0: See CoreSight Architecture Specification RO 0xb

3:0 PART_1: See CoreSight Architecture Specification RO 0xd

M33: DWT_PIDR2 Register

Offset: 0x01fe8

Description

Provides CoreSight discovery information for the DWT
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Table 161.

DWT_PIDR2 Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 REVISION: See CoreSight Architecture Specification RO 0x0

3 JEDEC: See CoreSight Architecture Specification RO 0x1

2:0 DES_1: See CoreSight Architecture Specification RO 0x3

M33: DWT_PIDR3 Register

Offset: 0x01fec

Description

Provides CoreSight discovery information for the DWT

Table 162.

DWT_PIDR3 Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 REVAND: See CoreSight Architecture Specification RO 0x0

3:0 CMOD: See CoreSight Architecture Specification RO 0x0

M33: DWT_CIDR0 Register

Offset: 0x01ff0

Description

Provides CoreSight discovery information for the DWT

Table 163.

DWT_CIDR0 Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_0: See CoreSight Architecture Specification RO 0x0d

M33: DWT_CIDR1 Register

Offset: 0x01ff4

Description

Provides CoreSight discovery information for the DWT

Table 164.

DWT_CIDR1 Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 CLASS: See CoreSight Architecture Specification RO 0x9

3:0 PRMBL_1: See CoreSight Architecture Specification RO 0x0

M33: DWT_CIDR2 Register

Offset: 0x01ff8

Description

Provides CoreSight discovery information for the DWT
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Table 165.

DWT_CIDR2 Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_2: See CoreSight Architecture Specification RO 0x05

M33: DWT_CIDR3 Register

Offset: 0x01ffc

Description

Provides CoreSight discovery information for the DWT

Table 166.

DWT_CIDR3 Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_3: See CoreSight Architecture Specification RO 0xb1

M33: FP_CTRL Register

Offset: 0x02000

Description

Provides FPB implementation information, and the global enable for the FPB unit

Table 167. FP_CTRL

Register
Bits Description Type Reset

31:28 REV: Flash Patch and Breakpoint Unit architecture revision RO 0x6

27:15 Reserved. - -

14:12 NUM_CODE_14_12_: Indicates the number of implemented instruction

address comparators. Zero indicates no Instruction Address comparators are

implemented. The Instruction Address comparators are numbered from 0 to

NUM_CODE - 1

RO 0x5

11:8 NUM_LIT: Indicates the number of implemented literal address comparators.

The Literal Address comparators are numbered from NUM_CODE to

NUM_CODE + NUM_LIT - 1

RO 0x5

7:4 NUM_CODE_7_4_: Indicates the number of implemented instruction address

comparators. Zero indicates no Instruction Address comparators are

implemented. The Instruction Address comparators are numbered from 0 to

NUM_CODE - 1

RO 0x8

3:2 Reserved. - -

1 KEY: Writes to the FP_CTRL are ignored unless KEY is concurrently written to

one

RW 0x0

0 ENABLE: Enables the FPB RW 0x0

M33: FP_REMAP Register

Offset: 0x02004

Description

Indicates whether the implementation supports Flash Patch remap and, if it does, holds the target address for

remap

Table 168. FP_REMAP

Register
Bits Description Type Reset

31:30 Reserved. - -
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Bits Description Type Reset

29 RMPSPT: Indicates whether the FPB unit supports the Flash Patch remap

function

RO 0x0

28:5 REMAP: Holds the bits[28:5] of the Flash Patch remap address RO 0x000000

4:0 Reserved. - -

M33: FP_COMP0, FP_COMP1, …, FP_COMP6, FP_COMP7 Registers

Offsets: 0x02008, 0x0200c, …, 0x02020, 0x02024

Description

Holds an address for comparison. The effect of the match depends on the configuration of the FPB and whether

the comparator is an instruction address comparator or a literal address comparator

Table 169. FP_COMP0,

FP_COMP1, …,

FP_COMP6,

FP_COMP7 Registers

Bits Description Type Reset

31:1 Reserved. - -

0 BE: Selects between flashpatch and breakpoint functionality RW 0x0

M33: FP_DEVARCH Register

Offset: 0x02fbc

Description

Provides CoreSight discovery information for the FPB

Table 170.

FP_DEVARCH Register
Bits Description Type Reset

31:21 ARCHITECT: Defines the architect of the component. Bits [31:28] are the

JEP106 continuation code (JEP106 bank ID, minus 1) and bits [27:21] are the

JEP106 ID code.

RO 0x23b

20 PRESENT: Defines that the DEVARCH register is present RO 0x1

19:16 REVISION: Defines the architecture revision of the component RO 0x0

15:12 ARCHVER: Defines the architecture version of the component RO 0x1

11:0 ARCHPART: Defines the architecture of the component RO 0xa03

M33: FP_DEVTYPE Register

Offset: 0x02fcc

Description

Provides CoreSight discovery information for the FPB

Table 171.

FP_DEVTYPE Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 SUB: Component sub-type RO 0x0

3:0 MAJOR: Component major type RO 0x0

M33: FP_PIDR4 Register

Offset: 0x02fd0
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Description

Provides CoreSight discovery information for the FP

Table 172. FP_PIDR4

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 SIZE: See CoreSight Architecture Specification RO 0x0

3:0 DES_2: See CoreSight Architecture Specification RO 0x4

M33: FP_PIDR5 Register

Offset: 0x02fd4

Description

Provides CoreSight discovery information for the FP

Table 173. FP_PIDR5

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: FP_PIDR6 Register

Offset: 0x02fd8

Description

Provides CoreSight discovery information for the FP

Table 174. FP_PIDR6

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: FP_PIDR7 Register

Offset: 0x02fdc

Description

Provides CoreSight discovery information for the FP

Table 175. FP_PIDR7

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: FP_PIDR0 Register

Offset: 0x02fe0

Description

Provides CoreSight discovery information for the FP
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Table 176. FP_PIDR0

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PART_0: See CoreSight Architecture Specification RO 0x21

M33: FP_PIDR1 Register

Offset: 0x02fe4

Description

Provides CoreSight discovery information for the FP

Table 177. FP_PIDR1

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 DES_0: See CoreSight Architecture Specification RO 0xb

3:0 PART_1: See CoreSight Architecture Specification RO 0xd

M33: FP_PIDR2 Register

Offset: 0x02fe8

Description

Provides CoreSight discovery information for the FP

Table 178. FP_PIDR2

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 REVISION: See CoreSight Architecture Specification RO 0x0

3 JEDEC: See CoreSight Architecture Specification RO 0x1

2:0 DES_1: See CoreSight Architecture Specification RO 0x3

M33: FP_PIDR3 Register

Offset: 0x02fec

Description

Provides CoreSight discovery information for the FP

Table 179. FP_PIDR3

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 REVAND: See CoreSight Architecture Specification RO 0x0

3:0 CMOD: See CoreSight Architecture Specification RO 0x0

M33: FP_CIDR0 Register

Offset: 0x02ff0

Description

Provides CoreSight discovery information for the FP
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Table 180. FP_CIDR0

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_0: See CoreSight Architecture Specification RO 0x0d

M33: FP_CIDR1 Register

Offset: 0x02ff4

Description

Provides CoreSight discovery information for the FP

Table 181. FP_CIDR1

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 CLASS: See CoreSight Architecture Specification RO 0x9

3:0 PRMBL_1: See CoreSight Architecture Specification RO 0x0

M33: FP_CIDR2 Register

Offset: 0x02ff8

Description

Provides CoreSight discovery information for the FP

Table 182. FP_CIDR2

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_2: See CoreSight Architecture Specification RO 0x05

M33: FP_CIDR3 Register

Offset: 0x02ffc

Description

Provides CoreSight discovery information for the FP

Table 183. FP_CIDR3

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_3: See CoreSight Architecture Specification RO 0xb1

M33: ICTR Register

Offset: 0x0e004

Description

Provides information about the interrupt controller
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Table 184. ICTR

Register
Bits Description Type Reset

31:4 Reserved. - -

3:0 INTLINESNUM: Indicates the number of the highest implemented register in

each of the NVIC control register sets, or in the case of NVIC_IPR*n,

4×INTLINESNUM

RO 0x1

M33: ACTLR Register

Offset: 0x0e008

Description

Provides IMPLEMENTATION DEFINED configuration and control options

Table 185. ACTLR

Register
Bits Description Type Reset

31:30 Reserved. - -

29 EXTEXCLALL: External Exclusives Allowed with no MPU RW 0x0

28:13 Reserved. - -

12 DISITMATBFLUSH: Disable ATB Flush RW 0x0

11 Reserved. - -

10 FPEXCODIS: Disable FPU exception outputs RW 0x0

9 DISOOFP: Disable out-of-order FP instruction completion RW 0x0

8:3 Reserved. - -

2 DISFOLD: Disable dual-issue. RW 0x0

1 Reserved. - -

0 DISMCYCINT: Disable dual-issue. RW 0x0

M33: SYST_CSR Register

Offset: 0x0e010

Description

Use the SysTick Control and Status Register to enable the SysTick features.

Table 186. SYST_CSR

Register
Bits Description Type Reset

31:17 Reserved. - -

16 COUNTFLAG: Returns 1 if timer counted to 0 since last time this was read.

Clears on read by application or debugger.

RO 0x0

15:3 Reserved. - -

2 CLKSOURCE: SysTick clock source. Always reads as one if SYST_CALIB

reports NOREF.

Selects the SysTick timer clock source:

0 = External reference clock.

1 = Processor clock.

RW 0x0

1 TICKINT: Enables SysTick exception request:

0 = Counting down to zero does not assert the SysTick exception request.

1 = Counting down to zero to asserts the SysTick exception request.

RW 0x0
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Bits Description Type Reset

0 ENABLE: Enable SysTick counter:

0 = Counter disabled.

1 = Counter enabled.

RW 0x0

M33: SYST_RVR Register

Offset: 0x0e014

Description

Use the SysTick Reload Value Register to specify the start value to load into the current value register when the

counter reaches 0. It can be any value between 0 and 0x00FFFFFF. A start value of 0 is possible, but has no effect

because the SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0. The reset value of this

register is UNKNOWN.

To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of N-1. For example,

if the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

Table 187. SYST_RVR

Register
Bits Description Type Reset

31:24 Reserved. - -

23:0 RELOAD: Value to load into the SysTick Current Value Register when the

counter reaches 0.

RW 0x000000

M33: SYST_CVR Register

Offset: 0x0e018

Description

Use the SysTick Current Value Register to find the current value in the register. The reset value of this register is

UNKNOWN.

Table 188. SYST_CVR

Register
Bits Description Type Reset

31:24 Reserved. - -

23:0 CURRENT: Reads return the current value of the SysTick counter. This register

is write-clear. Writing to it with any value clears the register to 0. Clearing this

register also clears the COUNTFLAG bit of the SysTick Control and Status

Register.

RW 0x000000

M33: SYST_CALIB Register

Offset: 0x0e01c

Description

Use the SysTick Calibration Value Register to enable software to scale to any required speed using divide and

multiply.

Table 189.

SYST_CALIB Register
Bits Description Type Reset

31 NOREF: If reads as 1, the Reference clock is not provided - the CLKSOURCE bit

of the SysTick Control and Status register will be forced to 1 and cannot be

cleared to 0.

RO 0x0

30 SKEW: If reads as 1, the calibration value for 10ms is inexact (due to clock

frequency).

RO 0x0

29:24 Reserved. - -
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Bits Description Type Reset

23:0 TENMS: An optional Reload value to be used for 10ms (100Hz) timing, subject

to system clock skew errors. If the value reads as 0, the calibration value is not

known.

RO 0x000000

M33: NVIC_ISER0, NVIC_ISER1 Registers

Offsets: 0x0e100, 0x0e104

Description

Enables or reads the enabled state of each group of 32 interrupts

Table 190.

NVIC_ISER0,

NVIC_ISER1 Registers

Bits Description Type Reset

31:0 SETENA: For SETENA[m] in NVIC_ISER*n, indicates whether interrupt 32*n + m

is enabled

RW 0x00000000

M33: NVIC_ICER0, NVIC_ICER1 Registers

Offsets: 0x0e180, 0x0e184

Description

Clears or reads the enabled state of each group of 32 interrupts

Table 191.

NVIC_ICER0,

NVIC_ICER1 Registers

Bits Description Type Reset

31:0 CLRENA: For CLRENA[m] in NVIC_ICER*n, indicates whether interrupt 32*n +

m is enabled

RW 0x00000000

M33: NVIC_ISPR0, NVIC_ISPR1 Registers

Offsets: 0x0e200, 0x0e204

Description

Enables or reads the pending state of each group of 32 interrupts

Table 192.

NVIC_ISPR0,

NVIC_ISPR1 Registers

Bits Description Type Reset

31:0 SETPEND: For SETPEND[m] in NVIC_ISPR*n, indicates whether interrupt 32*n

+ m is pending

RW 0x00000000

M33: NVIC_ICPR0, NVIC_ICPR1 Registers

Offsets: 0x0e280, 0x0e284

Description

Clears or reads the pending state of each group of 32 interrupts

Table 193.

NVIC_ICPR0,

NVIC_ICPR1 Registers

Bits Description Type Reset

31:0 CLRPEND: For CLRPEND[m] in NVIC_ICPR*n, indicates whether interrupt 32*n

+ m is pending

RW 0x00000000

M33: NVIC_IABR0, NVIC_IABR1 Registers

Offsets: 0x0e300, 0x0e304

Description

For each group of 32 interrupts, shows the active state of each interrupt
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Table 194.

NVIC_IABR0,

NVIC_IABR1 Registers

Bits Description Type Reset

31:0 ACTIVE: For ACTIVE[m] in NVIC_IABR*n, indicates the active state for interrupt

32*n+m

RW 0x00000000

M33: NVIC_ITNS0, NVIC_ITNS1 Registers

Offsets: 0x0e380, 0x0e384

Description

For each group of 32 interrupts, determines whether each interrupt targets Non-secure or Secure state

Table 195.

NVIC_ITNS0,

NVIC_ITNS1 Registers

Bits Description Type Reset

31:0 ITNS: For ITNS[m] in NVIC_ITNS*n, `IAAMO the target Security state for

interrupt 32*n+m

RW 0x00000000

M33: NVIC_IPR0, NVIC_IPR1, …, NVIC_IPR14, NVIC_IPR15 Registers

Offsets: 0x0e400, 0x0e404, …, 0x0e438, 0x0e43c

Description

Sets or reads interrupt priorities

Table 196. NVIC_IPR0,

NVIC_IPR1, …,

NVIC_IPR14,

NVIC_IPR15 Registers

Bits Description Type Reset

31:28 PRI_N3: For register NVIC_IPRn, the priority of interrupt number 4*n+3, or

RES0 if the PE does not implement this interrupt

RW 0x0

27:24 Reserved. - -

23:20 PRI_N2: For register NVIC_IPRn, the priority of interrupt number 4*n+2, or

RES0 if the PE does not implement this interrupt

RW 0x0

19:16 Reserved. - -

15:12 PRI_N1: For register NVIC_IPRn, the priority of interrupt number 4*n+1, or

RES0 if the PE does not implement this interrupt

RW 0x0

11:8 Reserved. - -

7:4 PRI_N0: For register NVIC_IPRn, the priority of interrupt number 4*n+0, or

RES0 if the PE does not implement this interrupt

RW 0x0

3:0 Reserved. - -

M33: CPUID Register

Offset: 0x0ed00

Description

Provides identification information for the PE, including an implementer code for the device and a device ID number

Table 197. CPUID

Register
Bits Description Type Reset

31:24 IMPLEMENTER: This field must hold an implementer code that has been

assigned by ARM

RO 0x41

23:20 VARIANT: IMPLEMENTATION DEFINED variant number. Typically, this field is

used to distinguish between different product variants, or major revisions of a

product

RO 0x1

19:16 ARCHITECTURE: Defines the Architecture implemented by the PE RO 0xf
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Bits Description Type Reset

15:4 PARTNO: IMPLEMENTATION DEFINED primary part number for the device RO 0xd21

3:0 REVISION: IMPLEMENTATION DEFINED revision number for the device RO 0x0

M33: ICSR Register

Offset: 0x0ed04

Description

Controls and provides status information for NMI, PendSV, SysTick and interrupts

Table 198. ICSR

Register
Bits Description Type Reset

31 PENDNMISET: Indicates whether the NMI exception is pending RO 0x0

30 PENDNMICLR: Allows the NMI exception pend state to be cleared RW 0x0

29 Reserved. - -

28 PENDSVSET: Indicates whether the PendSV `FTSSS exception is pending RO 0x0

27 PENDSVCLR: Allows the PendSV exception pend state to be cleared `FTSSS RW 0x0

26 PENDSTSET: Indicates whether the SysTick `FTSSS exception is pending RO 0x0

25 PENDSTCLR: Allows the SysTick exception pend state to be cleared `FTSSS RW 0x0

24 STTNS: Controls whether in a single SysTick implementation, the SysTick is

Secure or Non-secure

RW 0x0

23 ISRPREEMPT: Indicates whether a pending exception will be serviced on exit

from debug halt state

RO 0x0

22 ISRPENDING: Indicates whether an external interrupt, generated by the NVIC,

is pending

RO 0x0

21 Reserved. - -

20:12 VECTPENDING: The exception number of the highest priority pending and

enabled interrupt

RO 0x000

11 RETTOBASE: In Handler mode, indicates whether there is more than one

active exception

RO 0x0

10:9 Reserved. - -

8:0 VECTACTIVE: The exception number of the current executing exception RO 0x000

M33: VTOR Register

Offset: 0x0ed08

Description

The VTOR indicates the offset of the vector table base address from memory address 0x00000000.

RP2350 Datasheet

3.7. Cortex-M33 Processor 174



Table 199. VTOR

Register
Bits Description Type Reset

31:7 TBLOFF: Vector table base offset field. It contains bits[31:7] of the offset of

the table base from the bottom of the memory map.

RW 0x0000000

6:0 Reserved. - -

M33: AIRCR Register

Offset: 0x0ed0c

Description

Use the Application Interrupt and Reset Control Register to: determine data endianness, clear all active state

information from debug halt mode, request a system reset.

Table 200. AIRCR

Register
Bits Description Type Reset

31:16 VECTKEY: Register key:

Reads as Unknown

On writes, write 0x05FA to VECTKEY, otherwise the write is ignored.

RW 0x0000

15 ENDIANESS: Data endianness implemented:

0 = Little-endian.

RO 0x0

14 PRIS: Prioritize Secure exceptions. The value of this bit defines whether

Secure exception priority boosting is enabled.

0 Priority ranges of Secure and Non-secure exceptions are identical.

1 Non-secure exceptions are de-prioritized.

RW 0x0

13 BFHFNMINS: BusFault, HardFault, and NMI Non-secure enable.

0 BusFault, HardFault, and NMI are Secure.

1 BusFault and NMI are Non-secure and exceptions can target Non-secure

HardFault.

RW 0x0

12:11 Reserved. - -

10:8 PRIGROUP: Interrupt priority grouping field. This field determines the split of

group priority from subpriority.

See https://developer.arm.com/documentation/100235/0004/the-cortex-

m33-peripherals/system-control-block/application-interrupt-and-reset-control-

register?lang=en

RW 0x0

7:4 Reserved. - -

3 SYSRESETREQS: System reset request, Secure state only.

0 SYSRESETREQ functionality is available to both Security states.

1 SYSRESETREQ functionality is only available to Secure state.

RW 0x0

2 SYSRESETREQ: Writing 1 to this bit causes the SYSRESETREQ signal to the

outer system to be asserted to request a reset. The intention is to force a large

system reset of all major components except for debug. The C_HALT bit in the

DHCSR is cleared as a result of the system reset requested. The debugger

does not lose contact with the device.

RW 0x0

1 VECTCLRACTIVE: Clears all active state information for fixed and

configurable exceptions. This bit: is self-clearing, can only be set by the DAP

when the core is halted. When set: clears all active exception status of the

processor, forces a return to Thread mode, forces an IPSR of 0. A debugger

must re-initialize the stack.

RW 0x0

0 Reserved. - -
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M33: SCR Register

Offset: 0x0ed10

Description

System Control Register. Use the System Control Register for power-management functions: signal to the system

when the processor can enter a low power state, control how the processor enters and exits low power states.

Table 201. SCR

Register
Bits Description Type Reset

31:5 Reserved. - -

4 SEVONPEND: Send Event on Pending bit:

0 = Only enabled interrupts or events can wakeup the processor, disabled

interrupts are excluded.

1 = Enabled events and all interrupts, including disabled interrupts, can

wakeup the processor.

When an event or interrupt becomes pending, the event signal wakes up the

processor from WFE. If the

processor is not waiting for an event, the event is registered and affects the

next WFE.

The processor also wakes up on execution of an SEV instruction or an external

event.

RW 0x0

3 SLEEPDEEPS: 0 SLEEPDEEP is available to both security states

1 SLEEPDEEP is only available to Secure state

RW 0x0

2 SLEEPDEEP: Controls whether the processor uses sleep or deep sleep as its

low power mode:

0 = Sleep.

1 = Deep sleep.

RW 0x0

1 SLEEPONEXIT: Indicates sleep-on-exit when returning from Handler mode to

Thread mode:

0 = Do not sleep when returning to Thread mode.

1 = Enter sleep, or deep sleep, on return from an ISR to Thread mode.

Setting this bit to 1 enables an interrupt driven application to avoid returning to

an empty main application.

RW 0x0

0 Reserved. - -

M33: CCR Register

Offset: 0x0ed14

Description

Sets or returns configuration and control data

Table 202. CCR

Register
Bits Description Type Reset

31:19 Reserved. - -

18 BP: Enables program flow prediction `FTSSS RO 0x0

17 IC: This is a global enable bit for instruction caches in the selected Security

state

RO 0x0

16 DC: Enables data caching of all data accesses to Normal memory `FTSSS RO 0x0

15:11 Reserved. - -
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Bits Description Type Reset

10 STKOFHFNMIGN: Controls the effect of a stack limit violation while executing

at a requested priority less than 0

RW 0x0

9 RES1: Reserved, RES1 RO 0x1

8 BFHFNMIGN: Determines the effect of precise BusFaults on handlers running

at a requested priority less than 0

RW 0x0

7:5 Reserved. - -

4 DIV_0_TRP: Controls the generation of a DIVBYZERO UsageFault when

attempting to perform integer division by zero

RW 0x0

3 UNALIGN_TRP: Controls the trapping of unaligned word or halfword accesses RW 0x0

2 Reserved. - -

1 USERSETMPEND: Determines whether unprivileged accesses are permitted to

pend interrupts via the STIR

RW 0x0

0 RES1_1: Reserved, RES1 RO 0x1

M33: SHPR1 Register

Offset: 0x0ed18

Description

Sets or returns priority for system handlers 4 - 7

Table 203. SHPR1

Register
Bits Description Type Reset

31:29 PRI_7_3: Priority of system handler 7, SecureFault RW 0x0

28:24 Reserved. - -

23:21 PRI_6_3: Priority of system handler 6, SecureFault RW 0x0

20:16 Reserved. - -

15:13 PRI_5_3: Priority of system handler 5, SecureFault RW 0x0

12:8 Reserved. - -

7:5 PRI_4_3: Priority of system handler 4, SecureFault RW 0x0

4:0 Reserved. - -

M33: SHPR2 Register

Offset: 0x0ed1c

Description

Sets or returns priority for system handlers 8 - 11

Table 204. SHPR2

Register
Bits Description Type Reset

31:29 PRI_11_3: Priority of system handler 11, SecureFault RW 0x0

28:24 Reserved. - -

23:16 PRI_10: Reserved, RES0 RO 0x00

15:8 PRI_9: Reserved, RES0 RO 0x00
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Bits Description Type Reset

7:0 PRI_8: Reserved, RES0 RO 0x00

M33: SHPR3 Register

Offset: 0x0ed20

Description

Sets or returns priority for system handlers 12 - 15

Table 205. SHPR3

Register
Bits Description Type Reset

31:29 PRI_15_3: Priority of system handler 15, SecureFault RW 0x0

28:24 Reserved. - -

23:21 PRI_14_3: Priority of system handler 14, SecureFault RW 0x0

20:16 Reserved. - -

15:8 PRI_13: Reserved, RES0 RO 0x00

7:5 PRI_12_3: Priority of system handler 12, SecureFault RW 0x0

4:0 Reserved. - -

M33: SHCSR Register

Offset: 0x0ed24

Description

Provides access to the active and pending status of system exceptions

Table 206. SHCSR

Register
Bits Description Type Reset

31:22 Reserved. - -

21 HARDFAULTPENDED: `IAAMO the pending state of the HardFault exception

`CTTSSS

RW 0x0

20 SECUREFAULTPENDED: `IAAMO the pending state of the SecureFault

exception

RW 0x0

19 SECUREFAULTENA: `DW the SecureFault exception is enabled RW 0x0

18 USGFAULTENA: `DW the UsageFault exception is enabled `FTSSS RW 0x0

17 BUSFAULTENA: `DW the BusFault exception is enabled RW 0x0

16 MEMFAULTENA: `DW the MemManage exception is enabled `FTSSS RW 0x0

15 SVCALLPENDED: `IAAMO the pending state of the SVCall exception `FTSSS RW 0x0

14 BUSFAULTPENDED: `IAAMO the pending state of the BusFault exception RW 0x0

13 MEMFAULTPENDED: `IAAMO the pending state of the MemManage exception

`FTSSS

RW 0x0

12 USGFAULTPENDED: The UsageFault exception is banked between Security

states, `IAAMO the pending state of the UsageFault exception `FTSSS

RW 0x0

11 SYSTICKACT: `IAAMO the active state of the SysTick exception `FTSSS RW 0x0

10 PENDSVACT: `IAAMO the active state of the PendSV exception `FTSSS RW 0x0
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Bits Description Type Reset

9 Reserved. - -

8 MONITORACT: `IAAMO the active state of the DebugMonitor exception RW 0x0

7 SVCALLACT: `IAAMO the active state of the SVCall exception `FTSSS RW 0x0

6 Reserved. - -

5 NMIACT: `IAAMO the active state of the NMI exception RW 0x0

4 SECUREFAULTACT: `IAAMO the active state of the SecureFault exception RW 0x0

3 USGFAULTACT: `IAAMO the active state of the UsageFault exception `FTSSS RW 0x0

2 HARDFAULTACT: Indicates and allows limited modification of the active state

of the HardFault exception `FTSSS

RW 0x0

1 BUSFAULTACT: `IAAMO the active state of the BusFault exception RW 0x0

0 MEMFAULTACT: `IAAMO the active state of the MemManage exception

`FTSSS

RW 0x0

M33: CFSR Register

Offset: 0x0ed28

Description

Contains the three Configurable Fault Status Registers.

31:16 UFSR: Provides information on UsageFault exceptions

15:8 BFSR: Provides information on BusFault exceptions

7:0 MMFSR: Provides information on MemManage exceptions

Table 207. CFSR

Register
Bits Description Type Reset

31:26 Reserved. - -

25 UFSR_DIVBYZERO: Sticky flag indicating whether an integer division by zero

error has occurred

RW 0x0

24 UFSR_UNALIGNED: Sticky flag indicating whether an unaligned access error

has occurred

RW 0x0

23:21 Reserved. - -

20 UFSR_STKOF: Sticky flag indicating whether a stack overflow error has

occurred

RW 0x0

19 UFSR_NOCP: Sticky flag indicating whether a coprocessor disabled or not

present error has occurred

RW 0x0

18 UFSR_INVPC: Sticky flag indicating whether an integrity check error has

occurred

RW 0x0

17 UFSR_INVSTATE: Sticky flag indicating whether an EPSR.T or EPSR.IT validity

error has occurred

RW 0x0

16 UFSR_UNDEFINSTR: Sticky flag indicating whether an undefined instruction

error has occurred

RW 0x0

15 BFSR_BFARVALID: Indicates validity of the contents of the BFAR register RW 0x0

14 Reserved. - -
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Bits Description Type Reset

13 BFSR_LSPERR: Records whether a BusFault occurred during FP lazy state

preservation

RW 0x0

12 BFSR_STKERR: Records whether a derived BusFault occurred during

exception entry stacking

RW 0x0

11 BFSR_UNSTKERR: Records whether a derived BusFault occurred during

exception return unstacking

RW 0x0

10 BFSR_IMPRECISERR: Records whether an imprecise data access error has

occurred

RW 0x0

9 BFSR_PRECISERR: Records whether a precise data access error has occurred RW 0x0

8 BFSR_IBUSERR: Records whether a BusFault on an instruction prefetch has

occurred

RW 0x0

7:0 MMFSR: Provides information on MemManage exceptions RW 0x00

M33: HFSR Register

Offset: 0x0ed2c

Description

Shows the cause of any HardFaults

Table 208. HFSR

Register
Bits Description Type Reset

31 DEBUGEVT: Indicates when a Debug event has occurred RW 0x0

30 FORCED: Indicates that a fault with configurable priority has been escalated to

a HardFault exception, because it could not be made active, because of

priority, or because it was disabled

RW 0x0

29:2 Reserved. - -

1 VECTTBL: Indicates when a fault has occurred because of a vector table read

error on exception processing

RW 0x0

0 Reserved. - -

M33: DFSR Register

Offset: 0x0ed30

Description

Shows which debug event occurred

Table 209. DFSR

Register
Bits Description Type Reset

31:5 Reserved. - -

4 EXTERNAL: Sticky flag indicating whether an External debug request debug

event has occurred

RW 0x0

3 VCATCH: Sticky flag indicating whether a Vector catch debug event has

occurred

RW 0x0

2 DWTTRAP: Sticky flag indicating whether a Watchpoint debug event has

occurred

RW 0x0

1 BKPT: Sticky flag indicating whether a Breakpoint debug event has occurred RW 0x0
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Bits Description Type Reset

0 HALTED: Sticky flag indicating that a Halt request debug event or Step debug

event has occurred

RW 0x0

M33: MMFAR Register

Offset: 0x0ed34

Description

Shows the address of the memory location that caused an MPU fault

Table 210. MMFAR

Register
Bits Description Type Reset

31:0 ADDRESS: This register is updated with the address of a location that

produced a MemManage fault. The MMFSR shows the cause of the fault, and

whether this field is valid. This field is valid only when MMFSR.MMARVALID is

set, otherwise it is UNKNOWN

RW 0x00000000

M33: BFAR Register

Offset: 0x0ed38

Description

Shows the address associated with a precise data access BusFault

Table 211. BFAR

Register
Bits Description Type Reset

31:0 ADDRESS: This register is updated with the address of a location that

produced a BusFault. The BFSR shows the reason for the fault. This field is

valid only when BFSR.BFARVALID is set, otherwise it is UNKNOWN

RW 0x00000000

M33: ID_PFR0 Register

Offset: 0x0ed40

Description

Gives top-level information about the instruction set supported by the PE

Table 212. ID_PFR0

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 STATE1: T32 instruction set support RO 0x3

3:0 STATE0: A32 instruction set support RO 0x0

M33: ID_PFR1 Register

Offset: 0x0ed44

Description

Gives information about the programmers' model and Extensions support

Table 213. ID_PFR1

Register
Bits Description Type Reset

31:12 Reserved. - -

11:8 MPROGMOD: Identifies support for the M-Profile programmers' model support RO 0x5

7:4 SECURITY: Identifies whether the Security Extension is implemented RO 0x2

3:0 Reserved. - -
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M33: ID_DFR0 Register

Offset: 0x0ed48

Description

Provides top level information about the debug system

Table 214. ID_DFR0

Register
Bits Description Type Reset

31:24 Reserved. - -

23:20 MPROFDBG: Indicates the supported M-profile debug architecture RO 0x2

19:0 Reserved. - -

M33: ID_AFR0 Register

Offset: 0x0ed4c

Description

Provides information about the IMPLEMENTATION DEFINED features of the PE

Table 215. ID_AFR0

Register
Bits Description Type Reset

31:16 Reserved. - -

15:12 IMPDEF3: IMPLEMENTATION DEFINED meaning RO 0x0

11:8 IMPDEF2: IMPLEMENTATION DEFINED meaning RO 0x0

7:4 IMPDEF1: IMPLEMENTATION DEFINED meaning RO 0x0

3:0 IMPDEF0: IMPLEMENTATION DEFINED meaning RO 0x0

M33: ID_MMFR0 Register

Offset: 0x0ed50

Description

Provides information about the implemented memory model and memory management support

Table 216. ID_MMFR0

Register
Bits Description Type Reset

31:24 Reserved. - -

23:20 AUXREG: Indicates support for Auxiliary Control Registers RO 0x1

19:16 TCM: Indicates support for tightly coupled memories (TCMs) RO 0x0

15:12 SHARELVL: Indicates the number of shareability levels implemented RO 0x1

11:8 OUTERSHR: Indicates the outermost shareability domain implemented RO 0xf

7:4 PMSA: Indicates support for the protected memory system architecture

(PMSA)

RO 0x4

3:0 Reserved. - -

M33: ID_MMFR1 Register

Offset: 0x0ed54
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Description

Provides information about the implemented memory model and memory management support

Table 217. ID_MMFR1

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: ID_MMFR2 Register

Offset: 0x0ed58

Description

Provides information about the implemented memory model and memory management support

Table 218. ID_MMFR2

Register
Bits Description Type Reset

31:28 Reserved. - -

27:24 WFISTALL: Indicates the support for Wait For Interrupt (WFI) stalling RO 0x1

23:0 Reserved. - -

M33: ID_MMFR3 Register

Offset: 0x0ed5c

Description

Provides information about the implemented memory model and memory management support

Table 219. ID_MMFR3

Register
Bits Description Type Reset

31:12 Reserved. - -

11:8 BPMAINT: Indicates the supported branch predictor maintenance RO 0x0

7:4 CMAINTSW: Indicates the supported cache maintenance operations by

set/way

RO 0x0

3:0 CMAINTVA: Indicates the supported cache maintenance operations by

address

RO 0x0

M33: ID_ISAR0 Register

Offset: 0x0ed60

Description

Provides information about the instruction set implemented by the PE

Table 220. ID_ISAR0

Register
Bits Description Type Reset

31:28 Reserved. - -

27:24 DIVIDE: Indicates the supported Divide instructions RO 0x8

23:20 DEBUG: Indicates the implemented Debug instructions RO 0x0

19:16 COPROC: Indicates the supported Coprocessor instructions RO 0x9

15:12 CMPBRANCH: Indicates the supported combined Compare and Branch

instructions

RO 0x2

11:8 BITFIELD: Indicates the supported bit field instructions RO 0x3
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Bits Description Type Reset

7:4 BITCOUNT: Indicates the supported bit count instructions RO 0x0

3:0 Reserved. - -

M33: ID_ISAR1 Register

Offset: 0x0ed64

Description

Provides information about the instruction set implemented by the PE

Table 221. ID_ISAR1

Register
Bits Description Type Reset

31:28 Reserved. - -

27:24 INTERWORK: Indicates the implemented Interworking instructions RO 0x5

23:20 IMMEDIATE: Indicates the implemented for data-processing instructions with

long immediates

RO 0x7

19:16 IFTHEN: Indicates the implemented If-Then instructions RO 0x2

15:12 EXTEND: Indicates the implemented Extend instructions RO 0x5

11:0 Reserved. - -

M33: ID_ISAR2 Register

Offset: 0x0ed68

Description

Provides information about the instruction set implemented by the PE

Table 222. ID_ISAR2

Register
Bits Description Type Reset

31:28 REVERSAL: Indicates the implemented Reversal instructions RO 0x3

27:24 Reserved. - -

23:20 MULTU: Indicates the implemented advanced unsigned Multiply instructions RO 0x1

19:16 MULTS: Indicates the implemented advanced signed Multiply instructions RO 0x7

15:12 MULT: Indicates the implemented additional Multiply instructions RO 0x3

11:8 MULTIACCESSINT: Indicates the support for interruptible multi-access

instructions

RO 0x4

7:4 MEMHINT: Indicates the implemented Memory Hint instructions RO 0x2

3:0 LOADSTORE: Indicates the implemented additional load/store instructions RO 0x6

M33: ID_ISAR3 Register

Offset: 0x0ed6c

Description

Provides information about the instruction set implemented by the PE

Table 223. ID_ISAR3

Register
Bits Description Type Reset

31:28 Reserved. - -
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Bits Description Type Reset

27:24 TRUENOP: Indicates the implemented true NOP instructions RO 0x7

23:20 T32COPY: Indicates the support for T32 non flag-setting MOV instructions RO 0x8

19:16 TABBRANCH: Indicates the implemented Table Branch instructions RO 0x9

15:12 SYNCHPRIM: Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate

the implemented Synchronization Primitive instructions

RO 0x5

11:8 SVC: Indicates the implemented SVC instructions RO 0x7

7:4 SIMD: Indicates the implemented SIMD instructions RO 0x2

3:0 SATURATE: Indicates the implemented saturating instructions RO 0x9

M33: ID_ISAR4 Register

Offset: 0x0ed70

Description

Provides information about the instruction set implemented by the PE

Table 224. ID_ISAR4

Register
Bits Description Type Reset

31:28 Reserved. - -

27:24 PSR_M: Indicates the implemented M profile instructions to modify the PSRs RO 0x1

23:20 SYNCPRIM_FRAC: Used in conjunction with ID_ISAR3.SynchPrim to indicate

the implemented Synchronization Primitive instructions

RO 0x3

19:16 BARRIER: Indicates the implemented Barrier instructions RO 0x1

15:12 Reserved. - -

11:8 WRITEBACK: Indicates the support for writeback addressing modes RO 0x1

7:4 WITHSHIFTS: Indicates the support for writeback addressing modes RO 0x3

3:0 UNPRIV: Indicates the implemented unprivileged instructions RO 0x2

M33: ID_ISAR5 Register

Offset: 0x0ed74

Description

Provides information about the instruction set implemented by the PE

Table 225. ID_ISAR5

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: CTR Register

Offset: 0x0ed7c

Description

Provides information about the architecture of the caches. CTR is RES0 if CLIDR is zero.

Table 226. CTR

Register
Bits Description Type Reset

31 RES1: Reserved, RES1 RO 0x1
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Bits Description Type Reset

30:28 Reserved. - -

27:24 CWG: Log2 of the number of words of the maximum size of memory that can

be overwritten as a result of the eviction of a cache entry that has had a

memory location in it modified

RO 0x0

23:20 ERG: Log2 of the number of words of the maximum size of the reservation

granule that has been implemented for the Load-Exclusive and Store-Exclusive

instructions

RO 0x0

19:16 DMINLINE: Log2 of the number of words in the smallest cache line of all the

data caches and unified caches that are controlled by the PE

RO 0x0

15:14 RES1_1: Reserved, RES1 RO 0x3

13:4 Reserved. - -

3:0 IMINLINE: Log2 of the number of words in the smallest cache line of all the

instruction caches that are controlled by the PE

RO 0x0

M33: CPACR Register

Offset: 0x0ed88

Description

Specifies the access privileges for coprocessors and the FP Extension

Table 227. CPACR

Register
Bits Description Type Reset

31:24 Reserved. - -

23:22 CP11: The value in this field is ignored. If the implementation does not include

the FP Extension, this field is RAZ/WI. If the value of this bit is not

programmed to the same value as the CP10 field, then the value is UNKNOWN

RW 0x0

21:20 CP10: Defines the access rights for the floating-point functionality RW 0x0

19:16 Reserved. - -

15:14 CP7: Controls access privileges for coprocessor 7 RW 0x0

13:12 CP6: Controls access privileges for coprocessor 6 RW 0x0

11:10 CP5: Controls access privileges for coprocessor 5 RW 0x0

9:8 CP4: Controls access privileges for coprocessor 4 RW 0x0

7:6 CP3: Controls access privileges for coprocessor 3 RW 0x0

5:4 CP2: Controls access privileges for coprocessor 2 RW 0x0

3:2 CP1: Controls access privileges for coprocessor 1 RW 0x0

1:0 CP0: Controls access privileges for coprocessor 0 RW 0x0

M33: NSACR Register

Offset: 0x0ed8c

Description

Defines the Non-secure access permissions for both the FP Extension and coprocessors CP0 to CP7
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Table 228. NSACR

Register
Bits Description Type Reset

31:12 Reserved. - -

11 CP11: Enables Non-secure access to the Floating-point Extension RW 0x0

10 CP10: Enables Non-secure access to the Floating-point Extension RW 0x0

9:8 Reserved. - -

7 CP7: Enables Non-secure access to coprocessor CP7 RW 0x0

6 CP6: Enables Non-secure access to coprocessor CP6 RW 0x0

5 CP5: Enables Non-secure access to coprocessor CP5 RW 0x0

4 CP4: Enables Non-secure access to coprocessor CP4 RW 0x0

3 CP3: Enables Non-secure access to coprocessor CP3 RW 0x0

2 CP2: Enables Non-secure access to coprocessor CP2 RW 0x0

1 CP1: Enables Non-secure access to coprocessor CP1 RW 0x0

0 CP0: Enables Non-secure access to coprocessor CP0 RW 0x0

M33: MPU_TYPE Register

Offset: 0x0ed90

Description

The MPU Type Register indicates how many regions the MPU `FTSSS supports

Table 229. MPU_TYPE

Register
Bits Description Type Reset

31:16 Reserved. - -

15:8 DREGION: Number of regions supported by the MPU RO 0x08

7:1 Reserved. - -

0 SEPARATE: Indicates support for separate instructions and data address

regions

RO 0x0

M33: MPU_CTRL Register

Offset: 0x0ed94

Description

Enables the MPU and, when the MPU is enabled, controls whether the default memory map is enabled as a

background region for privileged accesses, and whether the MPU is enabled for HardFaults, NMIs, and exception

handlers when FAULTMASK is set to 1

Table 230. MPU_CTRL

Register
Bits Description Type Reset

31:3 Reserved. - -

2 PRIVDEFENA: Controls whether the default memory map is enabled for

privileged software

RW 0x0

1 HFNMIENA: Controls whether handlers executing with priority less than 0

access memory with the MPU enabled or disabled. This applies to HardFaults,

NMIs, and exception handlers when FAULTMASK is set to 1

RW 0x0

0 ENABLE: Enables the MPU RW 0x0
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M33: MPU_RNR Register

Offset: 0x0ed98

Description

Selects the region currently accessed by MPU_RBAR and MPU_RLAR

Table 231. MPU_RNR

Register
Bits Description Type Reset

31:3 Reserved. - -

2:0 REGION: Indicates the memory region accessed by MPU_RBAR and

MPU_RLAR

RW 0x0

M33: MPU_RBAR Register

Offset: 0x0ed9c

Description

Provides indirect read and write access to the base address of the currently selected MPU region `FTSSS

Table 232. MPU_RBAR

Register
Bits Description Type Reset

31:5 BASE: Contains bits [31:5] of the lower inclusive limit of the selected MPU

memory region. This value is zero extended to provide the base address to be

checked against

RW 0x0000000

4:3 SH: Defines the Shareability domain of this region for Normal memory RW 0x0

2:1 AP: Defines the access permissions for this region RW 0x0

0 XN: Defines whether code can be executed from this region RW 0x0

M33: MPU_RLAR Register

Offset: 0x0eda0

Description

Provides indirect read and write access to the limit address of the currently selected MPU region `FTSSS

Table 233. MPU_RLAR

Register
Bits Description Type Reset

31:5 LIMIT: Contains bits [31:5] of the upper inclusive limit of the selected MPU

memory region. This value is postfixed with 0x1F to provide the limit address

to be checked against

RW 0x0000000

4 Reserved. - -

3:1 ATTRINDX: Associates a set of attributes in the MPU_MAIR0 and MPU_MAIR1

fields

RW 0x0

0 EN: Region enable RW 0x0

M33: MPU_RBAR_A1 Register

Offset: 0x0eda4

Description

Provides indirect read and write access to the base address of the MPU region selected by MPU_RNR[7:2]:(1[1:0])

`FTSSS
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Table 234.

MPU_RBAR_A1

Register

Bits Description Type Reset

31:5 BASE: Contains bits [31:5] of the lower inclusive limit of the selected MPU

memory region. This value is zero extended to provide the base address to be

checked against

RW 0x0000000

4:3 SH: Defines the Shareability domain of this region for Normal memory RW 0x0

2:1 AP: Defines the access permissions for this region RW 0x0

0 XN: Defines whether code can be executed from this region RW 0x0

M33: MPU_RLAR_A1 Register

Offset: 0x0eda8

Description

Provides indirect read and write access to the limit address of the currently selected MPU region selected by

MPU_RNR[7:2]:(1[1:0]) `FTSSS

Table 235.

MPU_RLAR_A1

Register

Bits Description Type Reset

31:5 LIMIT: Contains bits [31:5] of the upper inclusive limit of the selected MPU

memory region. This value is postfixed with 0x1F to provide the limit address

to be checked against

RW 0x0000000

4 Reserved. - -

3:1 ATTRINDX: Associates a set of attributes in the MPU_MAIR0 and MPU_MAIR1

fields

RW 0x0

0 EN: Region enable RW 0x0

M33: MPU_RBAR_A2 Register

Offset: 0x0edac

Description

Provides indirect read and write access to the base address of the MPU region selected by MPU_RNR[7:2]:(2[1:0])

`FTSSS

Table 236.

MPU_RBAR_A2

Register

Bits Description Type Reset

31:5 BASE: Contains bits [31:5] of the lower inclusive limit of the selected MPU

memory region. This value is zero extended to provide the base address to be

checked against

RW 0x0000000

4:3 SH: Defines the Shareability domain of this region for Normal memory RW 0x0

2:1 AP: Defines the access permissions for this region RW 0x0

0 XN: Defines whether code can be executed from this region RW 0x0

M33: MPU_RLAR_A2 Register

Offset: 0x0edb0

Description

Provides indirect read and write access to the limit address of the currently selected MPU region selected by

MPU_RNR[7:2]:(2[1:0]) `FTSSS
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Table 237.

MPU_RLAR_A2

Register

Bits Description Type Reset

31:5 LIMIT: Contains bits [31:5] of the upper inclusive limit of the selected MPU

memory region. This value is postfixed with 0x1F to provide the limit address

to be checked against

RW 0x0000000

4 Reserved. - -

3:1 ATTRINDX: Associates a set of attributes in the MPU_MAIR0 and MPU_MAIR1

fields

RW 0x0

0 EN: Region enable RW 0x0

M33: MPU_RBAR_A3 Register

Offset: 0x0edb4

Description

Provides indirect read and write access to the base address of the MPU region selected by MPU_RNR[7:2]:(3[1:0])

`FTSSS

Table 238.

MPU_RBAR_A3

Register

Bits Description Type Reset

31:5 BASE: Contains bits [31:5] of the lower inclusive limit of the selected MPU

memory region. This value is zero extended to provide the base address to be

checked against

RW 0x0000000

4:3 SH: Defines the Shareability domain of this region for Normal memory RW 0x0

2:1 AP: Defines the access permissions for this region RW 0x0

0 XN: Defines whether code can be executed from this region RW 0x0

M33: MPU_RLAR_A3 Register

Offset: 0x0edb8

Description

Provides indirect read and write access to the limit address of the currently selected MPU region selected by

MPU_RNR[7:2]:(3[1:0]) `FTSSS

Table 239.

MPU_RLAR_A3

Register

Bits Description Type Reset

31:5 LIMIT: Contains bits [31:5] of the upper inclusive limit of the selected MPU

memory region. This value is postfixed with 0x1F to provide the limit address

to be checked against

RW 0x0000000

4 Reserved. - -

3:1 ATTRINDX: Associates a set of attributes in the MPU_MAIR0 and MPU_MAIR1

fields

RW 0x0

0 EN: Region enable RW 0x0

M33: MPU_MAIR0 Register

Offset: 0x0edc0

Description

Along with MPU_MAIR1, provides the memory attribute encodings corresponding to the AttrIndex values

Table 240.

MPU_MAIR0 Register
Bits Description Type Reset

31:24 ATTR3: Memory attribute encoding for MPU regions with an AttrIndex of 3 RW 0x00
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Bits Description Type Reset

23:16 ATTR2: Memory attribute encoding for MPU regions with an AttrIndex of 2 RW 0x00

15:8 ATTR1: Memory attribute encoding for MPU regions with an AttrIndex of 1 RW 0x00

7:0 ATTR0: Memory attribute encoding for MPU regions with an AttrIndex of 0 RW 0x00

M33: MPU_MAIR1 Register

Offset: 0x0edc4

Description

Along with MPU_MAIR0, provides the memory attribute encodings corresponding to the AttrIndex values

Table 241.

MPU_MAIR1 Register
Bits Description Type Reset

31:24 ATTR7: Memory attribute encoding for MPU regions with an AttrIndex of 7 RW 0x00

23:16 ATTR6: Memory attribute encoding for MPU regions with an AttrIndex of 6 RW 0x00

15:8 ATTR5: Memory attribute encoding for MPU regions with an AttrIndex of 5 RW 0x00

7:0 ATTR4: Memory attribute encoding for MPU regions with an AttrIndex of 4 RW 0x00

M33: SAU_CTRL Register

Offset: 0x0edd0

Description

Allows enabling of the Security Attribution Unit

Table 242. SAU_CTRL

Register
Bits Description Type Reset

31:2 Reserved. - -

1 ALLNS: When SAU_CTRL.ENABLE is 0 this bit controls if the memory is

marked as Non-secure or Secure

RW 0x0

0 ENABLE: Enables the SAU RW 0x0

M33: SAU_TYPE Register

Offset: 0x0edd4

Description

Indicates the number of regions implemented by the Security Attribution Unit

Table 243. SAU_TYPE

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 SREGION: The number of implemented SAU regions RO 0x08

M33: SAU_RNR Register

Offset: 0x0edd8

Description

Selects the region currently accessed by SAU_RBAR and SAU_RLAR

Table 244. SAU_RNR

Register
Bits Description Type Reset

31:8 Reserved. - -
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Bits Description Type Reset

7:0 REGION: Indicates the SAU region accessed by SAU_RBAR and SAU_RLAR RW 0x00

M33: SAU_RBAR Register

Offset: 0x0eddc

Description

Provides indirect read and write access to the base address of the currently selected SAU region

Table 245. SAU_RBAR

Register
Bits Description Type Reset

31:5 BADDR: Holds bits [31:5] of the base address for the selected SAU region RW 0x0000000

4:0 Reserved. - -

M33: SAU_RLAR Register

Offset: 0x0ede0

Description

Provides indirect read and write access to the limit address of the currently selected SAU region

Table 246. SAU_RLAR

Register
Bits Description Type Reset

31:5 LADDR: Holds bits [31:5] of the limit address for the selected SAU region RW 0x0000000

4:2 Reserved. - -

1 NSC: Controls whether Non-secure state is permitted to execute an SG

instruction from this region

RW 0x0

0 ENABLE: SAU region enable RW 0x0

M33: SFSR Register

Offset: 0x0ede4

Description

Provides information about any security related faults

Table 247. SFSR

Register
Bits Description Type Reset

31:8 Reserved. - -

7 LSERR: Sticky flag indicating that an error occurred during lazy state activation

or deactivation

RW 0x0

6 SFARVALID: This bit is set when the SFAR register contains a valid value. As

with similar fields, such as BFSR.BFARVALID and MMFSR.MMARVALID, this

bit can be cleared by other exceptions, such as BusFault

RW 0x0

5 LSPERR: Stick flag indicating that an SAU or IDAU violation occurred during

the lazy preservation of floating-point state

RW 0x0

4 INVTRAN: Sticky flag indicating that an exception was raised due to a branch

that was not flagged as being domain crossing causing a transition from

Secure to Non-secure memory

RW 0x0
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Bits Description Type Reset

3 AUVIOL: Sticky flag indicating that an attempt was made to access parts of

the address space that are marked as Secure with NS-Req for the transaction

set to Non-secure. This bit is not set if the violation occurred during lazy state

preservation. See LSPERR

RW 0x0

2 INVER: This can be caused by EXC_RETURN.DCRS being set to 0 when

returning from an exception in the Non-secure state, or by EXC_RETURN.ES

being set to 1 when returning from an exception in the Non-secure state

RW 0x0

1 INVIS: This bit is set if the integrity signature in an exception stack frame is

found to be invalid during the unstacking operation

RW 0x0

0 INVEP: This bit is set if a function call from the Non-secure state or exception

targets a non-SG instruction in the Secure state. This bit is also set if the

target address is a SG instruction, but there is no matching SAU/IDAU region

with the NSC flag set

RW 0x0

M33: SFAR Register

Offset: 0x0ede8

Description

Shows the address of the memory location that caused a Security violation

Table 248. SFAR

Register
Bits Description Type Reset

31:0 ADDRESS: The address of an access that caused a attribution unit violation.

This field is only valid when SFSR.SFARVALID is set. This allows the actual flip

flops associated with this register to be shared with other fault address

registers. If an implementation chooses to share the storage in this way, care

must be taken to not leak Secure address information to the Non-secure state.

One way of achieving this is to share the SFAR register with the MMFAR_S

register, which is not accessible to the Non-secure state

RW 0x00000000

M33: DHCSR Register

Offset: 0x0edf0

Description

Controls halting debug

Table 249. DHCSR

Register
Bits Description Type Reset

31:27 Reserved. - -

26 S_RESTART_ST: Indicates the PE has processed a request to clear

DHCSR.C_HALT to 0. That is, either a write to DHCSR that clears

DHCSR.C_HALT from 1 to 0, or an External Restart Request

RO 0x0

25 S_RESET_ST: Indicates whether the PE has been reset since the last read of

the DHCSR

RO 0x0

24 S_RETIRE_ST: Set to 1 every time the PE retires one of more instructions RO 0x0

23:21 Reserved. - -

20 S_SDE: Indicates whether Secure invasive debug is allowed RO 0x0

19 S_LOCKUP: Indicates whether the PE is in Lockup state RO 0x0

18 S_SLEEP: Indicates whether the PE is sleeping RO 0x0
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Bits Description Type Reset

17 S_HALT: Indicates whether the PE is in Debug state RO 0x0

16 S_REGRDY: Handshake flag to transfers through the DCRDR RO 0x0

15:6 Reserved. - -

5 C_SNAPSTALL: Allow imprecise entry to Debug state RW 0x0

4 Reserved. - -

3 C_MASKINTS: When debug is enabled, the debugger can write to this bit to

mask PendSV, SysTick and external configurable interrupts

RW 0x0

2 C_STEP: Enable single instruction step RW 0x0

1 C_HALT: PE enter Debug state halt request RW 0x0

0 C_DEBUGEN: Enable Halting debug RW 0x0

M33: DCRSR Register

Offset: 0x0edf4

Description

With the DCRDR, provides debug access to the general-purpose registers, special-purpose registers, and the FP

extension registers. A write to the DCRSR specifies the register to transfer, whether the transfer is a read or write,

and starts the transfer

Table 250. DCRSR

Register
Bits Description Type Reset

31:17 Reserved. - -

16 REGWNR: Specifies the access type for the transfer RW 0x0

15:7 Reserved. - -

6:0 REGSEL: Specifies the general-purpose register, special-purpose register, or

FP register to transfer

RW 0x00

M33: DCRDR Register

Offset: 0x0edf8

Description

With the DCRSR, provides debug access to the general-purpose registers, special-purpose registers, and the FP

Extension registers. If the Main Extension is implemented, it can also be used for message passing between an

external debugger and a debug agent running on the PE

Table 251. DCRDR

Register
Bits Description Type Reset

31:0 DBGTMP: Provides debug access for reading and writing the general-purpose

registers, special-purpose registers, and Floating-point Extension registers

RW 0x00000000

M33: DEMCR Register

Offset: 0x0edfc

Description

Manages vector catch behavior and DebugMonitor handling when debugging

Table 252. DEMCR

Register
Bits Description Type Reset

31:25 Reserved. - -

RP2350 Datasheet

3.7. Cortex-M33 Processor 194



Bits Description Type Reset

24 TRCENA: Global enable for all DWT and ITM features RW 0x0

23:21 Reserved. - -

20 SDME: Indicates whether the DebugMonitor targets the Secure or the Non-

secure state and whether debug events are allowed in Secure state

RO 0x0

19 MON_REQ: DebugMonitor semaphore bit RW 0x0

18 MON_STEP: Enable DebugMonitor stepping RW 0x0

17 MON_PEND: Sets or clears the pending state of the DebugMonitor exception RW 0x0

16 MON_EN: Enable the DebugMonitor exception RW 0x0

15:12 Reserved. - -

11 VC_SFERR: SecureFault exception halting debug vector catch enable RW 0x0

10 VC_HARDERR: HardFault exception halting debug vector catch enable RW 0x0

9 VC_INTERR: Enable halting debug vector catch for faults during exception

entry and return

RW 0x0

8 VC_BUSERR: BusFault exception halting debug vector catch enable RW 0x0

7 VC_STATERR: Enable halting debug trap on a UsageFault exception caused by

a state information error, for example an Undefined Instruction exception

RW 0x0

6 VC_CHKERR: Enable halting debug trap on a UsageFault exception caused by

a checking error, for example an alignment check error

RW 0x0

5 VC_NOCPERR: Enable halting debug trap on a UsageFault caused by an

access to a coprocessor

RW 0x0

4 VC_MMERR: Enable halting debug trap on a MemManage exception RW 0x0

3:1 Reserved. - -

0 VC_CORERESET: Enable Reset Vector Catch. This causes a warm reset to halt

a running system

RW 0x0

M33: DSCSR Register

Offset: 0x0ee08

Description

Provides control and status information for Secure debug

Table 253. DSCSR

Register
Bits Description Type Reset

31:18 Reserved. - -

17 CDSKEY: Writes to the CDS bit are ignored unless CDSKEY is concurrently

written to zero

RW 0x0

16 CDS: This field indicates the current Security state of the processor RW 0x0

15:2 Reserved. - -

1 SBRSEL: If SBRSELEN is 1 this bit selects whether the Non-secure or the

Secure version of the memory-mapped Banked registers are accessible to the

debugger

RW 0x0
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Bits Description Type Reset

0 SBRSELEN: Controls whether the SBRSEL field or the current Security state of

the processor selects which version of the memory-mapped Banked registers

are accessed to the debugger

RW 0x0

M33: STIR Register

Offset: 0x0ef00

Description

Provides a mechanism for software to generate an interrupt

Table 254. STIR

Register
Bits Description Type Reset

31:9 Reserved. - -

8:0 INTID: Indicates the interrupt to be pended. The value written is

(ExceptionNumber - 16)

RW 0x000

M33: FPCCR Register

Offset: 0x0ef34

Description

Holds control data for the Floating-point extension

Table 255. FPCCR

Register
Bits Description Type Reset

31 ASPEN: When this bit is set to 1, execution of a floating-point instruction sets

the CONTROL.FPCA bit to 1

RW 0x0

30 LSPEN: Enables lazy context save of floating-point state RW 0x0

29 LSPENS: This bit controls whether the LSPEN bit is writeable from the Non-

secure state

RW 0x1

28 CLRONRET: Clear floating-point caller saved registers on exception return RW 0x0

27 CLRONRETS: This bit controls whether the CLRONRET bit is writeable from the

Non-secure state

RW 0x0

26 TS: Treat floating-point registers as Secure enable RW 0x0

25:11 Reserved. - -

10 UFRDY: Indicates whether the software executing when the PE allocated the

floating-point stack frame was able to set the UsageFault exception to

pending

RW 0x1

9 SPLIMVIOL: This bit is banked between the Security states and indicates

whether the floating-point context violates the stack pointer limit that was

active when lazy state preservation was activated. SPLIMVIOL modifies the

lazy floating-point state preservation behavior

RW 0x0

8 MONRDY: Indicates whether the software executing when the PE allocated the

floating-point stack frame was able to set the DebugMonitor exception to

pending

RW 0x0

7 SFRDY: Indicates whether the software executing when the PE allocated the

floating-point stack frame was able to set the SecureFault exception to

pending. This bit is only present in the Secure version of the register, and

behaves as RAZ/WI when accessed from the Non-secure state

RW 0x0
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Bits Description Type Reset

6 BFRDY: Indicates whether the software executing when the PE allocated the

floating-point stack frame was able to set the BusFault exception to pending

RW 0x1

5 MMRDY: Indicates whether the software executing when the PE allocated the

floating-point stack frame was able to set the MemManage exception to

pending

RW 0x1

4 HFRDY: Indicates whether the software executing when the PE allocated the

floating-point stack frame was able to set the HardFault exception to pending

RW 0x1

3 THREAD: Indicates the PE mode when it allocated the floating-point stack

frame

RW 0x0

2 S: Security status of the floating-point context. This bit is only present in the

Secure version of the register, and behaves as RAZ/WI when accessed from

the Non-secure state. This bit is updated whenever lazy state preservation is

activated, or when a floating-point instruction is executed

RW 0x0

1 USER: Indicates the privilege level of the software executing when the PE

allocated the floating-point stack frame

RW 0x1

0 LSPACT: Indicates whether lazy preservation of the floating-point state is

active

RW 0x0

M33: FPCAR Register

Offset: 0x0ef38

Description

Holds the location of the unpopulated floating-point register space allocated on an exception stack frame

Table 256. FPCAR

Register
Bits Description Type Reset

31:3 ADDRESS: The location of the unpopulated floating-point register space

allocated on an exception stack frame

RW 0x00000000

2:0 Reserved. - -

M33: FPDSCR Register

Offset: 0x0ef3c

Description

Holds the default values for the floating-point status control data that the PE assigns to the FPSCR when it creates

a new floating-point context

Table 257. FPDSCR

Register
Bits Description Type Reset

31:27 Reserved. - -

26 AHP: Default value for FPSCR.AHP RW 0x0

25 DN: Default value for FPSCR.DN RW 0x0

24 FZ: Default value for FPSCR.FZ RW 0x0

23:22 RMODE: Default value for FPSCR.RMode RW 0x0

21:0 Reserved. - -
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M33: MVFR0 Register

Offset: 0x0ef40

Description

Describes the features provided by the Floating-point Extension

Table 258. MVFR0

Register
Bits Description Type Reset

31:28 FPROUND: Indicates the rounding modes supported by the FP Extension RO 0x6

27:24 Reserved. - -

23:20 FPSQRT: Indicates the support for FP square root operations RO 0x5

19:16 FPDIVIDE: Indicates the support for FP divide operations RO 0x4

15:12 Reserved. - -

11:8 FPDP: Indicates support for FP double-precision operations RO 0x6

7:4 FPSP: Indicates support for FP single-precision operations RO 0x0

3:0 SIMDREG: Indicates size of FP register file RO 0x1

M33: MVFR1 Register

Offset: 0x0ef44

Description

Describes the features provided by the Floating-point Extension

Table 259. MVFR1

Register
Bits Description Type Reset

31:28 FMAC: Indicates whether the FP Extension implements the fused multiply

accumulate instructions

RO 0x8

27:24 FPHP: Indicates whether the FP Extension implements half-precision FP

conversion instructions

RO 0x5

23:8 Reserved. - -

7:4 FPDNAN: Indicates whether the FP hardware implementation supports NaN

propagation

RO 0x8

3:0 FPFTZ: Indicates whether subnormals are always flushed-to-zero RO 0x9

M33: MVFR2 Register

Offset: 0x0ef48

Description

Describes the features provided by the Floating-point Extension

Table 260. MVFR2

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 FPMISC: Indicates support for miscellaneous FP features RO 0x6

3:0 Reserved. - -

M33: DDEVARCH Register

Offset: 0x0efbc
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Description

Provides CoreSight discovery information for the SCS

Table 261. DDEVARCH

Register
Bits Description Type Reset

31:21 ARCHITECT: Defines the architect of the component. Bits [31:28] are the

JEP106 continuation code (JEP106 bank ID, minus 1) and bits [27:21] are the

JEP106 ID code.

RO 0x23b

20 PRESENT: Defines that the DEVARCH register is present RO 0x1

19:16 REVISION: Defines the architecture revision of the component RO 0x0

15:12 ARCHVER: Defines the architecture version of the component RO 0x2

11:0 ARCHPART: Defines the architecture of the component RO 0xa04

M33: DDEVTYPE Register

Offset: 0x0efcc

Description

Provides CoreSight discovery information for the SCS

Table 262. DDEVTYPE

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 SUB: Component sub-type RO 0x0

3:0 MAJOR: CoreSight major type RO 0x0

M33: DPIDR4 Register

Offset: 0x0efd0

Description

Provides CoreSight discovery information for the SCS

Table 263. DPIDR4

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 SIZE: See CoreSight Architecture Specification RO 0x0

3:0 DES_2: See CoreSight Architecture Specification RO 0x4

M33: DPIDR5 Register

Offset: 0x0efd4

Description

Provides CoreSight discovery information for the SCS

Table 264. DPIDR5

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: DPIDR6 Register

Offset: 0x0efd8
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Description

Provides CoreSight discovery information for the SCS

Table 265. DPIDR6

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: DPIDR7 Register

Offset: 0x0efdc

Description

Provides CoreSight discovery information for the SCS

Table 266. DPIDR7

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: DPIDR0 Register

Offset: 0x0efe0

Description

Provides CoreSight discovery information for the SCS

Table 267. DPIDR0

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PART_0: See CoreSight Architecture Specification RO 0x21

M33: DPIDR1 Register

Offset: 0x0efe4

Description

Provides CoreSight discovery information for the SCS

Table 268. DPIDR1

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 DES_0: See CoreSight Architecture Specification RO 0xb

3:0 PART_1: See CoreSight Architecture Specification RO 0xd

M33: DPIDR2 Register

Offset: 0x0efe8

Description

Provides CoreSight discovery information for the SCS

Table 269. DPIDR2

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 REVISION: See CoreSight Architecture Specification RO 0x0

3 JEDEC: See CoreSight Architecture Specification RO 0x1

2:0 DES_1: See CoreSight Architecture Specification RO 0x3

RP2350 Datasheet

3.7. Cortex-M33 Processor 200



M33: DPIDR3 Register

Offset: 0x0efec

Description

Provides CoreSight discovery information for the SCS

Table 270. DPIDR3

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 REVAND: See CoreSight Architecture Specification RO 0x0

3:0 CMOD: See CoreSight Architecture Specification RO 0x0

M33: DCIDR0 Register

Offset: 0x0eff0

Description

Provides CoreSight discovery information for the SCS

Table 271. DCIDR0

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_0: See CoreSight Architecture Specification RO 0x0d

M33: DCIDR1 Register

Offset: 0x0eff4

Description

Provides CoreSight discovery information for the SCS

Table 272. DCIDR1

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 CLASS: See CoreSight Architecture Specification RO 0x9

3:0 PRMBL_1: See CoreSight Architecture Specification RO 0x0

M33: DCIDR2 Register

Offset: 0x0eff8

Description

Provides CoreSight discovery information for the SCS

Table 273. DCIDR2

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_2: See CoreSight Architecture Specification RO 0x05

M33: DCIDR3 Register

Offset: 0x0effc

Description

Provides CoreSight discovery information for the SCS
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Table 274. DCIDR3

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_3: See CoreSight Architecture Specification RO 0xb1

M33: TRCPRGCTLR Register

Offset: 0x41004

Description

Programming Control Register

Table 275.

TRCPRGCTLR Register
Bits Description Type Reset

31:1 Reserved. - -

0 EN: Trace Unit Enable RW 0x0

M33: TRCSTATR Register

Offset: 0x4100c

Description

The TRCSTATR indicates the ETM-Teal status

Table 276. TRCSTATR

Register
Bits Description Type Reset

31:2 Reserved. - -

1 PMSTABLE: Indicates whether the ETM-Teal registers are stable and can be

read

RO 0x0

0 IDLE: Indicates that the trace unit is inactive RO 0x0

M33: TRCCONFIGR Register

Offset: 0x41010

Description

The TRCCONFIGR sets the basic tracing options for the trace unit

Table 277.

TRCCONFIGR Register
Bits Description Type Reset

31:13 Reserved. - -

12 RS: Resturn stack enable RW 0x0

11 TS: Global timestamp tracing RW 0x0

10:5 COND: Conditional instruction tracing RW 0x00

4 CCI: Cycle counting in instruction trace RW 0x0

3 BB: Branch broadcast mode RW 0x0

2:0 Reserved. - -

M33: TRCEVENTCTL0R Register

Offset: 0x41020

Description

The TRCEVENTCTL0R controls the tracing of events in the trace stream. The events also drive the ETM-Teal
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external outputs.

Table 278.

TRCEVENTCTL0R

Register

Bits Description Type Reset

31:16 Reserved. - -

15 TYPE1: Selects the resource type for event 1 RW 0x0

14:11 Reserved. - -

10:8 SEL1: Selects the resource number, based on the value of TYPE1: When

TYPE1 is 0, selects a single selected resource from 0-15 defined by SEL1[2:0].

When TYPE1 is 1, selects a Boolean combined resource pair from 0-7 defined

by SEL1[2:0]

RW 0x0

7 TYPE0: Selects the resource type for event 0 RW 0x0

6:3 Reserved. - -

2:0 SEL0: Selects the resource number, based on the value of TYPE0: When

TYPE1 is 0, selects a single selected resource from 0-15 defined by SEL0[2:0].

When TYPE1 is 1, selects a Boolean combined resource pair from 0-7 defined

by SEL0[2:0]

RW 0x0

M33: TRCEVENTCTL1R Register

Offset: 0x41024

Description

The TRCEVENTCTL1R controls how the events selected by TRCEVENTCTL0R behave

Table 279.

TRCEVENTCTL1R

Register

Bits Description Type Reset

31:13 Reserved. - -

12 LPOVERRIDE: Low power state behavior override RW 0x0

11 ATB: ATB enabled RW 0x0

10:2 Reserved. - -

1 INSTEN1: One bit per event, to enable generation of an event element in the

instruction trace stream when the selected event occurs

RW 0x0

0 INSTEN0: One bit per event, to enable generation of an event element in the

instruction trace stream when the selected event occurs

RW 0x0

M33: TRCSTALLCTLR Register

Offset: 0x4102c

Description

The TRCSTALLCTLR enables ETM-Teal to stall the processor if the ETM-Teal FIFO goes over the programmed level

to minimize risk of overflow

Table 280.

TRCSTALLCTLR

Register

Bits Description Type Reset

31:11 Reserved. - -

10 INSTPRIORITY: Reserved, RES0 RO 0x0

9 Reserved. - -

8 ISTALL: Stall processor based on instruction trace buffer space RW 0x0

7:4 Reserved. - -
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Bits Description Type Reset

3:2 LEVEL: Threshold at which stalling becomes active. This provides four levels.

This level can be varied to optimize the level of invasion caused by stalling,

balanced against the risk of a FIFO overflow

RW 0x0

1:0 Reserved. - -

M33: TRCTSCTLR Register

Offset: 0x41030

Description

The TRCTSCTLR controls the insertion of global timestamps into the trace stream. A timestamp is always inserted

into the instruction trace stream

Table 281.

TRCTSCTLR Register
Bits Description Type Reset

31:8 Reserved. - -

7 TYPE0: Selects the resource type for event 0 RW 0x0

6:2 Reserved. - -

1:0 SEL0: Selects the resource number, based on the value of TYPE0: When

TYPE1 is 0, selects a single selected resource from 0-15 defined by SEL0[2:0].

When TYPE1 is 1, selects a Boolean combined resource pair from 0-7 defined

by SEL0[2:0]

RW 0x0

M33: TRCSYNCPR Register

Offset: 0x41034

Description

The TRCSYNCPR specifies the period of trace synchronization of the trace streams. TRCSYNCPR defines a number

of bytes of trace between requests for trace synchronization. This value is always a power of two

Table 282.

TRCSYNCPR Register
Bits Description Type Reset

31:5 Reserved. - -

4:0 PERIOD: Defines the number of bytes of trace between trace synchronization

requests as a total of the number of bytes generated by the instruction

stream. The number of bytes is 2N where N is the value of this field: - A value

of zero disables these periodic trace synchronization requests, but does not

disable other trace synchronization requests. - The minimum value that can be

programmed, other than zero, is 8, providing a minimum trace synchronization

period of 256 bytes. - The maximum value is 20, providing a maximum trace

synchronization period of 2^20 bytes

RO 0x0a

M33: TRCCCCTLR Register

Offset: 0x41038

Description

The TRCCCCTLR sets the threshold value for instruction trace cycle counting. The threshold represents the

minimum interval between cycle count trace packets

Table 283.

TRCCCCTLR Register
Bits Description Type Reset

31:12 Reserved. - -

RP2350 Datasheet

3.7. Cortex-M33 Processor 204



Bits Description Type Reset

11:0 THRESHOLD: Instruction trace cycle count threshold RW 0x000

M33: TRCVICTLR Register

Offset: 0x41080

Description

The TRCVICTLR controls instruction trace filtering

Table 284. TRCVICTLR

Register
Bits Description Type Reset

31:20 Reserved. - -

19 EXLEVEL_S3: In Secure state, each bit controls whether instruction tracing is

enabled for the corresponding exception level

RW 0x0

18:17 Reserved. - -

16 EXLEVEL_S0: In Secure state, each bit controls whether instruction tracing is

enabled for the corresponding exception level

RW 0x0

15:12 Reserved. - -

11 TRCERR: Selects whether a system error exception must always be traced RW 0x0

10 TRCRESET: Selects whether a reset exception must always be traced RW 0x0

9 SSSTATUS: Indicates the current status of the start/stop logic RW 0x0

8 Reserved. - -

7 TYPE0: Selects the resource type for event 0 RW 0x0

6:2 Reserved. - -

1:0 SEL0: Selects the resource number, based on the value of TYPE0: When

TYPE1 is 0, selects a single selected resource from 0-15 defined by SEL0[2:0].

When TYPE1 is 1, selects a Boolean combined resource pair from 0-7 defined

by SEL0[2:0]

RW 0x0

M33: TRCCNTRLDVR0 Register

Offset: 0x41140

Description

The TRCCNTRLDVR defines the reload value for the reduced function counter

Table 285.

TRCCNTRLDVR0

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 VALUE: Defines the reload value for the counter. This value is loaded into the

counter each time the reload event occurs

RW 0x0000

M33: TRCIDR8 Register

Offset: 0x41180

Description

TRCIDR8
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Table 286. TRCIDR8

Register
Bits Description Type Reset

31:0 MAXSPEC: reads as `ImpDef RO 0x00000000

M33: TRCIDR9 Register

Offset: 0x41184

Description

TRCIDR9

Table 287. TRCIDR9

Register
Bits Description Type Reset

31:0 NUMP0KEY: reads as `ImpDef RO 0x00000000

M33: TRCIDR10 Register

Offset: 0x41188

Description

TRCIDR10

Table 288. TRCIDR10

Register
Bits Description Type Reset

31:0 NUMP1KEY: reads as `ImpDef RO 0x00000000

M33: TRCIDR11 Register

Offset: 0x4118c

Description

TRCIDR11

Table 289. TRCIDR11

Register
Bits Description Type Reset

31:0 NUMP1SPC: reads as `ImpDef RO 0x00000000

M33: TRCIDR12 Register

Offset: 0x41190

Description

TRCIDR12

Table 290. TRCIDR12

Register
Bits Description Type Reset

31:0 NUMCONDKEY: reads as `ImpDef RO 0x00000001

M33: TRCIDR13 Register

Offset: 0x41194

Description

TRCIDR13
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Table 291. TRCIDR13

Register
Bits Description Type Reset

31:0 NUMCONDSPC: reads as `ImpDef RO 0x00000000

M33: TRCIMSPEC Register

Offset: 0x411c0

Description

The TRCIMSPEC shows the presence of any IMPLEMENTATION SPECIFIC features, and enables any features that

are provided

Table 292.

TRCIMSPEC Register
Bits Description Type Reset

31:4 Reserved. - -

3:0 SUPPORT: Reserved, RES0 RO 0x0

M33: TRCIDR0 Register

Offset: 0x411e0

Description

TRCIDR0

Table 293. TRCIDR0

Register
Bits Description Type Reset

31:30 Reserved. - -

29 COMMOPT: reads as `ImpDef RO 0x1

28:24 TSSIZE: reads as `ImpDef RO 0x08

23:18 Reserved. - -

17 TRCEXDATA: reads as `ImpDef RO 0x0

16:15 QSUPP: reads as `ImpDef RO 0x0

14 QFILT: reads as `ImpDef RO 0x0

13:12 CONDTYPE: reads as `ImpDef RO 0x0

11:10 NUMEVENT: reads as `ImpDef RO 0x1

9 RETSTACK: reads as `ImpDef RO 0x1

8 Reserved. - -

7 TRCCCI: reads as `ImpDef RO 0x1

6 TRCCOND: reads as `ImpDef RO 0x1

5 TRCBB: reads as `ImpDef RO 0x1

4:3 TRCDATA: reads as `ImpDef RO 0x0

2:1 INSTP0: reads as `ImpDef RO 0x0

0 RES1: Reserved, RES1 RO 0x1

M33: TRCIDR1 Register

Offset: 0x411e4

Description

TRCIDR1
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Table 294. TRCIDR1

Register
Bits Description Type Reset

31:24 DESIGNER: reads as `ImpDef RO 0x41

23:16 Reserved. - -

15:12 RES1: Reserved, RES1 RO 0xf

11:8 TRCARCHMAJ: reads as 0b0100 RO 0x4

7:4 TRCARCHMIN: reads as 0b0000 RO 0x2

3:0 REVISION: reads as `ImpDef RO 0x1

M33: TRCIDR2 Register

Offset: 0x411e8

Description

TRCIDR2

Table 295. TRCIDR2

Register
Bits Description Type Reset

31:29 Reserved. - -

28:25 CCSIZE: reads as `ImpDef RO 0x0

24:20 DVSIZE: reads as `ImpDef RO 0x00

19:15 DASIZE: reads as `ImpDef RO 0x00

14:10 VMIDSIZE: reads as `ImpDef RO 0x00

9:5 CIDSIZE: reads as `ImpDef RO 0x00

4:0 IASIZE: reads as `ImpDef RO 0x04

M33: TRCIDR3 Register

Offset: 0x411ec

Description

TRCIDR3

Table 296. TRCIDR3

Register
Bits Description Type Reset

31 NOOVERFLOW: reads as `ImpDef RO 0x0

30:28 NUMPROC: reads as `ImpDef RO 0x0

27 SYSSTALL: reads as `ImpDef RO 0x1

26 STALLCTL: reads as `ImpDef RO 0x1

25 SYNCPR: reads as `ImpDef RO 0x1

24 TRCERR: reads as `ImpDef RO 0x1

23:20 EXLEVEL_NS: reads as `ImpDef RO 0x0

19:16 EXLEVEL_S: reads as `ImpDef RO 0x9

15:12 Reserved. - -

11:0 CCITMIN: reads as `ImpDef RO 0x004

M33: TRCIDR4 Register
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Offset: 0x411f0

Description

TRCIDR4

Table 297. TRCIDR4

Register
Bits Description Type Reset

31:28 NUMVMIDC: reads as `ImpDef RO 0x0

27:24 NUMCIDC: reads as `ImpDef RO 0x0

23:20 NUMSSCC: reads as `ImpDef RO 0x1

19:16 NUMRSPAIR: reads as `ImpDef RO 0x1

15:12 NUMPC: reads as `ImpDef RO 0x4

11:9 Reserved. - -

8 SUPPDAC: reads as `ImpDef RO 0x0

7:4 NUMDVC: reads as `ImpDef RO 0x0

3:0 NUMACPAIRS: reads as `ImpDef RO 0x0

M33: TRCIDR5 Register

Offset: 0x411f4

Description

TRCIDR5

Table 298. TRCIDR5

Register
Bits Description Type Reset

31 REDFUNCNTR: reads as `ImpDef RO 0x1

30:28 NUMCNTR: reads as `ImpDef RO 0x1

27:25 NUMSEQSTATE: reads as `ImpDef RO 0x0

24 Reserved. - -

23 LPOVERRIDE: reads as `ImpDef RO 0x1

22 ATBTRIG: reads as `ImpDef RO 0x1

21:16 TRACEIDSIZE: reads as 0x07 RO 0x07

15:12 Reserved. - -

11:9 NUMEXTINSEL: reads as `ImpDef RO 0x0

8:0 NUMEXTIN: reads as `ImpDef RO 0x004

M33: TRCIDR6 Register

Offset: 0x411f8

Description

TRCIDR6
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Table 299. TRCIDR6

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: TRCIDR7 Register

Offset: 0x411fc

Description

TRCIDR7

Table 300. TRCIDR7

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: TRCRSCTLR2 Register

Offset: 0x41208

Description

The TRCRSCTLR controls the trace resources

Table 301.

TRCRSCTLR2 Register
Bits Description Type Reset

31:22 Reserved. - -

21 PAIRINV: Inverts the result of a combined pair of resources. This bit is only

implemented on the lower register for a pair of resource selectors

RW 0x0

20 INV: Inverts the selected resources RW 0x0

19 Reserved. - -

18:16 GROUP: Selects a group of resource RW 0x0

15:8 Reserved. - -

7:0 SELECT: Selects one or more resources from the wanted group. One bit is

provided per resource from the group

RW 0x00

M33: TRCRSCTLR3 Register

Offset: 0x4120c

Description

The TRCRSCTLR controls the trace resources

Table 302.

TRCRSCTLR3 Register
Bits Description Type Reset

31:22 Reserved. - -

21 PAIRINV: Inverts the result of a combined pair of resources. This bit is only

implemented on the lower register for a pair of resource selectors

RW 0x0

20 INV: Inverts the selected resources RW 0x0

19 Reserved. - -

18:16 GROUP: Selects a group of resource RW 0x0

15:8 Reserved. - -
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Bits Description Type Reset

7:0 SELECT: Selects one or more resources from the wanted group. One bit is

provided per resource from the group

RW 0x00

M33: TRCSSCSR Register

Offset: 0x412a0

Description

Controls the corresponding single-shot comparator resource

Table 303. TRCSSCSR

Register
Bits Description Type Reset

31 STATUS: Single-shot status bit. Indicates if any of the comparators, that

TRCSSCCRn.SAC or TRCSSCCRn.ARC selects, have matched

RW 0x0

30:4 Reserved. - -

3 PC: Reserved, RES1 RO 0x0

2 DV: Reserved, RES0 RO 0x0

1 DA: Reserved, RES0 RO 0x0

0 INST: Reserved, RES0 RO 0x0

M33: TRCSSPCICR Register

Offset: 0x412c0

Description

Selects the PE comparator inputs for Single-shot control

Table 304.

TRCSSPCICR Register
Bits Description Type Reset

31:4 Reserved. - -

3:0 PC: Selects one or more PE comparator inputs for Single-shot control.

TRCIDR4.NUMPC defines the size of the PC field. 1 bit is provided for each

implemented PE comparator input. For example, if bit[1] == 1 this selects PE

comparator input 1 for Single-shot control

RW 0x0

M33: TRCPDCR Register

Offset: 0x41310

Description

Requests the system to provide power to the trace unit

Table 305. TRCPDCR

Register
Bits Description Type Reset

31:4 Reserved. - -

3 PU: Powerup request bit: RW 0x0

2:0 Reserved. - -

M33: TRCPDSR Register

Offset: 0x41314
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Description

Returns the following information about the trace unit: - OS Lock status. - Core power domain status. - Power

interruption status

Table 306. TRCPDSR

Register
Bits Description Type Reset

31:6 Reserved. - -

5 OSLK: OS Lock status bit: RO 0x0

4:2 Reserved. - -

1 STICKYPD: Sticky powerdown status bit. Indicates whether the trace register

state is valid:

RO 0x1

0 POWER: Power status bit: RO 0x1

M33: TRCITATBIDR Register

Offset: 0x41ee4

Description

Trace Intergration ATB Identification Register

Table 307.

TRCITATBIDR Register
Bits Description Type Reset

31:7 Reserved. - -

6:0 ID: Trace ID RW 0x00

M33: TRCITIATBINR Register

Offset: 0x41ef4

Description

Trace Integration Instruction ATB In Register

Table 308.

TRCITIATBINR

Register

Bits Description Type Reset

31:2 Reserved. - -

1 AFVALIDM: Integration Mode instruction AFVALIDM in RW 0x0

0 ATREADYM: Integration Mode instruction ATREADYM in RW 0x0

M33: TRCITIATBOUTR Register

Offset: 0x41efc

Description

Trace Integration Instruction ATB Out Register

Table 309.

TRCITIATBOUTR

Register

Bits Description Type Reset

31:2 Reserved. - -

1 AFREADY: Integration Mode instruction AFREADY out RW 0x0

0 ATVALID: Integration Mode instruction ATVALID out RW 0x0

M33: TRCCLAIMSET Register

Offset: 0x41fa0
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Description

Claim Tag Set Register

Table 310.

TRCCLAIMSET

Register

Bits Description Type Reset

31:4 Reserved. - -

3 SET3: When a write to one of these bits occurs, with the value: RW 0x1

2 SET2: When a write to one of these bits occurs, with the value: RW 0x1

1 SET1: When a write to one of these bits occurs, with the value: RW 0x1

0 SET0: When a write to one of these bits occurs, with the value: RW 0x1

M33: TRCCLAIMCLR Register

Offset: 0x41fa4

Description

Claim Tag Clear Register

Table 311.

TRCCLAIMCLR

Register

Bits Description Type Reset

31:4 Reserved. - -

3 CLR3: When a write to one of these bits occurs, with the value: RW 0x0

2 CLR2: When a write to one of these bits occurs, with the value: RW 0x0

1 CLR1: When a write to one of these bits occurs, with the value: RW 0x0

0 CLR0: When a write to one of these bits occurs, with the value: RW 0x0

M33: TRCAUTHSTATUS Register

Offset: 0x41fb8

Description

Returns the level of tracing that the trace unit can support

Table 312.

TRCAUTHSTATUS

Register

Bits Description Type Reset

31:8 Reserved. - -

7:6 SNID: Indicates whether the system enables the trace unit to support Secure

non-invasive debug:

RO 0x0

5:4 SID: Indicates whether the trace unit supports Secure invasive debug: RO 0x0

3:2 NSNID: Indicates whether the system enables the trace unit to support Non-

secure non-invasive debug:

RO 0x0

1:0 NSID: Indicates whether the trace unit supports Non-secure invasive debug: RO 0x0

M33: TRCDEVARCH Register

Offset: 0x41fbc

Description

TRCDEVARCH

Table 313.

TRCDEVARCH Register
Bits Description Type Reset

31:21 ARCHITECT: reads as 0b01000111011 RO 0x23b
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Bits Description Type Reset

20 PRESENT: reads as 0b1 RO 0x1

19:16 REVISION: reads as 0b0000 RO 0x2

15:0 ARCHID: reads as 0b0100101000010011 RO 0x4a13

M33: TRCDEVID Register

Offset: 0x41fc8

Description

TRCDEVID

Table 314. TRCDEVID

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: TRCDEVTYPE Register

Offset: 0x41fcc

Description

TRCDEVTYPE

Table 315.

TRCDEVTYPE Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 SUB: reads as 0b0001 RO 0x1

3:0 MAJOR: reads as 0b0011 RO 0x3

M33: TRCPIDR4 Register

Offset: 0x41fd0

Description

TRCPIDR4

Table 316. TRCPIDR4

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 SIZE: reads as `ImpDef RO 0x0

3:0 DES_2: reads as `ImpDef RO 0x4

M33: TRCPIDR5 Register

Offset: 0x41fd4

Description

TRCPIDR5
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Table 317. TRCPIDR5

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: TRCPIDR6 Register

Offset: 0x41fd8

Description

TRCPIDR6

Table 318. TRCPIDR6

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: TRCPIDR7 Register

Offset: 0x41fdc

Description

TRCPIDR7

Table 319. TRCPIDR7

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: TRCPIDR0 Register

Offset: 0x41fe0

Description

TRCPIDR0

Table 320. TRCPIDR0

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PART_0: reads as `ImpDef RO 0x21

M33: TRCPIDR1 Register

Offset: 0x41fe4

Description

TRCPIDR1

Table 321. TRCPIDR1

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 DES_0: reads as `ImpDef RO 0xb

3:0 PART_0: reads as `ImpDef RO 0xd

M33: TRCPIDR2 Register

Offset: 0x41fe8

Description

TRCPIDR2
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Table 322. TRCPIDR2

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 REVISION: reads as `ImpDef RO 0x2

3 JEDEC: reads as 0b1 RO 0x1

2:0 DES_0: reads as `ImpDef RO 0x3

M33: TRCPIDR3 Register

Offset: 0x41fec

Description

TRCPIDR3

Table 323. TRCPIDR3

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 REVAND: reads as `ImpDef RO 0x0

3:0 CMOD: reads as `ImpDef RO 0x0

M33: TRCCIDR0 Register

Offset: 0x41ff0

Description

TRCCIDR0

Table 324. TRCCIDR0

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_0: reads as 0b00001101 RO 0x0d

M33: TRCCIDR1 Register

Offset: 0x41ff4

Description

TRCCIDR1

Table 325. TRCCIDR1

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 CLASS: reads as 0b1001 RO 0x9

3:0 PRMBL_1: reads as 0b0000 RO 0x0

M33: TRCCIDR2 Register

Offset: 0x41ff8

Description

TRCCIDR2
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Table 326. TRCCIDR2

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_2: reads as 0b00000101 RO 0x05

M33: TRCCIDR3 Register

Offset: 0x41ffc

Description

TRCCIDR3

Table 327. TRCCIDR3

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_3: reads as 0b10110001 RO 0xb1

M33: CTICONTROL Register

Offset: 0x42000

Description

CTI Control Register

Table 328.

CTICONTROL Register
Bits Description Type Reset

31:1 Reserved. - -

0 GLBEN: Enables or disables the CTI RW 0x0

M33: CTIINTACK Register

Offset: 0x42010

Description

CTI Interrupt Acknowledge Register

Table 329. CTIINTACK

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 INTACK: Acknowledges the corresponding ctitrigout output. There is one bit

of the register for each ctitrigout output. When a 1 is written to a bit in this

register, the corresponding ctitrigout is acknowledged, causing it to be

cleared.

RW 0x00

M33: CTIAPPSET Register

Offset: 0x42014

Description

CTI Application Trigger Set Register
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Table 330. CTIAPPSET

Register
Bits Description Type Reset

31:4 Reserved. - -

3:0 APPSET: Setting a bit HIGH generates a channel event for the selected

channel. There is one bit of the register for each channel

RW 0x0

M33: CTIAPPCLEAR Register

Offset: 0x42018

Description

CTI Application Trigger Clear Register

Table 331.

CTIAPPCLEAR

Register

Bits Description Type Reset

31:4 Reserved. - -

3:0 APPCLEAR: Sets the corresponding bits in the CTIAPPSET to 0. There is one

bit of the register for each channel.

RW 0x0

M33: CTIAPPPULSE Register

Offset: 0x4201c

Description

CTI Application Pulse Register

Table 332.

CTIAPPPULSE

Register

Bits Description Type Reset

31:4 Reserved. - -

3:0 APPULSE: Setting a bit HIGH generates a channel event pulse for the selected

channel. There is one bit of the register for each channel.

RW 0x0

M33: CTIINEN0, CTIINEN1, …, CTIINEN6, CTIINEN7 Registers

Offsets: 0x42020, 0x42024, …, 0x42038, 0x4203c

Description

CTI Trigger to Channel Enable Registers

Table 333. CTIINEN0,

CTIINEN1, …,

CTIINEN6, CTIINEN7

Registers

Bits Description Type Reset

31:4 Reserved. - -

3:0 TRIGINEN: Enables a cross trigger event to the corresponding channel when a

ctitrigin input is activated. There is one bit of the field for each of the four

channels

RW 0x0

M33: CTIOUTEN0, CTIOUTEN1, …, CTIOUTEN6, CTIOUTEN7 Registers

Offsets: 0x420a0, 0x420a4, …, 0x420b8, 0x420bc

Description

CTI Trigger to Channel Enable Registers

Table 334.

CTIOUTEN0,

CTIOUTEN1, …,

CTIOUTEN6,

CTIOUTEN7 Registers

Bits Description Type Reset

31:4 Reserved. - -
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Bits Description Type Reset

3:0 TRIGOUTEN: Enables a cross trigger event to ctitrigout when the

corresponding channel is activated. There is one bit of the field for each of the

four channels.

RW 0x0

M33: CTITRIGINSTATUS Register

Offset: 0x42130

Description

CTI Trigger to Channel Enable Registers

Table 335.

CTITRIGINSTATUS

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 TRIGINSTATUS: Shows the status of the ctitrigin inputs. There is one bit of the

field for each trigger input.Because the register provides a view of the raw

ctitrigin inputs, the reset value is UNKNOWN.

RO 0x00

M33: CTITRIGOUTSTATUS Register

Offset: 0x42134

Description

CTI Trigger In Status Register

Table 336.

CTITRIGOUTSTATUS

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 TRIGOUTSTATUS: Shows the status of the ctitrigout outputs. There is one bit

of the field for each trigger output.

RO 0x00

M33: CTICHINSTATUS Register

Offset: 0x42138

Description

CTI Channel In Status Register

Table 337.

CTICHINSTATUS

Register

Bits Description Type Reset

31:4 Reserved. - -

3:0 CTICHOUTSTATUS: Shows the status of the ctichout outputs. There is one bit

of the field for each channel output

RO 0x0

M33: CTIGATE Register

Offset: 0x42140

Description

Enable CTI Channel Gate register

Table 338. CTIGATE

Register
Bits Description Type Reset

31:4 Reserved. - -

3 CTIGATEEN3: Enable ctichout3. Set to 0 to disable channel propagation. RW 0x1

2 CTIGATEEN2: Enable ctichout2. Set to 0 to disable channel propagation. RW 0x1
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Bits Description Type Reset

1 CTIGATEEN1: Enable ctichout1. Set to 0 to disable channel propagation. RW 0x1

0 CTIGATEEN0: Enable ctichout0. Set to 0 to disable channel propagation. RW 0x1

M33: ASICCTL Register

Offset: 0x42144

Description

External Multiplexer Control register

Table 339. ASICCTL

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: ITCHOUT Register

Offset: 0x42ee4

Description

Integration Test Channel Output register

Table 340. ITCHOUT

Register
Bits Description Type Reset

31:4 Reserved. - -

3:0 CTCHOUT: Sets the value of the ctichout outputs RW 0x0

M33: ITTRIGOUT Register

Offset: 0x42ee8

Description

Integration Test Trigger Output register

Table 341. ITTRIGOUT

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 CTTRIGOUT: Sets the value of the ctitrigout outputs RW 0x00

M33: ITCHIN Register

Offset: 0x42ef4

Description

Integration Test Channel Input register

Table 342. ITCHIN

Register
Bits Description Type Reset

31:4 Reserved. - -

3:0 CTCHIN: Reads the value of the ctichin inputs. RO 0x0

M33: ITCTRL Register

Offset: 0x42f00

Description

Integration Mode Control register
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Table 343. ITCTRL

Register
Bits Description Type Reset

31:1 Reserved. - -

0 IME: Integration Mode Enable RW 0x0

M33: DEVARCH Register

Offset: 0x42fbc

Description

Device Architecture register

Table 344. DEVARCH

Register
Bits Description Type Reset

31:21 ARCHITECT: Indicates the component architect RO 0x23b

20 PRESENT: Indicates whether the DEVARCH register is present RO 0x1

19:16 REVISION: Indicates the architecture revision RO 0x0

15:0 ARCHID: Indicates the component RO 0x1a14

M33: DEVID Register

Offset: 0x42fc8

Description

Device Configuration register

Table 345. DEVID

Register
Bits Description Type Reset

31:20 Reserved. - -

19:16 NUMCH: Number of ECT channels available RO 0x4

15:8 NUMTRIG: Number of ECT triggers available. RO 0x08

7:5 Reserved. - -

4:0 EXTMUXNUM: Indicates the number of multiplexers available on Trigger

Inputs and Trigger Outputs that are using asicctl. The default value of

0b00000 indicates that no multiplexing is present. This value of this bit

depends on the Verilog define EXTMUXNUM that you must change

accordingly.

RO 0x00

M33: DEVTYPE Register

Offset: 0x42fcc

Description

Device Type Identifier register

Table 346. DEVTYPE

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 SUB: Sub-classification of the type of the debug component as specified in the

ARM Architecture Specification within the major classification as specified in

the MAJOR field.

RO 0x1

3:0 MAJOR: Major classification of the type of the debug component as specified

in the ARM Architecture Specification for this debug and trace component.

RO 0x4
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M33: PIDR4 Register

Offset: 0x42fd0

Description

CoreSight Periperal ID4

Table 347. PIDR4

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 SIZE: Always 0b0000. Indicates that the device only occupies 4KB of memory RO 0x0

3:0 DES_2: Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the

designer of the component.

RO 0x4

M33: PIDR5 Register

Offset: 0x42fd4

Description

CoreSight Periperal ID5

Table 348. PIDR5

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: PIDR6 Register

Offset: 0x42fd8

Description

CoreSight Periperal ID6

Table 349. PIDR6

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: PIDR7 Register

Offset: 0x42fdc

Description

CoreSight Periperal ID7

Table 350. PIDR7

Register
Bits Description Type Reset

31:0 Reserved. - -

M33: PIDR0 Register

Offset: 0x42fe0

Description

CoreSight Periperal ID0

Table 351. PIDR0

Register
Bits Description Type Reset

31:8 Reserved. - -
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Bits Description Type Reset

7:0 PART_0: Bits[7:0] of the 12-bit part number of the component. The designer of

the component assigns this part number.

RO 0x21

M33: PIDR1 Register

Offset: 0x42fe4

Description

CoreSight Periperal ID1

Table 352. PIDR1

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 DES_0: Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the

designer of the component.

RO 0xb

3:0 PART_1: Bits[11:8] of the 12-bit part number of the component. The designer

of the component assigns this part number.

RO 0xd

M33: PIDR2 Register

Offset: 0x42fe8

Description

CoreSight Periperal ID2

Table 353. PIDR2

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 REVISION: This device is at r1p0 RO 0x0

3 JEDEC: Always 1. Indicates that the JEDEC-assigned designer ID is used. RO 0x1

2:0 DES_1: Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the

designer of the component.

RO 0x3

M33: PIDR3 Register

Offset: 0x42fec

Description

CoreSight Periperal ID3

Table 354. PIDR3

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 REVAND: Indicates minor errata fixes specific to the revision of the

component being used, for example metal fixes after implementation. In most

cases, this field is 0b0000. ARM recommends that the component designers

ensure that a metal fix can change this field if required, for example, by driving

it from registers that reset to 0b0000.

RO 0x0

3:0 CMOD: Customer Modified. Indicates whether the customer has modified the

behavior of the component. In most cases, this field is 0b0000. Customers

change this value when they make authorized modifications to this

component.

RO 0x0

M33: CIDR0 Register
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Offset: 0x42ff0

Description

CoreSight Component ID0

Table 355. CIDR0

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_0: Preamble[0]. Contains bits[7:0] of the component identification

code

RO 0x0d

M33: CIDR1 Register

Offset: 0x42ff4

Description

CoreSight Component ID1

Table 356. CIDR1

Register
Bits Description Type Reset

31:8 Reserved. - -

7:4 CLASS: Class of the component, for example, whether the component is a

ROM table or a generic CoreSight component. Contains bits[15:12] of the

component identification code.

RO 0x9

3:0 PRMBL_1: Preamble[1]. Contains bits[11:8] of the component identification

code.

RO 0x0

M33: CIDR2 Register

Offset: 0x42ff8

Description

CoreSight Component ID2

Table 357. CIDR2

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_2: Preamble[2]. Contains bits[23:16] of the component identification

code.

RO 0x05

M33: CIDR3 Register

Offset: 0x42ffc

Description

CoreSight Component ID3

Table 358. CIDR3

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 PRMBL_3: Preamble[3]. Contains bits[31:24] of the component identification

code.

RO 0xb1

3.7.5.1. Cortex-M33 EPPB Registers

The EPPB contains registers implemented by Raspberry Pi and integrated into the Cortex-M33 PPB to provide per-

processor controls for certain RP2350 features. There is one copy of these registers per core (they are core-local), and
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they reset on a warm reset of the core.

These registers start at a base address of 0xe0080000, defined as EPPB_BASE in the SDK.

Table 359. List of

M33_EPPB registers
Offset Name Info

0x0 NMI_MASK0 NMI mask for IRQs 0 through 31. This register is core-local, and

is reset by a processor warm reset.

0x4 NMI_MASK1 NMI mask for IRQs 0 though 51. This register is core-local, and is

reset by a processor warm reset.

0x8 SLEEPCTRL Nonstandard sleep control register

M33_EPPB: NMI_MASK0 Register

Offset: 0x0

Table 360.

NMI_MASK0 Register
Bits Description Type Reset

31:0 NMI mask for IRQs 0 through 31. This register is core-local, and is reset by a

processor warm reset.

RW 0x00000000

M33_EPPB: NMI_MASK1 Register

Offset: 0x4

Table 361.

NMI_MASK1 Register
Bits Description Type Reset

31:20 Reserved. - -

19:0 NMI mask for IRQs 0 though 51. This register is core-local, and is reset by a

processor warm reset.

RW 0x00000

M33_EPPB: SLEEPCTRL Register

Offset: 0x8

Description

Nonstandard sleep control register

Table 362.

SLEEPCTRL Register
Bits Description Type Reset

31:3 Reserved. - -

2 WICENACK: Status signal from the processor’s interrupt controller. Changes

to WICENREQ are eventually reflected in WICENACK.

RO 0x0

1 WICENREQ: Request that the next processor deep sleep is a WIC sleep. After

setting this bit, before sleeping, poll WICENACK to ensure the processor

interrupt controller has acknowledged the change.

RW 0x1

0 LIGHT_SLEEP: By default, any processor sleep will deassert the system-level

clock request. Reenabling the clocks incurs 5 cycles of additional latency on

wakeup.

Setting LIGHT_SLEEP to 1 keeps the clock request asserted during a normal

sleep (Arm SCR.SLEEPDEEP = 0), for faster wakeup. Processor deep sleep

(Arm SCR.SLEEPDEEP = 1) is not affected, and will always deassert the

system-level clock request.

RW 0x0
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3.8. Hazard3 Processor

Hazard3 is a low-area, high-performance RISC-V processor with a 3-stage in-order pipeline. RP2350 configures the

following standard RISC-V extensions:

• RV32I: 32-bit base instruction set

• M: Integer multiply/divide/modulo instructions

• A: Atomic memory operations

• C: Compressed 16-bit instructions (equivalently spelled Zca)

• Zba: Address generation instructions

• Zbb: Basic bit manipulation instructions

• Zbs: Single-bit manipulation instructions

• Zbkb: Basic bit manipulation for scalar cryptography

• Zcb: Basic additional compressed instructions

• Zcmp: Push/pop and double-move compressed instructions

• Zicsr: CSR access instructions

• Debug, Machine and User execution modes

• Physical Memory Protection unit (PMP) with eight regions, 32-byte granule, NAPOT

• External debug support with four instruction address triggers

Additionally, RP2350 enables the following Hazard3 custom extensions:

• Xh3power: Power management instructions and CSRs

• Xh3bextm: Bit-extract-multiple instruction (used in bootrom)

• Xh3irq: Local interrupt controller with nested, prioritised IRQ support

• Xh3pmpm: Unlocked M-mode PMP regions

Hazard3 Source Code

All hardware source files for Hazard3 are available under Apache 2.0 licensing at:

github.com/wren6991/hazard3

3.8.1. Instruction Set Reference

This section is a programmer’s reference guide for the instructions supported by Hazard3. It covers basic assembly

syntax, instruction behaviour, ranges for immediate values, and conditions for instruction compression. The index lists

instructions alphabetically, including pseudo-instructions.

The pseudocode in this guide is informative only, and is no replacement for the official RISC-V specifications in Section

3.8.1.1. However, it should prove a useful mnemonic aid once you have read the specifications.

3.8.1.1. Links to RISC-V Specifications

This table links ratified versions of the base instruction set and extensions implemented by Hazard3. These are the

authoritative reference for the instructions documented in this reference guide.
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Extension Specification

RV32I v2.1 Unprivileged ISA 20191213

M v2.0 Unprivileged ISA 20191213

A v2.1 Unprivileged ISA 20191213

C v2.0 Unprivileged ISA 20191213

Zicsr v2.0 Unprivileged ISA 20191213

Zifencei v2.0 Unprivileged ISA 20191213

Zba v1.0.0 Bit Manipulation ISA extensions 20210628

Zbb v1.0.0 Bit Manipulation ISA extensions 20210628

Zbs v1.0.0 Bit Manipulation ISA extensions 20210628

Zbkb v1.0.1 Scalar Cryptography ISA extensions 20220218

Zcb v1.0.3-1 Code Size Reduction extensions frozen v1.0.3-1

Zcmp v1.0.3-1 Code Size Reduction extensions frozen v1.0.3-1

Machine ISA v1.12 Privileged Architecture 20211203

Debug v0.13.2 RISC-V External Debug Support 20190322

You may also refer to the RISC-V Assembly Programmer’s Manual for information on assembly syntax.

Consult the source code for detailed questions about implementation-defined behaviour, which is not covered by the

RISC-V specifications. RP2350 uses version 86fc4e3, with metal ECOs for commits 2f6e983 and af08c0b.

3.8.1.2. Architecture Strings

-march strings completely specify the set of available RISC-V instructions, so that a compiler can generate correct and

optimal code for your device. Use the following in descending order of preference:

1. Use rv32ima_zicsr_zifencei_zba_zbb_zbs_zbkb_zca_zcb_zcmp for compilers which support the Zcb and Zcmp extensions,

such as GCC 14.

2. Use rv32ima_zicsr_zifencei_zba_zbb_zbs_zbkb_zca_zcb for GCC 14 packaged with an older assembler which does not

support Zcmp.

3. Use rv32imac_zicsr_zifencei_zba_zbb_zbs_zbkb for older compilers, such as GCC 13 and below.

3.8.1.3. RISC-V Architectural State

The mutable state visible to the programmer consists of:

• The 31 × 32-bit integer general-purpose registers (GPRs), named x1 through x31

• The program counter pc, which points to the beginning of the current instruction in memory

• The control and status registers (CSRs), which configure processor behaviour and are used in trap handling

• The local monitor bit, which helps maintain correctness of atomic read-modify-write sequences

• The current privilege level, which determines which memory locations the core can access, which CSRs it can

access, and which instructions it can execute

Hazard3 supports two privilege levels: Machine and User. These are interchangeably referred to as modes, and are

commonly abbreviated as M-mode and U-mode. Debug mode behaves as an additional privilege level above M-mode.
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The 0th general-purpose register, x0, is hardwired to zero and ignores writes. There is no flags register; branch

instructions perform GPR-to-GPR comparisons directly.

This state is duplicated per hardware thread, or hart. RP2350 implements two Hazard3 cores, each with one hart.

3.8.1.3.1. Register Conventions

The following ABI names are synonymous with x0 through x31:

Register ABI Name Description

x0 zero Hardwired to zero; ignores writes

x1 ra Return address (link register)

x2 sp Stack pointer

x3 gp Global pointer

x4 tp Thread pointer

x5 - x7 t0 - t2 Temporaries

x8 s0 or fp Saved register or frame pointer

x9 s1 Saved register

x10 - x11 a0 - a1 Function arguments and return values

x12 - x17 a2 - a7 Function arguments

x18 - x27 s2 - s11 Saved registers

x28 - x31 t3 - t6 Temporaries

Registers x1 through x31 are identical, and any 32-bit opcode can use any combination of these registers. However,

compressed instructions give preferential treatment to commonly-used registers sp, ra, s0, s1 and a0 through a5 to

improve code density. All compressed instructions implemented by Hazard3 are 16-bit aliases for existing 32-bit

instructions, so you can still perform any operation on any register.

See the RISC-V PSABI Specification for more information on the ABI register assignment as well as the RISC-V

procedure calling convention.

3.8.1.4. Compressed Instructions

The RISC-V extensions which Hazard3 implements use a mixture of 32-bit and 16-bit opcodes, the latter being referred

to as compressed instructions. With the exception of Zcmp, each compressed instruction maps to a subset of an existing

32-bit instruction. For example, c.add is a 16-bit alias of the add instruction, with restrictions on register allocation.

The assembler automatically uses compressed instructions when possible. For example, add a0, a0, a1 is a

compressible form of add. This assembles to the 16-bit opcode c.add a0, a1 when compressed instructions are enabled

in the assembler.

The following extensions use 16-bit opcodes:

• C: compressed instructions (the non-floating-point subset is equivalently spelled as Zca)

• Zcb: additional basic compressed instructions

• Zcmp: compressed push, pop and double-move

Disabling the above extensions for compilation (and assembly) aligns all instructions to 32-bit boundaries. This may

have a minor performance advantage for branch-dense code sequences (see Section 3.8.7), at the cost of poorer code

density.
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When an instruction has an optional 16-bit compressed form, the limitations of the compressed form are documented

in the listing for the 32-bit form. It is useful to be aware of these restrictions when optimising for code size. If no such

limitations are mentioned, it means the instruction is always a 32-bit opcode.

Zcmp is an outlier in that its instructions each expand to a sequence of 32-bit instructions from the RV32I base instruction

set. They therefore have no direct 32-bit counterparts.

3.8.1.5. Conventions for Pseudocode

Pseudocode in this section is in Verilog 2005 syntax (IEEE 1364-2005). These Verilog operators are used throughout:

• Infix operators +, -, *, /, &, ^, |, <<, ==, !=, < and >= can be considered the same as the corresponding C operator.

• $signed() bit-casts to a signed value; comparisons between two signed values are signed comparisons.

• >> is always a logical (zero-extending) right shift.

• >>> on a signed value is an arithmetic (sign-extending) right shift.

• {a, b} is the bit-concatenation of a and b, with a in the more-significant position of the result.

• a[n] on an array is a subscript array access. For example mem[0] is the first byte of memory.

• x[m:l] on a packed array (a bit vector) is a bit slice of x, where m is the (inclusive) MSB and l is the (inclusive) LSB.

For example rs1[7:0] is the 8 least-significant bits of rs1.

• {n{x}}, where n is a constant and x is a packed array, replicates x n times. n copies of x are concatenated together.

For example {32{1’b1}} is a 32-bit all-ones value.

The pseudocode uses <= non-blocking assignments to assign to outputs: all such assignments are applied in a batch

after the block of pseudocode has executed. Local variables may be assigned with = blocking assignments, which

update the assignee immediately, similar to = procedural assignments in e.g. C programs. This distinction is important

in some cases where e.g. rd and rs1 may alias the same register, but it’s generally sufficient just to be aware that a <= b

and a = b are both assignments into a.

3.8.1.5.1. Variables Used in Pseudocode

Pseudocode in this guide uses the following conventions for variables:

• rs1, rs2 and rd are 32-bit unsigned packed arrays (bit vectors), representing the values of the two register operands

and the destination register.

• regnum_rs1, regnum_rs2, and regnum_rd are the 5-bit register numbers which select a GPR for rs1, rs2 and rd

• imm is a 32-bit unsigned packed array referring to the instruction’s immediate value.

• pc is a 32-bit unsigned packed array referring to the program counter, which is exactly the address of the current

instruction.

• mem is an array of 8-bit unsigned packed arrays, each corresponding to a byte address in memory.

• csr is an array of 32-bit unsigned packed arrays, each corresponding to a CSR listed in Section 3.8.9.

• priv is a 2-bit unsigned packed array which contains the value 0x3 when the core is in Debug or M-mode, and 0x0

when the core is in U-mode.

• i and j are pseudocode temporary variables of type integer which may be used for loop variables.

The following tasks are used throughout:

• raise_exception(n) raises an exception with a cause of n (see Section 3.8.4.1).

• bus_error(addr) returns 1 when the address addr returns a bus error, and 0 otherwise.
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3.8.1.6. Alphabetical List of Instructions

This instruction reference covers all instructions from all extensions which Hazard3 implements on RP2350. The table

below also includes common pseudo-instructions such as not and ret, which you may see in disassembly and be

surprised not to see in the ISA manual. The links for pseudo-instructions go to the entry for the underlying hardware

instruction aliased by that pseudo-instruction.

 TIP

The instruction names at the left-hand margin of the instruction listings are links back to this index. Use them to

quickly return here and look up another instruction.

Alphabetical order: left-to-right, then top-to-bottom.

add addi amoadd.w amoand.w amomax.w amomaxu.w

amomin.w amominu.w amoor.w amoswap.w amoxor.w and

andi andn auipc bclr bclri beq

beqz bext bexti bge bgeu bgez

bgt bgtu bgtz binv binvi ble

bleu blez blt bltu bltz bne

bnez brev8 bset bseti clz cm.mva01s

cm.mvsa01 cm.pop cm.popret cm.popretz cm.push cpop

csrc csrci csrr csrrc csrrci csrrs

csrrsi csrrw csrrwi csrs csrsi csrw

csrwi ctz div divu ebreak ecall

fence fence.i j jal jalr jr

lb lbu lh lhu lr.w lui

lw max maxu min minu mret

mul mulh mulhsu mulhu mv neg

nop not or orc.b ori orn

pack packh rem remu ret rev8

rol ror rori sb sc.w seqz

sext.b sext.h sgtz sh1add sh2add sh3add

sh sll slli slt slti sltiu

sltu sltz snez sra srai srl

srli sub sw unzip wfi xnor

xor xori zext.b zext.h zip

The remainder of this reference guide groups instructions by extension:

• RV32I: base ISA (register-register)

• RV32I: base ISA (register-immediate)

• RV32I: base ISA (large immediate)

• RV32I: base ISA (control transfer)

• RV32I: base ISA (load/store)
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• M: multiply and divide

• A: atomics

• C: compressed instructions

• Zba: bit manipulation for address generation

• Zbb: basic bit manipulation

• Zbs: single bit manipulation

• Zbkb: basic bit manipulation for scalar cryptography

• Zcb: additional basic compressed instructions

• Zcmp: compressed push, pop and double-move

• RV32I and Zifencei: memory ordering

• Zicsr: control and status register access

• Privileged instructions

3.8.1.7. RV32I: Base ISA (Register-register)

These instructions calculate a function of two register operands, rs1 and rs2. They write the 32-bit result to a destination

register, rd.

add

Add register to register.

Usage:

add rd, rs1, rs2

Operation:

rd <= rs1 + rs2;

Compressible if either:

• rd matches rs1, no operands are zero (aka c.add)

• rs2 is zero and neither rd nor rs1 is zero (aka c.mv)

and

Bitwise AND register with register.

Usage:

and rd, rs1, rs2

Operation:
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rd <= rs1 & rs2;

Compressible if: rd matches rs1, registers are in x8 - x15.

or

Bitwise OR register with register.

Usage:

or rd, rs1, rs2

Operation:

rd <= rs1 | rs2;

Compressible if: rd matches rs1, registers are in x8 - x15.

sll

Shift left, logical. Shift amount is modulo 32.

Usage:

sll rd, rs1, rs2

Operation:

rd <= rs1 << rs2[4:0];

slt

Set if less than (signed). Result is 0 for false, 1 for true.

Usage:

slt rd, rs1, rs2
sltz rd, rs1     // pseudo: rs2 is zero
sgtz rd, rs2     // pseudo: rs1 is zero

Operation:

rd <= $signed(rs1) < $signed(rs2);

sltu

Set if less than (unsigned). Result is 0 for false, 1 for true.

Usage:
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sltu rd, rs1, rs
snez rd, rs2     // pseudo: rs1 is zero

Operation:

rd <= rs1 < rs2;

sra

Shift right, arithmetic. Shift amount is modulo 32.

Usage:

sra rd, rs1, rs2

Operation:

rd <= $signed(rs1) >>> rs2[4:0];

srl

Shift right, logical. Shift amount is modulo 32.

Usage:

srl rd, rs1, rs2

Operation:

rd <= rs1 >> rs2[4:0];

sub

Two’s complement subtract register from register.

Usage:

sub rd, rs1, rs2
neg rd, rs2      // pseudo: rs1 is zero

Operation:

rd <= rs1 - rs2;

Compressible if: rd matches rs1, registers are in x8 - x15.
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xor

Bitwise XOR register with register

Usage:

xor rd, rs1, rs2

Operation:

rd <= rs1 ^ rs2;

Compressible if: rd matches rs1, registers are in x8 - x15.

3.8.1.8. RV32I: Base ISA (Register-immediate)

These instructions calculate a function of one register rs1 and one immediate operand imm. They write the 32-bit result

to a destination register rd.

Immediate operands are constants encoded directly in the instruction, which avoids the cost of first materialising the

constant value into a register.

addi

Add register to immediate.

Usage:

addi rd, rs1, imm
mv rd, rs1        // pseudo: imm is 0
nop               // pseudo: rd, rs1 are zero, imm is 0

Operation:

rd <= rs1 + imm

Immediate range: -0x800 through 0x7ff for 32-bit, smaller for 16-bit.

Compressible if:

• rd matches rs1, and immediate is in the range -0x20 through 0x1f (aka c.addi)

• rd is not zero, rs1 is zero, and immediate is in the range -0x20 through 0x1f (aka c.li)

• rd is in x8 - x15, rs1 is sp, and immediate is a nonzero multiple of four in the range 0x000 through 0x3fc (aka

c.addi4spn)

• rd is sp, rs1 is sp, and immediate is a nonzero multiple of 16 in the range -0x200 through 0x1f0 (aka c.addi16sp)

Note compressed c.mv canonically expands to add, not addi.

andi

Bitwise AND register with immediate.

Usage:
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andi rd, rs1, imm
zext.b rd, rs1    // pseudo: imm is 0xff

Operation:

rd <= rs1 & imm;

Immediate range: -0x800 through 0x7ff for 32-bit, -0x20 through 0x1f for 16-bit.

Compressible if: rd matches rs1, registers are in x8 - x15, and immediate is in the range -0x20 through 0x1f.

ori

Bitwise OR register with immediate.

Usage:

ori rd, rs1, imm

Operation:

rd <= rs1 | imm;

Immediate range: -0x800 through 0x7ff

slli

Shift left, logical, immediate.

Usage:

slli rd, rs1, imm

Operation:

rd <= rs1 << imm;

Immediate range: 0 through 31.

Compressible if: rd matches rs1, registers are not zero.

slti

Set if less than immediate (signed). Result is 0 for false, 1 for true.

Usage:

slti rd, rs1, imm

Operation:
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rd <= $signed(rs1) < $signed(imm);

Immediate range: -0x800 through 0x7ff

sltiu

Set if less than immediate (unsigned). Result is 0 for false, 1 for true.

Usage:

sltiu rd, rs1, imm
seqz rd, rs1       // pseudo: imm is 1

Operation:

rd <= rs1 < imm;

Immediate range: -0x800 through 0x7ff

Note the negative values indicated for the immediate range are two’s complement: this instruction uses them in an

unsigned context, so -0x800 through -0x001 can be thought of as +0xfffff800 through +0xffffffff for the comparison.

srai

Shift right, arithmetic, immediate.

Usage:

srai rd, rs1, imm

Operation:

rd <= $signed(rs1) >>> imm;

Immediate range: 0 through 31.

Compressible if: rd matches rs1, registers are in x8 through x15.

srli

Shift right, logical, immediate.

Usage:

srli rd, rs1, imm

Operation:

rd <= rs1 >> imm;

Immediate range: 0 through 31.
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Compressible if: rd matches rs1, registers are in x8 through x15.

xori

Bitwise XOR register with immediate.

Usage:

xori rd, rs1, imm
not rd, rs1       // pseudo: imm is -1

Operation:

rd <= rs1 ^ imm;

Immediate range: -0x800 through 0x7ff

Compressible if: rd matches rs1, registers are in x8 - x15, and immediate is -1 (aka c.not)

3.8.1.9. RV32I: Base ISA (Large Immediate)

These instructions are the first in a two-instruction sequence to materialise a 32-bit constant, or a 32-bit offset from pc.

auipc

Add upper immediate to program counter.

Usage:

auipc rd, imm

Operation:

rd <= pc + (imm << 12);

Immediate range: -0x80000 through 0x7ffff.

Note -0x80000 through -0x00001 are equivalent to 0x80000 through 0xfffff after the left shift (on RV32 only) and the

assembler may also accept these positive values.

lui

Load upper immediate.

Usage:

lui rd, imm

Operation:
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rd <= imm << 12;

Immediate range: -0x80000 through 0x7ffff if 32-bit, or -0x20 through 0x1f if 16-bit.

Compressible if: rd is neither zero nor sp, and imm is nonzero in the range -0x20 through 0x1f.

Note -0x80000 through -0x00001 are equivalent to 0x80000 through 0xfffff after the left shift (on RV32 only) and the

assembler may also accept these positive values.

3.8.1.10. RV32I: Base ISA (Control Transfer)

These instructions modify the value of pc. When unmodified, pc increments by the size of the current instruction in bytes.

Conditional branches either modify or do not modify pc, based on a comparison between two registers. There is no flags

register, however you can pass boolean conditions into branches by comparing a register with the zero register.

beq

Branch if equal.

Usage:

beq rs1, rs2, label
beqz rs1, label     // pseudo: rs2 is zero

Operation:

if (rs1 == rs2)
    pc <= label;

Immediate range: even values in the range -0x1000 through 0x0ffe (±4 kB) if 32-bit, or -0x100 through 0x0fe (±256 B) if

16-bit.

Compressible if: rs2 is zero, and immediate is in the range -0x100 through 0x0fe (aka c.beqz).

bge

Branch if greater than or equal (signed).

Usage:

bge rs1, rs2, label
bgez rs1, label     // pseudo: rs2 is zero
ble rs2, rs1, label // pseudo: operands swapped by assembler
blez rs2, label     // pseudo: rs1 is zero

Operation:

if ($signed(rs1) >= $signed(rs2))
    pc <= label;

Immediate range: even values in the range -0x1000 through 0x0ffe (±4 kB)
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bgeu

Branch if less than or equal (unsigned).

Usage:

bgeu rs1, rs2, label
bleu rs2, rs1, label // pseudo: operands swapped by assembler

Operation:

if (rs1 >= rs2)
    pc <= label;

Immediate range: even values in the range -0x1000 through 0x0ffe (±4 kB)

blt

Branch if less than (signed).

Usage:

blt rs1, rs2, label
bltz rs1, label      // pseudo: rs2 is zero
bgt rs2, rs1, label  // pseudo: operands swapped by assembler
bgtz rs2, label      // pseudo: rs1 is zero

Operation:

if ($signed(rs1) < $signed(rs2))
    pc <= label;

Immediate range: even values in the range -0x1000 through 0x0ffe (±4 kB)

bltu

Branch if less than (unsigned).

Usage:

bltu rs1, rs2, label
bgtu rs2, rs1, label // pseudo: operands swapped by assembler

Operation:

if (rs1 < rs2)
    pc <= label;

Immediate range: even values in the range -0x1000 through 0x0ffe (±4 kB)

bne

Branch if not equal.

RP2350 Datasheet

3.8. Hazard3 Processor 239



Usage:

bne rs1, rs2, label
bnez rs1, label     // pseudo: rs2 is zero

Operation:

if (rs1 != rs2)
    pc <= label;

Immediate range: even values in the range -0x1000 through 0x0ffe (±4 kB) if 32-bit, or -0x100 through 0x0fe (±256 B) if

16-bit.

Compressible if: rs2 is zero, and immediate is in the range -0x100 through 0x0fe (aka c.bnez).

jal

Jump and link, pc-relative.

Usage:

jal rd, label
jal label      // pseudo: rd is ra
j label        // pseudo: rd is zero

Operation:

rd <= pc + 4;   // or +2 if opcode is 16-bit
pc <= label;

Immediate range: even values in the range -0x100000 through 0x0ffffe (±1 MB) if 32-bit, or -0x800 through 0x7fe

(±2 kB) if 16-bit.

Compressible if: rd is zero or ra, and immediate is in the range -0x800 through 0x7fe.

jalr

Jump and link, register-offset.

Usage:

jalr rd, rs1, imm //                     (imm is implicitly 0 if omitted.)
jalr rd, imm(rs1) // alternate syntax.   (imm is implicitly 0 if omitted.)
jalr rs1, imm     // pseudo: rd is ra.   (imm is implicitly 0 if omitted.)
jalr imm(rs1)     // pseudo: rd is ra.   (imm is implicitly 0 if omitted.)
jr rs1, imm       // pseudo: rd is zero. (imm is implicitly 0 if omitted.)
jr imm(rs1)       // pseudo: rd is zero. (imm is implicitly 0 if omitted.)
ret               // pseudo for jr ra

Operation:
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rd <= pc + 4;      // or +2 if opcode is 16-bit
pc <= rs1 + imm;

Immediate range: -0x800 through 0x7ff.

Compressible if: rd is zero or ra, immediate is zero, and rs1 is not zero.

3.8.1.11. RV32I: Base ISA (Load and Store)

These instructions transfer data between memory and core registers. The register operand rs1 and immediate imm are

added to form the address. Stores write register operand rs2 into memory, and loads read from memory into the

destination register rd.

All load and store instructions to naturally aligned addresses on RISC-V are single-copy atomic. This means a naturally-

aligned load does not observe byte tearing between the values that a memory location held before and after any

naturally-aligned store to that location. Equivalently, all bytes covered by a single naturally-aligned load or store

instruction transfer in a single transaction with the memory subsystem.

Hazard3 raises an exception on a load or store to a non-naturally-aligned address. See Section 3.8.4.1 for an exhaustive

list of exception causes.

lb

Load signed byte from memory.

Usage:

lb rd, imm(rs1)
lb rd, (rs1)    // imm is implicitly 0 if omitted.

Operation:

reg [31:0] addr;
addr = rs1 + imm;
if (bus_fault(addr)) begin
    raise_exception(4'h5);  // Cause = load fault
end else begin
    rd <= {
        {24{mem[addr][7]}}, // Sign-extend
        mem[addr]
    };
end

Immediate range: -0x800 through 0x7ff for 32-bit, or 0x0 through 0x3 for 16-bit.

Compressible if: rd and rs1 are in x8 through x15, and immediate is in the range 0x0 through 0x3.

lbu

Load unsigned byte from memory.

Usage:

lbu rd, imm(rs1)
lbu rd, (rs1)    // imm is implicitly 0 if omitted.
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Operation:

reg [31:0] addr;
addr = rs1 + imm;
if (bus_fault(addr)) begin
    raise_exception(4'h5); // Cause = load fault
end else begin
    rd <= {
        24'h000000,        // Zero-extend
        mem[addr]
    };
end

Immediate range: -0x800 through 0x7ff for 32-bit, or 0x0 through 0x3 for 16-bit.

Compressible if: rd and rs1 are in x8 through x15, and immediate is in the range 0x0 through 0x3.

lh

Load signed halfword from memory.

Usage:

lh rd, imm(rs1)
lh rd, (rs1)    // imm is implicitly 0 if omitted.

Operation:

reg [31:0] addr;
addr = rs1 + imm;
if (addr[0]) begin
    raise_exception(4'h4);           // Cause = unaligned load
end else if (bus_fault(addr)) begin
    raise_exception(4'h5);           // Cause = load fault
end else begin
    rd <= {
        {16{mem[addr + 1][7]}},      // Sign-extend
        mem[addr + 1],
        mem[addr]
    };
end

Immediate range: -0x800 through 0x7ff for 32-bit, or even values in the range 0x0 through 0x2 for 16-bit.

Compressible if: rd and rs1 are in x8 through x15, and immediate is 0x0 or 0x2.

lhu

Load unsigned halfword from memory.

Usage:

lhu rd, imm(rs1)
lhu rd, (rs1)    // imm is implicitly 0 if omitted.

Operation:
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reg [31:0] addr;
addr = rs1 + imm;
if (addr[0]) begin
    raise_exception(4'h4);           // Cause = unaligned load
end else if (bus_fault(addr)) begin
    raise_exception(4'h5);           // Cause = load fault
end else begin
    rd <= {
        16'h0000,                    // Zero-extend
        mem[addr + 1],
        mem[addr]
    };
end

Immediate range: -0x800 through 0x7ff for 32-bit, or even values in the range 0x0 through 0x2 for 16-bit.

Compressible if: rd and rs1 are in x8 through x15, and immediate is 0x0 or 0x2.

lw

Load word from memory.

Usage:

lw rd, imm(rs1)
lw rd, (rs1)    // imm is implicitly 0 if omitted.

Operation:

reg [31:0] addr;
addr = rs1 + imm;
if (addr[1:0]) begin
    raise_exception(4'h4);           // Cause = unaligned load
end else if (bus_fault(addr)) begin
    raise_exception(4'h5);           // Cause = load fault
end else begin
    rd <= {
        mem[addr + 3],               // Note little-endian;
        mem[addr + 2],               // MSBs are highest address
        mem[addr + 1],
        mem[addr]
    };
end

Immediate range: -0x800 through 0x7ff for 32-bit, smaller for 16-bit.

Compressible if:

• rd and rs1 are in x8 - x15, and immediate is a multiple of four in the range -0x40 through 0x3c (aka c.lw)

• rd is not zero, rs1 is sp, and immediate is a multiple of four in the range 0x00 through 0xfc (aka c.lwsp)

sb

Store byte to memory.

Usage:
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sb rs2, imm(rs1)
sb rs2, (rs1)    // imm is implicitly 0 if omitted.

Operation:

reg [31:0] addr;
addr = rs1 + imm;
if (bus_fault(addr)) begin
    raise_exception(4'h7);      // Cause = store/AMO fault
end else begin
    mem[addr] <= rs2[7:0];
end

Immediate range: -0x800 through 0x7ff for 32-bit, or 0x0 through 0x3 for 16-bit.

Compressible if: rd and rs1 are in x8 through x15, and immediate is in the range 0x0 through 0x3.

sh

Store halfword to memory.

Usage:

sh rs2, imm(rs1)
sh rs2, (rs1)    // imm is implicitly 0 if omitted.

Operation:

reg [31:0] addr;
addr = rs1 + imm;
if (addr[0]) begin
    raise_exception(4'h6);      // Cause = unaligned store/AMO
end else if (bus_fault(addr)) begin
    raise_exception(4'h7);      // Cause = store/AMO fault
end else begin
    mem[addr]     <= rs2[7:0];
    mem[addr + 1] <= rs2[15:8];
end

Immediate range: -0x800 through 0x7ff for 32-bit, or even values in the range 0x0 through 0x2 for 16-bit.

Compressible if: rd and rs1 are in x8 through x15, and immediate is 0x0 or 0x2.

sw

Store word to memory.

Usage:

sw rs2, imm(rs1)
sw rs2, (rs1)    // imm is implicitly 0 if omitted.

Operation:
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reg [31:0] addr;
addr = rs1 + imm;
if (addr[1:0]) begin
    raise_exception(4'h6);      // Cause = unaligned store/AMO
end else if (bus_fault(addr)) begin
    raise_exception(4'h7);      // Cause = store/AMO fault
end else begin
    mem[addr]     <= rs2[7:0];
    mem[addr + 1] <= rs2[15:8];
    mem[addr + 2] <= rs2[23:16];
    mem[addr + 3] <= rs2[31:24];
end

Immediate range: -0x800 through 0x7ff for 32-bit, smaller for 16-bit.

Compressible if:

• rs1 and rs2 are in x8 - x15, and immediate is a multiple of four in the range -0x40 through 0x3c (aka c.sw)

• rs2 is not zero, rs1 is sp, and immediate is a multiple of four in the range 0x00 through 0xfc (aka c.swsp)

3.8.1.12. M: Multiply and Divide

These instructions implement integer multiply, divide and modulo.

div

Divide (signed).

Usage:

div rd, rs1, rs2

Operation:

if (rs2 == 32'h0)
    rd <= 32'hffffffff;                              // Defined for division by zero
else if (rs1 == 32'h80000000 && rs2 == 32'hffffffff)
    rd <= 32'h80000000;                              // Defined for signed overflow
else
    rd <= $signed(rs1) / $signed(rs2);               // Sign of rd is XOR of signs

divu

Divide (unsigned).

Usage:

divu rd, rs1, rs2

Operation:
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if (rs2 == 32'h0)
    rd <= 32'hffffffff;                              // Defined for division by zero
else
    rd <= rs1 / rs2;

mul

Multiply 32 × 32 → 32.

Usage:

mul rd, rs1, rs2

Operation:

rd <= rs1 * rs2;

Compressible if: rd matches rs1, registers are in x8 through x15.

mulh

Multiply signed (32) by signed (32), return upper 32 bits of the 64-bit result.

Usage:

mulh rd, rs1, rs2

Operation:

// Both operands are sign-extended to 64 bits:
reg [63:0] result_full;
result_full = {{32{rs1[31]}}, rs1} * {{32{rs2[31]}}, rs2};
rd <= result_full[63:32];

mulhsu

Multiply signed (32) by unsigned (32), return upper 32 bits of the 64-bit result.

Usage:

mulhsu rd, rs1, rs2

Operation:

// rs1 is sign-extended, rs2 is zero-extended:
reg [63:0] result_full;
result_full = {{32{rs1[31}}, rs1} * {32'h00000000, rs2};
rd <= result_full[63:32];
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mulhu

Multiply unsigned (32) by unsigned (32), return upper 32 bits of the 64-bit result.

Usage:

mulhu rd, rs1, rs2

Operation:

// Both operands are zero-extended to 64 bits:
reg [63:0] result_full;
result_full = {32'h00000000, rs1} * {32'h00000000, rs2};
rd <= result_full[63:32];

rem

Remainder (signed).

Usage:

rem rd, rs1, rs2

Operation:

if (rs2 == 32'h0)
    rd <= rs1;                         // Defined for division by zero
else
    rd <= $signed(rs1) % $signed(rs2); // Sign of rd is sign of rs1

remu

Remainder (unsigned).

Usage:

remu rd, rs1, rs2

Operation:

if (rs2 == 32'h0)
    rd <= rs1;
else
    rd <= rs1 % rs2;

3.8.1.13. A: Atomics

These instructions help software to safely and concurrently modify shared variables. They fall into two groups:
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• lr.w and sc.w, load-reserved and store-conditional instructions, which allow software to safely perform read-modify-

write operations on shared variables by looping until success

• amo*.w instructions (atomic memory operations or AMOs), which atomically modify a memory location and return

the value it held immediately prior to modification

The pseudocode in this section references the 1-bit global variable local_monitor_valid. It is true when the hart has:

• previously completed a successful AHB5 exclusive read

• not attempted an exclusive write since the read

• not been interrupted or taken an exception since the read (implementation-defined behaviour)

The pseudocode maintains this invariant over the local_monitor_valid flag. This flag helps the hart maintain atomicity of

its read-modify-write sequences with respect to its own interrupts. Hardware refuses to perform exclusive writes when

the local monitor flag is not set.

AMOs clear the local monitor state even when bailing out during the read phase, since even in this case you have

attempted to execute an instruction which performs an exclusive write. In an lr.w, sc.w sequence with an AMO executed

in between, the sc.w always fails.

Hazard3 builds its atomic shared memory implementation on top of AHB5 exclusive accesses. The following tasks,

used throughout this section, represent AHB5 32-bit exclusive reads and writes:

// Read 32 bits from memory and return reservation success/fail according to
// global monitor. Set local monitor bit if the reservation succeeded.
task exclusive_read_32;
    input  [31:0]  addr;
    output [31:0]  data;
    output         exclusive_ok;
begin
    data = {
        mem[addr + 3],
        mem[addr + 2],
        mem[addr + 1],
        mem[addr]
    };
    local_monitor_valid = global_monitor_read(addr);
    exclusive_ok = local_monitor_valid;
end
endtask

// Attempt to write 32 bits to memory, and return write success/fail according
// to global monitor. Always clear the local monitor flag.
task exclusive_write_32;
    input  [31:0] addr;
    input  [31:0] data;
    output        exclusive_ok;
begin
    if (!local_monitor_valid) begin
        exclusive_ok = 0;                 // Write refused by local monitor
    end else if (global_monitor_write(addr)) begin
        exclusive_ok = 1;                 // Write succeeds
        mem[addr + 3] <= data[31:24];
        mem[addr + 2] <= data[23:16];
        mem[addr + 1] <= data[15: 8];
        mem[addr + 0] <= data[ 7: 0];
    end else begin
        exclusive_ok = 0;                 // Write refused by global monitor
    end
    local_monitor_valid = 0;              // Always clear local monitor
end
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endtask

The functions global_monitor_read(addr); and global_monitor_write(addr); in the above code return the global monitor

response for an exclusive read or write to this address, following the rules laid out in Section 2.1.6. The global monitor

enforces atomicity of this hart’s read-modify-write sequences with respect to other harts sharing the same memory.

Because Hazard3 implements an AMO as a hardware-sequenced read-modify-write retry loop using AHB5 exclusives,

the hardware promotes a read reservation failure during an AMO to a store/AMO fault exception (mcause = 7). This

behaviour avoids an infinite loop when accessing locations which do not support exclusive access.

The following local variables are common to all AMO pseudocode:

reg        done = 0;
reg        exclusive_success;
reg [31:0] tmp;

amoadd.w

Atomically add register to memory and return original memory value.

Usage:

amoadd.w rd, rs2, (rs1)

Operation:

if (rs1[1:0]) begin
    raise_exception(4'h6);                            // Cause: store/AMO align
    done = 1;
end
while (!done) begin
    exclusive_read_32(rs1, tmp, exclusive_success);
    if (!exclusive_success || bus_fault(addr)) begin
        raise_exception(4'h7);                        // Cause: store/AMO fault
        done = 1;
    end else begin
        tmp = tmp + rs2;
        exclusive_write_32(rs1, tmp, done);
    end
end
local_monitor_valid = 0;                              // Always clear local monitor

amoand.w

Atomically bitwise AND register into memory. Return original memory value.

Usage:

amoand.w rd, rs2, (rs1)

Operation:
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if (rs1[1:0]) begin
    raise_exception(4'h6);                            // Cause: store/AMO align
    done = 1;
end
while (!done) begin
    exclusive_read_32(rs1, tmp, exclusive_success);
    if (!exclusive_success || bus_fault(addr)) begin
        raise_exception(4'h7);                        // Cause: store/AMO fault
        done = 1;
    end else begin
        tmp = tmp & rs2;
        exclusive_write_32(rs1, tmp, done);
    end
end
local_monitor_valid = 0;                              // Always clear local monitor

amomax.w

Atomically: check if register is signed-greater-than memory value, and write to memory if true. Return original

memory value.

Usage:

amomax.w rd, rs2, (rs1)

Operation:

if (rs1[1:0]) begin
    raise_exception(4'h6);                            // Cause: store/AMO align
    done = 1;
end
while (!done) begin
    exclusive_read_32(rs1, tmp, exclusive_success);
    if (!exclusive_success || bus_fault(addr)) begin
        raise_exception(4'h7);                        // Cause: store/AMO fault
        done = 1;
    end else begin
        tmp = $signed(tmp) < $signed(rs2) ? rs2 : tmp;
        exclusive_write_32(rs1, tmp, done);
    end
end
local_monitor_valid = 0;                              // Always clear local monitor

amomaxu.w

Atomically: check if register is unsigned-greater-than memory value, and write to memory if so. Return original

memory value.

Usage:

amomaxu.w rd, rs2, (rs1)

Operation:
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if (rs1[1:0]) begin
    raise_exception(4'h6);                            // Cause: store/AMO align
    done = 1;
end
while (!done) begin
    exclusive_read_32(rs1, tmp, exclusive_success);
    if (!exclusive_success || bus_fault(addr)) begin
        raise_exception(4'h7);                        // Cause: store/AMO fault
        done = 1;
    end else begin
        tmp = tmp < rs2 ? rs2 : tmp;
        exclusive_write_32(rs1, tmp, done);
    end
end
local_monitor_valid = 0;                              // Always clear local monitor

amomin.w

Atomically: check if register is signed-less-than memory value, and write to memory if so. Return original memory

value.

Usage:

amomin.w rd, rs2, (rs1)

Operation:

if (rs1[1:0]) begin
    raise_exception(4'h6);                            // Cause: store/AMO align
    done = 1;
end
while (!done) begin
    exclusive_read_32(rs1, tmp, exclusive_success);
    if (!exclusive_success || bus_fault(addr)) begin
        raise_exception(4'h7);                        // Cause: store/AMO fault
        done = 1;
    end else begin
        tmp = $signed(tmp) < $signed(rs2) ? tmp : rs2;
        exclusive_write_32(rs1, tmp, done);
    end
end
local_monitor_valid = 0;                              // Always clear local monitor

amominu.w

Atomically: check if register is unsigned-less-than memory value, and write to memory if so. Return original memory

value.

Usage:

amominu.w rd, rs2, (rs1)

Operation:
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if (rs1[1:0]) begin
    raise_exception(4'h6);                            // Cause: store/AMO align
    done = 1;
end
while (!done) begin
    exclusive_read_32(rs1, tmp, exclusive_success);
    if (!exclusive_success || bus_fault(addr)) begin
        raise_exception(4'h7);                        // Cause: store/AMO fault
        done = 1;
    end else begin
        tmp = tmp < rs2 ? tmp : rs2;
        exclusive_write_32(rs1, tmp, done);
    end
end
local_monitor_valid = 0;                              // Always clear local monitor

amoor.w

Atomically bitwise OR register into memory. Return original memory value.

Usage:

amoor.w rd, rs2, (rs1)

Operation:

if (rs1[1:0]) begin
    raise_exception(4'h6);                            // Cause: store/AMO align
    done = 1;
end
while (!done) begin
    exclusive_read_32(rs1, tmp, exclusive_success);
    if (!exclusive_success || bus_fault(addr)) begin
        raise_exception(4'h7);                        // Cause: store/AMO fault
        done = 1;
    end else begin
        tmp = tmp | rs2;
        exclusive_write_32(rs1, tmp, done);
    end
end
local_monitor_valid = 0;                              // Always clear local monitor

amoswap.w

Atomically: write a value to memory, and return the value the memory location held immediately prior to the write.

Usage:

amoswap.w rd, rs2, (rs1)

Operation:
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if (rs1[1:0]) begin
    raise_exception(4'h6);                            // Cause: store/AMO align
    done = 1;
end
while (!done) begin
    exclusive_read_32(rs1, tmp, exclusive_success);
    if (!exclusive_success || bus_fault(addr)) begin
        raise_exception(4'h7);                        // Cause: store/AMO fault
        done = 1;
    end else begin
        exclusive_write_32(rs1, rs2, done);
    end
end
local_monitor_valid = 0;                              // Always clear local monitor

amoxor.w

Atomically bitwise OR register into memory. Return original memory value.

Usage:

amoxor.w rd, rs2, (rs1)

Operation:

if (rs1[1:0]) begin
    raise_exception(4'h6);                            // Cause: store/AMO align
    done = 1;
end
while (!done) begin
    exclusive_read_32(rs1, tmp, exclusive_success);
    if (!exclusive_success || bus_fault(addr)) begin
        raise_exception(4'h7);                        // Cause: store/AMO fault
        done = 1;
    end else begin
        exclusive_write_32(rs1, rs2, done);
    end
end
local_monitor_valid = 0;                              // Always clear local monitor

lr.w

Load a value from memory and make a reservation with the global monitor. Set local monitor bit according to

reservation success.

Usage:

lr.w rd, (rs1)

Operation:

RP2350 Datasheet

3.8. Hazard3 Processor 253



if (rs1[1:0]) begin
    raise_exception(4'h4); // Cause: load align
end else if (bus_fault(rs1)) begin
    raise_exception(4'h5); // Cause: load fault
end else begin
    read_exclusive_32(rs1, tmp, local_monitor_valid);
    rd <= tmp;
end

sc.w

Conditionally store a value to memory. Succeed if reservation is valid at both local and global monitor. Return 1 for

failure, 0 for success.

Usage:

sc.w rd, rs2, (rs1)

Operation:

if (rs1[1:0]) begin
    raise_exception(4'h6);                // Cause: store/AMO align
end else if (bus_fault(addr)) begin
    raise_exception(4'h7);                // Cause: store/AMO fault
end else if (!local_monitor_valid) begin
    rd <= 1;                              // Refused by local monitor
end else begin
    write_exclusive_32(rs1, rs2, exclusive_success);
    rd <= !exclusive_success;
end
local_monitor_valid = 0;                  // Always clear local monitor

3.8.1.14. C: Compressed Instructions

All instructions in the C extension are 16-bit aliases of 32-bit instructions from other extensions. In the case of Hazard3,

which lacks the F extension, these are all aliases of base I instructions. They behave identically to their 32-bit

counterparts.

C adds compressed aliases for the following instructions from RV32I:

Alphabetical order: left-to-right, then top-to-bottom.

add addi and andi beq bne

ebreak jal jalr lui lw or

slli srai srli sub sw xor

See the per-instruction documentation for the compression limitations of each instruction. The assembler automatically

uses compressed variants when the limitations are met, and when the relevant compressed instruction extension is

enabled for the assembler, for example by passing c in the -march ISA string.

The above also applies to Zca and Zcb: the former is an alias for the non-floating-point subset of C, and the latter adds 16-

bit aliases for additional common instructions from the I, M and Zbb extensions. Each Zcmp instruction expands to a

sequence of multiple instructions from the I extension.
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(Return to index)

3.8.1.15. Zba: Bit manipulation (address generation)

These instructions accelerate address generation for arrays of 2, 4 and 8-byte elements. They can also multiply by

constant values 3, 5 and 9 if that is more your style.

sh1add

Add, with the first addend shifted left by 1.

Usage:

sh1add rd, rs1, rs2

Operation:

rd <= (rs1 << 1) + rs2;

sh2add

Add, with the first addend shifted left by 2.

Usage:

sh2add rd, rs1, rs2

Operation:

rd <= (rs1 << 2) + rs2;

sh3add

Add, with the first addend shifted left by 3.

Usage:

sh3add rd, rs1, rs2

Operation:

rd <= (rs1 << 3) + rs2;

3.8.1.16. Zbb: Bit manipulation (basic)

These instructions are useful for bitfield manipulation, and complex integer arithmetic, such as in soft floating point

routines. Many of them substitute directly for common pairs of RV32I instructions, like zext.h → sll, srl.
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andn

Bitwise AND with inverted second operand.

Usage:

andn rd, rs1, rs2

Operation:

rd <= rs1 & ~rs2;

clz

Count leading zeroes (starting from MSB, searching LSB-ward).

Usage:

clz rd, rs1

Operation:

rd <= 32;         // Default = 32 if no set bits
reg found = 1'b0; // Local variable

for (i = 0; i < 32; i = i + 1) begin
    if (rs1[31 - i] && !found) begin
        found = 1'b1;
        rd <= i;
    end
end

cpop

Population count.

Usage:

cpop rd, rs1

Operation:

reg [5:0] sum = 6'd0;          // Local variable
for (i = 0; i < 32; i = i + 1)
    sum = sum + rs1[i];
rd <= sum;

ctz

Count trailing zeroes (starting from LSB, searching MSB-ward).
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Usage:

ctz rd, rs1

Operation:

rd <= 32;          // Default = 32 if no set bits
reg found = 1'b0; // Local variable

for (i = 0; i < 32; i = i + 1) begin
    if (rs1[i] && !found) begin
        found = 1'b1;
        rd <= i;
    end
end

max

Maximum of two values (signed).

Usage:

max rd, rs1, rs2

Operation:

if ($signed(rs1) < $signed(rs2))
    rd <= rs2;
else
    rd <= rs1;

maxu

Maximum of two values (unsigned).

Usage:

maxu rd, rs1, rs2

Operation:

if (rs1 < rs2)
    rd <= rs2;
else
    rd <= rs1;

min

Minimum of two values (signed).
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Usage:

min rd, rs1, rs2

Operation:

if ($signed(rs1) < $signed(rs2))
    rd <= rs1;
else
    rd <= rs2;

minu

Minimum of two values (unsigned).

Usage:

minu rd, rs1, rs2

Operation:

if (rs1 < rs2)
    rd <= rs1;
else
    rd <= rs2;

orc.b

OR-combine of bits within each byte. Generates a mask of nonzero bytes.

Usage:

orc.b rd, rs1

Operation:

rd <= {
    {8{|rs1[31:24]}},
    {8{|rs1[23:16]}},
    {8{|rs1[15:8]}},
    {8{|rs1[7:0]}}
};

orn

Bitwise OR with inverted second operand.

Usage:
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orn rd, rs1, rs2

Operation:

rd <= rs1 | ~rs2;

rev8

Reverse bytes within word.

Usage:

rev8 rd, rs1

Operation:

rd <= {
    rs1[7:0],
    rs1[15:8],
    rs1[23:16],
    rs1[31:24]
};

rol

Rotate left by register, modulo 32.

Usage:

rol rd, rs1, rs2

Operation:

rd <= ({rs1, rs1} << rs2[4:0]) >> 32;

ror

Rotate right by register, modulo 32.

Usage:

ror rd, rs1, rs2

Operation:
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rd <= {rs1, rs1} >> rs2[4:0];

rori

Rotate right by immediate.

Usage:

rori rd, rs1, imm

Operation:

rd <= {rs1, rs1} >> imm;

Immediate range: 0 through 31.

sext.b

Sign-extend from byte.

Usage:

sext.b rd, rs1

Operation:

rd <= {
    {24{rs1[7]}},
    rs1[7:0]
};

Compressible if: rd matches rs1, and registers are in x8 - x15.

sext.h

Sign-extend from halfword.

Usage:

sext.h rd, rs1

Operation:

rd <= {
    {16{rs1[15]}},
    rs1[15:0]
};

Compressible if: rd matches rs1, and registers are in x8 - x15.
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xnor

Bitwise XOR with inverted operand. Equivalently, bitwise NOT of bitwise XOR.

Usage:

xnor rd, rs1, rs2

Operation:

rd <= rs1 ^ ~rs2;

zext.b

Zero-extend from byte.

Usage:

zext.b rd, rs1

Operation:

rd <= {
    24'h000000,
    rs1[7:0]
};

Compressible if: rd matches rs1, and registers are in x8 - x15.

The 32-bit opcode for zext.b is a pseudo-instruction for andi. However, the compressed variant is a dedicated

instruction from Zcb. It is not actually a part of Zbb, but is documented here for grouping with the other sext./zext

instructions.

zext.h

Zero-extend from halfword.

Usage:

zext.h rd, rs1

Operation:

rd <= {
    16'h0000,
    rs1[15:0]
};

Compressible if: rd matches rs1, and registers are in x8 - x15.
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3.8.1.17. Zbs: Bit manipulation (single-bit)

These instructions invert, set, clear and extract single bits in a register.

bclr

Clear single bit.

Usage:

bclr rd, rs1, rs2

Operation:

rd <= rs1 & ~(32'h1 << rs2[4:0]);

bclri

Clear single bit (immediate).

Usage:

bclri rd, rs1, imm

Operation:

rd <= rs1 & ~(32'h1 << imm);

Immediate range: 0 through 31.

bext

Extract single bit.

Usage:

bext rd, rs1, rs2

Operation:

rd <= (rs1 >> rs2[4:0]) & 32'h1;

bexti

Extract single bit (immediate).

Usage:

bexti rd, rs1, imm
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Operation:

rd <= (rs1 >> imm) & 32'h1;

Immediate range: 0 through 31.

binv

Invert single bit.

Usage:

binv rd, rs1, rs2

Operation:

rd <= rs1 ^ (32'h1 << rs2[4:0]);

binvi

Invert single bit (immediate).

Usage:

binvi rd, rs1, imm

Operation:

rd <= rs1 ^ (32'h1 << imm);

Immediate range: 0 through 31.

bset

Set single bit.

Usage:

bset rd, rs1, rs2

Operation:

rd <= rs1 | (32'h1 << rs2[4:0])

bseti

Set single bit (immediate).

Usage:
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bseti rd, rs1, imm

Operation:

rd <= rs1 | (32'h1 << imm);

Immediate range: 0 through 31.

3.8.1.18. Zbkb: Basic bit manipulation for cryptography

Zbkb has a large overlap with Zbb (basic bit manipulation). This section covers instructions in Zbkb but not in Zbb.

brev8

Bit-reverse within each byte.

Usage:

brev8 rd, rs1

Operation:

for (i = 0; i < 32; i = i + 8) begin
    for (j = 0; j < 8; j = j + 1) begin
        rd[i + j] <= rs1[i + (7 - j)];
    end
end

pack

Pack two halfwords into one word.

Usage:

pack rd, rs1, rs2

Operation:

rd <= {
    rs2[15:0],
    rs1[15:0]
};

packh

Pack two bytes into one halfword.

Usage:
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packh rd, rs1, rs2

Operation:

rd <= {
    16'h0000,
    rs2[7:0],
    rs1[7:0]
};

unzip

Deinterleave odd/even bits of register into upper/lower half of result.

Usage:

unzip rd, rs1

Operation:

for (i = 0; i < 32; i = i + 2) begin
    rd[i / 2]      <= rs1[i];
    rd[i / 2 + 16] <= rs1[i + 1];
end

zip

Interleave upper/lower half of register into odd/even bits of result.

Usage:

zip rd, rs1

Operation:

for (i = 0; i < 32; i = i + 2) begin
    rd[i]     <= rs1[i / 2];
    rd[i + 1] <= rs1[i / 2 + 16];
end

3.8.1.19. Zcb: Additional Basic Compressed Instructions

Zcb adds 16-bit compressed aliases for the following instructions from the I, M and Zbb extensions:

Alphabetical order: left-to-right, then top-to-bottom.

lbu lh lhu mul not sb
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Alphabetical order: left-to-right, then top-to-bottom.

sext.b sext.h sh zext.b zext.h

See per-instruction documentation for the compressibility limitations for each instruction.

(Return to index)

3.8.1.20. Zcmp: Compressed Push, Pop and Double Move

Zcmp adds 16-bit instructions which expand to common sequences of 32-bit RV32I instructions used in function

prologues and epilogues. The following is a rough description of the available instructions:

• cm.push: allocates a stack frame and saves registers.

◦ Push ra onto the stack.

◦ Optionally push a number of the s0 through s11 saved registers, consecutively up from s0.

◦ Round the total stack decrement to a multiple of 16 bytes, to maintain stack alignment if already aligned.

◦ Decrement the stack pointer by up to 48 additional bytes, in multiples of 16 bytes, to allocate additional frame

space.

◦ There are twelve s* registers, and you can push any number of them except for eleven. If you need to push

more than ten s* registers, push twelve.

• cm.pop: reverse of cm.push. Deallocates a stack frame and restores ra, optionally s0 through s11.

• cm.popret: equivalent to cm.pop followed by ret. Deallocates a stack frame, restores saved registers, and returns.

• cm.popretz: equivalent to cm.pop; li a0, 0; ret. It is common for functions to return a constant 0.

• cm.mvsa01: move a0 and a1 into any two registers in the range s0 through s7. Used to save arguments over embedded

calls.

• cm.mva01s: move into a0 and a1, from any two registers in s0 through s7. Used to restore saved arguments.

See Section 3.8.1.1 for a link to the Zcmp specification which covers key details such as stack layout and atomicity with

respect to interrupts. See Section 3.8.7 for cycle counts for these instructions on Hazard3.

(Return to index)

3.8.1.21. RV32I and Zifencei: Memory Ordering Instructions

These instructions control observed memory ordering of loads and stores in multi-hart systems. They also enforce

when a hart’s instruction fetch observes its own stores.

fence

Constrain the position of this hart’s accesses in the total memory order, according to this hart’s program order.

Usage:

                   // <set> is a nonempty string which matches the regex i?o?r?w?
fence <set>, <set> // predecessor, successor
fence              // pseudo: fence iorw, iorw
fence.tso          // variant of fence rw, rw; see below

Operation: Hazard3 has no store buffer, and assumes the memory subsystem is sequentially consistent. Therefore

no additional book-keeping is required to enforce ordering on shared memory, and this instruction executes as a no-

op. (The SDK still uses fence instructions, and the ordered variants of amo*.w, for portability across platforms which
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take advantage of relaxed memory ordering.)

Nominally a fence enforces that the predecessor set appears before the successor set in the total memory order.

These sets respectively contain the hart’s memory accesses before and after the fence instruction in program order,

and are further filtered by a 4-bit mask each:

• Device input (I)

• Device output (O)

• Read (R)

• Write (W)

The fence.tso (total store order) variant is equivalent to fence rw, rw except that it does not enforce write-before-

read ordering.

fence.i

Instruction fence. Ensure subsequent instruction fetches on this hart observe this hart’s previous stores.

Usage:

fence.i

Operation:

1. Clear the branch target buffer (Section 3.8.7.10)

2. Jump to the instruction at the sequentially-next address (pc + 4), to clear the prefetch buffer.

The prefetch buffer can reorder instruction fetch against stores which are earlier in program order. For example:

    la a0, label   // get address for store instruction
    li a1, 0x9002  // get immediate value of c.ebreak
    div t1, t1, t1 // long-running instruction, fills prefetch buffer
    sh a1, (a0)    // write to next address. (16-bit opcode)
label:
    nop            // (16-bit opcode)

If you execute the above code on Hazard3, you may or may not get a breakpoint exception at label. The outcome

depends on how many cycles the bus accesses take. This is permitted by the RISC-V memory model.

This case is generally only reachable on fall-through, because Hazard3 does not prefetch through control flow

instructions except for the taken backward conditional branch currently allocated in the branch target buffer. In

particular it does not prefetch through indirect branches like ret. You are unlikely to hit this issue in practice;

however, be aware fence.i is the standard mechanism for solving this class of problem.

Hazard3 behaves unpredictably if you write to the address of a conditional branch instruction that is currently

tagged in the branch target buffer, and then execute that conditional branch instruction without first executing a

fence.i. Avoid this by always executing a fence.i between writing to memory and executing that same memory.

3.8.1.22. Zicsr: Control and Status Register Access

These instructions access the control and status registers (CSRs) listed in Section 3.8.9. A CSR instruction may read a

CSR, modify a CSR, or simultaneously read and modify the same CSR. A modification consists of a normal write, an

atomic bit-clear, or an atomic bit-set.

CSR addresses are in the range 0x000 through 0xfff (12 bits, 4096 possible CSRs). The CSR address is an immediate

constant in the instruction, so you cannot index CSRs with runtime values. The assembler accepts numeric constants or
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CSR names such as mstatus as CSR addresses.

csrrc

Simultaneously read and clear bits in a CSR.

Usage:

csrrc rd, <addr>, rs1
csrc <addr>, rs1      // pseudo: rd is zero

Operation:

rd <= csr[addr];
if (regnum_rs1 != 5'h00)
    csr[addr] <= csr[addr] & ~rs1;

csrrci

Simultaneously read and clear bits in a CSR, with an immediate value for the clear.

Usage:

csrrci rd, <addr>, imm
csrci <addr>, imm      // pseudo: rd is zero

Operation:

rd <= csr[addr];
if (imm != 32'h0)
    csr[addr] <= csr[addr] & ~imm;

Immediate range: 0 through 31.

csrrs

Simultaneously read and set bits in a CSR.

Usage:

csrrs rd, <addr>, rs1
csrs <addr>, rs1       // pseudo: rd is zero
csrr rd, <addr>        // pseudo: rs1 is zero

Operation:

rd <= csr[addr];
if (regnum_rs1 != 5'h00)
    csr[addr] <= csr[addr] | rs1;
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csrrsi

Simultaneously read and set bits in a CSR, with an immediate value for the set.

Usage:

csrrsi rd, <addr>, imm
csrsi <addr>, imm      // pseudo: rd is zero

Operation:

rd <= csr[addr];
if (imm != 32'h0)
    csr[addr] <= csr[addr] | imm;

Immediate range: 0 through 31.

csrrw

Simultaneously read and write a CSR.

Usage:

csrrw rd, <addr>, rs1
csrw <addr>, rs1       // pseudo: rd is zero

Operation:

if (regnum_rd != 5'h00)
    rd <= csr[addr];
csr[addr] <= rs1;

csrrwi

Simultaneously read and write a CSR, with an immediate value for the write.

Usage:

csrrwi rd, <addr>, imm
csrwi <addr>, imm      // pseudo: rd is zero

Operation:

if (regnum_rd != 5'h00)
    rd <= csr[addr];
csr[addr] <= imm;

Immediate range: 0 through 31.
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3.8.1.23. Privileged Instructions

These instructions are part of the trap and interrupt control support defined in the privileged ISA manual. The other part

of this support is the CSRs (Section 3.8.9).

ebreak

Raise a breakpoint exception.

Usage:

ebreak

Operation:

raise_exception(4'h3); // Cause = ebreak

Compressible if: always.

Privilege requirements: any privilege level.

See Section 3.8.4 for details of the RISC-V trap entry sequence. All exceptions trap into M-mode on Hazard3. The

exception program counter mepc points to the start of the ebreak instruction.

An external debug host can catch the execution of breakpoint instructions. If the core is in M-mode, and

DCSR.EBREAKM is set, the core enters Debug mode instead of taking the exception. In U-mode, DCSR.EBREAKU

enables the same behaviour.

ecall

Environment call. Raise an exception to access a handler at a higher privilege level.

Usage:

ecall

Operation:

if (priv == 2'h3)
    raise_exception(4'hb); // Cause: Environment call from M-mode
else
    raise_exception(4'h8); // Cause: Environment call from U-mode

Privilege requirements: any privilege level.

See Section 3.8.4 for details of the RISC-V trap entry sequence. All exceptions trap into M-mode on Hazard3. The

exception program counter mepc points to the start of the ecall instruction.

mret

Return from M-mode trap.

Usage:

mret
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Operation: execute the trap return sequence described in Section 3.8.4.

Privilege requirements: M-mode only.

wfi

Wait for interrupt.

Usage:

wfi

Operation: pause execution until the processor is interrupted, or enters Debug mode.

Privilege requirements: M-mode is always permitted. U-mode is permitted if MSTATUS.TW is clear.

wfi ignores the global interrupt enable, MSTATUS.MIE. It respects all other interrupt controls. For example:

• If MIP.MEIP is 1, MIE.MEIE is 1, and MSTATUS.MIE is 0, a wfi instruction falls through immediately without

pausing.

• In this example, setting MSTATUS.MIE to 1 would cause the core to immediately take the interrupt.

• If no bit is set in both MIP and MIE, the wfi stalls until there is at least one such bit.

When a wfi is interrupted, the exception return address MEPC points to the instruction following the wfi.

When the debugger halts the core during a wfi, DPC points to the instruction immediately following the wfi

instruction. wfi executes as a no-op under instruction single-stepping (it does not stall), and under Debug-mode

execution in the Program Buffer.

Hazard3’s MSLEEP CSR controls additional power-saving measures the core can implement during a wfi sleep

state.

3.8.2. Memory Access

Hazard3 accesses memory within a 4 GB (232 bytes) physical address space. There is no address translation. Each

possible value of an integer register uniquely identifies a single byte in the physical address space. Multi-byte values

occupy consecutive byte addresses.

3.8.2.1. Endianness

Hazard3 is always little-endian for all load and store accesses. RISC-V instruction fetch is always little-endian.

This means in a multi-byte access such as a sw instruction (four bytes are transferred), data stored at higher byte

addresses has greater numerical significance. For example:

li a0, 0x0d0c0b0a            // materialise constant in register
la a4, some_global_variable  // materialise address (assume addr % 4 == 0)
sw a0, (a4)                  // 4-byte write to memory
lbu a0, 0(a4)                // load byte from addr + 0: 0x0a
lbu a1, 1(a4)                // load byte from addr + 1: 0x0b
lbu a2, 2(a4)                // load byte from addr + 2: 0x0c
lbu a3, 3(a4)                // load byte from addr + 3: 0x0d
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3.8.2.2. Physical Memory Attributes

The RP2350 address space has the following physical memory attributes:

Table 363. List of

physical memory

attributes for the

RP2350 address

space. Main SRAM

supports all atomics,

other addresses

support none.

Peripherals are non-

idempotent, all other

addresses are

idempotent.

Start End Description Access Atomicity Idempotency

0x00000000 0x00007fff Boot ROM No AMOs RsrvNone,

AMONone

Idempotent

0x10000000 0x13ffffff XIP, Cached No AMOs RsrvNone,

AMONone

Idempotent

0x14000000 0x17ffffff XIP, Uncached No AMOs RsrvNone,

AMONone

Idempotent

0x18000000 0x1bffffff XIP, Cache

Maintenance

Write-only RsrvNone,

AMONone

Idempotent

0x1c000000 0x1fffffff XIP, Uncached +

Untranslated

No AMOs RsrvNone,

AMONone

Idempotent

0x20000000 0x20081fff Main SRAM Any RsrvNonEventual,

AMOArithmetic

Idempotent

0x40000000 0x4fffffff APB Peripherals No AMOs, no

instruction fetch

RsrvNone,

AMONone

Non-idempotent

0x50000000 0x5fffffff AHB Peripherals No AMOs, no

instruction fetch

RsrvNone,

AMONone

Non-idempotent

0xd0000000 0xdfffffff SIO Peripherals No AMOs, no

instruction fetch

RsrvNone,

AMONone

Non-idempotent

All addresses have Strong ordering. Any address not listed in Table 363 is a Vacant address. Accessing these

addresses has no effect other than returning a bus fault.

Note Hazard3’s PMP implementation requires that non-read-idempotent PMAs are also non-executable, because it

enforces execute permissions at the point an instruction is executed, rather than the point an instruction is fetched.

Therefore all non-idempotent locations in Table 363 are also non-executable. This is enforced at a lower level than the

PMP, and executing these addresses at any privilege level will always fault.

Note that cached XIP regions are not cacheable from a PMA point of view, because the cache is private to the memory

controller. Each system address is served by either a single cache controller or none, so coherence between harts is

irrelevant. You may have to perform manual cache maintenance following some operations like flash programming, but

this is a detail of the XIP subsystem, not the system-level memory model.

See section 3.6 of the RISC-V privileged ISA manual linked in Section 3.8.1.1 for definitions of these attributes.

3.8.3. Memory Protection

Hazard3 implements Physical Memory Protection (PMP). It does not implement the Sv32 virtual memory extension or

its associated protections.

The PMP defines permissions for physical addresses. It mostly protects M-mode memory from S-mode and U-mode

access. Hazard3 only implements M-mode and U-mode.

A PMP region applies read, write and execute permissions to a span of byte addresses. For each region there is one

address register, PMPADDR0 through PMPADDR15, and an 8-bit configuration field packed into PMPCFG0 through

PMPCFG3. The read, write and execute permissions are always enforced for U-mode. They may also be enforced for M-

mode, depending on the PMPCFG L bit for that region, and the PMPCFGM0 register.

RP2350 configures Hazard3’s PMP hardware with the following features:
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• 8× dynamically configurable regions, 0 through 7

• 3× statically configured (hardwired) regions, 8 through 10

• (Remaining regions 11 through 15 are hardwired to OFF)

• A granule of 32 bytes

• Support for naturally aligned power of two (NAPOT) region shapes only

• The custom PMPCFGM0 CSR can apply M-mode permissions to individual regions without locking them

Section 3.8.8.1 defines the configuration of the hardwired regions 8 through 10. These regions apply default U-mode

permissions to RP2350 ROM and peripherals, to avoid having to spend dynamic regions to cover these addresses. The

system-level ACCESSCTRL registers (Section 10.6) can assign each peripheral individually to M-mode or U-mode.

When multiple PMP regions match the same byte address, the lowest-numbered of these regions takes effect. The

other regions are ignored.

3.8.3.1. PMP Address Registers

Addresses in PMP address registers PMPADDR0 through PMPADDR15 are stored with a right-shift of two, so that they

can cover a 16 GB physical address space when Sv32 address translation is in effect. Hazard3 does not implement

address translation, so the physical address space is 4 GB (32-bit byte-addressed) and the two MSBs of each address

register are hardwired to zero.

The RP2350 configuration of Hazard3 supports only the OFF and NAPOT values for the PMPCFG A fields (e.g.

PMPCFG0.R0_A). Setting A to OFF means the region matches no bytes, and is effectively disabled. Setting A to NAPOT

means the region matches on a naturally aligned span of bytes (the base address modulo the size is zero) whose size is

a power of two.

The number of trailing 1s in the PMP address value encodes the size of an NAPOT region. This is the number of

consecutive 1s counted from the LSB without reaching a 0. A PMP address value with no trailing ones (ending in a 0)

matches a region eight bytes in size, and the region size is doubled with each additional 1 bit.

The PMP region matches on the address bits to the left of the least-significant 0 bit. Because the PMP address registers

are right-shifted by two, you must apply the same shift to the addresses being compared. The following examples

demonstrate how to match addresses based on PMPADDRx values:

• The 30-bit all-ones bit pattern 0x3fffffff has the maximum possible size, and matches all addresses.

• The all-zeroes bit pattern 0x00000000 has the minimum possible size.

◦ Since there are no trailing 1s, this matches starting from bit 1 of the PMP address register.

◦ Due to addresses being right-shifted by two, this is a region of eight bytes starting from address 0x0.

• The bit pattern 0x???????7 (where ? is any digit) matches any 64-byte region.

◦ Shift the base address of this 64-byte region by two to get bits 29:4 of the PMPADDRx value.

• The bit pattern 0x0800000f matches byte addresses between 0x20000000 and 0x2000007f, the first 128 bytes of SRAM.

◦ Right-shift the base address (0x20000000) by two to get 0x08000000.

◦ Add trailing ones to increase the region size and get the final value of 0x0800000f.

◦ The size of the region is eight bytes times two to the power of the number of trailing 1 bits, which in this case

(four 1s) works out to 8 × 24 = 128 bytes.

For more examples of PMP address match patterns, see the hardwired PMP region values in Section 3.8.8.1.

RP2350 configures Hazard3 with a granule of 32 bytes. This means the two least-significant bits of each PMP address

register are hardwired to all-ones when the region is enabled. The hardware does not decode address regions smaller

than 32 bytes.
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3.8.3.2. PMP Permissions

Each 8-bit PMP configuration field contains three permission flags:

• R permits non-instruction-fetch reads:

◦ load instructions

◦ the read phase of AMOs

• W permits writes:

◦ store instructions

◦ the write phase of AMOs

• X permits instruction execution

A 1 value for each permission means it is granted, and a 0 means it is revoked. These permissions apply to U-mode

access to the region. They also apply to M-mode accesses when any of the following is true:

• The L (lock) configuration bit is 1

• The Hazard3 custom PMPCFGM0 register bit for this region is 1

The L (lock) bit also locks the associated PMP address register and 8-bit PMP configuration field, so that it ignores

future writes. You should always lock PMP regions consecutively from region 0, so that locked regions cannot be

bypassed by unlocked regions.

U-mode accesses which match no PMP regions have no permissions: all memory accesses fail. M-mode accesses

which match no PMP regions have all permissions. The hardwired PMP regions in Section 3.8.8.1 define additional U-

mode permissions for the ROM and peripheral address ranges: these can be overridden by enabling any of the

dynamically configured regions.

 NOTE

Due to RP2350-E6 the field order in the PMP configuration fields is R, W, X (MSB-first) rather than the standard X, W, R.

The SDK register headers match the as-implemented order.

3.8.3.3. Accesses Spanning Multiple PMP Regions

Hazard3 does not support non-naturally-aligned loads or stores, other than to generate standard exceptions when they

are attempted. Since NAPOT PMP regions are always naturally aligned, it is impossible for a load or store to span two

PMP regions. Therefore all bytes covered by a load or store instruction are determined by at most a single active PMP

region which matches the lowest byte address accessed by that instruction.

Instructions are up to 32 bits in size with as little as 16-bit alignment. Therefore it is possible for an instruction to match

multiple PMP regions. When this happens, the instruction generates an instruction fault exception, (mcause = 0x1), unless

there is a lower-numbered PMP region which fully covers the instruction. Lower-numbered PMP regions take

precedence.

The exact quote from the privileged ISA specification is: "The lowest-numbered PMP entry that matches any byte of an

access determines whether that access succeeds or fails. The matching PMP entry must match all bytes of an access, or

the access fails, irrespective of the L, R, W, and X bits." (page 60 of RISC-V privileged ISA manual version 20211203).

The RISC-V specification is flexible in what is considered a single access for the purposes of memory protection

checking. Hazard3 considers the fetch of one instruction to be a single access. It therefore forbids instruction fetches

which straddle two PMP regions, even if both regions grant execute permission. Due to this architecture rule, portable

RISC-V software must not assume it can execute instructions which span multiple PMP regions.

Avoid this issue by using hole-punching region configurations in preference to glueing configurations. Suppose you want

to cover the first 12 kB of SRAM (0x20000000 → 0x20002fff), this can be achieved in two ways:
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• One region adding permissions to 0x20000000 → 0x200001fff, and another region adding permissions to 0x20002000 →
0x20002fff

• One region adding permissions to 0x20000000 → 0x20003fff, and a lower-numbered region subtracting permissions

from 0x20003000 → 0x20003fff

The former option has a crack between the two regions, which has potentially unwanted effects on some platforms. The

latter avoids this issue entirely.

3.8.4. Interrupts and Exceptions

In the RISC-V privileged ISA manual, a trap refers to either an interrupt or an exception:

Interrupt

A signal from outside the processor requests that it temporarily abandons its current task to deal with some

system-level event. The processor responds by transferring control to an interrupt handler function.

Exception

An instruction encounters a condition which prevents that instruction from completing normally. The processor

transfers control to an exception handler function to deal with the exceptional condition before it can resume

execution.

The two are closely related, and they are collectively referred to as traps to avoid stating everything twice.

Hardware performs the following steps automatically and atomically when entering a trap:

1. Save the address of the interrupted or excepting instruction to MEPC

2. Set the MSB of MCAUSE to indicate the cause is an interrupt, or clear it to indicate an exception

3. Write the detailed trap cause to the LSBs of the MCAUSE register

4. Save the current privilege level to MSTATUS.MPP

5. Set the privilege to M-mode (note Hazard3 does not implement S-mode)

6. Save the current value of MSTATUS.MIE to MSTATUS.MPIE

7. Disable interrupts by clearing MSTATUS.MIE

8. Jump to the correct offset from MTVEC depending on the trap cause

 NOTE

The above sequence of events is standard and is also described in the RISC-V Privileged ISA Manual. See Section

3.8.1.1 for a list of links to RISC-V specifications.

All earlier instructions than the one pointed to by MEPC execute normally, and their effects are visible to the trap

handler. These earlier instructions are not affected by the exception or interrupt. On the other hand the instruction

pointed to by MEPC, and all later instructions, does not execute before entering the trap handler. These instructions

have no visible side effects, with the possible exception of load/store fault exceptions, where the bus fault itself may

have observable effects on the bus or peripheral.

Expanding on the MEPC behaviour in architectural terms, all traps are precise, meaning there exists some point in

program order where the trap handler observes all earlier instructions to have retired and all later instructions to have

not. The MEPC register indicates this point. All exceptions are also synchronous, meaning there is a particular

instruction which originated the trap, and the trap architecturally takes place in between that instruction and its

predecessors in program order.

M-mode software executes an mret instruction to return to the interrupted or excepting instruction at the end of a

handler. This largely reverses the process of entering the trap:

1. Restore core privilege level to the value of MSTATUS.MPP
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2. Write 0 (U-mode) to MSTATUS.MPP

3. Restore MSTATUS.MIE from MSTATUS.MPIE

4. Write 1 to MSTATUS.MPIE

5. Jump to the address in MEPC.

Often, the values restored on exit are exactly those values saved on entry. However this need not be the case, as all

CSRs mentioned above are read/writable by M-mode software at any time. Hand-manipulating the trap handling CSRs is

useful for low-level OS operations such as context switching, or to make exception handlers return to the instruction

after the trap point by incrementing MEPC before return. You can execute an mret without any prior trap, for example

when entering U-mode code from M-mode for the first time.

Hardware does not save or restore any other registers. In particular, it does not save the core GPRs, and software is

responsible for ensuring the execution of the handler does not perturb the foreground context. For an interrupt, this may

mean saving the core registers on the interruptee’s stack, or using the MSCRATCH CSR to swap the stack pointer before

saving registers on a dedicated interrupt stack. For a fatal exception this may be unimportant, as there is no

requirement for the handler to return.

3.8.4.1. Exceptions

Exceptions occur for a variety of reasons. MCAUSE indicates the specific reason for the latest exception:

Cause Meaning

0x0 Instruction alignment: Does not occur on RP2350, because 16-bit compressed instructions are

implemented, and it is impossible to jump to a byte-aligned address.

0x1 Instruction fetch fault: Attempted to fetch from an address that does not support instruction fetch (like

APB/AHB peripherals on RP2350), or lacks PMP execute permission, or is forbidden by ACCESSCTRL, or

returned a fault from the memory device itself.

0x2 Illegal instruction: Encountered an instruction that was not a valid RISC-V opcode implemented by this

processor, or attempted to access a nonexistent CSR, or attempted to execute a privileged instruction or

access a privileged CSR without sufficient privilege.

0x3 Breakpoint: An ebreak or c.ebreak instruction was executed, and no external debug host caught it (

DCSR.EBREAKM or DCSR.EBREAKU was not set).

0x4 Load alignment: Attempted to load from an address that was not a multiple of access size.

0x5 Load fault: Attempted to load from an address that does not exist, or lacks PMP read permissions, or is

forbidden by ACCESSCTRL, or returned a fault from a peripheral.

0x6 Store/AMO alignment: Attempted to write to an address that was not a multiple of access size.

0x7 Store/AMO fault: Attempted to write to an address that does not exist, or lacks PMP write permissions, or

is forbidden by ACCESSCTRL, or returned a fault from a peripheral. Also raised when attempting an AMO

on an address that does not support AHB5 exclusives.

0x8 An ecall instruction was executed in U-mode.

0xb An ecall instruction was executed in M-mode.

Exceptions jump to exactly the address of MTVEC, no matter the cause and no matter whether vectoring is enabled.

The MSTATUS.MIE global interrupt enable does not affect exception entry. You can still take an exception and trap into

the exception handler when exceptions are disabled.

Returning from an exception will jump to MEPC, which hardware sets to the address of the excepting instruction before

entering the exception handler. This means by default you will return to the exact same instruction that caused the

exception. When emulating illegal instructions, you should increment mepc before returning, so that execution resumes

after the problematic instruction.
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Hazard3 hardwires mtval to zero. To emulate a misaligned load/store instruction you must decode the instruction and

read the spilled register state to calculate the address, and to emulate an illegal instruction you must read the

instruction bits from memory yourself by dereferencing mepc.

3.8.4.2. Interrupts

Hazard3 implements the standard RISC-V interrupt scheme with a single external interrupt routed to MIP.MEIP, and the

standard timer and soft interrupts routed to MTIP and MSIP. An interrupt controller such as a standard RISC-V PLIC can

be integrated externally to route multiple interrupts through to the single external interrupt line. Alternatively, the

Hazard3 interrupt controller (see Xh3irq extension, Section 3.8.6.1) multiplexes multiple external interrupts onto

MIP.MEIP in such a way that interrupts can efficiently pre-empt one another, with configurable dynamic priority per

interrupt.

RP2350 configures Hazard3 with the Xh3irq interrupt controller, with 52 external interrupt lines and 16 levels of pre-

emption priority. The IRQ numbers for the system-level interrupts, documented in Section 3.2, are the same on both Arm

and RISC-V.

The core enters an interrupt when all of the following are true:

• MSTATUS.MIE is set

• An interrupt pending bit in the standard MIP CSR is set

• The matching interrupt enable in the standard MIE CSR is also set

When vectoring is disabled (LSB of MTVEC is clear), interrupts transfer control directly to the address indicated by mtvec.

Setting the LSB enables vectoring: interrupts transfer control to the address mtvec + 4 * cause, where the interrupt cause

is one of:

• meip: cause = 11

• mtip: cause = 7

• msip: cause = 3

The pointer written to mtvec must be word-aligned (4 bytes). Additionally, when vectoring is enabled, it must be aligned

to the size of the table, rounded up to a power of two. This works out to 64-byte alignment. On RP2350, mtvec is fully

writable except for bit 1, which is hardwired to zero as it is only used for additional vectoring modes not supported by

Hazard3.

When multiple interrupts are active, hardware picks one to enter, in the order meip > msip > mtip. (Note this is not quite the

same order as the cause values.)

3.8.4.2.1. RISC-V Interrupt Signals

The standard timer interrupt MIP.MTIP connects to the RISC-V platform timer in the SIO subsystem (Section 3.1.8). This

is a 64-bit timer with a per-core 64-bit comparison value. The interrupt is asserted whenever the timer is greater than or

equal to the comparison value, and de-asserts automatically when less than. The same interrupt signal also appears in

the system-level IRQs, as SIO_IRQ_MTIMECMP (IRQ 40). The timer is a standard RISC-V peripheral, often used by operating

systems to generate context switch interrupts.

The standard software interrupt MIP.MSIP connects to the RISCV_SOFTIRQ register in the SIO subsystem. The register

has a single bit per hart, which asserts the soft IRQ interrupt to that hart. This can be used to interrupt the other hart, or

to interrupt yourself as though the other hart had interrupted you, which can help to make handler code more

symmetric. On RP2350 there is a one-to-one correspondence between harts and cores, so you could equivalently say

there is one soft IRQ per core.

Hazard3’s internal interrupt controller drives the MIP.MEIP external interrupt pending bit based on its internal state and

the system-level interrupt signals, to transfer control to the interrupt vector when it is both safe and necessary. Section

3.8.6.1 describes the Xh3irq interrupt controller in depth.
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3.8.4.2.2. Interrupt Calling Convention

The default SDK hardware_irq library expects function pointers registered for system-level IRQs to be normal C functions.

There must be no __attribute__((interrupt)) on an interrupt handler passed into functions such as

set_exclusive_irq_handler(). This is an API detail that is consistent across all architectures supported by the SDK. Using

regular C calling convention is also efficient under heavy interrupt load, because the cost of saving/restoring all caller

save and temporary registers can be amortised over multiple interrupt handlers due to tail sharing, and a save triggered

by a low-priority IRQ can be taken over by a high-priority IRQ that asserted during the save.

Conversely, handlers registered for the standard RISC-V mtip and msip interrupts via the SDK

irq_set_riscv_vector_handler() function must be __attribute__((interrupt)). In terms of the generated code, this means

they should use save-as-you-go calling convention, and end with an mret. These interrupts are entered directly by the

hardware without any intermediate dispatch code.

As software is responsible for the dispatch to individual system interrupt handlers from the meip vector, it is possible to

support other interrupt calling conventions by supplying a different implementation for the dispatch.

3.8.5. Debug

RISC-V Debug Specification

Hazard3 implements version 0.13.2 of the RISC-V External Debug Support specification, available at:

riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf

RP2350 implements a single RISC-V Debug Module, which enables debug access to the two Hazard3 processor

instances. Hazard3 should be supported by any debug translator implementing version 0.13.2 of the RISC-V External

Debug Support specification, but some details of its implementation-defined behaviour are described here for

completeness. Note that the Debug Module source code, available in the Hazard3 repository, can be consulted to

answer more detailed questions about the debug implementation.

As configured on RP2350, Hazard3 supports the following standard RISC-V debug features:

• Run/halt/reset control of each processor

• Halt-on-reset support for all processors

• Hart array mask register, for halting/resuming multiple processors simultaneously

• Abstract access to GPRs

• Program Buffer: 2 words with an implicit ebreak (impebreak)

• Automatic trigger of abstract commands (abstractauto)

• System Bus Access, arbitrated with core 1’s load/store port

• An instruction address trigger unit with four hardware breakpoints

3.8.5.1. Accessing the Debug Module

The Debug Module is accessed through a CoreSight APB-AP which can be accessed in one of two ways:

• Externally, through the system’s SW-DP (see Section 3.5)

• Internally, via self-hosted debug (see Section 3.5.6)

The APB-AP for the Debug Module is located at offset 0xa000 in the debug address space. The Debug Module starts at

address 0 in the APB-AP’s downstream address space. The Debug Module addresses registers in increments of four

bytes, as APB is byte-addressed rather than word-addressed. This means the Debug Module register addresses listed in

the RISC-V debug specification must be multiplied by four.
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3.8.5.2. Harts

Each Hazard3 core possesses exactly one hardware thread, or hart. This means each processor executes only a single

stream of instructions at a time. The two Hazard3 processor cores on RP2350, core 0 and 1, have hart IDs of 0 and 1

respectively. These values can be read from the MHARTID register on each processor, and match the values read from

the CPUID register in SIO.

The dmcontrol.hartsel field in RP2350’s Debug Module supports writing the values 0 and 1 only (it implements only a

single writable bit), and these correspond to hart IDs 0 and 1, which execute on core 0 and core 1 respectively.

3.8.5.3. Resets

The dmcontrol.hartreset field resets the selected cores only. This can be a single core selected by dmcontrol.hartsel, or

multiple cores selected by the hart array mask. It does not reset cores that are not selected, nor does it reset any other

system hardware. Note that there is a one-to-one correspondence between harts and cores on this system.

The dmcontrol.ndmreset field resets both cores. It does not reset any other hardware. As per the specification: "Exactly

what is affected by this reset is implementation dependent, as long as it is possible to debug programs from the first

instruction executed."

3.8.5.4. Implementation-defined behaviour

The following are not implemented:

• Abstract access memory

• Abstract access CSR

• Post-incrementing abstract access GPR

The core behaves as follows:

• Branch, jal, jalr and auipc are illegal in Debug mode, because they observe PC: attempting to execute will halt

Program Buffer execution and report an exception in abstractcs.cmderr

• The dret instruction is not implemented (a special purpose DM-to-core signal is used to signal resume)

• The dscratch CSRs are not implemented

• The Debug Module’s data0 register is mapped into the core as a CSR, DMDATA0

• dcsr.stepie is hardwired to 0 (no interrupts during single stepping)

• dcsr.stopcount and dcsr.stoptime are hardwired to 1 (no counter or internal timer increment in Debug mode)

• dcsr.mprven is hardwired to 0

• dcsr.prv accepts only the values 3 (M-mode) and 0 (U-mode), rounding to nearest on write

For more details on the core-side Debug mode registers, see DCSR and DPC.

The trigger unit implements four exact instruction address match triggers. Triggers can be configured to trap to M-

mode as well as Debug-mode, meaning M-mode can use triggers for self-hosted hardware breakpoint support. The

tcontrol.mte and tcontrol.mpte fields are implemented to avoid infinite exception loops when an M-mode trigger is set on

the M-mode exception handler.

3.8.6. Custom Extensions

Hazard3 implements a small number of custom extensions. All are optional: custom extensions are only included if the

relevant feature flags are set to 1 when instantiating the processor (Section 3.8.8). Hazard3 is always a conforming

RISC-V implementation; when these extensions are disabled, it is also a standard RISC-V implementation.
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If any one of these extensions is enabled, the x bit in MISA is set to indicate the presence of a non-standard extension.

3.8.6.1. Xh3irq: Hazard3 interrupt controller

Xh3irq controls up to 512 external interrupts, with up to 16 levels of pre-emption. It is architected as a layer on top of the

standard mip.meip external interrupt line, and all standard RISC-V interrupt behaviour still applies. This extension adds no

new instructions, but does add several CSRs:

• MEIEA: external interrupt enable array

• MEIPA: external interrupt pending array

• MEIFA: external interrupt force array

• MEIPRA: external interrupt priority array

• MEINEXT: get next external interrupt

• MEICONTEXT: external interrupt context register

Xh3irq is geared towards supporting interrupt handlers as bare C functions, with dispatch implemented in software and

pre-emption priority logic implemented in hardware. However, the exact interrupt ABI is up to the implementation of the

soft dispatch routine installed as the mip.meip external interrupt handler.

3.8.6.1.1. Array CSRs

RISC-V CSRs are ideal for interrupt controls because they are closely coupled to the processor, offer native atomic

set/clear accesses, and can be accessed in a single instruction without first having to materialise an address. However

there are issues with using CSRs for large bit arrays, such as interrupt enables:

• The CSR address space is limited

• CSRs can not be addressed indirectly, so are difficult to iterate over

• Using a CSR to index other CSRs is problematic for interrupt handlers due to additional mutable state

Xh3irq uses the array CSR idiom to expose a large bit vector at a single CSR address, such as MEIEA. The upper half of

the CSR is a 16-bit window into the array, and the window is indexed by the LSBs of the write data for the same CSR

instruction.

For example, the following assembly code writes 0xa5a5 to bits 47:32 of the interrupt enable array, since the window

index is 0x2 and the window is 16 bits in size:

    li a0, 0xa5a50002
    csrw RVCSR_MEIEA_OFFSET, a0

The following reads bits 63:48 of the interrupt pending array into register a0, since the index is 0x3, and a CSR set of

0x0000 does not modify the window contents:

    csrrsi a0, RVCSR_MEIPA_OFFSET, 0x3

Setting an arbitrary IRQ enable from C works as follows:

void enable_irq(uint irq) {
    uint index = irq / 16;
    uint32_t mask = 1u << (irq % 16);
    asm (
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        "csrs 0xbe0, %0\n"
        : : "r" (index | (mask << 16))
    );
}

Getting an arbitrary IRQ pending flag from C is as follows:

bool check_irq_pending(uint irq) {
    uint index = irq / 16;
    uint32_t csr_rdata;
    asm (
        "csrrs %0, 0xbe1, %1\n"
        : "=r" (csr_rdata)
        : "r" (index)
    );
    csr_rdata >>= 16;
    return csr_rdata & (1u << (irq % 16));
}

The SDK implements similar operations in the hardware_irq API.

Hazard3 supports up to 512 interrupts, which is one 16-bit window for each of the possible values of a 5-bit CSR

immediate.

3.8.6.1.2. Enable, Pending and Force Arrays

The MEIEA, MEIPA and MEIFA CSRs expose the interrupt enable, pending and force arrays respectively. Each array

contains one bit per system-level interrupt line, of which there are 52 lines in total. (See Section 3.2 for the assignment

of system IRQ numbers to peripherals.)

The interrupt enable array gates the entry of interrupt signals into the core. When a bit is clear in MEIEA, the

corresponding interrupt signal is ignored. When a bit is set, assertion of the corresponding interrupt signal will send the

core to the meip vector as soon as it is safe and appropriate to do so. From there, the meip handler vectors to the correct

handler, after saving the interruptee’s context.

The SDK irq_set_enabled() function in the hardware_irq library is a convenient way to manipulate the interrupt enable

array.

The interrupt pending array displays the current status of the system-level interrupt signals. Interrupts are visible in

MEIPA even if the corresponding bit is clear in MEIEA, and even if the interrupt has insufficient priority to interrupt the

core at this time. This register is read-only: bits in MEIPA clear automatically when the corresponding interrupt source

de-asserts. For example a UART RX FIFO interrupt should clear on its own once data has been read from the FIFO.

The interrupt force array causes interrupts to appear pending, even when the corresponding system-level interrupt

signal is de-asserted. When a bit is set in MEIFA, the corresponding bit in MEIPA reads as 1, and will interrupt the core if

it meets the usual prerequisites.

MEIFA bits clear automatically when the corresponding interrupt is sampled from MEINEXT. It is not necessary to write

a 1 bit to MEINEXT.UPDATE for the interrupt force bit to clear. This means setting an MEIFA bit should cause the

interrupt to be taken once. Normal csrw and csrc instructions will also clear MEIFA.

Six spare interrupt lines 46 through 51, referred to as SPAREIRQ_IRQ_0 through SPAREIRQ_IRQ_5 in the SDK, deliberately do not

connect to system-level hardware. However they are still fully implemented in the interrupt controller, and fire when set

pending in MEIFA. For example, a fast interrupt top-half handler may schedule its longer-running bottom half to run at a

lower priority, or a high-priority context switch interrupt may schedule a context switch to take place at a lower priority in

order to clear interrupt frames off the stack.
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3.8.6.1.3. Next Interrupt Register

MEINEXT always displays the next interrupt that should be handled, taking priority order into account. Interrupts appear

in MEINEXT when they meet all of the following criteria:

1. Pending in MEIPA

2. Enabled in MEIEA

3. Of priority greater than or equal to MEICONTEXT.PPREEMPT

The value returned is the IRQ number of the highest-priority interrupt that meets these three criteria, left-shifted by two.

When multiple interrupts have the highest priority, the lowest-numbered of those interrupts is chosen, as a tie-break.

The MSB of MEINEXT is set to indicate there were no eligible interrupts, and the remaining bits are undefined in this

case. Software should repeatedly read MEINEXT until all available interrupts are exhausted. The bltz and bgez

instructions are a convenient way to test the MSB of a register.

The purpose of rule 3 above is to ensure that any interrupt that may already be in progress in a pre-empted interrupt

frame is not re-entered in the current frame. Without this rule, multiple executions of the same interrupt handler could be

interleaved due to pre-emption by other handlers. Programmers are usually surprised when this happens.

MEINEXT.UPDATE is a write-only field which instructs hardware to update MEICONTEXT with information about the

interrupt displayed in MEINEXT on that cycle. Section 3.8.6.1.5 goes into more detail about context register updates.

 IMPORTANT

MEINEXT is constantly changing as interrupt signals come and go. The write to MEINEXT.UPDATE must be the

same instruction that reads the interrupt index from MEINEXT to avoid a data race. This can be achieved with a csrrw

or csrrwi instruction.

3.8.6.1.4. Interrupt Priority

The interrupt priority array MEIPRA implements a four-bit field per interrupt. In hardware, numerically higher (unsigned)

MEIPRA values have higher priority, taking precedence over lower-priority interrupts. The irq_set_priority() SDK

function uses the opposite convention, with lower numeric values indicating greater precedence. This section uses the

hardware numbering.

The interrupt priority in MEIPRA determines three things:

1. Whether the interrupt source is permitted to interrupt the core at this moment: must be greater than or equal

MEICONTEXT.PREEMPT

2. Whether the interrupt source can appear in MEINEXT: must be greater than or equal to MEICONTEXT.PPREEMPT

3. What order this interrupt will appear in when there are multiple candidates for MEINEXT

When MEICONTEXT is correctly saved and restored, PREEMPT and PPREEMPT are both zero outside of interrupt

handlers, and PREEMPT is strictly greater than PPREEMPT when inside an interrupt handler. Together they define the

band of interrupt priorities which may be processed without any pushing or popping of interrupt stack frames.

Manipulating interrupt priority outside of interrupts is safe. There is no need to disable interrupts when writing to the

priority array. Manipulating interrupt priority inside of an interrupt handler requires care: hardware operation is well-

defined, but the results can be surprising. Be wary of the following cases:

1. Increasing the priority of the current handler: if still enabled and pending, you will instantly pre-empt yourself.

2. Increasing the priority of a different interrupt, with priority lower than MEICONTEXT.PPREEMPT: this interrupt may

already be in progress in a frame that was pre-empted in order to run your handler. Increasing the priority may

cause it to execute in a higher frame before returning to the original frame where it is still in progress, thereby

interleaving with its own execution.

Note PPREEMPT is guaranteed to be no greater than the current handler priority if MEICONTEXT is correctly

saved/restored, since it contains the previous value of PREEMPT at the time a pre-emption took place, and interrupts
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lower than PREEMPT can not interrupt the core. Therefore a safe approximation for case 2 above is: do not increase (by

any amount) the priority of a handler with lower priority than the currently running handler.

If an interrupt must increase the priority of a lower-priority interrupt, one solution is to queue up interrupt priority

updates, and pend a lowest-priority handler assigned to one of the spare IRQs, which processes the enqueued updates.

You can pend this handler manually by setting its bit in MEIFA. The handler will run last thing before returning to

foreground code. This is safe because an interrupt of the lowest priority by definition can not have pre-empted any other

interrupts.

3.8.6.1.5. Interrupt Context Management

The MEICONTEXT register has two functions: manage the core pre-emption priority across multiple pre-empting

interrupt stack frames, and help software track which interrupt handler it is currently executing, if any.

MEICONTEXT.PREEMPT, MEICONTEXT.PPREEMPT and MEICONTEXT.PPPREEMPT form a three-level stack of pre-

emption priorities:

• PREEMPT sets the minimum interrupt priority which interrupts the core

• PPREEMPT sets the minimum interrupt priority which appears in MEINEXT: this avoids redundant execution of

interrupt handlers which may have been pre-empted

• PPPREEMPT has no hardware function other than save/restore of PPREEMPT

When entering the MIP.MEIP vector, hardware atomically performs the following updates to MEICONTEXT

simultaneous to the standard trap entry sequence described in Section 3.8.4:

1. Save the current value of MEICONTEXT.PPREEMPT to PPPREEMPT

2. Save the current value of MEICONTEXT.PREEMPT to PPREEMPT

3. Write one plus the priority of the IRQ which caused this interrupt to MEICONTEXT.PREEMPT

4. Write 1 to MEICONTEXT.MRETEIRQ, to enable priority restore on next mret

The standard trap entry sequence includes clearing MSTATUS.MIE, so interrupts are disabled at the start of the handler.

To implement pre-emption, the MIP.MEIP handler must re-enable interrupts after its context save critical section. This

should include saving MEICONTEXT, MSTATUS, MEPC, and the caller-saved general-purpose registers.

Any trap entry not caused by MIP.MEIP clears MRETEIRQ. Trap exit (mret) also clears MRETEIRQ.

A trap exit where MEICONTEXT.MRETEIRQ is set atomically performs the following updates to MEICONTEXT

simultaneous to the standard trap exit sequence:

1. Restore MEICONTEXT.PREEMPT from MEICONTEXT.PPREEMPT

2. Restore MEICONTEXT.PPREEMPT from MEICONTEXT.PPPREEMPT

3. Write 0 to MEICONTEXT.PPPREEMPT

The MRETEIRQ flag allows hardware to match each MIP.MEIP vector entry with its associated mret. This balances

pushes and pops of the PREEMPT priority stack. When there is no pre-emption, and no exceptions raised within

interrupt handlers, MRETEIRQ can be left in place in the MEICONTEXT.MRETEIRQ register. Otherwise, you must save

MEICONTEXT upon entering the external interrupt vector and restore it before the mret at the end of the handler.

Interrupts must be disabled during save/restore.

Writing 1 to MEINEXT.UPDATE updates MEICONTEXT as follows:

1. Write MEINEXT.NOIRQ to MEICONTEXT.NOIRQ

2. Write MEINEXT.IRQ (the IRQ number) to MEICONTEXT.IRQ

3. If MEINEXT.NOIRQ is…

◦ Clear: Write one plus the priority of MEINEXT.IRQ to MEICONTEXT.PREEMPT

RP2350 Datasheet

3.8. Hazard3 Processor 283



◦ Set: Write 0x10 to MEICONTEXT.PREEMPT (greater than any interrupt priority in MEIPRA)

MEICONTEXT.IRQ and NOIRQ help code determine in which interrupt handler it is running. MEICONTEXT should be

saved/restored by interrupts which pre-empt the current one, so is safe to check these fields during the handler.

The update to MEICONTEXT.PREEMPT upon writing MEINEXT.UPDATE ensures the core will be pre-empted by

interrupts higher-priority than the one it is about to enter. Equally important, it ensures the core is not pre-empted by

lower or equal priority interrupts, including the one whose handler it is about to enter.

To avoid awkward interactions between the MIP.MEIP handler, which should be aware of the Xh3irq extension, and the

MTIP/MSIP handlers, which may not be, it’s best to avoid pre-emption of the former by the latter.

MEICONTEXT.CLEARTS, MTIESAVE and MSIESAVE support disabling and restoring the timer/software interrupt

enables as part of the MEICONTEXT CSR accesses that take place during context save/restore in the MEIP handler.

3.8.6.1.6. Minimal Handler Example

This example demonstrates a minimal meip handler which dispatches to an array of C-function interrupt handlers,

without enabling pre-emption. In this case the priorities configured in MEIPRA still determine the order in which

interrupts are entered when multiple are asserted, but once an interrupt handler starts running, no other interrupts are

serviced until that handler completes.

#include "hardware/regs/rvcsr.h"

isr_riscv_machine_external_irq:
    // Save all caller saves and temporaries before entering a C ABI function.
    // Note mstatus.mie is cleared by hardware on interrupt entry, and
    // we're going to leave it clear.
    addi sp, sp, -64
    sw ra,  0(sp)
    sw t0,  4(sp)
    sw t1,  8(sp)
    sw t2, 12(sp)
    sw a0, 16(sp)
    sw a1, 20(sp)
    sw a2, 24(sp)
    sw a3, 28(sp)
    sw a4, 32(sp)
    sw a5, 36(sp)
    sw a6, 40(sp)
    sw a7, 44(sp)
    sw t3, 48(sp)
    sw t4, 52(sp)
    sw t5, 56(sp)
    sw t6, 60(sp)

get_first_irq:
    // Sample the current highest-priority active IRQ (left-shifted by 2) from
    // meinext. Don't set the `update` bit as we aren't saving/restoring meicontext --
    // this is fine, just means you can't check meicontext to see whether you are in an IRQ.
    csrr a0, RVCSR_MEINEXT_OFFSET

    // MSB will be set if there is no active IRQ at the current priority level
    bltz a0, no_more_irqs
dispatch_irq:
    // Load indexed table entry and jump through it. No bounds checking is necessary
    // because the hardware will not return a nonexistent IRQ.
    lui a1, %hi(__soft_vector_table)
    add a1, a1, a0
    lw a1, %lo(__soft_vector_table)(a1)
    jalr ra, a1
get_next_irq:
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    // Get the next-highest-priority IRQ
    csrr a0, RVCSR_MEINEXT_OFFSET
    // MSB will be set if there is no active IRQ at the current priority level
    bgez a0, dispatch_irq

no_more_irqs:
    // Restore saved context and return from IRQ
    lw ra,  0(sp)
    lw t0,  4(sp)
    lw t1,  8(sp)
    lw t2, 12(sp)
    lw a0, 16(sp)
    lw a1, 20(sp)
    lw a2, 24(sp)
    lw a3, 28(sp)
    lw a4, 32(sp)
    lw a5, 36(sp)
    lw a6, 40(sp)
    lw a7, 44(sp)
    lw t3, 48(sp)
    lw t4, 52(sp)
    lw t5, 56(sp)
    lw t6, 60(sp)
    addi sp, sp, 64
    mret

// Array of function pointers for interrupt handlers
.section ".bss"
.p2align 2
.global __soft_vector_table
__soft_vector_table:
.space 52 * 4

Since the handler loops on meinext until no more interrupts are pending, multiple interrupts are processed with a single

save/restore of the caller saves and temporaries.

The pending status of each IRQ in MEIPA clears once the corresponding peripheral de-asserts its interrupt output. A

correctly programmed interrupt handler should cause the peripheral interrupt to de-assert, so each successive read

from meinext will return a new interrupt. Because meinext always returns the highest-priority active interrupt, this loop

iterates over active interrupts in descending priority order.

Note the overhead of performing the register save/restore in software is minimal, because the save/restore routine is

actually limited by bus bandwidth, not by instruction execution overhead. This also makes the hardware more flexible,

because the same hardware can support multiple interrupt ABIs.

3.8.6.2. Xh3pmpm: M-mode PMP regions

This extension adds a new M-mode CSR, PMPCFGM0, which allows a PMP region to be enforced in M-mode without

locking the region.

This is useful when the PMP is used for non-security-related purposes such as stack guarding, or trapping and

emulation of peripheral accesses.

3.8.6.3. Xh3power: Hazard3 power management

This extension adds a new M-mode CSR (MSLEEP), and two new hint instructions, h3.block and h3.unblock, in the slt

nop-compatible custom hint space.

The msleep CSR controls how deeply the processor sleeps in the WFI sleep state. By default, a WFI is implemented as a
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normal pipeline stall. By configuring msleep appropriately, the processor can gate its own clock when asleep or, with a

simple 4-phase req/ack handshake, negotiate power up/down of external hardware with an external power controller.

These options can improve the sleep current at the cost of greater wakeup latency.

The hints allow processors to sleep until woken by other processors in a multiprocessor environment. They are

implemented on top of the standard WFI state, which means they interact in the same way with external debug, and

benefit from the same deep sleep states in msleep.

3.8.6.3.1. h3.block

Enter a WFI sleep state until either an unblock signal is received, or an interrupt is asserted that would cause a WFI to

exit.

If mstatus.tw is set, attempting to execute this instruction in privilege modes lower than M-mode will generate an illegal

instruction exception.

If an unblock signal has been received in the time since the last h3.block, this instruction executes as a nop, and the

processor does not enter the sleep state. Conceptually, the sleep state falls through immediately because the

corresponding unblock signal has already been received.

An unblock signal is received when a neighbouring processor (the exact definition of "neighbouring" being left to the

implementer) executes an h3.unblock instruction, or for some other platform-defined reason.

This instruction is encoded as slt x0, x0, x0, which is part of the custom nop-compatible hint encoding space.

Example C macro:

#define __h3_block() asm ("slt x0, x0, x0")

Example assembly macro:

.macro h3.block
    slt x0, x0, x0
.endm

3.8.6.3.2. h3.unblock

Post an unblock signal to other processors in the system. For example, to notify another processor that a work queue is

now non-empty.

If mstatus.tw is set, attempting to execute this instruction in privilege modes lower than M-mode will generate an illegal

instruction exception.

This instruction is encoded as slt x0, x0, x1, which is part of the custom nop-compatible hint encoding space.

Example C macro:

#define __h3_unblock() asm ("slt x0, x0, x1")

Example assembly macro:
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.macro h3.unblock
    slt x0, x0, x1
.endm

3.8.6.4. Xh3bextm: Hazard3 bit extract multiple

This is a small extension with multi-bit versions of the "bit extract" instructions from Zbs, used for extracting small,

contiguous bit fields.

3.8.6.4.1. h3.bextm

"Bit extract multiple", a multi-bit version of the bext instruction from Zbs. Perform a right-shift followed by a mask of 1-8

LSBs.

Encoding (R-type):

Bits Name Value Description

31:29 funct7[6:4] 0b000 RES0

28:26 size - Number of ones in mask, values 0→7 encode 1→8 bits.

25 funct7[0] 0b0 RES0, because aligns with shamt[5] of potential RV64

version of h3.bextmi

24:20 rs2 - Source register 2 (shift amount)

19:15 rs1 - Source register 1

14:12 funct3 0b000 h3.bextm

11:7 rd - Destination register

6:2 opc 0b01011 custom0 opcode

1:0 size 0b11 32-bit instruction

Example C macro (using GCC statement expressions):

// nbits must be a constant expression
#define __h3_bextm(nbits, rs1, rs2) ({\
    uint32_t __h3_bextm_rd; \
    asm (".insn r 0x0b, 0, %3, %0, %1, %2"\
        : "=r" (__h3_bextm_rd) \
        : "r" (rs1), "r" (rs2), "i" ((((nbits) - 1) & 0x7) << 1)\
    ); \
    __h3_bextm_rd; \
})

Example assembly macro:

// rd = (rs1 >> rs2[4:0]) & ~(-1 << nbits)
.macro h3.bextm rd rs1 rs2 nbits
.if (\nbits < 1) || (\nbits > 8)
.err
.endif
#if NO_HAZARD3_CUSTOM
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    srl  \rd, \rs1, \rs2
    andi \rd, \rd, ((1 << \nbits) - 1)
#else
.insn r 0x0b, 0x0, (((\nbits - 1) & 0x7 ) << 1), \rd, \rs1, \rs2
#endif
.endm

3.8.6.4.2. h3.bextmi

Immediate variant of h3.bextm.

Encoding (I-type):

Bits Name Value Description

31:29 imm[11:9] 0b000 RES0

28:26 size - Number of ones in mask, values 0→7 encode 1→8 bits.

25 imm[5] 0b0 RES0, for potential future RV64 version

24:20 shamt - Shift amount, 0 through 31

19:15 rs1 - Source register 1

14:12 funct3 0b100 h3.bextmi

11:7 rd - Destination register

6:2 opc 0b01011 custom0 opcode

1:0 size 0b11 32-bit instruction

Example C macro (using GCC statement expressions):

// nbits and shamt must be constant expressions
#define __h3_bextmi(nbits, rs1, shamt) ({\
    uint32_t __h3_bextmi_rd; \
    asm (".insn i 0x0b, 0x4, %0, %1, %2"\
        : "=r" (__h3_bextmi_rd) \
        : "r" (rs1), "i" ((((nbits) - 1) & 0x7) << 6 | ((shamt) & 0x1f)) \
    ); \
    __h3_bextmi_rd; \
})

Example assembly macro:

// rd = (rs1 >> shamt) & ~(-1 << nbits)
.macro h3.bextmi rd rs1 shamt nbits
.if (\nbits < 1) || (\nbits > 8)
.err
.endif
.if (\shamt < 0) || (\shamt > 31)
.err
.endif
#if NO_HAZARD3_CUSTOM
    srli \rd, \rs1, \shamt
    andi \rd, \rd, ((1 << \nbits) - 1)
#else
.insn i 0x0b, 0x4, \rd, \rs1, (\shamt & 0x1f) | (((\nbits - 1) & 0x7 ) << 6)
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#endif
.endm

3.8.7. Instruction Cycle Counts

All timings are given assuming perfect bus behaviour (no downstream bus stalls).

See Section 3.8.1.6 for a synopsis of instruction behaviour.

3.8.7.1. RV32I

Instruction Cycles Note

Integer Register-register

add rd, rs1, rs2 1

sub rd, rs1, rs2 1

slt rd, rs1, rs2 1

sltu rd, rs1, rs2 1

and rd, rs1, rs2 1

or rd, rs1, rs2 1

xor rd, rs1, rs2 1

sll rd, rs1, rs2 1

srl rd, rs1, rs2 1

sra rd, rs1, rs2 1

Integer Register-immediate

addi rd, rs1, imm 1 nop is a pseudo-op for addi x0, x0, 0

slti rd, rs1, imm 1

sltiu rd, rs1, imm 1

andi rd, rs1, imm 1

ori rd, rs1, imm 1

xori rd, rs1, imm 1

slli rd, rs1, imm 1

srli rd, rs1, imm 1

srai rd, rs1, imm 1

Large Immediate

lui rd, imm 1

auipc rd, imm 1

Control Transfer

jal rd, label 2[1]

jalr rd, rs1, imm 2[1]
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Instruction Cycles Note

beq rs1, rs2, label 1 or 2[1] 1 if correctly predicted, 2 if mispredicted.

bne rs1, rs2, label 1 or 2[1] 1 if correctly predicted, 2 if mispredicted.

blt rs1, rs2, label 1 or 2[1] 1 if correctly predicted, 2 if mispredicted.

bge rs1, rs2, label 1 or 2[1] 1 if correctly predicted, 2 if mispredicted.

bltu rs1, rs2, label 1 or 2[1] 1 if correctly predicted, 2 if mispredicted.

bgeu rs1, rs2, label 1 or 2[1] 1 if correctly predicted, 2 if mispredicted.

Load and Store

lw rd, imm(rs1) 1 or 2 1 if next instruction is independent, 2 if dependent.[2]

lh rd, imm(rs1) 1 or 2 1 if next instruction is independent, 2 if dependent.[2]

lhu rd, imm(rs1) 1 or 2 1 if next instruction is independent, 2 if dependent.[2]

lb rd, imm(rs1) 1 or 2 1 if next instruction is independent, 2 if dependent.[2]

lbu rd, imm(rs1) 1 or 2 1 if next instruction is independent, 2 if dependent.[2]

sw rs2, imm(rs1) 1

sh rs2, imm(rs1) 1

sb rs2, imm(rs1) 1

3.8.7.2. M Extension

Instruction Cycles Note

32 × 32 → 32 Multiply

mul rd, rs1, rs2 1

32 × 32 → 64 Multiply, Upper Half

mulh rd, rs1, rs2 1

mulhsu rd, rs1, rs2 1

mulhu rd, rs1, rs2 1

Divide and Remainder

div rd, rs1, rs2 18 or 19 Depending on sign correction

divu rd, rs1, rs2 18

rem rd, rs1, rs2 18 or 19 Depending on sign correction

remu rd, rs1, rs2 18

3.8.7.3. A Extension

Instruction Cycles Note

Load-Reserved/Store-Conditional

lr.w rd, (rs1) 1 or 2 2 if next instruction is dependent[2], an lr.w, sc.w or amo*.w.[3]

sc.w rd, rs2, (rs1) 1 or 2 2 if next instruction is dependent[2], an lr.w, sc.w or amo*.w.[3]
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Instruction Cycles Note

Atomic Memory Operations

amoswap.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost.[4]

amoadd.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost.[4]

amoxor.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost.[4]

amoand.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost.[4]

amoor.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost.[4]

amomin.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost.[4]

amomax.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost.[4]

amominu.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost.[4]

amomaxu.w rd, rs2, (rs1) 4+ 4 per attempt. Multiple attempts if reservation is lost.[4]

3.8.7.4. C Extension

All C extension 16-bit instructions are aliases of base RV32I instructions. On Hazard3, they perform identically to their

32-bit counterparts.

A consequence of the C extension is that 32-bit instructions can be non-naturally-aligned. This has no penalty during

sequential execution, but branching to a 32-bit instruction that is not 32-bit-aligned carries a 1 cycle penalty, because

the instruction fetch is cracked into two naturally-aligned bus accesses.

3.8.7.5. Privileged Instructions (including Zicsr)

Instruction Cycles Note

CSR Access

csrrw rd, csr, rs1 1

csrrc rd, csr, rs1 1

csrrs rd, csr, rs1 1

csrrwi rd, csr, imm 1

csrrci rd, csr, imm 1

csrrsi rd, csr, imm 1

Traps and Interrupts

ecall 3 Time given is for jumping to mtvec

ebreak 3 Time given is for jumping to mtvec

mret 2[1]

wfi 2+ Always stalls for one cycle, no upper limit

3.8.7.6. Bit Manipulation
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Instruction Cycles Note

Zba (address generation)

sh1add rd, rs1, rs2 1

sh2add rd, rs1, rs2 1

sh3add rd, rs1, rs2 1

Zbb (basic bit manipulation)

andn rd, rs1, rs2 1

clz rd, rs1 1

cpop rd, rs1 1

ctz rd, rs1 1

max rd, rs1, rs2 1

maxu rd, rs1, rs2 1

min rd, rs1, rs2 1

minu rd, rs1, rs2 1

orc.b rd, rs1 1

orn rd, rs1, rs2 1

rev8 rd, rs1 1

rol rd, rs1, rs2 1

ror rd, rs1, rs2 1

rori rd, rs1, imm 1

sext.b rd, rs1 1

sext.h rd, rs1 1

xnor rd, rs1, rs2 1

zext.h rd, rs1 1

zext.b rd, rs1 1 zext.b is a pseudo-op for andi rd, rs1, 0xff

Zbs (single-bit manipulation)

bclr rd, rs1, rs2 1

bclri rd, rs1, imm 1

bext rd, rs1, rs2 1

bexti rd, rs1, imm 1

binv rd, rs1, rs2 1

binvi rd, rs1, imm 1

bset rd, rs1, rs2 1

bseti rd, rs1, imm 1

Zbkb (basic bit manipulation for cryptography)

pack rd, rs1, rs2 1

packh rd, rs1, rs2 1
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Instruction Cycles Note

brev8 rd, rs1 1

zip rd, rs1 1

unzip rd, rs1 1

3.8.7.7. Zcb Extension

Similarly to the C extension, this extension contains 16-bit variants of common 32-bit instructions:

• RV32I base ISA: lbu, lh, lhu, sb, sh, zext.b (alias of andi), not (alias of xori)

• Zbb extension: sext.b, zext.h, sext.h

• M extension: mul

They perform identically to their 32-bit counterparts.

3.8.7.8. Zcmp Extension

Instruction Cycles Note

cm.push rlist, -imm 1 + n n is number of registers in rlist

cm.pop rlist, imm 1 + n n is number of registers in rlist

cm.popret rlist, imm 4 (n = 1)[5] or 2 + n (n >= 2)[1] n is number of registers in rlist

cm.popretz rlist, imm 5 (n = 1)[5] or 3 + n (n >= 2)[1] n is number of registers in rlist

cm.mva01s r1s', r2s' 2

cm.mvsa01 r1s', r2s' 2

3.8.7.9. Table Footnotes

[1] A jump or branch to a 32-bit instruction which is not 32-bit-aligned requires one additional cycle, because

two naturally aligned bus cycles are required to fetch the target instruction.

[2] If an instruction in stage 2 (e.g. an add) uses data from stage 3 (e.g. a lw result), a 1-cycle bubble is inserted

between the pair. A load data → store data dependency is not an example of this, because data is

produced and consumed in stage 3. However, load data → load address would qualify, as would e.g. sc.w

→ beqz.

[3] AMOs are issued as a paired exclusive read and exclusive write on the bus, at the maximum speed of 2

cycles per access, since the bus does not permit pipelining of exclusive reads/writes. If the write phase

fails due to the global monitor reporting a lost reservation, the instruction loops at a rate of 4 cycles per

loop, until success. If the read reservation is refused by the global monitor, the instruction generates a

Store/AMO Fault exception, to avoid an infinite loop.

[4] A pipeline bubble is inserted between lr.w/sc.w and an immediately-following lr.w/sc.w/amo*, because the

AHB5 bus standard does not permit pipelined exclusive accesses. A stall would be inserted between lr.w

and sc.w anyhow, so the local monitor can be updated based on the lr.w data phase in time to suppress the

sc.w address phase.

[5] The single-register variants of cm.popret and cm.popretz take the same number of cycles as the two-register

variants, because of an internal load-use dependency on the loaded return address.
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3.8.7.10. Branch Predictor

Hazard3 includes a minimal branch predictor, to accelerate tight loops:

• The instruction frontend remembers the last taken, backward branch in a single-entry branch target buffer (BTB)

• If the same branch is seen again, it is predicted taken

• All other branches are predicted non-taken

• If the core executes but does not take a predicted-taken branch:

◦ The core clears the BTB

◦ The branch is predicted non-taken on its next execution

Correctly predicted branches execute in one cycle: the frontend is able to stitch together the two nonsequential fetch

paths so that they appear sequential. Mispredicted branches incur a penalty cycle, since a nonsequential fetch address

must be issued when the branch is executed. Consider the following copy routine:

// a0 is dst pointer
// a1 is src pointer
// a2 is len
copy_data:
    beqz a2, 2f
    add a2, a2, a1
1:
    lbu a3, (a0)
    sb a3, (a1)
    addi a0, a0, 1
    addi a1, a1, 1
    bltu a1, a2, 1b
2:
    ret

In the steady state this executes at 5 cycles per loop:

• One cycle for the load

• One cycle for the store: though it depends on the load, the dependency is within stage 3 so there is no stall

• One cycle for each add

• One cycle for the repeatedly-taken backward branch

Without the branch predictor the throughput is 6 cycles per loop. The branch predictor increases the throughput by 20%,

and also reduces energy dissipation due to wasted instruction fetch (memory access is a large fraction of the

instruction energy cost for an embedded processor).

For the above example code, a copy of 10 bytes would take 52 cycles:

• The base cost is 5 cycles per iteration, and there are 10 iterations

• The mispredicted, taken branch at the end of the first iteration costs one cycle

• The mispredicted, non-taken branch at the end of the last iteration costs one cycle

3.8.7.10.1. Caveat: Delay Loops

The branch predictor does not engage when all of the following are true:

• The loop body consists of a single 16-bit instruction (followed by a repeatedly taken backward branch)

• The loop body is 32-bit-aligned
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• There are no bus stalls on the instruction fetch port

This is because the branch predictor lookup functions by comparing bits 31:2 of the sequential-fetch counter to the BTB

tag. In this case the BTB tag points to the same word as the loop entry. In the aforementioned case the sequential-fetch

counter never actually contains the address of the loop entry, because the loop entry address goes straight to the bus,

and the sequential-fetch counter pre-increments to the next address. This manifests in delay loops like the following:

.p2align 2
delay_loop_bad_dont_copy_paste_this:
    addi a0, a0, -1
    bgez a0, delay_loop_bad_dont_copy_paste_this

Given the description in Section 3.8.7.10, you may expect this loop to execute at two cycles per iteration in the steady

state. The actual behaviour is it executes at three cycles per iteration until instruction fetch encounters a stall,

whereupon it accelerates to two cycles per instruction until the loop ends.

Avoid this by using a 32-bit instruction in the loop body. Force 32-bit alignment of the loop body to avoid an alignment

penalty. The following code executes at the expected two cycles per iteration in the steady state:

.p2align 2          // Force 4-byte alignment
delay_cycles:
.option push
.option norvc       // Force 32-bit opcode
    addi a0, a0, -1
.option pop
    bgez a0, delay_cycles

3.8.8. Configuration

Hazard3 uses the parameters given in the hazard3_config.vh header to customise the core. These values are set before

taping out a Hazard3 instance on silicon, so they are fixed from a user point of view. They determine which instructions

the processor supports, the area-performance trade-off for certain instructions, and static configuration for core

peripherals like the PMP. RP2350 uses the following values for these parameters:

Parameter Value

EXTENSION_A 1

EXTENSION_C 1

EXTENSION_M 1

EXTENSION_ZBA 1

EXTENSION_ZBB 1

EXTENSION_ZBC 0

EXTENSION_ZBS 1

EXTENSION_ZCB 1

EXTENSION_ZCMP 1

EXTENSION_ZBKB 1

EXTENSION_ZIFENCEI 1

EXTENSION_XH3BEXTM 1

EXTENSION_XH3IRQ 1
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Parameter Value

EXTENSION_XH3PMPM 1

EXTENSION_XH3POWER 1

CSR_M_MANDATORY 1

CSR_M_TRAP 1

CSR_COUNTER 1

U_MODE 1

PMP_REGIONS 11

PMP_GRAIN 3

PMP_HARDWIRED 11’h700

PMP_HARDWIRED_ADDR See Section 3.8.8.1

PMP_HARDWIRED_CFG See Section 3.8.8.1

DEBUG_SUPPORT 1

BREAKPOINT_TRIGGERS 4

NUM_IRQS 52

IRQ_PRIORITY_BITS 4

IRQ_INPUT_BYPASS {NUM_IRQS{1’b1}}

MVENDORID_VAL 32’h00000493

MIMPID_VAL 32’h86fc4e3f

MCONFIGPTR_VAL 32’h0

REDUCED_BYPASS 0

MULDIV_UNROLL 2

MUL_FAST 1

MUL_FASTER 1

MULH_FAST 1

FAST_BRANCHCMP 1

RESET_REGFILE 1

BRANCH_PREDICTOR 1

MTVEC_WMASK 32’hfffffffd

3.8.8.1. Hardwired PMP Regions

RP2350 configures Hazard3 with eight dynamically configured PMP regions, and three static ones. The static regions

provide default U-mode RWX permissions on the following ranges:

• ROM: 0x00000000 through 0x0fffffff

• Peripherals: 0x40000000 through 0x5fffffff

• SIO: 0xd0000000 through 0xdfffffff

These addresses appear in PMPADDR8, PMPADDR9 and PMPADDR10. The hardwired PMP address registers behave

the same as dynamic registers, except that they ignore writes (exercising the WARL rule). The permissions for these
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regions are in PMPCFG2.

The hardwired regions have a similar role to the Exempt regions added to the Cortex-M33 IDAU address map specified

in Section 10.2.2.

RP2350 puts default U-mode permissions on AHB/APB peripherals because these are expected to be assigned using

ACCESSCTRL (Section 10.6). ACCESSCTRL can assign each peripheral individually, using the existing address decoders

in the bus fabric, whereas PMP regions are in limited supply so are less useful for peripheral assignment.

Similarly, SIO has internal banking over Secure/Non-secure bus attribution, which is mapped onto Machine and User

modes as described in Section 10.6.2.

The dynamic regions 0 through 7 take priority over the hardwired regions, because the PMP prioritises lower-numbered

regions.

3.8.9. Control and Status Registers

Control and status registers (CSRs) are registers internal to the processor which affect its behaviour. They are hart-

local: every hart has a copy of the CSRs. On RP2350 hart-local is a synonym for core-local.

Use dedicated CSR instructions to access the CSRs, as described in Section 3.8.1.22. You cannot access CSRs with

load or store instructions.

The RISC-V privileged specification is flexible on which CSRs are implemented, and how they behave. This section

documents the as-implemented behaviour of CSRs on Hazard3 specifically, and does not enumerate all possible

behaviour of all platforms.

 IMPORTANT

The RISC-V Privileged Specification should be your primary reference for writing software to run on Hazard3.

Portable RISC-V software should not rely on any implementation-defined behaviour described in this section.

All CSRs are 32-bit, and MXLEN is fixed at 32 bits. CSR addresses not listed in this section are unimplemented.

Accessing an unimplemented CSR raises an illegal instruction exception (mcause = 2). This includes all S-mode CSRs.

Table 364. List of

RVCSR registers
Offset Name Info

0x300 MSTATUS Machine status register

0x301 MISA Summary of ISA extension support

0x302 MEDELEG Machine exception delegation register. Not implemented, as no

S-mode support.

0x303 MIDELEG Machine interrupt delegation register. Not implemented, as no S-

mode support.

0x304 MIE Machine interrupt enable register

0x305 MTVEC Machine trap handler base address.

0x306 MCOUNTEREN Counter enable. Control access to counters from U-mode. Not to

be confused with mcountinhibit.

0x30a MENVCFG Machine environment configuration register, low half

0x310 MSTATUSH High half of mstatus, hardwired to 0.

0x31a MENVCFGH Machine environment configuration register, high half

0x320 MCOUNTINHIBIT Count inhibit register for mcycle/minstret

0x323 MHPMEVENT3 Extended performance event selector, hardwired to 0.
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Offset Name Info

0x324 MHPMEVENT4 Extended performance event selector, hardwired to 0.

0x325 MHPMEVENT5 Extended performance event selector, hardwired to 0.

0x326 MHPMEVENT6 Extended performance event selector, hardwired to 0.

0x327 MHPMEVENT7 Extended performance event selector, hardwired to 0.

0x328 MHPMEVENT8 Extended performance event selector, hardwired to 0.

0x329 MHPMEVENT9 Extended performance event selector, hardwired to 0.

0x32a MHPMEVENT10 Extended performance event selector, hardwired to 0.

0x32b MHPMEVENT11 Extended performance event selector, hardwired to 0.

0x32c MHPMEVENT12 Extended performance event selector, hardwired to 0.

0x32d MHPMEVENT13 Extended performance event selector, hardwired to 0.

0x32e MHPMEVENT14 Extended performance event selector, hardwired to 0.

0x32f MHPMEVENT15 Extended performance event selector, hardwired to 0.

0x330 MHPMEVENT16 Extended performance event selector, hardwired to 0.

0x331 MHPMEVENT17 Extended performance event selector, hardwired to 0.

0x332 MHPMEVENT18 Extended performance event selector, hardwired to 0.

0x333 MHPMEVENT19 Extended performance event selector, hardwired to 0.

0x334 MHPMEVENT20 Extended performance event selector, hardwired to 0.

0x335 MHPMEVENT21 Extended performance event selector, hardwired to 0.

0x336 MHPMEVENT22 Extended performance event selector, hardwired to 0.

0x337 MHPMEVENT23 Extended performance event selector, hardwired to 0.

0x338 MHPMEVENT24 Extended performance event selector, hardwired to 0.

0x339 MHPMEVENT25 Extended performance event selector, hardwired to 0.

0x33a MHPMEVENT26 Extended performance event selector, hardwired to 0.

0x33b MHPMEVENT27 Extended performance event selector, hardwired to 0.

0x33c MHPMEVENT28 Extended performance event selector, hardwired to 0.

0x33d MHPMEVENT29 Extended performance event selector, hardwired to 0.

0x33e MHPMEVENT30 Extended performance event selector, hardwired to 0.

0x33f MHPMEVENT31 Extended performance event selector, hardwired to 0.

0x340 MSCRATCH Scratch register for machine trap handlers

0x341 MEPC Machine exception program counter

0x342 MCAUSE Machine trap cause. Set when entering a trap to indicate the

reason for the trap. Readable and writable by software.

0x343 MTVAL Machine bad address or instruction. Hardwired to zero.

0x344 MIP Machine interrupt pending

0x3a0 PMPCFG0 Physical memory protection configuration for regions 0 through

3
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Offset Name Info

0x3a1 PMPCFG1 Physical memory protection configuration for regions 4 through

7

0x3a2 PMPCFG2 Physical memory protection configuration for regions 8 through

11

0x3a3 PMPCFG3 Physical memory protection configuration for regions 12 through

15

0x3b0 PMPADDR0 Physical memory protection address for region 0

0x3b1 PMPADDR1 Physical memory protection address for region 1

0x3b2 PMPADDR2 Physical memory protection address for region 2

0x3b3 PMPADDR3 Physical memory protection address for region 3

0x3b4 PMPADDR4 Physical memory protection address for region 4

0x3b5 PMPADDR5 Physical memory protection address for region 5

0x3b6 PMPADDR6 Physical memory protection address for region 6

0x3b7 PMPADDR7 Physical memory protection address for region 7

0x3b8 PMPADDR8 Physical memory protection address for region 8

0x3b9 PMPADDR9 Physical memory protection address for region 9

0x3ba PMPADDR10 Physical memory protection address for region 10

0x3bb PMPADDR11 Physical memory protection address for region 11

0x3bc PMPADDR12 Physical memory protection address for region 12

0x3bd PMPADDR13 Physical memory protection address for region 13

0x3be PMPADDR14 Physical memory protection address for region 14

0x3bf PMPADDR15 Physical memory protection address for region 15

0x7a0 TSELECT Select trigger to be configured via tdata1/tdata2

0x7a1 TDATA1 Trigger configuration data 1

0x7a2 TDATA2 Trigger configuration data 2

0x7b0 DCSR Debug control and status register (Debug Mode only)

0x7b1 DPC Debug program counter (Debug Mode only)

0xb00 MCYCLE Machine-mode cycle counter, low half

0xb02 MINSTRET Machine-mode instruction retire counter, low half

0xb03 MHPMCOUNTER3 Extended performance counter, hardwired to 0.

0xb04 MHPMCOUNTER4 Extended performance counter, hardwired to 0.

0xb05 MHPMCOUNTER5 Extended performance counter, hardwired to 0.

0xb06 MHPMCOUNTER6 Extended performance counter, hardwired to 0.

0xb07 MHPMCOUNTER7 Extended performance counter, hardwired to 0.

0xb08 MHPMCOUNTER8 Extended performance counter, hardwired to 0.

0xb09 MHPMCOUNTER9 Extended performance counter, hardwired to 0.

0xb0a MHPMCOUNTER10 Extended performance counter, hardwired to 0.
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Offset Name Info

0xb0b MHPMCOUNTER11 Extended performance counter, hardwired to 0.

0xb0c MHPMCOUNTER12 Extended performance counter, hardwired to 0.

0xb0d MHPMCOUNTER13 Extended performance counter, hardwired to 0.

0xb0e MHPMCOUNTER14 Extended performance counter, hardwired to 0.

0xb0f MHPMCOUNTER15 Extended performance counter, hardwired to 0.

0xb10 MHPMCOUNTER16 Extended performance counter, hardwired to 0.

0xb11 MHPMCOUNTER17 Extended performance counter, hardwired to 0.

0xb12 MHPMCOUNTER18 Extended performance counter, hardwired to 0.

0xb13 MHPMCOUNTER19 Extended performance counter, hardwired to 0.

0xb14 MHPMCOUNTER20 Extended performance counter, hardwired to 0.

0xb15 MHPMCOUNTER21 Extended performance counter, hardwired to 0.

0xb16 MHPMCOUNTER22 Extended performance counter, hardwired to 0.

0xb17 MHPMCOUNTER23 Extended performance counter, hardwired to 0.

0xb18 MHPMCOUNTER24 Extended performance counter, hardwired to 0.

0xb19 MHPMCOUNTER25 Extended performance counter, hardwired to 0.

0xb1a MHPMCOUNTER26 Extended performance counter, hardwired to 0.

0xb1b MHPMCOUNTER27 Extended performance counter, hardwired to 0.

0xb1c MHPMCOUNTER28 Extended performance counter, hardwired to 0.

0xb1d MHPMCOUNTER29 Extended performance counter, hardwired to 0.

0xb1e MHPMCOUNTER30 Extended performance counter, hardwired to 0.

0xb1f MHPMCOUNTER31 Extended performance counter, hardwired to 0.

0xb80 MCYCLEH Machine-mode cycle counter, high half

0xb82 MINSTRETH Machine-mode instruction retire counter, low half

0xb83 MHPMCOUNTER3H Extended performance counter, hardwired to 0.

0xb84 MHPMCOUNTER4H Extended performance counter, hardwired to 0.

0xb85 MHPMCOUNTER5H Extended performance counter, hardwired to 0.

0xb86 MHPMCOUNTER6H Extended performance counter, hardwired to 0.

0xb87 MHPMCOUNTER7H Extended performance counter, hardwired to 0.

0xb88 MHPMCOUNTER8H Extended performance counter, hardwired to 0.

0xb89 MHPMCOUNTER9H Extended performance counter, hardwired to 0.

0xb8a MHPMCOUNTER10H Extended performance counter, hardwired to 0.

0xb8b MHPMCOUNTER11H Extended performance counter, hardwired to 0.

0xb8c MHPMCOUNTER12H Extended performance counter, hardwired to 0.

0xb8d MHPMCOUNTER13H Extended performance counter, hardwired to 0.

0xb8e MHPMCOUNTER14H Extended performance counter, hardwired to 0.

0xb8f MHPMCOUNTER15H Extended performance counter, hardwired to 0.
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Offset Name Info

0xb90 MHPMCOUNTER16H Extended performance counter, hardwired to 0.

0xb91 MHPMCOUNTER17H Extended performance counter, hardwired to 0.

0xb92 MHPMCOUNTER18H Extended performance counter, hardwired to 0.

0xb93 MHPMCOUNTER19H Extended performance counter, hardwired to 0.

0xb94 MHPMCOUNTER20H Extended performance counter, hardwired to 0.

0xb95 MHPMCOUNTER21H Extended performance counter, hardwired to 0.

0xb96 MHPMCOUNTER22H Extended performance counter, hardwired to 0.

0xb97 MHPMCOUNTER23H Extended performance counter, hardwired to 0.

0xb98 MHPMCOUNTER24H Extended performance counter, hardwired to 0.

0xb99 MHPMCOUNTER25H Extended performance counter, hardwired to 0.

0xb9a MHPMCOUNTER26H Extended performance counter, hardwired to 0.

0xb9b MHPMCOUNTER27H Extended performance counter, hardwired to 0.

0xb9c MHPMCOUNTER28H Extended performance counter, hardwired to 0.

0xb9d MHPMCOUNTER29H Extended performance counter, hardwired to 0.

0xb9e MHPMCOUNTER30H Extended performance counter, hardwired to 0.

0xb9f MHPMCOUNTER31H Extended performance counter, hardwired to 0.

0xbd0 PMPCFGM0 Set PMP regions to M-mode, without locking

0xbe0 MEIEA External interrupt enable array

0xbe1 MEIPA External interrupt pending array

0xbe2 MEIFA External interrupt force array

0xbe3 MEIPRA External interrupt priority array

0xbe4 MEINEXT Get next external interrupt

0xbe5 MEICONTEXT External interrupt context register

0xbf0 MSLEEP M-mode sleep control register

0xbff DMDATA0 Debug Module DATA0 access register (Debug Mode only)

0xc00 CYCLE Read-only U-mode alias of mcycle, accessible when mcounteren.cy

is set

0xc02 INSTRET Read-only U-mode alias of minstret, accessible when

mcounteren.ir is set

0xc80 CYCLEH Read-only U-mode alias of mcycleh, accessible when

mcounteren.cy is set

0xc82 INSTRETH Read-only U-mode alias of minstreth, accessible when

mcounteren.ir is set

0xf11 MVENDORID Vendor ID

0xf12 MARCHID Architecture ID (Hazard3)

0xf13 MIMPID Implementation ID. On RP2350 this reads as 0x86fc4e3f, which

is release v1.0-rc1 of Hazard3.
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Offset Name Info

0xf14 MHARTID Hardware thread ID

0xf15 MCONFIGPTR Pointer to configuration data structure (hardwired to 0)

RVCSR: MSTATUS Register

Offset: 0x300

Description

Machine status register

Table 365. MSTATUS

Register
Bits Description Type Reset

31:22 Reserved. - -

21 TW: Timeout wait. When 1, attempting to execute a WFI instruction in U-mode

will instantly cause an illegal instruction exception.

RW 0x0

20:18 Reserved. - -

17 MPRV: Modify privilege. If 1, loads and stores behave as though the current

privilege level were mpp. This includes physical memory protection checks, and

the privilege level asserted on the system bus alongside the load/store

address.

RW 0x0

16:13 Reserved. - -

12:11 MPP: Previous privilege level. Can store the values 3 (M-mode) or 0 (U-mode).

If another value is written, hardware rounds to the nearest supported mode.

RW 0x3

10:8 Reserved. - -

7 MPIE: Previous interrupt enable. Readable and writable. Is set to the current

value of mstatus.mie on trap entry. Is set to 1 on trap return.

RW 0x0

6:4 Reserved. - -

3 MIE: Interrupt enable. Readable and writable. Is set to 0 on trap entry. Is set to

the current value of mstatus.mpie on trap return.

RW 0x0

2:0 Reserved. - -

RVCSR: MISA Register

Offset: 0x301

Description

Summary of ISA extension support

On RP2350, Hazard3’s full -march string is: rv32ima_zicsr_zifencei_zba_zbb_zbs_zbkb_zca_zcb_zcmp

Note Zca is equivalent to the C extension in this case; all instructions from the RISC-V C extension relevant to a 32-bit

non-floating-point processor are supported. On older toolchains which do not support the Zc extensions, the appropriate

-march string is: rv32imac_zicsr_zifencei_zba_zbb_zbs_zbkb

In addition the following custom extensions are configured: Xh3bm, Xh3power, Xh3irq, Xh3pmpm

Table 366. MISA

Register
Bits Description Type Reset

31:30 MXL: Value of 0x1 indicates this is a 32-bit processor. RO 0x1

29:24 Reserved. - -
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Bits Description Type Reset

23 X: Value of 1 indicates nonstandard extensions are present. (Xh3b bit

manipulation, and custom sleep and interrupt control CSRs)

RO 0x1

22 Reserved. - -

21 V: Vector extension (not implemented). RO 0x0

20 U: Value of 1 indicates U-mode is implemented. RO 0x1

19 Reserved. - -

18 S: Supervisor extension (not implemented). RO 0x0

17 Reserved. - -

16 Q: Quad-precision floating point extension (not implemented). RO 0x0

15:13 Reserved. - -

12 M: Value of 1 indicates the M extension (integer multiply/divide) is

implemented.

RO 0x1

11:9 Reserved. - -

8 I: Value of 1 indicates the RVI base ISA is implemented (as opposed to RVE) RO 0x1

7 H: Hypervisor extension (not implemented, I agree it would be pretty cool on a

microcontroller through).

RO 0x0

6 Reserved. - -

5 F: Single-precision floating point extension (not implemented). RO 0x0

4 E: RV32E/64E base ISA (not implemented). RO 0x0

3 D: Double-precision floating point extension (not implemented). RO 0x0

2 C: Value of 1 indicates the C extension (compressed instructions) is

implemented.

RO 0x1

1 B: Value of 1 indicates the B extension (bit manipulation) is implemented. B is

the combination of Zba, Zbb and Zbs.

Hazard3 implements all of these extensions, but the definition of B as

ZbaZbbZbs did not exist at the point this version of Hazard3 was taped out.

This bit was reserved-0 at that point. Therefore this bit reads as 0.

RO 0x0

0 A: Value of 1 indicates the A extension (atomics) is implemented. RO 0x1

RVCSR: MEDELEG Register

Offset: 0x302

Table 367. MEDELEG

Register
Bits Description Type Reset

31:0 Machine exception delegation register. Not implemented, as no S-mode

support.

RW -

RVCSR: MIDELEG Register

Offset: 0x303
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Table 368. MIDELEG

Register
Bits Description Type Reset

31:0 Machine interrupt delegation register. Not implemented, as no S-mode

support.

RW -

RVCSR: MIE Register

Offset: 0x304

Description

Machine interrupt enable register

Table 369. MIE

Register
Bits Description Type Reset

31:12 Reserved. - -

11 MEIE: External interrupt enable. The processor transfers to the external

interrupt vector when mie.meie, mip.meip and mstatus.mie are all 1.

Hazard3 has internal registers to individually filter external interrupts (see

meiea), but this standard control can be used to mask all external interrupts at

once.

RW 0x0

10:8 Reserved. - -

7 MTIE: Timer interrupt enable. The processor transfers to the timer interrupt

vector when mie.mtie, mip.mtip and mstatus.mie are all 1, unless a software or

external interrupt request is also both pending and enabled at this time.

RW 0x0

6:4 Reserved. - -

3 MSIE: Software interrupt enable. The processor transfers to the software

interrupt vector when mie.msie, mip.msip and mstatus.mie are all 1, unless an

external interrupt request is also both pending and enabled at this time.

RW 0x0

2:0 Reserved. - -

RVCSR: MTVEC Register

Offset: 0x305

Description

Machine trap handler base address.

Table 370. MTVEC

Register
Bits Description Type Reset

31:2 BASE: The upper 30 bits of the trap vector address (2 LSBs are implicitly 0).

Must be 64-byte-aligned if vectoring is enabled. Otherwise, must be 4-byte-

aligned.

RW 0x00001fff

1:0 MODE: If 0 (direct mode), all traps set pc to the trap vector base. If 1

(vectored), exceptions set pc to the trap vector base, and interrupts set pc to 4

times the interrupt cause (3=soft IRQ, 7=timer IRQ, 11=external IRQ).

The upper bit is hardwired to zero, so attempting to set mode to 2 or 3 will

result in a value of 0 or 1 respectively.

RW 0x0

Enumerated values:

0x0 → Direct entry to mtvec

0x1 → Vectored entry to a 16-entry jump table starting at mtvec
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RVCSR: MCOUNTEREN Register

Offset: 0x306

Description

Counter enable. Control access to counters from U-mode. Not to be confused with mcountinhibit.

Table 371.

MCOUNTEREN

Register

Bits Description Type Reset

31:3 Reserved. - -

2 IR: If 1, U-mode is permitted to access the instret/instreth instruction retire

counter CSRs. Otherwise, U-mode accesses to these CSRs will trap.

RW 0x0

1 TM: No hardware effect, as the time/timeh CSRs are not implemented.

However, this field still exists, as M-mode software can use it to track whether

it should emulate U-mode attempts to access those CSRs.

RW 0x0

0 CY: If 1, U-mode is permitted to access the cycle/cycleh cycle counter CSRs.

Otherwise, U-mode accesses to these CSRs will trap.

RW 0x0

RVCSR: MENVCFG Register

Offset: 0x30a

Description

Machine environment configuration register, low half

Table 372. MENVCFG

Register
Bits Description Type Reset

31:1 Reserved. - -

0 FIOM: When set, fence instructions in modes less privileged than M-mode

which specify that IO memory accesses are ordered will also cause ordering

of main memory accesses.

FIOM is hardwired to zero on Hazard3, because S-mode is not supported, and

because fence instructions execute as NOPs (with the exception of fence.i)

RO 0x0

RVCSR: MSTATUSH Register

Offset: 0x310

Table 373. MSTATUSH

Register
Bits Description Type Reset

31:0 High half of mstatus, hardwired to 0. RO 0x00000000

RVCSR: MENVCFGH Register

Offset: 0x31a

Description

Machine environment configuration register, high half

This register is fully reserved, as Hazard3 does not implement the relevant extensions. It is implemented as hardwired-

0.
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Table 374.

MENVCFGH Register
Bits Description Type Reset

31:0 Reserved. - -

RVCSR: MCOUNTINHIBIT Register

Offset: 0x320

Description

Count inhibit register for mcycle/minstret

Table 375.

MCOUNTINHIBIT

Register

Bits Description Type Reset

31:3 Reserved. - -

2 IR: Inhibit counting of the minstret and minstreth registers. Set by default to

save power.

RW 0x1

1 Reserved. - -

0 CY: Inhibit counting of the mcycle and mcycleh registers. Set by default to save

power.

RW 0x1

RVCSR: MHPMEVENT3, MHPMEVENT4, …, MHPMEVENT30, MHPMEVENT31

Registers

Offsets: 0x323, 0x324, …, 0x33e, 0x33f

Table 376.

MHPMEVENT3,

MHPMEVENT4, …,

MHPMEVENT30,

MHPMEVENT31

Registers

Bits Description Type Reset

31:0 Extended performance event selector, hardwired to 0. RO 0x00000000

RVCSR: MSCRATCH Register

Offset: 0x340

Table 377.

MSCRATCH Register
Bits Description Type Reset

31:0 Scratch register for machine trap handlers.

32-bit read/write register with no specific hardware function. Software may

use this to do a fast save/restore of a core register in a trap handler.

RW 0x00000000

RVCSR: MEPC Register

Offset: 0x341

Table 378. MEPC

Register
Bits Description Type Reset

31:2 Machine exception program counter.

When entering a trap, the current value of the program counter is recorded

here. When executing an mret, the processor jumps to mepc. Can also be read

and written by software.

RW 0x00000000

1:0 Reserved. - -

RVCSR: MCAUSE Register

Offset: 0x342
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Description

Machine trap cause. Set when entering a trap to indicate the reason for the trap. Readable and writable by software.

Table 379. MCAUSE

Register
Bits Description Type Reset

31 INTERRUPT: If 1, the trap was caused by an interrupt. If 0, it was caused by an

exception.

RW 0x0

30:4 Reserved. - -

3:0 CODE: If interrupt is set, code indicates the index of the bit in mip that caused

the trap (3=soft IRQ, 7=timer IRQ, 11=external IRQ). Otherwise, code is set

according to the cause of the exception.

RW 0x0

Enumerated values:

0x0 → Instruction fetch was misaligned. Will never fire on RP2350, since the C

extension is enabled.

0x1 → Instruction access fault. Instruction fetch failed a PMP check, or

encountered a downstream bus fault, and then passed the point of no

speculation.

0x2 → Illegal instruction was executed (including illegal CSR accesses)

0x3 → Breakpoint. An ebreak instruction was executed when the relevant

dcsr.ebreak bit was clear.

0x4 → Load address misaligned. Hazard3 requires natural alignment of all

accesses.

0x5 → Load access fault. A load failed a PMP check, or encountered a

downstream bus error.

0x6 → Store/AMO address misaligned. Hazard3 requires natural alignment of

all accesses.

0x7 → Store/AMO access fault. A store/AMO failed a PMP check, or

encountered a downstream bus error. Also set if an AMO is attempted on a

region that does not support atomics (on RP2350, anything but SRAM).

0x8 → Environment call from U-mode.

0xb → Environment call from M-mode.

RVCSR: MTVAL Register

Offset: 0x343

Table 380. MTVAL

Register
Bits Description Type Reset

31:0 Machine bad address or instruction. Hardwired to zero. RO 0x00000000

RVCSR: MIP Register

Offset: 0x344

Description

Machine interrupt pending

Table 381. MIP

Register
Bits Description Type Reset

31:12 Reserved. - -
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Bits Description Type Reset

11 MEIP: External interrupt pending. The processor transfers to the external

interrupt vector when mie.meie, mip.meip and mstatus.mie are all 1.

Hazard3 has internal registers to individually filter which external IRQs appear

in meip. When meip is 1, this indicates there is at least one external interrupt

which is asserted (hence pending in mieipa), enabled in meiea, and of priority

greater than or equal to the current preemption level in meicontext.preempt.

RO 0x0

10:8 Reserved. - -

7 MTIP: Timer interrupt pending. The processor transfers to the timer interrupt

vector when mie.mtie, mip.mtip and mstatus.mie are all 1, unless a software or

external interrupt request is also both pending and enabled at this time.

RW 0x0

6:4 Reserved. - -

3 MSIP: Software interrupt pending. The processor transfers to the software

interrupt vector when mie.msie, mip.msip and mstatus.mie are all 1, unless an

external interrupt request is also both pending and enabled at this time.

RW 0x0

2:0 Reserved. - -

RVCSR: PMPCFG0 Register

Offset: 0x3a0

Description

Physical memory protection configuration for regions 0 through 3

Table 382. PMPCFG0

Register
Bits Description Type Reset

31 R3_L: Lock region 3, and apply it to M-mode as well as U-mode. RW 0x0

30:29 Reserved. - -

28:27 R3_A: Address matching type for region 3. Writing an unsupported value (TOR)

will set the region to OFF.

RW 0x0

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

26 R3_R: Read permission for region 3. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

25 R3_W: Write permission for region 3 RW 0x0

24 R3_X: Execute permission for region 3. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

23 R2_L: Lock region 2, and apply it to M-mode as well as U-mode. RW 0x0

22:21 Reserved. - -

20:19 R2_A: Address matching type for region 2. Writing an unsupported value (TOR)

will set the region to OFF.

RW 0x0

Enumerated values:
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Bits Description Type Reset

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

18 R2_R: Read permission for region 2. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

17 R2_W: Write permission for region 2 RW 0x0

16 R2_X: Execute permission for region 2. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

15 R1_L: Lock region 1, and apply it to M-mode as well as U-mode. RW 0x0

14:13 Reserved. - -

12:11 R1_A: Address matching type for region 1. Writing an unsupported value (TOR)

will set the region to OFF.

RW 0x0

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

10 R1_R: Read permission for region 1. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

9 R1_W: Write permission for region 1 RW 0x0

8 R1_X: Execute permission for region 1. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

7 R0_L: Lock region 0, and apply it to M-mode as well as U-mode. RW 0x0

6:5 Reserved. - -

4:3 R0_A: Address matching type for region 0. Writing an unsupported value (TOR)

will set the region to OFF.

RW 0x0

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

2 R0_R: Read permission for region 0. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

1 R0_W: Write permission for region 0 RW 0x0

0 R0_X: Execute permission for region 0. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

RVCSR: PMPCFG1 Register

Offset: 0x3a1

Description

Physical memory protection configuration for regions 4 through 7
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Table 383. PMPCFG1

Register
Bits Description Type Reset

31 R7_L: Lock region 7, and apply it to M-mode as well as U-mode. RW 0x0

30:29 Reserved. - -

28:27 R7_A: Address matching type for region 7. Writing an unsupported value (TOR)

will set the region to OFF.

RW 0x0

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

26 R7_R: Read permission for region 7. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

25 R7_W: Write permission for region 7 RW 0x0

24 R7_X: Execute permission for region 7. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

23 R6_L: Lock region 6, and apply it to M-mode as well as U-mode. RW 0x0

22:21 Reserved. - -

20:19 R6_A: Address matching type for region 6. Writing an unsupported value (TOR)

will set the region to OFF.

RW 0x0

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

18 R6_R: Read permission for region 6. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

17 R6_W: Write permission for region 6 RW 0x0

16 R6_X: Execute permission for region 6. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

15 R5_L: Lock region 5, and apply it to M-mode as well as U-mode. RW 0x0

14:13 Reserved. - -

12:11 R5_A: Address matching type for region 5. Writing an unsupported value (TOR)

will set the region to OFF.

RW 0x0

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

10 R5_R: Read permission for region 5. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

9 R5_W: Write permission for region 5 RW 0x0

8 R5_X: Execute permission for region 5. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0
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Bits Description Type Reset

7 R4_L: Lock region 4, and apply it to M-mode as well as U-mode. RW 0x0

6:5 Reserved. - -

4:3 R4_A: Address matching type for region 4. Writing an unsupported value (TOR)

will set the region to OFF.

RW 0x0

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

2 R4_R: Read permission for region 4. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

1 R4_W: Write permission for region 4 RW 0x0

0 R4_X: Execute permission for region 4. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RW 0x0

RVCSR: PMPCFG2 Register

Offset: 0x3a2

Description

Physical memory protection configuration for regions 8 through 11

Table 384. PMPCFG2

Register
Bits Description Type Reset

31 R11_L: Lock region 11, and apply it to M-mode as well as U-mode. RO 0x0

30:29 Reserved. - -

28:27 R11_A: Address matching type for region 11. Writing an unsupported value

(TOR) will set the region to OFF.

RO 0x0

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

26 R11_R: Read permission for region 11. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RO 0x0

25 R11_W: Write permission for region 11 RO 0x0

24 R11_X: Execute permission for region 11. Note R and X are transposed from

the standard bit order due to erratum RP2350-E6.

RO 0x0

23 R10_L: Lock region 10, and apply it to M-mode as well as U-mode. RO 0x0

22:21 Reserved. - -

20:19 R10_A: Address matching type for region 10. Writing an unsupported value

(TOR) will set the region to OFF.

RO 0x3

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

RP2350 Datasheet

3.8. Hazard3 Processor 311



Bits Description Type Reset

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

18 R10_R: Read permission for region 10. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RO 0x1

17 R10_W: Write permission for region 10 RO 0x1

16 R10_X: Execute permission for region 10. Note R and X are transposed from

the standard bit order due to erratum RP2350-E6.

RO 0x1

15 R9_L: Lock region 9, and apply it to M-mode as well as U-mode. RO 0x0

14:13 Reserved. - -

12:11 R9_A: Address matching type for region 9. Writing an unsupported value (TOR)

will set the region to OFF.

RO 0x3

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

10 R9_R: Read permission for region 9. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RO 0x1

9 R9_W: Write permission for region 9 RO 0x1

8 R9_X: Execute permission for region 9. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RO 0x1

7 R8_L: Lock region 8, and apply it to M-mode as well as U-mode. RO 0x0

6:5 Reserved. - -

4:3 R8_A: Address matching type for region 8. Writing an unsupported value (TOR)

will set the region to OFF.

RO 0x3

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

2 R8_R: Read permission for region 8. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RO 0x1

1 R8_W: Write permission for region 8 RO 0x1

0 R8_X: Execute permission for region 8. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RO 0x1

RVCSR: PMPCFG3 Register

Offset: 0x3a3

Description

Physical memory protection configuration for regions 12 through 15

Table 385. PMPCFG3

Register
Bits Description Type Reset

31 R15_L: Lock region 15, and apply it to M-mode as well as U-mode. RO 0x0
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Bits Description Type Reset

30:29 Reserved. - -

28:27 R15_A: Address matching type for region 15. Writing an unsupported value

(TOR) will set the region to OFF.

RO 0x0

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

26 R15_R: Read permission for region 15. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RO 0x0

25 R15_W: Write permission for region 15 RO 0x0

24 R15_X: Execute permission for region 15. Note R and X are transposed from

the standard bit order due to erratum RP2350-E6.

RO 0x0

23 R14_L: Lock region 14, and apply it to M-mode as well as U-mode. RO 0x0

22:21 Reserved. - -

20:19 R14_A: Address matching type for region 14. Writing an unsupported value

(TOR) will set the region to OFF.

RO 0x0

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

18 R14_R: Read permission for region 14. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RO 0x0

17 R14_W: Write permission for region 14 RO 0x0

16 R14_X: Execute permission for region 14. Note R and X are transposed from

the standard bit order due to erratum RP2350-E6.

RO 0x0

15 R13_L: Lock region 13, and apply it to M-mode as well as U-mode. RO 0x0

14:13 Reserved. - -

12:11 R13_A: Address matching type for region 13. Writing an unsupported value

(TOR) will set the region to OFF.

RO 0x0

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

10 R13_R: Read permission for region 13. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RO 0x0

9 R13_W: Write permission for region 13 RO 0x0

8 R13_X: Execute permission for region 13. Note R and X are transposed from

the standard bit order due to erratum RP2350-E6.

RO 0x0

7 R12_L: Lock region 12, and apply it to M-mode as well as U-mode. RO 0x0
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Bits Description Type Reset

6:5 Reserved. - -

4:3 R12_A: Address matching type for region 12. Writing an unsupported value

(TOR) will set the region to OFF.

RO 0x0

Enumerated values:

0x0 → Disable region

0x2 → Naturally aligned 4-byte

0x3 → Naturally aligned power-of-two (8 bytes to 4 GiB)

2 R12_R: Read permission for region 12. Note R and X are transposed from the

standard bit order due to erratum RP2350-E6.

RO 0x0

1 R12_W: Write permission for region 12 RO 0x0

0 R12_X: Execute permission for region 12. Note R and X are transposed from

the standard bit order due to erratum RP2350-E6.

RO 0x0

RVCSR: PMPADDR0 Register

Offset: 0x3b0

Table 386. PMPADDR0

Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Physical memory protection address for region 0. Note all PMP addresses are

in units of four bytes.

RW 0x00000000

RVCSR: PMPADDR1 Register

Offset: 0x3b1

Table 387. PMPADDR1

Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Physical memory protection address for region 1. Note all PMP addresses are

in units of four bytes.

RW 0x00000000

RVCSR: PMPADDR2 Register

Offset: 0x3b2

Table 388. PMPADDR2

Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Physical memory protection address for region 2. Note all PMP addresses are

in units of four bytes.

RW 0x00000000

RVCSR: PMPADDR3 Register

Offset: 0x3b3

Table 389. PMPADDR3

Register
Bits Description Type Reset

31:30 Reserved. - -
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Bits Description Type Reset

29:0 Physical memory protection address for region 3. Note all PMP addresses are

in units of four bytes.

RW 0x00000000

RVCSR: PMPADDR4 Register

Offset: 0x3b4

Table 390. PMPADDR4

Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Physical memory protection address for region 4. Note all PMP addresses are

in units of four bytes.

RW 0x00000000

RVCSR: PMPADDR5 Register

Offset: 0x3b5

Table 391. PMPADDR5

Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Physical memory protection address for region 5. Note all PMP addresses are

in units of four bytes.

RW 0x00000000

RVCSR: PMPADDR6 Register

Offset: 0x3b6

Table 392. PMPADDR6

Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Physical memory protection address for region 6. Note all PMP addresses are

in units of four bytes.

RW 0x00000000

RVCSR: PMPADDR7 Register

Offset: 0x3b7

Table 393. PMPADDR7

Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Physical memory protection address for region 7. Note all PMP addresses are

in units of four bytes.

RW 0x00000000

RVCSR: PMPADDR8 Register

Offset: 0x3b8

Table 394. PMPADDR8

Register
Bits Description Type Reset

31:30 Reserved. - -
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Bits Description Type Reset

29:0 Physical memory protection address for region 8. Note all PMP addresses are

in units of four bytes.

Hardwired to the address range 0x00000000 through 0x0fffffff, which contains

the boot ROM. This range is made accessible to User mode by default. User

mode access to this range can be disabled using one of the dynamically

configurable PMP regions, or using the permission registers in ACCESSCTRL.

RO 0x01ffffff

RVCSR: PMPADDR9 Register

Offset: 0x3b9

Table 395. PMPADDR9

Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Physical memory protection address for region 9. Note all PMP addresses are

in units of four bytes.

Hardwired to the address range 0x40000000 through 0x5fffffff, which contains

the system peripherals. This range is made accessible to User mode by

default. User mode access to this range can be disabled using one of the

dynamically configurable PMP regions, or using the permission registers in

ACCESSCTRL.

RO 0x13ffffff

RVCSR: PMPADDR10 Register

Offset: 0x3ba

Table 396.

PMPADDR10 Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Physical memory protection address for region 10. Note all PMP addresses

are in units of four bytes.

Hardwired to the address range 0xd0000000 through 0xdfffffff, which contains

the core-local peripherals (SIO). This range is made accessible to User mode

by default. User mode access to this range can be disabled using one of the

dynamically configurable PMP regions, or using the permission registers in

ACCESSCTRL.

RO 0x35ffffff

RVCSR: PMPADDR11 Register

Offset: 0x3bb
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Table 397.

PMPADDR11 Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Physical memory protection address for region 11. Note all PMP addresses

are in units of four bytes.

Hardwired to all-zeroes. This region is not implemented.

RO 0x00000000

RVCSR: PMPADDR12 Register

Offset: 0x3bc

Table 398.

PMPADDR12 Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Physical memory protection address for region 12. Note all PMP addresses

are in units of four bytes.

Hardwired to all-zeroes. This region is not implemented.

RO 0x00000000

RVCSR: PMPADDR13 Register

Offset: 0x3bd

Table 399.

PMPADDR13 Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Physical memory protection address for region 13. Note all PMP addresses

are in units of four bytes.

Hardwired to all-zeroes. This region is not implemented.

RO 0x00000000

RVCSR: PMPADDR14 Register

Offset: 0x3be

Table 400.

PMPADDR14 Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Physical memory protection address for region 14. Note all PMP addresses

are in units of four bytes.

Hardwired to all-zeroes. This region is not implemented.

RO 0x00000000

RVCSR: PMPADDR15 Register

Offset: 0x3bf
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Table 401.

PMPADDR15 Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Physical memory protection address for region 15. Note all PMP addresses

are in units of four bytes.

Hardwired to all-zeroes. This region is not implemented.

RO 0x00000000

RVCSR: TSELECT Register

Offset: 0x7a0

Table 402. TSELECT

Register
Bits Description Type Reset

31:2 Reserved. - -

1:0 Select trigger to be configured via tdata1/tdata2

On RP2350, four instruction address triggers are implemented, so only the two

LSBs of this register are writable.

RW 0x0

RVCSR: TDATA1 Register

Offset: 0x7a1

Description

Trigger configuration data 1

Hazard 3 only supports address/data match triggers (type=2) so this register description includes the mcontrol fields for

this type.

More precisely, Hazard3 only supports exact instruction address match triggers (hardware breakpoints) so many of this

register’s fields are hardwired.

Table 403. TDATA1

Register
Bits Description Type Reset

31:28 TYPE: Trigger type. Hardwired to type=2, meaning an address/data match

trigger

RO 0x2

27 DMODE: If 0, both Debug and M-mode can write the tdata registers at the

selected tselect.

If 1, only Debug Mode can write the tdata registers at the selected tselect.

Writes from other modes are ignored.

This bit is only writable from Debug Mode

RW 0x0

26:21 MASKMAX: Value of 0 indicates only exact address matches are supported RO 0x00

20 HIT: Trigger hit flag. Not implemented, hardwired to 0. RO 0x0

19 SELECT: Hardwired value of 0 indicates that only address matches are

supported, not data matches

RO 0x0

18 TIMING: Hardwired value of 0 indicates that trigger fires before the triggering

instruction executes, not afterward

RO 0x0

17:16 SIZELO: Hardwired value of 0 indicates that access size matching is not

supported

RO 0x0

15:12 ACTION: Select action to be taken when the trigger fires. RW 0x0

Enumerated values:
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Bits Description Type Reset

0x0 → Raise a breakpoint exception, which can be handled by the M-mode

exception handler

0x1 → Enter debug mode. This action is only selectable when tdata1.dmode is 1.

11 CHAIN: Hardwired to 0 to indicate trigger chaining is not supported. RO 0x0

10:7 MATCH: Hardwired to 0 to indicate match is always on the full address

specified by tdata2

RO 0x0

6 M: When set, enable this trigger in M-mode RW 0x0

5:4 Reserved. - -

3 U: When set, enable this trigger in U-mode RW 0x0

2 EXECUTE: When set, the trigger fires on the address of an instruction that is

executed.

RW 0x0

1 STORE: Hardwired to 0 to indicate store address/data triggers are not

supported

RO 0x0

0 LOAD: Hardwired to 0 to indicate load address/data triggers are not supported RO 0x0

RVCSR: TDATA2 Register

Offset: 0x7a2

Table 404. TDATA2

Register
Bits Description Type Reset

31:0 Trigger configuration data 2

Contains the address for instruction address triggers (hardware breakpoints)

RW 0x00000000

RVCSR: DCSR Register

Offset: 0x7b0

Description

Debug control and status register. Access outside of Debug Mode will cause an illegal instruction exception.

Table 405. DCSR

Register
Bits Description Type Reset

31:28 XDEBUGVER: Hardwired to 4: external debug support as per RISC-V 0.13.2

debug specification.

RO 0x4

27:16 Reserved. - -

15 EBREAKM: When 1, ebreak instructions executed in M-mode will break to

Debug Mode instead of trapping

RW 0x0

14:13 Reserved. - -

12 EBREAKU: When 1, ebreak instructions executed in U-mode will break to Debug

Mode instead of trapping.

RW 0x0

11 STEPIE: Hardwired to 0: no interrupts are taken during hardware single-

stepping.

RO 0x0

10 STOPCOUNT: Hardwired to 1: mcycle/mcycleh and minstret/minstreth do not

increment in Debug Mode.

RO 0x1

9 STOPTIME: Hardwired to 1: core-local timers don’t increment in debug mode.

External timers (e.g. hart-shared) may be configured to ignore this.

RO 0x1
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Bits Description Type Reset

8:6 CAUSE: Set by hardware when entering debug mode. RO 0x0

Enumerated values:

0x1 → An ebreak instruction was executed when the relevant dcsr.ebreakx bit

was set.

0x2 → The trigger module caused a breakpoint exception.

0x3 → Processor entered Debug Mode due to a halt request, or a reset-halt

request present when the core reset was released.

0x4 → Processor entered Debug Mode after executing one instruction with

single-stepping enabled.

5:3 Reserved. - -

2 STEP: When 1, re-enter Debug Mode after each instruction executed in M-

mode or U-mode.

RW 0x0

1:0 PRV: Read the privilege mode the core was in when entering Debug Mode, and

set the privilege mode the core will execute in when returning from Debug

Mode.

RW 0x3

RVCSR: DPC Register

Offset: 0x7b1

Table 406. DPC

Register
Bits Description Type Reset

31:1 Debug program counter. When entering Debug Mode, dpc samples the current

program counter, e.g. the address of an ebreak which caused Debug Mode

entry. When leaving debug mode, the processor jumps to dpc. The host may

read/write this register whilst in Debug Mode.

RW 0x00000000

0 Reserved. - -

RVCSR: MCYCLE Register

Offset: 0xb00

Description

Machine-mode cycle counter, low half

Table 407. MCYCLE

Register
Bits Description Type Reset

31:0 Counts up once per cycle, when mcountinhibit.cy is 0. Disabled by default to

save power.

RW 0x00000000

RVCSR: MINSTRET Register

Offset: 0xb02

Description

Machine-mode instruction retire counter, low half
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Table 408. MINSTRET

Register
Bits Description Type Reset

31:0 Counts up once per instruction, when mcountinhibit.ir is 0. Disabled by default

to save power.

RW 0x00000000

RVCSR: MHPMCOUNTER3, MHPMCOUNTER4, …, MHPMCOUNTER30,

MHPMCOUNTER31 Registers

Offsets: 0xb03, 0xb04, …, 0xb1e, 0xb1f

Table 409.

MHPMCOUNTER3,

MHPMCOUNTER4, …,

MHPMCOUNTER30,

MHPMCOUNTER31

Registers

Bits Description Type Reset

31:0 Extended performance counter, hardwired to 0. RO 0x00000000

RVCSR: MCYCLEH Register

Offset: 0xb80

Description

Machine-mode cycle counter, high half

Table 410. MCYCLEH

Register
Bits Description Type Reset

31:0 Counts up once per 1 << 32 cycles, when mcountinhibit.cy is 0. Disabled by

default to save power.

RW 0x00000000

RVCSR: MINSTRETH Register

Offset: 0xb82

Description

Machine-mode instruction retire counter, low half

Table 411.

MINSTRETH Register
Bits Description Type Reset

31:0 Counts up once per 1 << 32 instructions, when mcountinhibit.ir is 0. Disabled

by default to save power.

RW 0x00000000

RVCSR: MHPMCOUNTER3H, MHPMCOUNTER4H, …, MHPMCOUNTER30H,

MHPMCOUNTER31H Registers

Offsets: 0xb83, 0xb84, …, 0xb9e, 0xb9f

Table 412.

MHPMCOUNTER3H,

MHPMCOUNTER4H, …,

MHPMCOUNTER30H,

MHPMCOUNTER31H

Registers

Bits Description Type Reset

31:0 Extended performance counter, hardwired to 0. RO 0x00000000

RVCSR: PMPCFGM0 Register

Offset: 0xbd0

Table 413.

PMPCFGM0 Register
Bits Description Type Reset

31:16 Reserved. - -
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Bits Description Type Reset

15:0 PMP M-mode configuration. One bit per PMP region. Setting a bit makes the

corresponding region apply to M-mode (like the pmpcfg.L bit) but does not lock

the region.

PMP is useful for non-security-related purposes, such as stack guarding and

peripheral emulation. This extension allows M-mode to freely use any

currently unlocked regions for its own purposes, without the inconvenience of

having to lock them.

Note that this does not grant any new capabilities to M-mode, since in the

base standard it is already possible to apply unlocked regions to M-mode by

locking them. In general, PMP regions should be locked in ascending region

number order so they can’t be subsequently overridden by currently unlocked

regions.

Note also that this is not the same as the rule locking bypass bit in the ePMP

extension, which does not permit locked and unlocked M-mode regions to

coexist.

This is a Hazard3 custom CSR.

RW 0x0000

RVCSR: MEIEA Register

Offset: 0xbe0

Description

External interrupt enable array.

The array contains a read-write bit for each external interrupt request: a 1 bit indicates that interrupt is currently enabled.

At reset, all external interrupts are disabled.

If enabled, an external interrupt can cause assertion of the standard RISC-V machine external interrupt pending flag

(mip.meip), and therefore cause the processor to enter the external interrupt vector. See meipa.

There are up to 512 external interrupts. The upper half of this register contains a 16-bit window into the full 512-bit

vector. The window is indexed by the 5 LSBs of the write data.

Table 414. MEIEA

Register
Bits Description Type Reset

31:16 WINDOW: 16-bit read/write window into the external interrupt enable array RW 0x0000

15:5 Reserved. - -

4:0 INDEX: Write-only self-clearing field (no value is stored) used to control which

window of the array appears in window.

WO 0x00

RVCSR: MEIPA Register

Offset: 0xbe1

Description

External interrupt pending array

Contains a read-only bit for each external interrupt request. Similarly to meiea, this register is a window into an array of

up to 512 external interrupt flags. The status appears in the upper 16 bits of the value read from meipa, and the lower 5

bits of the value written by the same CSR instruction (or 0 if no write takes place) select a 16-bit window of the full

interrupt pending array.

A 1 bit indicates that interrupt is currently asserted. IRQs are assumed to be level-sensitive, and the relevant meipa bit is
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cleared by servicing the requestor so that it deasserts its interrupt request.

When any interrupt of sufficient priority is both set in meipa and enabled in meiea, the standard RISC-V external interrupt

pending bit mip.meip is asserted. In other words, meipa is filtered by meiea to generate the standard mip.meip flag.

Table 415. MEIPA

Register
Bits Description Type Reset

31:16 WINDOW: 16-bit read-only window into the external interrupt pending array RO -

15:5 Reserved. - -

4:0 INDEX: Write-only, self-clearing field (no value is stored) used to control which

window of the array appears in window.

WO 0x00

RVCSR: MEIFA Register

Offset: 0xbe2

Description

External interrupt force array

Contains a read-write bit for every interrupt request. Writing a 1 to a bit in the interrupt force array causes the

corresponding bit to become pending in meipa. Software can use this feature to manually trigger a particular interrupt.

There are no restrictions on using meifa inside of an interrupt. The more useful case here is to schedule some lower-

priority handler from within a high-priority interrupt, so that it will execute before the core returns to the foreground

code. Implementers may wish to reserve some external IRQs with their external inputs tied to 0 for this purpose.

Bits can be cleared by software, and are cleared automatically by hardware upon a read of meinext which returns the

corresponding IRQ number in meinext.irq with mienext.noirq clear (no matter whether meinext.update is written).

meifa implements the same array window indexing scheme as meiea and meipa.

Table 416. MEIFA

Register
Bits Description Type Reset

31:16 WINDOW: 16-bit read/write window into the external interrupt force array RW 0x0000

15:5 Reserved. - -

4:0 INDEX: Write-only, self-clearing field (no value is stored) used to control which

window of the array appears in window.

WO 0x00

RVCSR: MEIPRA Register

Offset: 0xbe3

Description

External interrupt priority array

Each interrupt has an (up to) 4-bit priority value associated with it, and each access to this register reads and/or writes a

16-bit window containing four such priority values. When less than 16 priority levels are available, the LSBs of the

priority fields are hardwired to 0.

When an interrupt’s priority is lower than the current preemption priority meicontext.preempt, it is treated as not being

pending for the purposes of mip.meip. The pending bit in meipa will still assert, but the machine external interrupt pending

bit mip.meip will not, so the processor will ignore this interrupt. See meicontext.

Table 417. MEIPRA

Register
Bits Description Type Reset

31:16 WINDOW: 16-bit read/write window into the external interrupt priority array,

containing four 4-bit priority values.

RW 0x0000

15:5 Reserved. - -
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Bits Description Type Reset

4:0 INDEX: Write-only, self-clearing field (no value is stored) used to control which

window of the array appears in window.

WO 0x00

RVCSR: MEINEXT Register

Offset: 0xbe4

Description

Get next external interrupt

Contains the index of the highest-priority external interrupt which is both asserted in meipa and enabled in meiea, left-

shifted by 2 so that it can be used to index an array of 32-bit function pointers. If there is no such interrupt, the MSB is

set.

When multiple interrupts of the same priority are both pending and enabled, the lowest-numbered wins. Interrupts with

priority less than meicontext.ppreempt — the previous preemption priority — are treated as though they are not pending.

This is to ensure that a preempting interrupt frame does not service interrupts which may be in progress in the frame

that was preempted.

Table 418. MEINEXT

Register
Bits Description Type Reset

31 NOIRQ: Set when there is no external interrupt which is enabled, pending, and

has priority greater than or equal to meicontext.ppreempt. Can be efficiently

tested with a bltz or bgez instruction.

RO 0x0

30:11 Reserved. - -

10:2 IRQ: Index of the highest-priority active external interrupt. Zero when no

external interrupts with sufficient priority are both pending and enabled.

RO 0x000

1 Reserved. - -

0 UPDATE: Writing 1 (self-clearing) causes hardware to update meicontext

according to the IRQ number and preemption priority of the interrupt indicated

in noirq/irq. This should be done in a single atomic operation, i.e. csrrsi a0,

meinext, 0x1.

SC 0x0

RVCSR: MEICONTEXT Register

Offset: 0xbe5

Description

External interrupt context register

Configures the priority level for interrupt preemption, and helps software track which interrupt it is currently in. The latter

is useful when a common interrupt service routine handles interrupt requests from multiple instances of the same

peripheral.

A three-level stack of preemption priorities is maintained in the preempt, ppreempt and pppreempt fields. The priority stack is

saved when hardware enters the external interrupt vector, and restored by an mret instruction if meicontext.mreteirq is

set.

The top entry of the priority stack, preempt, is used by hardware to ensure that only higher-priority interrupts can preempt

the current interrupt. The next entry, ppreempt, is used to avoid servicing interrupts which may already be in progress in a

frame that was preempted. The third entry, pppreempt, has no hardware effect, but ensures that preempt and ppreempt can

be correctly saved/restored across arbitary levels of preemption.

Table 419.

MEICONTEXT Register
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Bits Description Type Reset

31:28 PPPREEMPT: Previous ppreempt. Set to ppreempt on priority save, set to zero on

priority restore. Has no hardware effect, but ensures that when meicontext is

saved/restored correctly, preempt and ppreempt stack correctly through

arbitrarily many preemption frames.

RW 0x0

27:24 PPREEMPT: Previous preempt. Set to preempt on priority save, restored to to

pppreempt on priority restore.

IRQs of lower priority than ppreempt are not visible in meinext, so that a

preemptee is not re-taken in the preempting frame.

RW 0x0

23:21 Reserved. - -

20:16 PREEMPT: Minimum interrupt priority to preempt the current interrupt.

Interrupts with lower priority than preempt do not cause the core to transfer to

an interrupt handler. Updated by hardware when when meinext.update is written,

or when hardware enters the external interrupt vector.

If an interrupt is present in meinext when this field is updated, then preempt is

set to one level greater than that interrupt’s priority. Otherwise, ppreempt is set

to one level greater than the maximum interrupt priority, disabling preemption.

RW 0x00

15 NOIRQ: Not in interrupt (read/write). Set to 1 at reset. Set to meinext.noirq

when meinext.update is written. No hardware effect.

RW 0x1

14:13 Reserved. - -

12:4 IRQ: Current IRQ number (read/write). Set to meinext.irq when meinext.update is

written. No hardware effect.

RW 0x000

3 MTIESAVE: Reads as the current value of mie.mtie, if clearts is set by the same

CSR access instruction. Otherwise reads as 0. Writes are ORed into mie.mtie.

RO 0x0

2 MSIESAVE: Reads as the current value of mie.msie, if clearts is set by the same

CSR access instruction. Otherwise reads as 0. Writes are ORed into mie.msie.

RO 0x0

1 CLEARTS: Write-1 self-clearing field. Writing 1 will clear mie.mtie and mie.msie,

and present their prior values in the mtiesave and msiesave of this register. This

makes it safe to re-enable IRQs (via mstatus.mie) without the possibility of

being preempted by the standard timer and soft interrupt handlers, which may

not be aware of Hazard3’s interrupt hardware.

The clear due to clearts takes precedence over the set due to mtiesave/

msiesave, although it would be unusual for software to write both on the same

cycle.

SC 0x0

0 MRETEIRQ: If 1, enable restore of the preemption priority stack on mret. This

bit is set on entering the external interrupt vector, cleared by mret, and cleared

upon taking any trap other than an external interrupt.

Provided meicontext is saved on entry to the external interrupt vector (before

enabling preemption), is restored before exiting, and the standard

software/timer IRQs are prevented from preempting (e.g. by using clearts),

this flag allows the hardware to safely manage the preemption priority stack

even when an external interrupt handler may take exceptions.

RW 0x0

RVCSR: MSLEEP Register

Offset: 0xbf0
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Description

M-mode sleep control register

Table 420. MSLEEP

Register
Bits Description Type Reset

31:3 Reserved. - -

2 SLEEPONBLOCK: Enter the deep sleep state configured by

msleep.deepsleep/msleep.powerdown on a h3.block instruction, as well as a

standard wfi. If this bit is clear, a h3.block is always implemented as a simple

pipeline stall.

RW 0x0

1 POWERDOWN: Release the external power request when going to sleep. The

function of this is platform-defined — it may do nothing, it may do something

simple like clock-gating the fabric, or it may be tied to some complex system-

level power controller.

When waking, the processor reasserts its external power-up request, and will

not fetch any instructions until the request is acknowledged. This may add

considerable latency to the wakeup.

RW 0x0

0 DEEPSLEEP: Deassert the processor clock enable when entering the sleep

state. If a clock gate is instantiated, this allows most of the processor

(everything except the power state machine and the interrupt and halt input

registers) to be clock gated whilst asleep, which may reduce the sleep current.

This adds one cycle to the wakeup latency.

RW 0x0

RVCSR: DMDATA0 Register

Offset: 0xbff

Table 421. DMDATA0

Register
Bits Description Type Reset

31:0 The Debug Module’s DATA0 register is mapped into Hazard3’s CSR space so

that the Debug Module can exchange data with the core by executing CSR

access instructions (this is used to implement the Abstract Access Register

command). Only accessible in Debug Mode.

RW 0x00000000

RVCSR: CYCLE Register

Offset: 0xc00

Table 422. CYCLE

Register
Bits Description Type Reset

31:0 Read-only U-mode alias of mcycle, accessible when mcounteren.cy is set RO 0x00000000

RVCSR: INSTRET Register

Offset: 0xc02

Table 423. INSTRET

Register
Bits Description Type Reset

31:0 Read-only U-mode alias of minstret, accessible when mcounteren.ir is set RO 0x00000000

RVCSR: CYCLEH Register

Offset: 0xc80
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Table 424. CYCLEH

Register
Bits Description Type Reset

31:0 Read-only U-mode alias of mcycleh, accessible when mcounteren.cy is set RO 0x00000000

RVCSR: INSTRETH Register

Offset: 0xc82

Table 425. INSTRETH

Register
Bits Description Type Reset

31:0 Read-only U-mode alias of minstreth, accessible when mcounteren.ir is set RO 0x00000000

RVCSR: MVENDORID Register

Offset: 0xf11

Description

Vendor ID

Table 426.

MVENDORID Register
Bits Description Type Reset

31:7 BANK: Value of 9 indicates 9 continuation codes, which is JEP106 bank 10. RO 0x0000009

6:0 OFFSET: ID 0x13 in bank 10 is the JEP106 ID for Raspberry Pi Ltd, the vendor

of RP2350.

RO 0x13

RVCSR: MARCHID Register

Offset: 0xf12

Table 427. MARCHID

Register
Bits Description Type Reset

31:0 Architecture ID (Hazard3) RO 0x0000001b

RVCSR: MIMPID Register

Offset: 0xf13

Table 428. MIMPID

Register
Bits Description Type Reset

31:0 Implementation ID. On RP2350 this reads as 0x86fc4e3f, which is release

v1.0-rc1 of Hazard3.

RO 0x86fc4e3f

RVCSR: MHARTID Register

Offset: 0xf14

Description

Hardware thread ID

Table 429. MHARTID

Register
Bits Description Type Reset

31:0 On RP2350, core 0 has a hart ID of 0, and core 1 has a hart ID of 1. RO -

RVCSR: MCONFIGPTR Register

Offset: 0xf15
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Table 430.

MCONFIGPTR Register
Bits Description Type Reset

31:0 Pointer to configuration data structure (hardwired to 0) RO 0x00000000

3.9. Arm/RISC-V Architecture Switching

RP2350 supports both Arm and RISC-V processor architectures. SDK-based programs which do not contain assembly

code typically run unmodified on either architecture by providing the appropriate build flag.

There are two processor sockets on RP2350, referred to as core 0 and core 1 throughout this document. Each socket

can be occupied either by a Cortex-M33 processor (implementing the Armv8-M Main architecture, plus extensions) or by

a Hazard3 processor (implementing the RV32IMAC architecture, plus extensions).

When a processor reset is removed, hardware samples the ARCHSEL register in the OTP control register block to

determine which processor to connect to that socket. The unused processor is held in reset indefinitely, with its clock

inputs gated. The default and allowable values of the ARCHSEL register are determined by critical OTP flags:

1. If CRIT0_ARM_DISABLE is set, only RISC-V is allowed.

2. Else if CRIT0_RISCV_DISABLE is set, only Arm is allowed.

3. Else if CRIT1_SECURE_BOOT_ENABLE is set, only Arm is allowed.

4. Else if CRIT1_BOOT_ARCH is set, both architectures are permitted, and the default is RISC-V.

5. If none of the above flags are set, both architectures are permitted, and the default is Arm.

No CRIT1 flags are set by default, so on devices where both architectures are available, the default is Arm. To change the

default architecture to RISC-V, set the CRIT1_BOOT_ARCH flag to 1.

Enabling secure boot disables the RISC-V cores because the RP2350 bootrom does not implement secure boot for

RISC-V. This prevents a bad actor from side-stepping secure boot by switching architectures.

RP2350 only samples the ARCHSEL register when a processor is reset. Its value is ignored at all other times, so

software can program the register before a watchdog reset to implement a software-initiated switch between

architectures.

Read the ARCHSEL_STATUS register to check the ARCHSEL value most recently sampled by each processor.

3.9.1. Automatic Switching

RP2350 binaries contain a binary marker recognised by the bootrom. This marker:

• contains additional information such as the binary’s entry point and the intended architecture: Arm, RISC-V, or both

• helps detect when a flash device is connected

• helps verify that the flash device was accessed using the correct SPI parameters

When booting with core 0 in Arm architecture mode, upon detecting a bootable RISC-V binary, the bootrom

automatically resets both cores and switches them to RISC-V architecture mode. After the reset, the bootrom detects

that the binary and processor architectures match, so the binary launches normally.

Likewise, when booting with core 0 in RISC-V architecture mode, upon detecting a bootable Arm binary, the bootrom

automatically resets both cores and switches them to Arm architecture mode.

As a result, the USB bootloader, which runs on both Arm and RISC-V, can accept a UF2 image download for either

architecture, and automatically boot it using the correct processors.
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3.9.2. Mixed Architecture Combinations

The ARCHSEL register has one bit for each processor socket, so it is possible to request mixed combinations of Arm

and RISC-V processors: either Arm core 0 and RISC-V core 1, or RISC-V core 0 and Arm core 1.

Practical applications for this are limited, since this requires two separate program images. The two cores interoperate

normally, including shared exclusives via the global monitor: a shared variable can be safely, concurrently accessed by

an Arm processor performing ldrex, strex instructions and a RISC-V processor performing amoadd.w instructions, for

example.

Hardware supports debugging for a mixture of Arm and RISC-V processors, though this may prove challenging on the

host software side. Debug resources for unused processors are dynamically marked as non-PRESENT in the top-level

CoreSight ROM table.
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Chapter 4. Memory
RP2350 has embedded ROM, OTP and SRAM. RP2350 provides access to external flash via a QSPI interface.

4.1. ROM

A 32 kB read-only memory (ROM) appears at address 0x00000000. The ROM contents are fixed permanently at the time

the silicon is manufactured. Chapter 5 describes the ROM contents in detail, but in summary it contains:

• Core 0 Boot code (Section 5.2)

• Core 1 Launch code (Section 5.3)

• Runtime APIs (Section 5.4).

• USB bootloader

◦ Mass storage interface for drag and drop of UF2 flash and SRAM binaries (Section 5.5)

◦ PICOBOOT interface to support picotool and advanced operations like OTP programming (Section 5.6)

◦ Support for white-labelling all USB exposed information/identifiers (Section 5.7)

• UART bootloader: minimal shell to load an SRAM binary from a host microcontroller (Section 5.8)

The ROM offers single-cycle access, and has a dedicated AHB5 arbiter, so it can be accessed simultaneously with other

memory devices. Writing to the ROM has no effect, and no bus fault is generated on write.

The ROM is covered by IDAU regions enumerated in Section 10.2.2. These aid in partitioning the bootrom between

Secure and Non-secure code: in particular the USB/UART bootloader runs as a Non-secure client application on Arm, to

reduce the attack surface of the secure boot implementation.

Certain ROM features are not implemented on RISC-V, most notably secure boot.

4.2. SRAM

There is a total of 520 kB (520 × 1024 bytes) of on-chip SRAM. For performance reasons, this memory is physically

partitioned into ten banks, but logically it still behaves as a single, flat 520 kB memory. RP2350 does not restrict the

data stored in each bank: you can use any bank to store processor code, data buffers, or a mixture of the two. There are

eight 16,384 × 32-bit banks (64 kB each) and two 1024 × 32-bit banks (4 kB each).

 NOTE

Banking is a physical partitioning of SRAM which improves performance by allowing multiple simultaneous

accesses. Logically, there is a single 520 kB contiguous memory.

Each SRAM bank is accessed via a dedicated AHB5 arbiter. This means different bus managers can access different

SRAM banks in parallel, so up to six 32-bit SRAM accesses can take place every system clock cycle (one per manager).

SRAM is mapped to system addresses starting at 0x20000000. The first 256 kB address region, up to and including

0x2003ffff, is word-striped across the first four 64 kB banks. The next 256 kB address region, up to 0x2007ffff is word-

striped across the remaining four 64 kB banks. The watermark between these two striped regions, at 0x20040000, marks

the boundary between the SRAM0 and SRAM1 power domains.

Consecutive words in the system address space are routed to different RAM banks as shown in Table 431. This scheme

is referred to as sequential interleaving, and improves bus parallelism for typical memory access patterns.
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Table 431. SRAM

bank0/1/2/3 striped

mapping.

System address SRAM Bank SRAM word address

0x20000000 Bank 0 0

0x20000004 Bank 1 0

0x20000008 Bank 2 0

0x2000000c Bank 3 0

0x20000010 Bank 0 1

0x20000014 Bank 1 1

0x20000018 Bank 2 1

0x2000001c Bank 3 1

0x20000020 Bank 0 2

0x20000024 Bank 1 2

0x20000028 Bank 2 2

0x2000002c Bank 3 2

etc

The top two 4 kB regions (starting at 0x20080000 and 0x20081000) map directly to the smaller 4 kB memory banks.

Software may choose to use these for per-core purposes (e.g. stack and frequently-executed code), guaranteeing that

the processors never stall on these accesses. Like all SRAM on RP2350, these banks have single-cycle access from all

managers, (provided no other managers access the bank in the same cycle) so it is reasonable to treat memory as a

single 520 kB device.

 NOTE

RP2040 had a non-striped SRAM mirror. RP2350 no longer has a non-striped mirror, to avoid mapping the same

SRAM location as both Secure and Non-secure. You can still achieve some explicit bandwidth partitioning by

allocating data across two 256 kB blocks of 4-way-striped SRAM.

4.2.1. Other On-chip Memory

Besides the 520 kB main memory, there are two other dedicated RAM blocks that may be used in some circumstances:

• Cache lines can be individually pinned within the XIP address space for use as SRAM, up to the total cache size of

16 kB (see Section 4.4.1.3). Unpinned cache lines remain available for transparent caching of XIP accesses.

• If USB is not used, the USB data DPRAM can be used as a 4 kB memory starting at 0x50100000.

There is also 1 kB of dedicated boot RAM, hardwired to Secure access only, whose contents and layout is defined by the

boot ROM — see Chapter 5.
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 NOTE

Memory in the peripheral address space (addresses starting with 0x4, 0x5 or 0xd) does not support code execution.

This includes USB RAM and boot RAM. These address ranges are made IDAU-Exempt to simplify assigning

peripherals to security domains using ACCESSCTRL, and consequently must be made non-executable to avoid the

possibility of Non-secure-writable, Secure-executable memory.

4.3. Boot RAM

Boot RAM is a 1 kB (256 × 32-bit) SRAM dedicated for use by the bootrom. It is slower than main SRAM, as it is

accessed over APB, taking three cycles for a read and four cycles for a write.

Boot RAM is used for myriad purposes during boot, including the initial pre-boot stack. After the bootrom enters the

user application, boot RAM contains state for the user-facing ROM APIs, such as the resident partition table used for

flash programming protection, and a copy of the flash XIP setup function (formerly known as boot2) to quickly re-

initialise flash XIP modes following serial programming operations.

Boot RAM is hardwired to permit Secure access only (Arm) or Machine-mode access only (RISC-V). It is physically

impossible to execute code from boot RAM, regardless of MPU configuration, as it is on the APB peripheral bus

segment, which is not wired to the processor instruction fetch ports.

Since boot RAM is in the XIP RAM power domain, it is always powered when the switched core domain is powered. This

simplifies SRAM power management in the bootrom, because it doesn’t have to power up any RAM before it has a place

to store the call stack.

Boot RAM supports the standard atomic set/clear/XOR accesses used by other peripherals on RP2350 (Section 2.1.3).

It is possible to use boot RAM for user-defined purposes, but this is not recommended, as it may cause ROM APIs to

behave unpredictably. Calling into the ROM could modify data stored in boot RAM.

4.3.1. List of Registers

A small number of registers are located on the same bus endpoint as boot RAM:

Write Once Bits

These are flags which once set, can only be cleared by a system reset. They are used in the implementation of

certain bootrom security features.

Boot Locks

These function the same as the SIO spinlocks (Section 3.1.4), however they are normally reserved for bootrom

purposes (Section 5.4.4).

These registers start from an offset of 0x800 above the boot RAM base address of 0x400e0000 (defined as

BOOTRAM_BASE in the SDK).

Table 432. List of

BOOTRAM registers
Offset Name Info

0x800 WRITE_ONCE0 This registers always ORs writes into its current contents. Once a

bit is set, it can only be cleared by a reset.

0x804 WRITE_ONCE1 This registers always ORs writes into its current contents. Once a

bit is set, it can only be cleared by a reset.

0x808 BOOTLOCK_STAT Bootlock status register. 1=unclaimed, 0=claimed. These locks

function identically to the SIO spinlocks, but are reserved for

bootrom use.
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Offset Name Info

0x80c BOOTLOCK0 Read to claim and check. Write to unclaim. The value returned on

successful claim is 1 << n, and on failed claim is zero.

0x810 BOOTLOCK1 Read to claim and check. Write to unclaim. The value returned on

successful claim is 1 << n, and on failed claim is zero.

0x814 BOOTLOCK2 Read to claim and check. Write to unclaim. The value returned on

successful claim is 1 << n, and on failed claim is zero.

0x818 BOOTLOCK3 Read to claim and check. Write to unclaim. The value returned on

successful claim is 1 << n, and on failed claim is zero.

0x81c BOOTLOCK4 Read to claim and check. Write to unclaim. The value returned on

successful claim is 1 << n, and on failed claim is zero.

0x820 BOOTLOCK5 Read to claim and check. Write to unclaim. The value returned on

successful claim is 1 << n, and on failed claim is zero.

0x824 BOOTLOCK6 Read to claim and check. Write to unclaim. The value returned on

successful claim is 1 << n, and on failed claim is zero.

0x828 BOOTLOCK7 Read to claim and check. Write to unclaim. The value returned on

successful claim is 1 << n, and on failed claim is zero.

BOOTRAM: WRITE_ONCE0, WRITE_ONCE1 Registers

Offsets: 0x800, 0x804

Table 433.

WRITE_ONCE0,

WRITE_ONCE1

Registers

Bits Description Type Reset

31:0 This registers always ORs writes into its current contents. Once a bit is set, it

can only be cleared by a reset.

RW 0x00000000

BOOTRAM: BOOTLOCK_STAT Register

Offset: 0x808

Table 434.

BOOTLOCK_STAT

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 Bootlock status register. 1=unclaimed, 0=claimed. These locks function

identically to the SIO spinlocks, but are reserved for bootrom use.

RW 0xff

BOOTRAM: BOOTLOCK0, BOOTLOCK1, …, BOOTLOCK6, BOOTLOCK7

Registers

Offsets: 0x80c, 0x810, …, 0x824, 0x828

Table 435.

BOOTLOCK0,

BOOTLOCK1, …,

BOOTLOCK6,

BOOTLOCK7 Registers

Bits Description Type Reset

31:0 Read to claim and check. Write to unclaim. The value returned on successful

claim is 1 << n, and on failed claim is zero.

RW 0x00000000

4.4. External Flash and PSRAM (XIP)

RP2350 can access external flash and PSRAM via its execute-in-place (XIP) subsystem. The term execute-in-place

refers to external memory mapped directly into the chip’s internal address space. This enables you to execute code as-
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is from the external memory without explicitly copying into on-chip SRAM. For example, a processor instruction fetch

from AHB address 0x10001234 results in a QSPI memory interface fetch from address 0x001234 in an external flash device.

A 16 kB on-chip cache retains the values of recent reads and writes. This reduces the chances that XIP bus accesses

must go to external memory, improving the average throughput and latency of the XIP interface. The cache is physically

structured as two 8 kB banks, interleaving odd and even cache lines of 8-byte granularity over the two banks. This

allows processors to access multiple cache lines during the same cycle. Logically, the XIP cache behaves as a single

16 kB cache.

APB: XIP_CTRL

XIP/Cache 

Control Registers

Cache Bank 0

8 kB 2-way

Cache Bank 1

8 kB 2-way
Streaming FIFO

AHB: XIP

(Even cache lines)

AHB: XIP

(Odd cache lines)

AHB: AUX

(Streaming DMA)

QSPI Memory Interface

AHB Arbiter

APB: QMI_CTRL

Data

SD[3:0]CSn[1:0]SCK

Configuration

Figure 16. Flash

execute-in-place (XIP)

subsystem. The cache

is split into two banks

for performance, but

behaves as a single

16 kB cache. XIP

accesses first query

the cache. If a cache

entry is not found, the

QMI generates an

external serial access,

adds the resulting

data to the cache, and

forwards it on to the

system bus (for reads)

or merges it with the

AHB write data (for

writes).

When booting from flash, the RP2350 bootrom (Chapter 5) sets up a baseline QMI execute-in-place configuration. User

code may later reconfigure this to improve performance for a specific flash device. QSPI clock divisors can be changed

at any time, including whilst executing from XIP. Other reconfiguration requires a momentary disable of the interface.

4.4.1. XIP Cache

The cache is 16 kB, two-way set-associative, 1 cycle hit. It is internal to the XIP subsystem, and only involved in

accesses to the QSPI memory interface, so software does not have to consider cache coherence unless performing

flash programming operations. It caches accesses to a 26-bit downstream XIP address space. On RP2350, the lower

half of this space is occupied by two 16 MB windows for the two QMI chip selects. RP2350 reserves the remainder for

future expansion, but you can use the space to pin cache lines outside of the QMI address space for use as cache-as-

SRAM (Section 4.4.1.3). The 26-bit XIP address space is mirrored multiple times in the RP2350 address space, decoded

on bits 27:26 of the system bus address:

• 0x10… : Cached XIP access

• 0x14… : Uncached XIP access

• 0x18… : Cache maintenance writes

• 0x1c… : Uncached, untranslated XIP access — bypass QMI address translation

You can disable cache lookup separately for Secure and Non-secure accesses via the CTRL.EN_SECURE and

CTRL.EN_NONSECURE register bits. The CTRL register contains controls to disable Secure/Non-secure access to the

uncached and uncached/untranslated XIP windows, which avoids duplicate mappings that may otherwise require

additional SAU or PMP regions.
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4.4.1.1. Cache Maintenance

Cache maintenance is performed on a line-by-line basis by writing into the cache maintenance mirror of the XIP address

space, starting at 0x18000000. Cache lines are 8 bytes in size. Write data is ignored; instead, the 3 LSBs of the address

select the maintenance operation:

• 0x0: Invalidate by set/way

• 0x1: Clean by set/way

• 0x2: Invalidate by address

• 0x3: Clean by address

• 0x7: Pin cache set/way at address (Section 4.4.1.3)

Invalidate

Marks a cache line as no longer containing data; the next access to the same address will miss the cache.

Does not write back any data to external memory. Used when external memory has been modified in a way

that the cache would not automatically know about, such as a flash programming operation.

Clean

Instructs the cache to write out any data stored in the cache as a result of a previous cached write access that

has not yet been written out to external memory. Used to make cached writes available to uncached reads.

Also used when cache contents are about to be lost, but external memory is to stay powered (for example,

when the system is about to power down).

By set/way

Selects a particular cache line to be maintained, out of the 2048 × 8-byte lines that make up the cache. Bit 13 of

the system bus address selects the cache way. Bits 12:3 of the address select a particular cache line within

that way. Mainly used to iterate exhaustively over all cache lines (for example, during a full cache flush).

By address

Looks up an address in the cache, then performs the requested maintenance if that line is currently allocated

in the cache. Used when only a particular range of XIP addresses needs to be maintained, for example, a flash

page that was just programmed. Usually faster than a full flush, because the real cost of a cache flush is not in

the maintenance operations, but the large number of subsequent cache misses.

Pin

Prevents a particular cache line from being evicted. Used to mark important external memory contents that

must get guaranteed cache hits, or to allocate cache lines for use as cache-as-SRAM. If a cached access to

some other address misses the cache and attempts to evict a pinned cache line, the eviction fails, and the

access is downgraded to an uncached access.

Cache maintenance operations operate on the cache’s tag memory. This is the cache’s metadata store which tracks the

state of each cache line. Maintenance operations do not affect the cache’s data memory, which contains the cache’s

copy of data bytes from external memory.

By default, cache maintenance is Secure-only. Non-secure writes to the cache maintenance address window have no

effect and return a bus error. Non-secure cache maintenance can be enabled by setting the CTRL.MAINT_NONSEC

register bit, but this is not recommended if Secure software may perform cached XIP accesses.

4.4.1.2. Cache Line States

The changes to a cache line caused by cached accesses and maintenance operations can be summarised by a set of

state transitions.
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Pinned Dirty

Clean

Inv, Evict

Inv, Clean R

R

R, W, Clean, Pin R, W
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W

Inv Pin

Inv, Evict

Pin

Pin

Figure 17. State

transition diagram for

each cache line. Inv,

Clean and Pin

represent

invalidate/clean/pin

maintenance

operations,

respectively. R and W

represent cached

reads and writes. Evict

represents a cache

line deallocation to

make room for a new

allocation due to a

read/write cache

miss.

Initially, the state of all cache lines is undefined. When booting from flash, the bootrom performs an invalidate by

set/way on every line of the cache to force them to a known state. In the diagram above, all states have an Inv arc to the

invalid state.

A dirty cache line contains data not yet propagated to downstream memory.

A clean cache line contains data which matches the downstream memory contents.

Accessing an invalid cache line causes an allocation: the cache fetches the corresponding data from downstream

memory, stores it in the cache, then marks the cache line as clean or dirty. The cache also stores part of the

downstream address, known as the tag, to recall the downstream address stored in each cache line. Read allocations

enter the clean state, so the cache line can be safely freed at any time. Write allocations enter the dirty state, so the

cache line must propagate downstream before it can be freed.

Writing to a clean cache line marks it as dirty because the cache now contains write data that has not propagated

downstream. The line can be explicitly returned to the clean state using a clean maintenance operation (0x1 or 0x3), but

this is not required. Typically, the cache automatically propagates dirty cache lines downstream when it needs to

reallocate them.

Evictions happen when a cached read or write needs to allocate a cache line that is already in the clean or dirty state.

The eviction transitions the line momentarily to the invalid state, ready for allocation. For clean cache lines, this happens

instantaneously. For dirty cache lines, the cache must first propagate the cache line contents downstream before it can

safely enter the invalid state.

Cache lines enter the pinned state using a pin maintenance operation (0x7) and exit only by an invalidate maintenance

operation (0x0 or 0x2).
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 NOTE

The pin maintenance operation only marks the line as pinned; it does not perform any copying of data. When pinning

lines that exist in external memory devices, you must first pin the line, then copy the downstream data into the

pinned line by reading from the uncached XIP window.

4.4.1.3. Cache-as-SRAM

When you disabled the cache of RP2040, the cache would map the entire cache memory at 0x15000000. RP2350 replaces

this with the ability to pin individual cache lines. You can use this in the following ways:

• Pin the entire cache at some address range to use the entire cache as SRAM

• Pin one full cache way to make half of the cache available for cache-as-SRAM use (the remaining cache way still

functions as usual)

• Pin an address range that that maps critical flash contents

 NOTE

Pinned cache lines are not accessible when the cache is disabled via the CTRL register (CTRL.EN_SECURE or

CTRL.EN_NONSECURE depending on security level of the bus access).

Because the QMI only occupies the lower half of the 64 MB XIP address space, you can pin cache lines outside of the

QMI address range (e.g. at the top of the XIP space) to avoid interfering with any QMI accesses. As a general rule, the

more cache you pin, the lower the cache hit rate for other accesses.

Cache lines are pinned using the pin maintenance operation (0x7), which performs the following steps:

1. An implicit invalidate-by-address operation (0x2) using the full address of the maintenance operation

◦ This ensures that each address is allocated in only one cache way (required for correct cache operation)

2. Select the cache line to be pinned, using bit 13 to select the cache way, and bits 12:3 to select the cache set (as

with 0x0/0x1 invalidate/clean by set/way commands)

3. Write the address to the cache line’s tag entry

4. Change the cache line’s state to pinned (as per the state diagram in Section 4.4.1.2)

5. Update the cache line’s tag with the full address of the maintenance operation

After a pin operation, cached reads and writes to the specified address always hit the cache until that cache line is

either invalidated or pinned to a different address.

 NOTE

Pinning two addresses which are equal modulo cache size pins the same cache line twice. It does not pin two

different cache lines. The second pin will overwrite the first.

When a cached access hits a pinned cache line, it behaves the same as a dirty line. The cache reads and writes as if

allocated in the cache by normal means.

Cache eviction policy is random, and the cache only makes one attempt to select an eviction way. If the cache selects

to evict a pinned line, the eviction fails, and the access is demoted to an uncached access. As a result, a cache with one

way pinned does not behave exactly the same as a direct-mapped 8 kB cache, but average-case performance is similar.

Cache line states are stored in the cache tag memory stored in the XIP memory power domain. This memory contents

do not change on reset, so pinned lines remain pinned across resets. If the XIP memory power domain is not powered

down, memory contents do not change across power cycles of the switched core reset domain. The bootrom clears the

tag memory upon entering the flash boot or NSBOOT (USB boot) path, but watchdog scratch vector reboots can boot

directly into pinned XIP cache lines.
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4.4.2. QSPI Memory Interface (QMI)

Uncached accesses and cache misses require access to external memory. The QSPI memory interface (QMI) provides

this access, as documented in Section 12.14. The QMI supports:

• Up to two external QSPI devices, with separate chip selects and shared clock/data pins

◦ Banked configuration registers, including different SCK frequencies and QSPI opcodes

• Memory-mapped reads and writes (writes must be enabled via CTRL.WRITABLE_M0/CTRL.WRITABLE_M1)

• Serial/dual/quad-SPI transfer formats

• SCK speeds as high as clk_sys

• 8/16/32-bit accesses for uncached accesses, and 64-bit accesses for cache line fills

• Automatic chaining of sequentially addressed accesses into a single QSPI transfer

• Address translation (4 × 4 MB windows per QSPI device)

◦ Flash storage addresses can differ from runtime addresses, e.g. for multiple OTA upgrade image slots

◦ Allows code and data segments, or Secure and Non-secure images, to be mapped separately

• Direct-mode FIFO interface for programming and configuring external QSPI devices

XIP accesses via the two cache AHB ports, and from the DMA streaming hardware, arbitrate for access to the QMI. A

separate APB port configures the QMI.

The QMI is a new memory interface designed for RP2350, replacing the SSI peripheral on RP2040.

4.4.3. Streaming DMA Interface

As the flash is generally much larger than on-chip SRAM, it’s often useful to stream chunks of data into memory from

flash. It’s convenient to have the DMA stream this data in the background while software in the foreground does other

things. It’s even more convenient if code can continue to execute from flash whilst this takes place.

This doesn’t interact well with standard XIP operation because QMI serial transfers force lengthy bus stalls on the DMA.

These stalls are tolerable for a processor because an in-order processor tends to have nothing better to do while

waiting for an instruction fetch to retire, and because typical code execution tends to have much higher cache hit rates

than bulk streaming of infrequently accessed data. In contrast, stalling the DMA prevents any other active DMA

channels from making progress during this time, slowing overall DMA throughput.

The STREAM_ADDR and STREAM_CTR registers are used to program a linear sequence of flash reads. The XIP

subsystem performs these reads in the background in a best-effort fashion. To minimise impact on code executed from

flash whilst the stream is ongoing, the streaming hardware has lower priority access to the QMI than regular XIP

accesses, and there is a brief cooldown (9 cycles) between the last XIP cache miss and resuming streaming. This

avoids increases in initial access latency on XIP cache misses.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/flash/xip_stream/flash_xip_stream.c Lines 45 - 48

45     while (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))
46         (void) xip_ctrl_hw->stream_fifo;
47     xip_ctrl_hw->stream_addr = (uint32_t) &random_test_data[0];
48     xip_ctrl_hw->stream_ctr = count_of(random_test_data);

The streamed data is pushed to a small FIFO, which generates DREQ signals that tell the DMA to collect the streamed

data. As the DMA does not initiate a read until after reading the data from flash, the DMA does not stall when accessing

the data. The DMA can then retrieve this data through the auxiliary AHB port, which provides direct single-cycle access

to the streaming data FIFO.

On RP2350, you can also use the auxiliary AHB port to access the QMI direct-mode FIFOs. This is faster than accessing
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the FIFOs through the QMI APB configuration port. When QMI access chaining is enabled, the streaming XIP DMA is

close to the maximum theoretical QSPI throughput, but the direct-mode FIFOs are available on AHB for situations that

require 100% of the theoretical throughput.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/flash/xip_stream/flash_xip_stream.c Lines 58 - 70

58     const uint dma_chan = 0;
59     dma_channel_config cfg = dma_channel_get_default_config(dma_chan);
60     channel_config_set_read_increment(&cfg, false);
61     channel_config_set_write_increment(&cfg, true);
62     channel_config_set_dreq(&cfg, DREQ_XIP_STREAM);
63     dma_channel_configure(
64             dma_chan,
65             &cfg,
66             (void *) buf,                 // Write addr
67             (const void *) XIP_AUX_BASE,  // Read addr
68             count_of(random_test_data), // Transfer count
69             true                        // Start immediately!
70     );

4.4.4. Performance Counters

The XIP subsystem provides two performance counters. These are 32 bits in size, saturate upon reaching 0xffffffff,

and are cleared by writing any value. They count:

1. The total number of XIP accesses, to any alias

2. The number of XIP accesses which resulted in a cache hit

This provides a way to profile the cache hit rate for common use cases.

4.4.5. List of XIP_CTRL Registers

The XIP control registers start at a base address of 0x400c8000 (defined as XIP_CTRL_BASE in SDK).

Table 436. List of XIP

registers
Offset Name Info

0x00 CTRL Cache control register. Read-only from a Non-secure context.

0x08 STAT

0x0c CTR_HIT Cache Hit counter

0x10 CTR_ACC Cache Access counter

0x14 STREAM_ADDR FIFO stream address

0x18 STREAM_CTR FIFO stream control

0x1c STREAM_FIFO FIFO stream data

XIP: CTRL Register

Offset: 0x00

Description

Cache control register. Read-only from a Non-secure context.
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Table 437. CTRL

Register
Bits Description Type Reset

31:12 Reserved. - -

11 WRITABLE_M1: If 1, enable writes to XIP memory window 1 (addresses

0x11000000 through 0x11ffffff, and their uncached mirrors). If 0, this region is

read-only.

XIP memory is read-only by default. This bit must be set to enable writes if a

RAM device is attached on QSPI chip select 1.

The default read-only behaviour avoids two issues with writing to a read-only

QSPI device (e.g. flash). First, a write will initially appear to succeed due to

caching, but the data will eventually be lost when the written line is evicted,

causing unpredictable behaviour.

Second, when a written line is evicted, it will cause a write command to be

issued to the flash, which can break the flash out of its continuous read mode.

After this point, flash reads will return garbage. This is a security concern, as it

allows Non-secure software to break Secure flash reads if it has permission to

write to any flash address.

Note the read-only behaviour is implemented by downgrading writes to reads,

so writes will still cause allocation of an address, but have no other effect.

RW 0x0

10 WRITABLE_M0: If 1, enable writes to XIP memory window 0 (addresses

0x10000000 through 0x10ffffff, and their uncached mirrors). If 0, this region is

read-only.

XIP memory is read-only by default. This bit must be set to enable writes if a

RAM device is attached on QSPI chip select 0.

The default read-only behaviour avoids two issues with writing to a read-only

QSPI device (e.g. flash). First, a write will initially appear to succeed due to

caching, but the data will eventually be lost when the written line is evicted,

causing unpredictable behaviour.

Second, when a written line is evicted, it will cause a write command to be

issued to the flash, which can break the flash out of its continuous read mode.

After this point, flash reads will return garbage. This is a security concern, as it

allows Non-secure software to break Secure flash reads if it has permission to

write to any flash address.

Note the read-only behaviour is implemented by downgrading writes to reads,

so writes will still cause allocation of an address, but have no other effect.

RW 0x0

9 SPLIT_WAYS: When 1, route all cached+Secure accesses to way 0 of the

cache, and route all cached+Non-secure accesses to way 1 of the cache.

This partitions the cache into two half-sized direct-mapped regions, such that

Non-secure code can not observe cache line state changes caused by Secure

execution.

A full cache flush is required when changing the value of SPLIT_WAYS. The

flush should be performed whilst SPLIT_WAYS is 0, so that both cache ways

are accessible for invalidation.

RW 0x0
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Bits Description Type Reset

8 MAINT_NONSEC: When 0, Non-secure accesses to the cache maintenance

address window (addr[27] == 1, addr[26] == 0) will generate a bus error. When

1, Non-secure accesses can perform cache maintenance operations by writing

to the cache maintenance address window.

Cache maintenance operations may be used to corrupt Secure data by

invalidating cache lines inappropriately, or map Secure content into a Non-

secure region by pinning cache lines. Therefore this bit should generally be set

to 0, unless Secure code is not using the cache.

Care should also be taken to clear the cache data memory and tag memory

before granting maintenance operations to Non-secure code.

RW 0x0

7 NO_UNTRANSLATED_NONSEC: When 1, Non-secure accesses to the

uncached, untranslated window (addr[27:26] == 3) will generate a bus error.

RW 0x1

6 NO_UNTRANSLATED_SEC: When 1, Secure accesses to the uncached,

untranslated window (addr[27:26] == 3) will generate a bus error.

RW 0x0

5 NO_UNCACHED_NONSEC: When 1, Non-secure accesses to the uncached

window (addr[27:26] == 1) will generate a bus error. This may reduce the

number of SAU/MPU/PMP regions required to protect flash contents.

Note this does not disable access to the uncached, untranslated

window — see NO_UNTRANSLATED_SEC.

RW 0x0

4 NO_UNCACHED_SEC: When 1, Secure accesses to the uncached window

(addr[27:26] == 1) will generate a bus error. This may reduce the number of

SAU/MPU/PMP regions required to protect flash contents.

Note this does not disable access to the uncached, untranslated

window — see NO_UNTRANSLATED_SEC.

RW 0x0

3 POWER_DOWN: When 1, the cache memories are powered down. They retain

state, but can not be accessed. This reduces static power dissipation. Writing

1 to this bit forces CTRL_EN_SECURE and CTRL_EN_NONSECURE to 0, i.e. the

cache cannot be enabled when powered down.

RW 0x0

2 Reserved. - -

1 EN_NONSECURE: When 1, enable the cache for Non-secure accesses. When

enabled, Non-secure XIP accesses to the cached (addr[26] == 0) window will

query the cache, and QSPI accesses are performed only if the requested data

is not present. When disabled, Secure access ignore the cache contents, and

always access the QSPI interface.

Accesses to the uncached (addr[26] == 1) window will never query the cache,

irrespective of this bit.

RW 0x1
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Bits Description Type Reset

0 EN_SECURE: When 1, enable the cache for Secure accesses. When enabled,

Secure XIP accesses to the cached (addr[26] == 0) window will query the

cache, and QSPI accesses are performed only if the requested data is not

present. When disabled, Secure access ignore the cache contents, and always

access the QSPI interface.

Accesses to the uncached (addr[26] == 1) window will never query the cache,

irrespective of this bit.

There is no cache-as-SRAM address window. Cache lines are allocated for

SRAM-like use by individually pinning them, and keeping the cache enabled.

RW 0x1

XIP: STAT Register

Offset: 0x08

Table 438. STAT

Register
Bits Description Type Reset

31:3 Reserved. - -

2 FIFO_FULL: When 1, indicates the XIP streaming FIFO is completely full.

The streaming FIFO is 2 entries deep, so the full and empty

flag allow its level to be ascertained.

RO 0x0

1 FIFO_EMPTY: When 1, indicates the XIP streaming FIFO is completely empty. RO 0x1

0 Reserved. - -

XIP: CTR_HIT Register

Offset: 0x0c

Description

Cache Hit counter

Table 439. CTR_HIT

Register
Bits Description Type Reset

31:0 A 32 bit saturating counter that increments upon each cache hit,

i.e. when an XIP access is serviced directly from cached data.

Write any value to clear.

WC 0x00000000

XIP: CTR_ACC Register

Offset: 0x10

Description

Cache Access counter

Table 440. CTR_ACC

Register
Bits Description Type Reset

31:0 A 32 bit saturating counter that increments upon each XIP access,

whether the cache is hit or not. This includes noncacheable accesses.

Write any value to clear.

WC 0x00000000

XIP: STREAM_ADDR Register

Offset: 0x14
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Description

FIFO stream address

Table 441.

STREAM_ADDR

Register

Bits Description Type Reset

31:2 The address of the next word to be streamed from flash to the streaming

FIFO.

Increments automatically after each flash access.

Write the initial access address here before starting a streaming read.

RW 0x00000000

1:0 Reserved. - -

XIP: STREAM_CTR Register

Offset: 0x18

Description

FIFO stream control

Table 442.

STREAM_CTR Register
Bits Description Type Reset

31:22 Reserved. - -

21:0 Write a nonzero value to start a streaming read. This will then

progress in the background, using flash idle cycles to transfer

a linear data block from flash to the streaming FIFO.

Decrements automatically (1 at a time) as the stream

progresses, and halts on reaching 0.

Write 0 to halt an in-progress stream, and discard any in-flight

read, so that a new stream can immediately be started (after

draining the FIFO and reinitialising STREAM_ADDR)

RW 0x000000

XIP: STREAM_FIFO Register

Offset: 0x1c

Description

FIFO stream data

Table 443.

STREAM_FIFO

Register

Bits Description Type Reset

31:0 Streamed data is buffered here, for retrieval by the system DMA.

This FIFO can also be accessed via the XIP_AUX slave, to avoid exposing

the DMA to bus stalls caused by other XIP traffic.

RF 0x00000000

4.4.6. List of XIP_AUX Registers

The XIP_AUX port provides fast AHB access to the streaming FIFO and the QMI Direct Mode FIFOs, to reduce the cost of

DMA access to these FIFOs.

Table 444. List of

XIP_AUX registers
Offset Name Info

0x0 STREAM Read the XIP stream FIFO (fast bus access to

XIP_CTRL_STREAM_FIFO)

0x4 QMI_DIRECT_TX Write to the QMI direct-mode TX FIFO (fast bus access to

QMI_DIRECT_TX)
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Offset Name Info

0x8 QMI_DIRECT_RX Read from the QMI direct-mode RX FIFO (fast bus access to

QMI_DIRECT_RX)

XIP_AUX: STREAM Register

Offset: 0x0

Table 445. STREAM

Register
Bits Description Type Reset

31:0 Read the XIP stream FIFO (fast bus access to XIP_CTRL_STREAM_FIFO) RF 0x00000000

XIP_AUX: QMI_DIRECT_TX Register

Offset: 0x4

Description

Write to the QMI direct-mode TX FIFO (fast bus access to QMI_DIRECT_TX)

Table 446.

QMI_DIRECT_TX

Register

Bits Description Type Reset

31:21 Reserved. - -

20 NOPUSH: Inhibit the RX FIFO push that would correspond to this TX FIFO

entry.

Useful to avoid garbage appearing in the RX FIFO when pushing the command

at the beginning of a SPI transfer.

WF 0x0

19 OE: Output enable (active-high). For single width (SPI), this field is ignored, and

SD0 is always set to output, with SD1 always set to input.

For dual and quad width (DSPI/QSPI), this sets whether the relevant SDx pads

are set to output whilst transferring this FIFO record. In this case the

command/address should have OE set, and the data transfer should have OE

set or clear depending on the direction of the transfer.

WF 0x0

18 DWIDTH: Data width. If 0, hardware will transmit the 8 LSBs of the DIRECT_TX

DATA field, and return an 8-bit value in the 8 LSBs of DIRECT_RX. If 1, the full

16-bit width is used. 8-bit and 16-bit transfers can be mixed freely.

WF 0x0

17:16 IWIDTH: Configure whether this FIFO record is transferred with

single/dual/quad interface width (0/1/2). Different widths can be mixed freely.

WF 0x0

Enumerated values:

0x0 → Single width

0x1 → Dual width

0x2 → Quad width

15:0 DATA: Data pushed here will be clocked out falling edges of SCK (or before

the very first rising edge of SCK, if this is the first pulse). For each byte clocked

out, the interface will simultaneously sample one byte, on rising edges of SCK,

and push this to the DIRECT_RX FIFO.

For 16-bit data, the least-significant byte is transmitted first.

WF 0x0000

XIP_AUX: QMI_DIRECT_RX Register

Offset: 0x8
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Description

Read from the QMI direct-mode RX FIFO (fast bus access to QMI_DIRECT_RX)

Table 447.

QMI_DIRECT_RX

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 With each byte clocked out on the serial interface, one byte will simultaneously

be clocked in, and will appear in this FIFO. The serial interface will stall when

this FIFO is full, to avoid dropping data.

When 16-bit data is pushed into the TX FIFO, the corresponding RX FIFO push

will also contain 16 bits of data. The least-significant byte is the first one

received.

RF 0x0000

4.5. OTP

RP2350 contains 8 kB of one-time-programmable storage (OTP), which stores:

• Manufacturing information such as unique device ID

• Boot configuration such as non-default crystal oscillator frequency

• Public key fingerprint(s) for boot signature enforcement

• Symmetric keys for decryption of external flash contents into SRAM

• User-defined contents, including bootable program images (Section 5.10.7)

The OTP storage is structured as 4096 × 24-bit rows. Each row contains 16 bits of data and 8 bits of parity information,

providing 8 kB of data storage. OTP bit cells are initially 0 and can be programmed to 1. However, they cannot be cleared

back to 0 under any circumstance. This ensures that security-critical flags, such as debug disables, are physically

impossible to clear once set. However, you must also take care to program the correct values.

For more information about the OTP subsystem, see Chapter 13.
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Chapter 5. Bootrom
Each RP2350 device contains 32 kB of mask ROM: a physically immutable memory resource described in Section 4.1.

The RP2350 bootrom is the binary image etched into this ROM that contains the first instructions executed at reset.

The bootrom concepts section (Section 5.1) covers the following topics, which are necessary background for

understanding the bootrom features and their implementation:

• Partition tables and their associated flash permissions

• Bootable images, and the block loops that store their metadata

• Versioning for images and partition tables, and A/B versions to support double-buffered upgrades

• Hashing and signing to support secure boot with public key fingerprint in OTP (see also Section 10.1.1 in the

security chapter)

• Load maps for bootable images, and packaged binaries which the bootrom loads from flash into RAM according to

the image’s load map

• Anti-rollback protection to revoke older, compromised versions of software

• Three forms of flash boot:

◦ Flash image boot, with a single binary image written directly into flash

◦ Flash partition boot, with the boot image selected from the partition table

◦ Partition-table-in-image boot, where the boot image is not contained in a partition table, but still embeds a

partition table data structure to divide the flash address space

• Boot slots for A/B versions of partition tables

• Flash update boot, a special one-time boot mode that enables version downgrades following an image download

• Try before you buy support for phased upgrades with image self-test

• Address translation for flash images, which provides a consistent runtime address to images regardless of

physical storage location

• Automatic architecture switch when attempting to run a RISC-V binary on Arm, or vice versa

• Targeting UF2 downloads to different flash partitions based on their permissions and the UF2 family ID

Besides features mentioned as concepts above, the RP2350 bootrom implements:

• The core 0 initial boot sequence (Section 5.2)

• The core 1 low-power wait and launch protocol (Section 5.3)

• Runtime APIs (Section 5.4) exported through the ROM symbol table, such as flash and OTP programming

• A subset of runtime APIs available to Non-secure code, with permission for each API entry point individually

configured by Secure code

• A USB MSC class-compliant bootloader with UF2 support for downloading code/data to flash or RAM (Section 5.5),

including support for versioning and A/B partitions

• The USB PICOBOOT interface for advanced operations like OTP programming (Section 5.6) and to support picotool

or other host side tools

• Support for white-labelling all USB exposed information/identifiers (Section 5.7)

• A UART bootloader providing a minimal shell to load an SRAM binary from a host microcontroller (Section 5.8)

You should read the bootrom concepts section before diving into the features in the list above. RP2350 adds a

considerable amount of new functionality compared to the RP2040 bootrom. If you are in a terrible hurry, Section 5.9.5

covers the absolute minimum requirements for a binary to be bootable on RP2350 when secure boot is not enabled.
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Bootrom Source Code

All source files for the RP2350 bootrom are available under the terms of the 3-clause BSD licence:

github.com/raspberrypi/pico-bootrom-rp2350

5.1. Bootrom Concepts

Bold type in the following sections introduces a concept. This chapter frequently refers back to these concepts.

5.1.1. Secure and Non-secure

This datasheet uses the (capitalised) terms Secure and Non-secure to refer to the Arm execution states of the same

name, defined in the Armv8-M Architecture Reference Manual. The uncapitalised term "secure" has no special meaning.

In some contexts, Secure can also refer to a RISC-V core, usually one running at the Machine privilege level. For

example, the low-level flash APIs are exported to Arm Secure code and RISC-V code only, so Secure serves as a

shorthand for this type of API.

A secured RP2350 is a device where secure boot is enabled (Section 5.10.1). This is not the same as the Secure state,

since the device may run a mixture of Secure and Non-secure code after completing the secure boot process.

5.1.2. Partition Tables

A partition table divides flash into a maximum of 16 distinct regions, known as partitions. Each partition defines

attributes such as flash permissions for a contiguous range of flash addresses. The PARTITION_TABLE data structure

describes a partition table, and is an example of a block. Use of partition tables is strictly optional.

Dividing flash into multiple partitions enables you to:

• Store more than one executable image on the device, e.g.:

◦ For A/B boot versions (Section 5.1.7)

◦ For different architectures (Arm/RISC-V) or Secure/Non-secure

◦ For use with a custom bootloader

• Provision space for data, e.g.:

◦ Embedded file systems

◦ Shared Wi-Fi firmware

◦ Application resources

• Provide different security attributes for different regions of flash (Section 5.1.3)

• Target UF2 downloads to different partitions based on family ID (Section 5.1.18), including custom-defined UF2

families specific to your platform

For more information about PARTITION_TABLE discovery during flash boot, see Section 5.1.5.2.

Partition tables can be versioned to support A/B upgrades. They can also be hashed and signed for security and

integrity purposes.
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5.1.2.1. Partition Attributes

Each partition specifies partition attributes for the flash addresses it encompasses, including:

• Start/end offsets within the logical 32 MB address space of the two flash windows; these offsets are specified in

multiples of a flash sector (4 kB)

◦ Bootable partitions must reside wholly in the first 16 MB flash window, due to limitations of the address

translation hardware

• Access permissions for the partition: read/write for each of Secure (S), Non-secure (NS) and bootloader (BL) access

• Information on which UF2 family IDs may be dropped into the partition via the UF2 bootloader

• An optional 64-bit identifier

• An optional name (a string for human-readable identification)

• Whether to ignore the partition during Arm or RISC-V boot

• Information to group partitions together (see Section 5.1.7 and Section 5.1.18)

Section 5.9.4 documents the full list of partition attributes, along with the PARTITION_TABLE binary format.

If there is no partition table, the entirety of flash is considered a single region, with no restricted permissions. Without a

partition table, there is no support for custom UF2 family IDs, therefore you must use one of the standard IDs specified

in Table 452.

5.1.3. Flash Permissions

One of the roles of the partition tables introduced in Section 5.1.2 is to define flash permissions, or simply permissions.

The partition table stores one set of permission flags for each partition: all bytes covered by a single partition have the

same permissions. The partition table separately defines permissions for unpartitioned space: flash addresses which

do not match any of partitions defined in the partition table.

Separate read/write permissions are specified for each of Secure (S), Non-secure (NS) and bootloader (BL) access.

Bootloader permissions control where UF2s can be written to, and what can be accessed via picotool when the device is

in BOOTSEL mode.

Because flash permissions may be changed dynamically at runtime, part of the partition table is resident in RAM at

runtime. You can modify this table to add permissions for other areas of flash at runtime, without changing the partition

table stored in flash itself. There is no bootrom API for this, however the in-memory partition table format is

documented, and a pointer is available in the ROM table. The SDK provides APIs to wrap this functionality.

5.1.4. Image Definitions

An image is a contiguous data blob which may contain code, or data, or a mixture. An image definition is a block of

metadata embedded near the start of an image. The metadata stored in the image definition allows the bootrom to

recognise valid executable and non-executable images. The IMAGE_DEF data structure represents the image definition in a

binary format, and is an example of a block.

For executable images, the IMAGE_DEF could be considered similar to an ELF header, as it can include image attributes

such as architecture/chip, entry-point, load addresses, etc.

All IMAGE_DEFs can contain version information and be hashed or signed. Whilst the bootrom only directly boots

executable images, it does provide facilities for selecting a valid (possibly signed) data image from one or more

partitions on behalf of a user application.

The presence of a valid IMAGE_DEF allows the bootrom to discern a valid application in flash from random data. As a

result, you must include a valid IMAGE_DEF in any executable binary that you intend to boot.

For more information about how the bootrom discovers IMAGE_DEFs, see the section on block loops.
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For details about the IMAGE_DEF format itself, see Section 5.9.3.

For a description of the minimum requirements for a bootable image, see Section 5.9.5.

5.1.5. Blocks And Block Loops

5.1.5.1. Blocks

IMAGE_DEFs and PARTITION_TABLEs are both examples of blocks. A block is a recognisable, self-checking data structure

containing one or more distinct data items. The type of the first item in a block defines the type of that entire block.

Blocks are backwards and forwards compatible; item types will not be changed in the future in ways that could cause

existing code to misinterpret data. Consumers of blocks (including the bootrom) must skip items within the block

whose types are currently listed as reserved; encountering reserved item types must not cause a block to fail validation.

To be considered valid, a block must have the following properties:

• it must begin with the 4 byte magic header, PICOBIN_BLOCK_MARKER_START (0xffffded3)

• the end of each (variably-sized) item must also be the start of another valid item

• the last item must have type PICOBIN_BLOCK_ITEM_2BS_LAST and specify the correct full length of the block

• it must end with the 4 byte magic footer, PICOBIN_BLOCK_MARKER_END (0xab123579)

The magic header and footer values are chosen to be unlikely to appear in executable Arm and RISC-V code. For more

information about the block format, see Section 5.9.1.

Given a region of memory or flash (e.g. a partition), blocks are found by searching the first 4 kB of that given region (for

flash boot) or the entire region (for RAM/OTP image boots) for a valid block which is part of a valid block loop.

Currently IMAGE_DEFs and PARTITION_TABLEs are the only types of block used by the RP2350 bootrom, but the block format

reserves encoding space for future expansion.

5.1.5.2. Block Loops

A block loop is a cyclic linked list of blocks (a linked loop). Each block has a relative pointer to the next block, and the

last block must link to the first. A single block can form a block loop by linking back to itself with a relative pointer of 0.

The first block in a loop must have the lowest address of all blocks in the loop.

The purpose of a block loop is threefold:

• to discover which blocks belong to the same image without a brute-force search

• to allow metadata to be appended in post-link processing steps

• to detect parts of the binary being overwritten in a way that breaks the loop

For flash image boot the bootrom searches the first 4 kB of flash; the 4 kB size is a compromise between allowing

flexibility for different languages' memory layouts, while avoiding scanning too much flash when trying different flash

access modes and QSPI clock frequencies. flash partition boot also limits its search to the first 4 kB of the partition.

The search window may be larger, such as a RAM image boot following a UF2 SRAM download, where the search

window is all of SRAM. For the fastest boot time, locate the first block as close to the beginning of the binary as

possible.

Block loops support multiple blocks because:

• Signing an image duplicates the existing IMAGE_DEF and adds another (bigger) IMAGE_DEF with additional signature

information.

• An image may contain multiple IMAGE_DEFs, e.g. with different signing keys.
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• Placing a block at both the beginning and end of an image can detect some partial overwrites of the image (for

example, due to an overly enthusiastic absolute-addressed UF2 download). The SDK does this by default. Hashing

or signing the entire image is more robust, since it detects corruption in the middle of the image.

• A universal binary image might contain code for both Arm and RISC-V, including IMAGE_DEFs for both.

• PARTITION_TABLEs and IMAGE_DEFs are both present in the same block loop in the case of an embedded partition table.

If a block loop contains multiple IMAGE_DEFs or multiple PARTITION_TABLEs, the winner is generally the last one seen in

linked-list order. The exception is the case of two IMAGE_DEFs for different architectures (Arm and RISC-V); an IMAGE_DEF

for the architecture currently executing the bootrom is always preferred over one for a different architecture.

5.1.6. Block Versioning

Any block may contain a version. Version information consists of a tuple of either two or three 16-bit values:

(rollback).major.minor, where the rollback part is optional. An item of type VERSION contains the binary data structure

which defines the version of a block.

The rollback version is only relevant in IMAGE_DEFs on a secured RP2350, where it can prevent installation of older,

vulnerable code once a newer version is installed (Section 5.1.11). On chips where secure boot is not enabled it takes

the value zero.

The version number can be used to pick the latest version between two IMAGE_DEFs or two PARTITION_TABLEs (see Section

5.1.7). Versions compare in lexicographic order:

1. If version x has a different rollback version than version y, then the greater rollback version determines which

version is greater overall

2. Else if version x has a different major version than version y, then the greater major version determines which

version is greater overall

3. Else the minor version determines which of x and y is greater

See Section 5.9.2.1 for full details on the VERSION item in a block.

5.1.7. A/B Versions

A pair of partitions may be grouped into an A/B pair. By logically grouping A and B partitions, you can keep the current

executable image (or data) in one partition, and write a newer version into the other partition. When you finish writing a

new version, you can safely switch to it, reverting to the older version if problems arise. This avoids partially written

states that could render RP2350 un-bootable.

• When booting an A/B partition pair, the bootrom typically uses the partition with the higher version. For scenarios

where this is not the case, see Section 5.1.16.

• When dragging a UF2 onto the BOOTSEL USB drive, the UF2 targets the opposite A/B partition to the one preferred

at boot. See Section 5.1.18 for more details.

 NOTE

It is also possible to have A/B versions of the partition table. For more information about this advanced topic, see

Section 5.1.15.

5.1.8. Hashing and Signing

Any block may be hashed or signed. A hashed block stores the image hash value (see Section 5.9.2.3). At runtime, the

bootrom calculates a hash and compares it to the stored hash to determine if the block is valid. Hashes guard against

corruption of an image, but do not provide any security guarantees.
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On a secured RP2350, a hash is not sufficient for an image to be considered valid. All images must have a signature: a

hash encrypted by a private key, plus metadata (also covered by the hash) describing how the hash was generated. This

signature is stored as part of an IMAGE_DEF block. An image with a signature in its IMAGE_DEF block is called a signed

image.

 NOTE

For background on signatures and boot keys, see the introduction to secure boot in the security chapter (Section

10.1.1).

To verify a signed image, the bootrom decrypts the hash stored in the signature using a secp256k1 public key. The

bootrom also computes its own hash of the image and compares its measured hash value with the one in the signature.

The public key is also stored in the block via a SIGNATURE item (see Section 5.9.2.4): this key’s (SHA-256) hash must

match one of the boot key hashes stored in OTP locations BOOTKEY0_0 onwards. Up to four public keys can be

registered in OTP, with the count defined by BOOT_FLAGS1.KEY_VALID and BOOT_FLAGS1.KEY_INVALID. A hash of a

key is also referred to as a key fingerprint.

The data to be hashed is defined by a HASH_DEF item (see Section 5.9.2.2), which indicates the type of hash. It also

indicates how much of the block itself is to be hashed. For a signed block, the hash must contain all contents of the

block up to the final SIGNATURE item.

To be useful your hash or signature must cover actual image data in addition to the metadata stored in the block. The

block’s load map item specifies which data the bootrom hashes during hash or signature verification.

The above discussion mostly applies to IMAGE_DEFs. On a secured RP2350 with the

BOOT_FLAGS0.SECURE_PARTITION_TABLE flag set, the bootrom also enforces signatures on PARTITION_TABLEs.

5.1.9. Load Maps

A load map describes regions of the binary and what to do with them before the bootrom runs the binary.

The load map supports:

• Copying portions of the binary from flash to RAM (or to the XIP cache)

• Clearing parts of RAM (either .bss clear, or erasing uninitialised memory during secure boot)

• Defining what parts of the binary are included in a hash or signature

• Preventing the flushing of the XIP cache when to keep loaded lines pinned up to the point the binary starts

For full details on the LOAD_MAP item type of IMAGE_DEF blocks, see Section 5.9.3.2.

When booting a signed binary from flash, it is desirable to load the signed data and code into RAM before checking the

signature and subsequently executing it. Otherwise, an adversary could replace the flash device in between the

signature check and execution, subverting the check. For this reason, the load map also serves as a convenient

description of what to include in a hash or signature. The load map itself is covered by the hash or signature, and the

entire metadata block is loaded into RAM before processing, so it is not itself subject to this time-of-check versus time-

of-use concern.

5.1.10. Packaged Binaries

As described in Section 5.1.9, signed binaries in flash on a secured RP2350 are commonly loaded from flash into RAM,

go through signature verification in RAM, and then execute from the verified version in RAM.

A packaged binary is a binary stored in flash that runs entirely from RAM. The binary is likely compiled to run from RAM

as a RAM-only binary (unfortunately named no_flash in SDK parlance), but subsequently post-processed for flash

residence. The bootrom unpackages the binary into RAM before execution.
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As part of the packaging process, tooling like picotool adds a LOAD_MAP that tells the bootrom which parts of the flash-

resident image it must load into RAM, and where to put them. This tooling may also hash or sign the binary in the same

step. In this case, the bootrom hashes the data it loads as it unpackages the binary, as well as relevant metadata such

as the LOAD_MAP itself. The bootrom compares the resulting hash to the precomputed hash or signature in the IMAGE_DEF to

verify the unpackaged contents in RAM before running those contents.

Compare this with RP2040, where a flash-resident binary which executes from RAM (a copy_to_ram binary in SDK

parlance) must begin by executing from flash, then copy itself to RAM before continuing from there. In the RP2040 case,

the loader itself (or rather the SDK crt0) executes in-place in flash to perform the copy. This makes it impossible to

perform any trustworthy level of verification, because the loader itself executes in untrusted memory.

5.1.11. Anti-rollback Protection

Anti-rollback on a secured RP2350 prevents booting an older binary which may have known vulnerabilities. It prevents

this even if the binary is correctly signed and meets all other requirements for bootability.

Full IMAGE_DEF version information is of the form (rollback).major.minor, where the rollback part is optional. If a rollback

version is present, it is accompanied by a list of OTP rows whose ordered values are used to form a thermometer of

bits indicating the minimum rollback version that may run on the device.

A thermometer code is a base-1 (unary) number where the integer value is one plus the index of the most-significant set

bit. For example, the bit string 00001111 encodes a value of four, and the all-zeroes bit pattern encodes a value of zero.

The bootrom uses this encoding because:

• it allows OTP rows containing counters to be incremented, and

• it does not allow them to be decremented

On a secured RP2350, the bootrom compares the rollback version of the IMAGE_DEF against the thermometer-coded

minimum rollback version stored in OTP. If the IMAGE_DEF value is lower, the bootrom refuses to boot the image.

The IMAGE_DEF rollback version is covered by the image’s signature, thus cannot be modified by an adversary who does

not know the signing key. The list of OTP rows which define the chip’s minimum rollback version is also stored in the

program image, and also covered by the image signature.

The list of OTP rows in the IMAGE_DEF must always have at least one bit spare beyond the IMAGE_DEF's rollback version

(enforced by picotool). As a result, older binaries always contain enough information for the bootrom to detect that the

chip’s minimum rollback version has been incremented past the rollback version in the IMAGE_DEF. You can append more

rows to the list on newer binaries to accommodate higher rollback versions without ambiguity.

When an executable image with a non-zero rollback version is successfully booted, its rollback version is written to the

OTP thermometer. The BOOT_FLAGS0.ROLLBACK_REQUIRED flag may be used to require an IMAGE_DEF have a rollback

version on a secured RP2350. This flag is set automatically when updating the rollback version in OTP.

 NOTE

An IMAGE_DEF with a rollback version of 0 will not automatically set the BOOT_FLAGS0.ROLLBACK_REQUIRED flag, so

it is recommended that the minimum rollback version used is 1, unless the BOOT_FLAGS0.ROLLBACK_REQUIRED

flag is manually set during provisioning.

5.1.12. Flash Image Boot

RP2350 is designed primarily to run code from a QSPI flash device, either in-package or soldered separately to the

circuit board. Code runs either in-place in flash, or in SRAM after being loaded from flash. Flash boot is the process of

discovering that code and preparing to run it. Flash image boot uses a program binary stored directly in flash rather

than in a flash partition. Flash image boot requires the bootrom to discover a block loop starting within the first 4 kB of

flash which contains a valid IMAGE_DEF (and no PARTITION_TABLE).

Flash image boot has no partition table, so it cannot be used with A/B version checking, which requires separate A/B
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partitions. The IMAGE_DEF will boot if it is valid (which includes requiring a signature on a secured RP2350).

For the non-signed case, the IMAGE_DEF can be as small as a 20-bytes; see Section 5.9.5.

 TIP

A more complicated version of this scenario stores multiple IMAGE_DEFs in the block loop. In this case, the last

IMAGE_DEF for the current architecture is booted, if valid. You can use this to implement universal binaries for various

supported architectures, or to include multiple signatures for targeting devices with different keys.

5.1.13. Flash Partition Boot

If a PARTITION_TABLE, but no IMAGE_DEF, is found in the valid block loop that starts within the first 4 kB of flash, and it is valid

(including signature if necessary on a secured RP2350), the bootrom searches that partition table’s partitions for an

executable image to boot. This process, when successful, is referred to as flash partition boot.

The partitions are searched in order, skipping those marked as ignored for the current architecture. The bootrom

ignores partitions as an optimisation, or to prevent automatic architecture switching.

If the partition is not part of an A/B pair, the first 4 kB is searched for the start of a valid block loop. If a valid block loop

is found, and it contains an executable image with a valid (including signature on a secured RP2350) IMAGE_DEF, then that

executable image is chosen for boot.

If the partition is the A partition of an A/B pair, the bootrom searches both partitions as described above. If both

partitions result in a bootable IMAGE_DEF, the IMAGE_DEF with the higher version number is chosen. Otherwise, the valid

IMAGE_DEF is chosen. There are some exceptions to this rule in advanced scenarios; see Section 5.1.16 and Section

5.1.17 for details.

5.1.14. Partition-Table-in-Image Boot

If both a PARTITION_TABLE and an IMAGE_DEF block are found in the valid block loop that starts within the first 4 kB of flash, a

third type of flash boot takes place. The IMAGE_DEF and PARTITION_TABLE must only be recognised, not necessarily valid or

correctly signed. This stipulation prevents a causality loop.

This is known as partition-table-in-image boot, since the application contains the partition table (instead of vice versa).

This partition table is referred to as an embedded partition table.

The PARTITION_TABLE is loaded as the current partition table, and theIMAGE_DEF is launched directly. The table defined by

the PARTITION_TABLE is not searched for IMAGE_DEFs to boot.

The following common cases might use this scenario:

• You are only using the PARTITION_TABLE for flash permissions. You want to load that partition table, then boot as

normal.

• The IMAGE_DEF contains a small bootloader stored alongside the partition table. In this case, the partition table will

once again be loaded, and the associated image entered. The entered image will then likely pick a partition from

the partition table, and launch an image from there itself.

5.1.15. Flash Boot Slots

The previous sections within this chapter discuss block loops starting within the first 4 kB of flash. Such a block loop

contained either an IMAGE_DEF, a partition table (searched for IMAGE_DEFs), or an IMAGE_DEF and a PARTITION_TABLE (not

searched).

All the previously mentioned cases discovered their block loop in slot 0. Under certain circumstances, the neighbouring

slot 1 is also searched.

Slot 0 starts at the beginning of flash, and has a size of n × 4 kB sectors. Slot 1 has the same size and follows
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immediately after slot 0. The value of n defaults to 1. Both slots are 4 kB in size, but you can override this value by

specifying a value in FLASH_PARTITION_SLOT_SIZE and then setting

BOOT_FLAGS0.OVERRIDE_FLASH_PARTITION_SLOT_SIZE.

Similarly to how a choice can be made between IMAGE_DEFs in A/B partitions, a choice can be made between A/B

PARTITION_TABLEs via the two boot slots. This allows for versioning partition tables, targeted drag and drop of UF2s

(Section 5.1.18) containing partition tables, etc. similar to the process used for images.

Slot 1 is only of use when potentially using partition tables. In the simple case of an IMAGE_DEF and no PARTITION_TABLE

found in a block loop starting in slot 0, that image likely actually overlays the space where slot 1 would be, but in any

case, slot 1 is ignored since there is no PARTITION_TABLE.

If slot 0 contains a PARTITION_TABLE or does not contain an IMAGE_DEF (including nothing/garbage in slot 0), slot 1 can be

considered. As an optimisation, in the former case, the scanning of slot 1 can be prevented by setting the singleton flag

in the PARTITION_TABLE.

 NOTE

When IMAGE_DEFs are also present in the slots, the PARTITION_TABLE's VERSION item determines which of slot 0 and slot 1

to use. The IMAGE_DEF metadata is ignored for the purpose of version comparison.

5.1.16. Flash Update Boot and Version Downgrade

Normally the choice of slot 0 versus slot 1, and partition A versus partition B, is made based on the version of the valid

PARTITION_TABLE or IMAGE_DEF in those slots or partitions respectively. The greater of the two versions wins.

It is however perfectly valid to downgrade to a lower-versioned IMAGE_DEF when using A/B partitions, provided this does

not violate anti-rollback rules on a secured RP2350.

Downloading the new image (and its IMAGE_DEF) into the non-currently-booting partition and doing a normal reboot will

not work in this case, as the newly downloaded image has a lower version.

For this purpose, you can enable a flash update boot boot by passing the FLASH_UPDATE boot type constant flag through

the watchdog scratch registers and a pointer to the start of the region of flash that has just been updated.

The bootrom automatically performs a flash update boot after programming a flash UF2 written to the USB Mass

Storage drive. You can also invoke a flash update boot programmatically via the reboot() API (see Section 5.4.8.24).

The flash address range passed through the reboot parameters is treated specially during a flash update boot. A

PARTITION_TABLE in a slot, or IMAGE_DEF in a partition, will be chosen for boot irrespective of version, if the start of the region

is the start of the respective slot or partition.

In order for the downgrade to persist, the first sector of the previously booting slot or partition must be erased so that

the newly installed PARTITION_TABLE or IMAGE_DEF will continue to be chosen on subsequent boots. This erase is performed

as follows during a FLASH_UPDATE boot.

1. When a PARTITION_TABLE is valid (and correctly signed if necessary) and its slot is chosen for boot, the first sector of

the other slot is erased.

2. When a valid (and correctly signed if necessary) IMAGE_DEF is launched, the first sector of the other image is erased.

3. On explicit request by the image, after it is launched, the first sector of the other image is erased. This is an

alternative to the standard behaviour in the previous bullet, and is selected by a special "Try Before You Buy" flag in

the IMAGE_DEF. For more information about this feature, see Section 5.1.17.
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 NOTE

Flash update and version downgrade have no effect when using a single slot, or standalone (non A/B) partitions.

5.1.17. Try Before You Buy

Try before you buy (abbreviated TBYB) is an IMAGE_DEF-only feature that allows for a completely safe cycle of version

upgrade:

1. An executable image is running from say partition B.

2. A new image is downloaded into partition A.

3. On download completion, a FLASH_UPDATE reboot is performed for the newly updated partition A.

4. The bootrom will preferentially try to boot partition A (due to the flash update). Note that a non TBYB image will

always be chosen over a TBYB image in A/B partitions during a normal non-FLASH_UPDATE boot.

◦ If the new image fails validation/signature then the old image in partition B will be used on subsequent (non-

FLASH_UPDATE) boots, recovering from the failed upgrade.

5. If the new image is valid (and correctly signed if necessary), it is entered under a watchdog timer, and has 16.7

seconds to mark itself OK via the explicit_buy() function.

◦ If the image calls back, the first 4 kB sector of the other partition (containing image B) is erased, and the

TBYB flag of the current image is cleared, so that A becomes the preferred partition for subsequent boots.

◦ If the image does not call back within the allotted time, then the system reboots, and will continue to boot

partition B (containing the original image) as partition A is still marked as TBYB image.

The erase of the first sector of the opposite partition in the A/B pair severs its image’s block loop, rendering it

unbootable. This ensures the tentative image booted under TBYB becomes the preferred boot image going forward,

even if the opposite image had a higher version.

The watchdog timeout is fixed at 16.7 seconds (24-bit count on a 1-microsecond timebase). This can be shortened after

entering the target image, for example if it only needs a few hundred milliseconds for its self-test routine. It can also be

extended by reloading the watchdog counter, at the risk of getting stuck in the tentative image if it fails in a way that

repeatedly reloads the watchdog.

5.1.18. UF2 Targeting

Section 5.5 describes the USB Mass Storage drive, and the ability to download UF2 files to that drive to store and/or

execute code/data on the RP2350.

Since RP2350 supports multiple processor architectures, and partition tables with multiple partitions, some information

on the device must be used to determine what to do with a flash-addressed UF2. Depending on the context, the flash

addresses in the UF2 may be absolute flash storage addresses (as was always the case on RP2040), or runtime

addresses of code and data within a flash partition. UF2 targeting refers to the rules the bootrom applies to interpret

flash addresses in a UF2 file.

UF2 supports a 32-bit family ID embedded in the file. This enables the device to recognise firmware that targets it

specifically, as opposed to firmware intended for some other device. The RP2350 bootrom recognises some standard

UF2 family IDs (rp2040, rp2350-arm-s, rp2350-arm-ns, rp2350-riscv, data and absolute) defined in Table 452. You may define

your own family IDs in the partition table for more refined targeting.

The UF2 family ID is used as follows:

1. A UF2 with the absolute family ID is downloaded without regard to partition boundaries. A partition table (if present)

or OTP configuration define whether absolute family ID downloads are allowed. The default factory settings do

allow for absolute family ID downloads.
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2. If there is no partition table, then the data, rp2350-arm-s (if Arm is enabled) and rp2350-riscv (if RISC-V is enabled)

family IDs are allowed by default. The UF2 is always downloaded to the start of flash.

3. If there is a partition table, then non-absolute family IDs target a single partition under the control of the partition

table:

a. A UF2 will not be downloaded to a partition that doesn’t have BL-write flash permissions

b. Each partition lists which family IDs it accepts (both RP2350 standard and user defined)

c. With A/B partitions; the A partition indicates the family IDs supported, and the UF2 goes to the partition that

isn’t the currently booting one (strictly the one that won’t be the one chosen if the device were rebooted now).

d. Further refinement with A/B is allowed to support secondary A/B partitions containing data/executables used

(owned) by the main partitions; see Section 5.1.18.1 for detailed information.

For details of the exact rules used when picking a UF2 target partition, see Section 5.5.3.

 NOTE

UF2 family ids are used for partition targeting when copying UF2s to the USB drive, or when using picotool load -p.

When using picotool load without the -p flag images can be written anywhere in flash that has BL-write permissions.

5.1.18.1. Owned Partitions

An executable may require data from another partition (e.g. Wi-Fi firmware). When the main executable is stored in A/B

partitions, for safe upgrades, it may be desirable to associate two other partitions C and D with the primary A and B

partitions, such that:

• the data in partition C is used for executable in partition A, and

• the data in partition D is used for the executable in partition B.

In this scenario A is marked as the owner of C in the partition table, and C is A’s owned partition. This affects UF2

image downloads which (due to their UF2 family ID) target partitions C and D.

When a UF2 download targets the C/D partition pair, the bootrom checks the state of the A and B owning partitions to

determine which of the owned partitions (C and D) receives the download. By default:

• If B would be the target partition for a UF2 with an A/B-compatible family ID, then D is the target for a UF2 with the

C/D compatible family ID.

• Conversely, when A is the target partition for A/B downloads, C is the target partition for C/D downloads.

The FLAGS_UF2_DOWNLOAD_AB_NON_BOOTABLE_OWNER_AFFINITY flag in the partition table reverses this mapping.

5.1.19. Address Translation

RP2040 required images to be stored at the beginning of flash (0x10000000). RP2350 supports storing executable images

in a partitions at arbitrary locations, to support more robust upgrade cycles via A/B versions, among other uses. This

presents the issue that the address an executable is linked at, and therefore the binary contents of the image, would

have to depend on the address it is stored at. This can be worked around to an extent with position-independent code,

at cost to code size and performance.

RP2350 avoids this pitfall with hardware and bootrom support for address translation. An image stored at any 4 kB-

aligned location in flash can appear at flash address 0x10000000 at runtime. The SDK continues to assume an image base

of 0x10000000 by default.

When launching an image from a partition, the bootrom initialises QMI registers ATRANS0 through ATRANS3 to map a

flash runtime address of 0x10000000 (by default) to the flash storage address of the start of the partition. It sets the size

of the mapped region to the size of the partition, with a maximum of 16 MB. Accessing flash addresses beyond the size

of the booted partition (but below the 0x11000000 chip select watermark) returns a bus fault.
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Mapping to a runtime address of 0x10000000 is the default behaviour, but you may choose a different address, with some

restrictions. The bootrom allows for runtime address values of 0x10000000, 0x10400000, 0x10800000, and 0x10c00000 for the

beginning of the mapped regions, with the choice specified by the IMAGE_DEF. You must link your binary to run at the

correct, higher base address. One example where this is useful is an application which runs from a high flash address,

and then remains mapped at this high address when launching a second application running at address 0x10000000. You

might use this for a Secure image providing services to a Non-secure client image.

This custom address translation is enabled by a negative ROLLING_WINDOW_DELTA value (see Section 5.9.3.5). The above

four runtime addresses translate to a ROLLING_WINDOW_DELTA of 0, -0x400000, -0x800000, or -0xc00000, which are the only

supported non-positive values. The delta indicates the offset into the image which appears at a runtime address

0x10000000: for negative values this indicates the runtime flash address space starts before the start of the image.

Positive values are also useful, for example when prepending data to an already-linked image as a post-processing step.

Positive deltas must be multiples of 4 kB. For example, a ROLLING_WINDOW_DELTA of 0x1000 will set up address translation

such that the image data starting at offset 0x1000 is mapped to 0x10000000 at runtime, lopping off the first 4 kB of the

image. The first 4 kB is inaccessible except via the untranslated XIP window (which defaults to Secure access only).

 NOTE

Because address translation within the 0x100000000 → 0x11000000 and 0x11000000 → 0x12000000 windows is independent,

it is only possible to boot from partitions which are entirely contained within the first 16 MB of flash.

This address translation is performed by hardware in the QMI. For more information, see Section 12.14.4.

5.1.20. Automatic Architecture Switching

If the bootrom encounters a valid and correctly signed IMAGE_DEF for the non-current architecture (i.e. RISC-V when

booted in Arm mode, or Arm when booted in RISC-V), it performs an automatic architecture switch. The bootrom

initiates a reboot into the correct architecture for the binary it discovered, which then boots successfully on the second

attempt. Information passed in watchdog scratch registers (such as a RAM image boot type) is retained, so that the

second boot makes the same decisions as the first, and arrives at the same preferred image to boot.

This happens only when:

• The architecture to be switched to is available according to OTP critical flags

• The architecture switch feature is not disabled by the BOOT_FLAGS0.DISABLE_AUTO_SWITCH_ARCH flag

• The bootrom found no valid binary for the current architecture

 TIP

When storing executable images for both architectures in flash, it’s usually preferable to boot an image for the

current architecture. To do this, keep the images in different partitions, marking the partition for Arm as ignored

during boot under RISC-V and vice versa. This avoids always picking the image in the first partition and auto-

switching to run it under the other architecture.

For hardware support details for architecture switching, see Section 3.9.

5.2. Processor-Controlled Boot Sequence

The bootrom contains the first instructions the processors execute following a reset. Both processors enter the

bootrom at the same time, and in the same location, but the boot sequence runs mostly on core 0.

Core 1 redirects very early in the boot sequence to a low-power state where it waits to be launched, after boot, by user

software on core 0. If core 1 is unused, it remains in this low-power state.
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Source Code Reference

The sequence described in this section is implemented on Arm by the source files arm8_bootrom_rt0.S

and varm_boot_path.c in the bootrom source code repository. RISC-V cores instead begin from

riscv_bootrom_rt0.S, but share the boot path implementation with Arm.

5.2.1. Boot Outcomes

The bootrom decides the boot outcome based on the following system state:

• The contents of the attached QSPI memory device on chip select 0, if any

• The contents of POWMAN registers BOOT0 through BOOT3

• The contents of watchdog registers SCRATCH4 through SCRATCH7

• The contents of OTP, particularly CRIT1, BOOT_FLAGS0 and BOOT_FLAGS1

• The QSPI CSn pin being driven low externally (to select BOOTSEL)

• The QSPI SD1 pin being driven high externally (to select UART boot in BOOTSEL mode)

Based on these, the outcome of the boot sequence may be to:

• Call code via a vector specified in SCRATCH or BOOT registers prior to the most recent reboot

◦ e.g. into code retained in RAM following a power-up from a low-power state.

• Run an image from external flash

◦ either in-place, or loaded into RAM during the boot sequence

◦ in-package flash on RP2354 is external for boot purposes: it is a separate silicon die, and the RP2350 die

does not implicitly trust it

• Run an image preloaded into SRAM (distinct from the vector case)

• Load and run an image from OTP into SRAM

• Enter the USB bootloader

• Enter the UART bootloader

• Perform a one-shot operation requested via the reboot() API, such as a flash update boot

◦ this may be requested by the user, or by the UART or UF2 bootloaders

• Refuse to boot, due to lack of suitable images and the UART and USB bootloaders being disabled via OTP

This section makes no distinction between the different types of flash boot (flash image boot, flash partition boot and

flash partition-table-in-image boot). Likewise, it does not distinguish these types from packaged binaries, which are

loaded into RAM at boot time, because these are just flash binaries with a special load map. This section just describes

the sequence of decisions the bootrom makes to decide which medium to boot from.

5.2.2. Sequence

This section enumerates the steps of the processor-controlled boot sequence for Arm processors. There are some

minor differences on Arm versus RISC-V, which are discussed in Section 5.2.2.2.

A valid image in Table 448 refers to one which contains a valid block loop, with one of those blocks being a valid image

definition. On a secured RP2350 this image must be (correctly) signed, and must meet all other security requirements

such as minimum rollback version.

Shaded cells in the Action column of Table 448 indicate a boot outcome as described in Section 5.2.1. Other cells are

transitory states which continue through the sequence. Both cores start the sequence at Entry.
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The main sequential steps in Table 448 are:

• Entry

• Core 1 Wait

• Boot Path Start

• Await Rescue

• Generate Boot Random

• Check POWMAN Vector

• Check Watchdog Vector

• Prepare for Image Boot

• Try RAM Image Boot

• Check BOOTSEL

• Try OTP Boot

• Try Flash Boot

• Prepare for BOOTSEL

• Enter USB Boot

• Enter UART Boot

• Boot Failure

See also Section 5.2.2.1 for a summary of Table 448 in pseudocode form.

Table 448. Processor-

controlled boot

sequence

Condition (If…) Action (Then…)

Step: Entry

Always Check core number in CPUID or MHARTID.

Running on core 0 Clear boot RAM (except for core 1 region and the always region).

Go to Boot Path Start.

Running on core 1 Go to Core 1 Wait.

Step: Core 1 Wait

Always Wait for RCP salt register to be marked valid by core 0.

Wait for core 0 to provide an entry point through Secure SIO FIFO, using the protocol

described in Section 5.3.

Outcome: Set Secure main sp and VTOR, then jump into the entry point provided.

Step: Boot Path Start

Always Check rescue flag, CHIP_RESET.RESCUE_FLAG

Rescue flag set Go to Await Rescue.

Rescue flag clear Go to Generate Boot Random.

Step: Await Rescue

Always Clear the rescue flag to acknowledge the request.

Outcome: Halt in place. The debugger attaches to give the processor further instruction.

Step: Generate Boot Random
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Condition (If…) Action (Then…)

Always Sample TRNG ROSC into the SHA-256 to generate a 256-bit per-boot random number.

Store 128 bits in boot RAM for retrieval by get_sys_info(), and distribute the remainder to

the RCP salt registers.

Go to Check POWMAN Vector.

Step: Check POWMAN Vector

Always Read BOOT0 through BOOT3 to determine requested boot type.

Boot type parity is valid Clear BOOT0 so this is ignored on subsequent boots.

A BOOTDIS flag is set Go to Check Watchdog Vector.

Boot type is VECTOR Outcome: Set Secure main sp, then call into the entry point provided.

(Return from VECTOR) Go to Check Watchdog Vector.

Other or invalid boot type Go to Check Watchdog Vector.

Step: Check Watchdog Vector

Always Read watchdog SCRATCH4 through SCRATCH7 to determine requested boot type.

Boot type parity is valid Clear SCRATCH4 so this is ignored on subsequent boots.

Boot type is BOOTSEL Make note for later: equivalent to selecting BOOTSEL by driving QSPI CSn low.

A BOOTDIS flag is set Go to Prepare for Image Boot (so BOOTSEL is the only permitted type when the OTP

BOOTDIS.NOW or POWMAN BOOTDIS.NOW flag is set).

Boot type is VECTOR Outcome: Set Secure main sp, then call into the entry point provided.

(Return from VECTOR) Go to Prepare for Image Boot.

Boot type is RAM_IMAGE Make note for later: this requests a scan of a RAM region for a preloaded image.

Boot type is FLASH_UPDATE Make note for later: modifies some flash boot behaviour, as described in Section 5.1.16.

Always Go to Prepare for Image Boot.

Step: Prepare for Image Boot

Always Clear BOOTDIS flags (OTP BOOTDIS.NOW and POWMAN BOOTDIS.NOW).

Power up SRAM0 and SRAM1 power domains (XIP RAM domain is already powered).

Reset all PADS and IO registers, and remove isolation from QSPI pads.

Release USB reset and clear upper 3 kB of USB RAM (for search workspace).

Go to Try RAM Image Boot.

Step: Try RAM Image Boot

Watchdog type is not

RAM_IMAGE

Go to Check BOOTSEL.

BOOT_FLAGS0.DISABLE_SR

AM_WINDOW_BOOT is set

Go to Check BOOTSEL.

Otherwise Scan indicated RAM address range for a valid image (base in SCRATCH2, length in

SCRATCH3). This is used to boot into a RAM image downloaded via UF2, for example.

RAM image is valid Outcome: Enter RAM image in the manner specified by its image definition.

No valid image Go to Prepare for Bootsel (skipping flash and OTP boot).

Step: Check BOOTSEL
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Condition (If…) Action (Then…)

Always Check BOOTSEL request: QSPI CSn is low (BOOTSEL button), watchdog type is BOOTSEL, or

RUN pin double-tap was detected (enabled by BOOT_FLAGS1.DOUBLE_TAP).

BOOTSEL requested Go to Prepare for BOOTSEL (skipping flash and OTP boot).

Otherwise Go to Try OTP Boot.

Step: Try OTP Boot

Always Check BOOT_FLAGS0.DISABLE_OTP_BOOT and BOOT_FLAGS0.ENABLE_OTP_BOOT

(the disable takes precedence).

OTP boot disabled Go to Try Flash Boot.

OTP boot enabled Load data from OTPBOOT_SRC (in OTP) to OTPBOOT_DST0/OTPBOOT_DST1 (in

SRAM), with the length specified by OTPBOOT_LEN.

Check validity of the image in-place in SRAM.

Image is valid Outcome: Enter RAM image in the manner specified by its image definition.

No valid image Go to Try Flash Boot.

Step: Try Flash Boot

Flash boot disabled by

BOOT_FLAGS0

Go to Prepare for BOOTSEL.

Always Issue XIP exit sequence to chip select 0.

FLASH_DEVINFO has GPIO

and size for chip select 1

Issue XIP exit sequence to chip select 1.

Always Scan flash for a valid image (potentially in a partition) with a range of instructions (EBh,

BBh, 0Bh, 03h) and SCK divisors (3 to 24)

Valid image found Outcome: Enter flash image in the manner specified by its image definition. This may

including loading some flash contents into RAM.

Save the current flash read mode as an XIP setup function at the base of boot RAM,

which can be called later to restore the current mode (e.g. following a serial

programming operation).

No valid image Go to Prepare for BOOTSEL.

Step: Prepare for BOOTSEL

Always Erase SRAM0 through SRAM9, XIP cache and USB RAM to all-zeroes before

relinquishing memory and peripherals to Non-secure.

Enable XOSC and configure PLL for 48 MHz, according to BOOTSEL_XOSC_CFG and

BOOTSEL_PLL_CFG (default is to expect a 12 MHz crystal).

Check QSPI SD1 pin (with default pull-down resistor) for UART/USB boot select.

Scan flash for a partition table (always using an 03h serial read command with an SCK

divisor of 6). The USB bootloader may download UF2s to different flash addresses

depending on partitions and their contents.

Advance all OTP soft locks to the BL state from OTP, if more restrictive than their S state.

QSPI SD1 pulled low Go to Enter USB Boot.

QSPI SD1 driven high Go to Enter UART boot.

Step: Enter USB Boot
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Condition (If…) Action (Then…)

Always Check BOOT_FLAGS0.DISABLE_BOOTSEL_USB_PICOBOOT_IFC and

BOOT_FLAGS0.DISABLE_BOOTSEL_USB_MSD_IFC to see which USB interfaces are

permitted.

Both USB interfaces

disabled

Go to Boot Failure.

Otherwise Outcome: Enter USB bootloader. The bootloader reboots if a UF2 image is downloaded,

marking a FLASH_UPDATE in the watchdog scratch registers if applicable, and the boot path

restarts from Entry. Valid images boot; invalid images usually end up back in the USB

bootloader.

Step: Enter UART Boot

Always Check BOOT_FLAGS0.DISABLE_BOOTSEL_UART_BOOT to see if UART boot is

permitted.

UART boot disabled Go to Boot Failure.

Otherwise Outcome: Enter UART bootloader. The bootloader reboots once an image has been

downloaded, with a RAM_IMAGE boot type, and the boot path restarts from Entry. Valid

images boot; invalid images usually end up back in the UART bootloader.

Step: Boot Failure

Always Outcome: Take no further action. No valid boot image was discovered, and the selected

BOOTSEL interface was disabled. Attach the debugger to give the processor further

instruction. See the boot reason in boot RAM for diagnostics on why the boot failed.

 TIP

The bootrom internally refers to BOOTSEL mode as NSBOOT, because the USB and UART bootloaders run in the

Non-secure state under Arm. This chapter may also occasionally refer to BOOTSEL as NSBOOT.

5.2.2.1. Boot Sequence Pseudocode

The following pseudocode summarises Table 448.

if (powman_vector_valid && powman_reboot_mode_is_pcsp) {
    // This call may return and continue the boot path
    if (correct_arch) powman_vector_pc(); else hang();
}
if (watchdog_vector_valid) {
    // Make note of RAM_IMAGE, FLASH_UPDATE, BOOTSEL reboot types
    check_special_reboot_mode();
    if (watchdog_reboot_mode_is_pcsp) {
        // This call may return and continue the boot path
        if (correct_arch) watchdog_vector_pc(); else hang();
    }
}

// RAM image window specified by watchdog_scratch, e.g. after a UF2 RAM
// download: either execute the RAM image or fall back to UART/USB boot.
if (watchdog_reboot_mode_is_ram_image && !ram_boot_disabled_in_otp) {
    // This only returns if there is no valid RAM image to enter.
    // You can't return from the RAM image.
    try_boot_ram_image(ram_image_window);
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} else {
    // Otherwise try OTP and flash boot (unless there is a request to skip)
    skip_flash_and_otp_boot =
        bootsel_button_pressed() ||
        watchdog_reboot_mode_is_bootsel ||
        (double_tap_enabled_in_otp() && double_run_reset_detected());

    if (!skip_flash_and_otp_boot) {
        if (otp_boot_enabled_in_otp && !otp_boot_disabled_in_otp) {
            // This only returns if there is no valid OTP image to enter.
            // You can't return from the OTP image.
            try_otp_boot();
        }
        if (!flash_boot_disabled_in_otp) {
            // This only returns if there is no valid flash image to enter.
            // You can't return from the flash image.
            try_flash_boot();
        }
    }
}
// Failed to find an image, so drop down into one of the bootloaders
if (sd1_high_select_uart) {
    // Does not return except via reboot
    if (nsboot_uart_disabled) hang(); else nsboot(uart);
} else {
    // Does not return except via reboot
    if (nsboot_usb_disabled) hang(); else nsboot(usb);
}

5.2.2.2. Differences between Arm and RISC-V

The boot sequence outlined in Table 448 has the following differences on RISC-V:

• Secure boot is not supported (from any image source).

• Anti-rollback checking is not supported as it applies only to secure boot.

• Additional security checks such as the use of the RCP to validate booleans are disabled.

• The UART and USB bootloaders continue to run in Machine mode, rather than transitioning from the Arm Secure to

Non-secure state, meaning there is no hardware-enforced security boundary between these boot phases.

• The XIP setup function written to boot RAM on a successful flash boot contains RISC-V rather than Arm

instructions.

5.2.3. POWMAN Boot Vector

POWMAN contains scratch registers similar to the watchdog scratch registers, which persist over power-down of the

switched core power domain, in addition to most system resets. These registers allow users to install their own boot

handler, and divert control away from the main boot sequence on non-POR/BOR resets. It recognises the following

values written to BOOT0 through BOOT3:

• BOOT0: magic number 0xb007c0d3

• BOOT1: Entry point XORed with magic -0xb007c0d3 (0x4ff83f2d)

• BOOT2: Stack pointer

• BOOT3: Entry point

Use this to vector into code preloaded in RAM which was retained during a low-power state.
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If either of the magic numbers mismatch, POWMAN vector boot does not take place. If the numbers match, the

bootrom zeroes BOOT0 before entering the vector, so that the behaviour does not persist over subsequent reboots.

The POWMAN boot vector is permitted to return. The boot sequence continues as normal after a return from POWMAN

vector boot, as though the vector boot had not taken place. There is no requirement for the vector to preserve the global

pointer (gp) register on RISC-V. Use this to perform any additional setup required for the boot path, such as issuing a

power-up command to an external QSPI device that may have been powered down (e.g. via a B9h power-down

command).

The entry point (pc) must have the LSB set on Arm (the Thumb bit) and clear on RISC-V. If this condition is not met, the

bootrom assumes you have passed a RISC-V function pointer to an Arm processor (or vice versa) and hangs the core

rather than continuing, since executing code for the wrong architecture has spectacularly undefined consequences.

The linker should automatically set the Thumb bit appropriately for a function pointer relocation, but this is something to

be aware of if you pass hardcoded values such as the base of SRAM: this is correctly passed as 0x20000001 on Arm

(Thumb bit set) and 0x20000000 on RISC-V (no Thumb bit, halfword-aligned).

5.2.4. Watchdog Boot Vector

Watchdog boot allows users to install their own boot handler, and divert control away from the main boot sequence on

non-POR/BOR resets. It recognises the following values written to the watchdog’s upper scratch registers:

• SCRATCH4: magic number 0xb007c0d3

• SCRATCH5: entry point XORed with magic -0xb007c0d3 (0x4ff83f2d)

• SCRATCH6: stack pointer

• SCRATCH7: entry point

If either of the magic numbers mismatch, watchdog boot does not take place. If the numbers match, the Bootrom

zeroes SCRATCH4 before transferring control, so that the behaviour does not persist over subsequent reboots.

Watchdog boot can also be used to select the bootrom’s special one-shot boot modes, described in Section 5.2.4.1. The

term one-shot refers to the fact these only affect the next boot (and not subsequent ones) due to the bootrom clearing

SCRATCH4 each boot. These boot types are encoded by setting a special entry point (pc) value of 0xb007c0d3, which is

otherwise not a valid entry address, and then setting the boot type in the stack pointer (sp) value. Section 5.2.4.1 lists

the supported values.

The watchdog boot vector is permitted to return. The boot path continues as normal when it returns: use this to perform

any additional setup required for the boot path, such as issuing additional commands to an external QSPI device. On

RISC-V the vector is permitted to use its own global pointer (gp) value, as the bootrom only uses gp during USB boot,

which installs its own value.

With the exception of the magic boot type entry point (0xb007c0d3), the vector entry point pc must have the LSB set on

Arm (the Thumb bit) and clear on RISC-V. If this condition is not met, the bootrom assumes you have passed a RISC-V

function pointer to an Arm processor (or vice versa) and hangs the core rather than continuing.

5.2.4.1. Special Watchdog Boot Types

The magic entry point 0xb007c0d3 indicates a special one-shot boot type, identified by the stack pointer value:

BOOTSEL

Selected by sp = 2. Boot into BOOTSEL mode. This will be either UART or USB boot depending on whether QSPI SD1

is driven high (default pull-down selects USB boot). See Section 5.2.8 for more details.

RAM_IMAGE

Selected by sp = 3. Boot into an image stored in SRAM or XIP SRAM. BOOTSEL mode uses this to request execution

of an image it loaded into RAM before rebooting. See Section 5.2.5 for more details.
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FLASH_UPDATE

Selected by sp = 4. BOOTSEL selects this mode when rebooting following a flash download. Changes some flash

boot behaviour, such as allowing older versions to boot in preference to newer ones. See Section 5.1.16 for more

details.

Parameters to the one-shot boot type are passed in:

• SCRATCH2: Parameter 0

• SCRATCH3: Parameter 1

These directly correspond to the p0 and p1 boot parameters passed into the reboot() API. For example, on a RAM_IMAGE

boot, this specifies the base and size of the RAM region to be searched for a valid IMAGE_DEF. See the API listing in

Section 5.4.8.24 for more details. When not performing one of the listed boot types, SCRATCH2 and SCRATCH3 remain

free for arbitrary user values, and the bootrom does not modify or interpret their contents.

5.2.5. RAM Image Boot

The bootrom is directed (via values in the watchdog registers) to boot into an image in SRAM or XIP SRAM. The two

parameters indicate the start and size of the region to search for a block loop containing a valid (and correctly signed if

necessary) IMAGE_DEF. These are passed as parameter 0/1, in watchdog scratch 2/3.

If the image to be booted is contained in XIP SRAM, the XIP SRAM must be pinned in place by the bootrom prior to

launch. For this reason, if you are using XIP SRAM for your binaries, you must add a special entry to the LOAD_MAP item

(see Section 5.9.3.2).

5.2.6. OTP Boot

If OTP boot is enabled, then code from OTP is executed in preference to code from flash. Note that the OTP code is free

to "chain" into an executable stored in flash.

Code from OTP is copied into SRAM at the specified location, then execution proceeds similarly to RAM Image Boot.

The SRAM with the data copied from OTP is searched for a valid (and correctly signed if necessary) IMAGE_DEF. If found, it

is booted; otherwise OTP boot falls through to Flash Boot (if enabled).

OTP boot could, for example, be used to execute some hidden decryption code to decode a flash image on startup. The

OTP boot code can hide itself (in OTP) even from Secure code, once it is done.

5.2.7. Flash Boot

The bootrom scans flash up to 16 times until it finds a valid IMAGE_DEF or PARTITION_TABLE. At this point, the flash settings

are considered valid, and the flash boot proceeds if a valid bootable IMAGE_DEF is found with these settings. It uses the

following combinations of flash read instruction and SCK divisor for the 16 attempts:

Table 449. QSPI read

modes supported by

the bootrom, in the

order it attempts

them.

Mode Clock Divisor

EBh quad 3

BBh dual 3

0Bh serial 3

03h serial 3

EBh quad 6

BBh dual 6

0Bh serial 6
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Mode Clock Divisor

03h serial 6

EBh quad 12

BBh dual 12

0Bh serial 12

03h serial 12

EBh quad 24

BBh dual 24

0Bh serial 24

03h serial 24

QSPI does not provide a reliable method to detect whether a device is attached. However, this is not much of an issue

for boot purposes: either there is a device with valid and bootable contents, or there are no such contents (either due to

lack of a connected device, invalid device contents, or failure to communicate in the current QSPI mode).

When there is no device (or no recognisable contents), the bootrom tries all 16 modes in Table 449 before finally giving

up. The size of the initial search region is limited to 4 kB to minimise the time spent scanning flash before falling

through to USB or UART boot. This same 4 kB limit also applies to search within a flash partition, which allows the

bootrom to reliably sever the contained image’s block loop with a single 4 kB sector erase at the start of a partition,

such as on a version downgrade.

There are three main ways that the bootrom locates flash images:

Flash image boot

A flash image can be written directly to flash storage address 0x0, and the bootrom will find it from there. This is the

most similar to flash boot on RP2040 (the main differences being the removal of a boot2 in the first 256 bytes of the

image, and the new requirement for a valid image definition anywhere within the first 4 kB of the image).

Flash partition boot

A flash image can be written into a partition of a partition table. The partition table is described by a PARTITION_TABLE

block stored at the start of flash. The bootrom finds the partition table and scans its partitions to look for bootable

images.

Partition-table-in-image boot

A flash image containing an IMAGE_DEF and PARTITION_TABLE block in a single block loop is written to the start of flash.

The bootrom loads the embedded partition table, and enters the image in the same way as the flash image boot

case.

Revisit the linked bootrom concepts sections to get the fullest understanding of each of these three forms of flash boot.

For the purposes of this section, all that matters is whether the bootrom can discover a valid, bootable image or not. In

all three cases, the image must have a valid IMAGE_DEF, and meet all relevant security requirements such as being

correctly signed, and having a rollback version greater than or equal to the one stored in OTP.

The bootrom enters the flash image in whatever QSPI mode it discovered to work during flash programming. Any

further setup (such as prefixless continuous read modes) is performed by the flash image itself. This setup code,

referred to as an XIP setup function, is usually copied into RAM before execution to avoid running from flash whilst the

XIP interface is being reconfigured.
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 TIP

The PICO_EMBED_XIP_SETUP=1 flag in the SDK enables inclusion and execution of an XIP setup function on RP2350

builds. In this case the function executes on the core 0 stack during early startup, so no additional static memory

need be allocated. This is not the case for subsequent calls, because the stack is often not executable post-startup.

You should save your XIP setup function in the first 256 bytes of boot RAM to make it easily locatable when the XIP

mode is re-initialised following a serial flash programming operation which had to drop out of XIP mode. The bootrom

writes a default XIP setup function to this address before entering the flash image, which restores the mode the

bootrom discovered during flash programming.

 NOTE

You cannot execute an XIP setup function directly from boot RAM, because boot RAM is never executable. You must

copy it into SRAM before execution.

XIP setup functions should be fully position-independent, and no more than 256 bytes in size. If you are unable to meet

these requirements, you should install a stub function which calls your XIP setup function elsewhere in RAM.

5.2.8. BOOTSEL (USB/UART) Boot

The bootrom samples the state of QSPI CSn shortly after reset. Based on the result, the bootrom decides whether to

enter BOOTSEL mode, which refers collectively to the USB and UART bootloaders.

The bootrom initialises the chip select to the following state:

• Output disabled

• Pulled high (note CSn is an active-low signal, so this deselects the external QSPI device if there is one)

If the chip select remains high, the bootrom continues with its normal, non-BOOTSEL sequence. By default on a blank

device, this means driving the chip select low and attempting to boot from an external flash or PSRAM device.

If chip select is driven low externally, the bootrom enters BOOTSEL mode. You must drive the chip select low with a

sufficiently low impedance to overcome the internal pull-up. A 4.7 kΩ resistance to ground is a good intermediate value

which reliably creates a low input logic level, but will not affect the output levels when RP2350 drives the chip select.

The QSPI SD1 line, which RP2350 initially pulls low, selects which bootloader to enter:

• SD1 remains pulled low: enter USB bootloader

• SD1 driven high: enter UART bootloader

USB boot is a low-friction method for programming an RP2350 from a sophisticated host like a Linux PC. It also directly

exposes more advanced options like OTP programming. See Section 5.5 for the drag-and-drop mass storage interface,

or Section 5.6 for the PICOBOOT vendor interface.

UART boot is a minimal interface for bootstrapping a flashless RP2350 from another microcontroller. UART boot uses

QSPI SD2 for UART TX, and QSPI SD3 for UART RX, at a fixed baud rate of 1 Mbaud. For more details about UART boot,

see Section 5.8.

5.2.8.1. BOOTSEL Clock Requirements

BOOTSEL mode requires either a crystal attached across the XIN and XOUT pins, or a clock signal from an external

oscillator driven into the XIN pin. See Table 1436 for the electrical specifications of these two XOSC pins.

The bootrom assumes a default XOSC frequency of 12 MHz. It configures the USB PLL to derive a fixed 48 MHz

frequency from the XOSC reference. For USB, this must be a precise frequency. If you use a non-12 MHz crystal, and

intend to use USB boot, program BOOTSEL_PLL_CFG and BOOTSEL_XOSC_CFG in OTP, and then set
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BOOT_FLAGS0.ENABLE_BOOTSEL_NON_DEFAULT_PLL_XOSC_CFG. For details about calculating the correct PLL

parameters for your crystal, see Section 8.6.3.

UART boot uses the same PLL configuration as USB boot. However, the permissible range of crystal frequencies under

the default PLL configuration is wider. See Section 5.8.1.

5.2.9. Boot Configuration (OTP)

User configuration stored in OTP can be found in Section 13.9, starting at CRIT1.

The main controls for the bootrom are stored in BOOT_FLAGS0 and BOOT_FLAGS1. These are both in page 1 of OTP,

which has the following default permissions on a blank device:

• Read-write for Secure (S)

• Read-write for bootloader (BL)

• Read-only for Non-secure (NS)

Boot key hashes are stored in page 2 of OTP, starting from BOOTKEY0_0. There is space for up to four boot key hashes

in this page. See Section 5.10.1 for an example of how keys can be installed.

5.3. Launching Code On Processor Core 1

As described in Section 5.2, after reset, processor core 1 sleeps at start-up, and remains asleep until woken by core 0

via the SIO FIFOs.

If you are using the SDK then you can use the multicore_launch_core1() function to launch code on processor core 1.

However this section describes the procedure to launch code on processor core 1 yourself.

The procedure to start running on processor core 1 involves both cores moving in lockstep through a state machine

coordinated by passing messages over the inter-processor FIFOs. This state machine is designed to be robust enough

to cope with a recently reset processor core 1 which may be anywhere in its boot code, up to and including going to

sleep. As result, the procedure may be performed at any point after processor core 1 has been reset (either by system

reset, or explicitly resetting just processor core 1).

The following C code describes the procedure:

// values to be sent in order over the FIFO from core 0 to core 1
//
// vector_table is value for VTOR register
// sp is initial stack pointer (SP)
// entry is the initial program counter (PC) (don't forget to set the thumb bit!)
const uint32_t cmd_sequence[] =
        {0, 0, 1, (uintptr_t) vector_table, (uintptr_t) sp, (uintptr_t) entry};

uint seq = 0;
do {
    uint cmd = cmd_sequence[seq];
    // always drain the READ FIFO (from core 1) before sending a 0
    if (!cmd) {
        // discard data from read FIFO until empty
        multicore_fifo_drain();
        // execute a SEV as core 1 may be waiting for FIFO space
        __sev();
    }
    // write 32 bit value to write FIFO
    multicore_fifo_push_blocking(cmd);
    // read 32 bit value from read FIFO once available
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    uint32_t response = multicore_fifo_pop_blocking();
    // move to next state on correct response (echo-d value) otherwise start over
    seq = cmd == response ? seq + 1 : 0;
} while (seq < count_of(cmd_sequence));

5.4. Bootrom APIs

Whilst some ROM space is dedicated to the implementation of the boot sequence and USB/UART boot interfaces, the

bootrom also contains public functions that provide useful RP2350 functionality that may be useful for any code or

runtime running on the device.

A categorised list is available in Section 5.4.6.

The full alphabetical list is available in Section 5.4.7.

5.4.1. Locating The API Functions

The API functions are normally made available to the user by wrappers in the SDK. However, a lower level method is

provided to locate them (since their locations may change with each bootrom release) for other runtimes, or those who

wish to locate them directly.

Table 450 shows the fixed memory layout of certain words in the bootrom used to locate these functions when using

the Arm architecture. Table 451 shows the additional entries for use when using the RISC-V architecture.

Table 450. Bootrom

contents at fixed (well

known) addresses for

Arm code

Address Contents Description

0x00000000 32-bit pointer Initial boot stack pointer

0x00000004 32-bit pointer Pointer to boot reset handler function

0x00000008 32-bit pointer Pointer to boot NMI handler function

0x0000000c 32-bit pointer Pointer to boot Hard fault handler function

0x00000010 'M', 'u', 0x02 Magic

0x00000013 byte Bootrom version

0x00000014 16-bit pointer Pointer to ROM entry table (BOOTROM_ROMTABLE_START)

0x00000016 16-bit pointer Pointer to a helper function (rom_table_lookup_val())

0x00000018 16-bit pointer Pointer to a helper function (rom_table_lookup_entry())

Table 451. Bootrom

contents at fixed (well

known) addresses for

RISC-V code

Address Contents Description

0x00007df6 16-bit pointer Pointer to ROM entry table (BOOTROM_ROMTABLE_START)

0x00007df8 16-bit pointer Pointer to a helper function (rom_table_lookup_val())

0x00007dfa 16-bit pointer Pointer to a helper function (rom_table_lookup_entry())

0x00007dfc 32-bit instruction RISC-V Entry Point

Assuming the three bytes starting at address 0x00000010 are ('M', 'u', 0x02), the other fixed location fields can be

assumed to be valid and used to lookup bootrom functionality.

The version byte at offset 0x00000013 is informational, and should not be used to infer the exact location of any

functions. It has the value 2 for A2 silicon.

The following code from the SDK shows how the SDK looks up a bootrom function:
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static __force_inline void *rom_func_lookup_inline(uint32_t code) {
#ifdef __riscv
    // on RISC-V the code (a jmp) is actually embedded in the table
    rom_table_lookup_fn rom_table_lookup =
        (rom_table_lookup_fn) (uintptr_t)*(uint16_t*)(BOOTROM_TABLE_LOOKUP_ENTRY_OFFSET
        + rom_offset_adjust);
    return rom_table_lookup(code, RT_FLAG_FUNC_RISCV);
#else
    // on Arm the function pointer is stored in the table, so we dereference it
    // via lookup() rather than lookup_entry()
    rom_table_lookup_fn rom_table_lookup =
        (rom_table_lookup_fn) (uintptr_t)*(uint16_t*)(BOOTROM_TABLE_LOOKUP_OFFSET);
    if (pico_processor_state_is_nonsecure()) {
        return rom_table_lookup(code, RT_FLAG_FUNC_ARM_NONSEC);
    } else {
        return rom_table_lookup(code, RT_FLAG_FUNC_ARM_SEC);
    }
#endif
}

As well as API functions, there are a few data values that can be looked up. The following code demonstrates:

void *rom_data_lookup(uint32_t code) {
    rom_table_lookup_fn rom_table_lookup =
        (rom_table_lookup_fn) (uintptr_t)*(uint16_t*)(BOOTROM_TABLE_LOOKUP_OFFSET);
    return rom_table_lookup(code, RT_FLAG_DATA);
}

The code parameter correspond to the CODE values in the tables below, and is calculated as follows:

uint32_t rom_table_code(char c1, char c2) {
   return (c2 << 8) | c1;
}

These codes are also available in bootrom.h in the SDK as #defines.

5.4.2. API Function Availability

Some functions are not available under all architectures or security levels. The API listing in Section 5.4.6 uses the

following terms to list the availability of each individual API entry point:

Arm-S

The function is available to Secure Arm code. The majority of functions are available for Arm-S unless they deal

specifically with RISC-V or Non-secure functionality.

RISC-V

The function is available to RISC-V code. Most of the functions that are available under Arm-S are also exposed

under RISC-V unless they deal specifically with Arm security states.

Arm-NS

The function is available to Non-secure Arm code. The function in this case performs additional permission and

argument checks to prevent Secure data from leaking or being corrupted.

Each individual Arm-NS API function must be explicitly enabled by Secure code before use, via set_ns_api_permission(). A
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disabled Non-secure API returns BOOTROM_ERROR_NOT_PERMITTED if disabled by Secure code. All Non-secure APIs are

disabled initially. There is no permission control on Non-secure code calling Secure-only Arm-S functions, but such a call

will crash when it attempts to access Secure-only hardware.

The Arm-NS functions may escalate through a Secure Gateway (SG) instruction to allow Non-secure code to perform

limited operations on nominally Secure-only hardware, such as QSPI direct-mode interface used for flash programming.

The RISC-V functions do not have separate entry points based on privilege level. Both M-mode and U-mode software can

call bootrom APIs, assuming they have execute permissions on ROM addresses in the PMP. However, U-mode calls will

crash if they attempt to access M-mode-only hardware.

5.4.3. API Function Return Codes

Some functions do not support returning any error, and are marked void. The remainder return either 0 (BOOTROM_OK) or a

positive value (if data needs to be returned) for success. These bootrom error codes are identical to the error codes

used by the SDK, so they can be used interchangeably. This explains the gaps in the numbering for SDK error codes that

aren’t used by the bootrom.

Name Value Description

value >= 0 The function succeeded and returned the value

BOOTROM_OK 0 The function executed successfully

BOOTROM_ERROR_NOT_PERMITTED -4 The operation was disallowed by a security constraint

BOOTROM_ERROR_INVALID_ARG -5 One or more parameters passed to the function is outside

the range of supported values;

BOOTROM_ERROR_INVALID_ADDRESS and

BOOTROM_ERROR_BAD_ALIGNMENT are more specific

errors.

BOOTROM_ERROR_INVALID_ADDRESS -10 An address argument was out-of-bounds or was

determined to be an address that the caller may not

access.

BOOTROM_ERROR_BAD_ALIGNMENT -11 An address passed to the function was not correctly

aligned.

BOOTROM_ERROR_INVALID_STATE -12 Something happened or failed to happen in the past, and

consequently the request cannot currently be serviced.

BOOTROM_ERROR_BUFFER_TOO_SMALL -13 A user-allocated buffer was too small to hold the result or

working state of the function.

BOOTROM_ERROR_PRECONDITION_NOT_MET -14 The call failed because another bootrom function must be

called first.

BOOTROM_ERROR_MODIFIED_DATA -15 Cached data was determined to be inconsistent with the

full version of the data it was copied from.

BOOTROM_ERROR_INVALID_DATA -16 The contents of a data structure are invalid

BOOTROM_ERROR_NOT_FOUND -17 An attempt was made to access something that does not

exist; or, a search failed.

BOOTROM_ERROR_UNSUPPORTED_MODIFICATION -18 Modification is impossible based on current state; e.g.

attempted to clear an OTP bit.

BOOTROM_ERROR_LOCK_REQUIRED -19 A required lock is not owned. See Section 5.4.4.
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5.4.4. API Functions And Exclusive Access

Various bootrom functions require access to parts of the system which:

• cannot be safely accessed by both cores at once, or

• limit the functionality of other hardware when in use

For example:

• Programming OTP: it is not possible to read from the memory mapped OTP data regions at the same time as

accessing its serial programming interface.

• Use of the SHA-256 block: only one SHA-256 sum can be in progress at a time.

• Using the QSPI direct-mode interface to program the flash causes XIP access to return a bus fault.

It is beyond the purview of the bootrom to implement a locking strategy, as the style and scope of the locking required

is entirely up to how the application itself uses these resources.

Nevertheless, it is important that, say, a Non-secure call to a flash programming API can’t cause a hard fault in other

Secure code running from flash. There must be some way for user software to coordinate with bootrom APIs on such

changes of state. The bootrom implements the mechanism but not the policy for mutual exclusion over bootrom API

calls.

The solution the bootrom provides is to use the boot locks (boot RAM registers BOOTLOCK0 through BOOTLOCK7) to

inform the bootrom which resources are currently owned by the caller and therefore safe for it to use.

To enable lock checking in bootrom APIs, set boot lock 7 (LOCK_ENABLE) to the claimed state. When enabled, bootrom

functions which use certain hardware resources (listed below) will check the status of the boot lock assigned to that

resource, and return BOOTROM_ERROR_LOCK_REQUIRED if that lock is not in the claimed state.

Before calling a bootrom function with locking enabled, you must claim the relevant locks. It may take multiple attempts

to claim if the API is concurrently accessed from other contexts. Follow the same steps as the SIO spinlocks (Section

3.1.4) to claim a lock.

The following boot locks are assigned:

• 0x0 : LOCK_SHA_256 - if owned, then a bootrom API is allowed to use the SHA-256 block

• 0x1 : LOCK_FLASH_OP - if owned, then a bootrom API is allowed to enter direct mode on the QSPI memory interface

(Section 12.14.5) in order to perform low-level flash operations

• 0x2 : LOCK_OTP - if owned, then a bootrom API is allowed to access OTP via the serial interface

• 0x7 : LOCK_ENABLE - if owned, then bootrom API resource ownership checking is enabled. This is off by default, since

the bootrom APIs aim to be usable by default without additional setup.

5.4.5. SDK Access To The API

Bootrom functions are exposed in the SDK via the pico_bootrom library (see pico_bootrom).

Each bootrom function has a rom_ wrapper function that looks up the bootrom function address and calls it.

The SDK provides a simple implementation of exclusive access via bootrom_acquire_lock_blocking(n) and

bootrom_release_lock(n). When enabled, as it is by default (PICO_BOOTROM_LOCKING_ENABLED=1 is defined) the SDK enables

bootrom locking via LOCK_ENABLE, and these two functions use the other SHA_256/FLASH_OP/OTP boot locks to take ownership

of/release ownership of the corresponding bootrom resource.

The rom_ wrapper functions the SDK call bootrom_acquire_lock_locking and bootrom_relead_lock functions around bootrom

calls that have locking requirements.
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5.4.6. Categorised List Of API Functions and ROM Data

The terms in parentheses after each function name (Arm-S, Arm-NS, RISC-V) indicate the architecture and security state

combinations where that API is available:

• Arm-S: Arm processors running in the Secure state

• Arm-NS: Arm processors running in the Non-secure state

• RISC-V: RISC-V processors

See Section 5.4.2 for the full definitions of these terms.

List entries ending with parentheses, such as flash_op(), are callable functions. List entries without parentheses, such

as git_revision, are pointers to ROM data locations.

5.4.6.1. Low-Level Flash Access

These low-level (Secure-only) flash access functions are similar to the ones on RP2040:

• connect_internal_flash() (Arm-S, RISC-V)

• flash_enter_cmd_xip() (Arm-S, RISC-V)

• flash_exit_xip() (Arm-S, RISC-V)

• flash_flush_cache() (Arm-S, RISC-V)

• flash_range_erase() (Arm-S, RISC-V)

• flash_range_program() (Arm-S, RISC-V)

These are new with RP2350:

• flash_reset_address_trans() (Arm-S, RISC-V)

• flash_select_xip_read_mode() (Arm-S, RISC-V)

5.4.6.2. High-Level Flash Access

The higher level access functions, provide functionality that is safe to expose (with permissions) to Non-secure code as

well.

• flash_op() (Arm-S, Arm-NS, RISC-V)

• flash_runtime_to_storage_addr() (Arm-S, Arm-NS, RISC-V)

5.4.6.3. System Information

• flash_devinfo16_ptr (Arm-S, RISC-V)

• get_partition_table_info() (Arm-S, Arm-NS RISC-V)

• get_sys_info() (Arm-S, Arm-NS, RISC-V)

• git_revision (Arm-S, Arm-NS, RISC-V)

5.4.6.4. Partition Tables

• get_b_partition() (Arm-S, RISC-V)

• get_uf2_target_partition() (Arm-S, RISC-V)

RP2350 Datasheet

5.4. Bootrom APIs 373



• pick_ab_partition() (Arm-S, RISC-V)

• partition_table_ptr (Arm-S`, RISC-V)

• load_partition_table() (Arm-S, RISC-V)

5.4.6.5. Bootrom Memory and State

• set_bootrom_stack() (RISC-V)

• xip_setup_func_ptr (Arm-S, RISC-V)

• bootrom_state_reset() (Arm-S, RISC-V)

5.4.6.6. Executable Image management

• chain_image() (Arm-S, RISC-V)

• (explicit_buy() (Arm-S, RISC-V)

5.4.6.7. Security

These Secure-only functions control access for Non-secure code:

• set_ns_api_permission() (Arm-S)

• set_rom_callback() (Arm-S, RISC-V)

• validate_ns_buffer() (Arm-S, RISC-V)

5.4.6.8. Miscellaneous

These functions are provided to all platforms and security levels, but perform additional checks when called from Non-

secure Arm code:

• reboot() (Arm-S, Arm-NS, RISC-V)

• otp_access() (Arm-S, Arm-NS, RISC-V)

5.4.6.9. Non-secure Only

• secure_call() (Arm-NS)

5.4.6.10. Bit Manipulation

Unlike RP2040 the bootrom does not contain bit manipulation functions. Processors on RP2350 implement hardware

instructions for these operations which are far faster than the software implementations in the RP2040 bootrom.

5.4.6.11. Memcpy and Memset

Unlike RP2040, the bootrom does not provide memory copy or clearing functions, as your language runtime is expected

to already provide well-performing implementations of these on Cortex-M33 or Hazard3.

The bootrom does contain private implementations of standard C memcpy() and memset(), for both Arm and RISC-V, but

these are optimised for size rather than performance. They are not exported in the ROM table.
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5.4.6.12. Floating Point

Unlike RP2040 the bootrom does not contain functions for floating point arithmetic. On Arm there is standard processor

support for single-precision arithmetic via the Cortex-M FPU, and RP2350 provides an Arm coprocessor which

dramatically accelerates double-precision arithmetic (the DCP, Section 3.6.2). The SDK defaults to the most performant

hardware or software implementation available.

5.4.7. Alphabetical List Of API Functions and ROM Data

• bootrom_state_reset() (Arm-S, RISC-V)

• chain_image() (Arm-S, RISC-V)

• connect_internal_flash() (Arm-S, RISC-V)

• flash_devinfo16_ptr (Arm-S, RISC-V)

• flash_enter_cmd_xip() (Arm-S, RISC-V)

• flash_exit_xip() (Arm-S, RISC-V)

• flash_flush_cache() (Arm-S, RISC-V)

• flash_op() (Arm-S, Arm-NS, RISC-V)

• flash_range_erase() (Arm-S, RISC-V)

• flash_range_program() (Arm-S, RISC-V)

• flash_reset_address_trans() (Arm-S, RISC-V)

• flash_runtime_to_storage_addr() (Arm-S, Arm-NS, RISC-V)

• flash_select_xip_read_mode() (Arm-S, RISC-V)

• get_b_partition() (Arm-S, RISC-V)

• get_partition_table_info() (Arm-S, Arm-NS RISC-V)

• get_sys_info() (Arm-S, Arm-NS, RISC-V)

• get_uf2_target_partition() (Arm-S, RISC-V)

• git_revision (Arm-S, Arm-NS, RISC-V)

• load_partition_table() (Arm-S, RISC-V)

• otp_access() (Arm-S, Arm-NS, RISC-V)

• partition_table_ptr (Arm-S`, RISC-V)

• pick_ab_partition() (Arm-S, RISC-V)

• reboot() (Arm-S, Arm-NS, RISC-V)

• secure_call() (Arm-NS)

• set_bootrom_stack() (RISC-V)

• set_ns_api_permission() (Arm-S)

• set_rom_callback() (Arm-S, RISC-V)

• validate_ns_buffer() (Arm-S, RISC-V)

• xip_setup_func_ptr (Arm-S, RISC-V)

RP2350 Datasheet

5.4. Bootrom APIs 375



5.4.8. API Function Listings

5.4.8.1. bootrom_state_reset

Code: 'S','R'

Signature: void bootrom_state_reset(uint32_t flags)

Supported architectures: Arm-S, RISC-V

Resets internal bootrom state, based on the following flags:

• 0x0001 : STATE_RESET_CURRENT_CORE - Resets any internal bootrom state for the current core to a known state. This

method should be called prior to calling any other bootrom APIs on the current core, and is called automatically by

the bootrom during normal boot of core 0 or launch of code on core 1.

• 0x0002 : STATE_RESET_OTHER_CORE - Resets any internal bootrom state for the other core into a clean state. This is

generally called by a debugger when resetting the state of one core via code running on the other.

• 0x0004 : STATE_RESET_GLOBAL_STATE - Resets all non core-specific state, including:

◦ Disables access to bootrom APIs from Arm-NS (see also set_ns_api_permission()).

◦ Unlocks all boot locks (Section 5.4.4).

◦ Clears any Secure code callbacks. (see also set_rom_callback())

Note that the SDK calls this method on runtime initialisation to put the bootrom into a known state. This allows the

program to function correctly if it is entered via a debugger, or otherwise without taking the usual boot path through the

bootrom, which itself would reset the state.

5.4.8.2. chain_image

Code: 'C','I'

Signature: int chain_image(uint8_t *workarea_base, uint32_t workarea_size, int32_t region_base, uint32_t region_size)

Supported architectures: Arm-S, RISC-V. Note on RISC-V this function may require additional stack; see Section 5.4.8.26.

Returns: BOOTROM_OK (0) on success, or a negative error code on error.

Searches a memory region for a launchable image, and executes it if possible.

The region_base and region_size specify a word-aligned, word-multiple-sized area of RAM, XIP RAM or flash to search.

The first 4 kB of the region must contain the start of a block loop with an IMAGE_DEF. If the new image is launched, the call

does not return otherwise an error is returned.

The region_base is signed, as a negative value can be passed, which indicates that the (negated back to positive value) is

both the region_base and the base of the "flash update" region.

This method potentially requires similar complexity to the boot path in terms of picking amongst versions, checking

signatures etc. As a result it requires a user provided memory buffer as a work area. The work area should be word

aligned, and of sufficient size or BOOTROM_ERROR_BAD_ALIGNMENT / BOOTROM_ERROR_INSUFFICIENT_RESOURCES will be returned. The

work area size currently required is 3064, so 3 kB is a good choice.

This method is primarily expected to be used when implementing bootloaders.
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 NOTE

When chaining into an image, the BOOT_FLAGS0.ROLLBACK_REQUIRED flag will not be set, to prevent invalidating a

bootloader without a rollback version by booting a binary which has one (see Section 5.10.8).

5.4.8.3. connect_internal_flash

Code: 'I','F'

Signature: void connect_internal_flash(void)

Supported architectures: Arm-S, RISC-V

Restores all QSPI pad controls to their default state, and connects the QMI peripheral to the QSPI pads.

If a secondary flash chip select GPIO has been configured via OTP FLASH_DEVINFO, or by writing to the runtime copy of

FLASH_DEVINFO in boot RAM, then this bank 0 GPIO is also initialised and the QMI peripheral is connected. Otherwise, bank

0 IOs are untouched.

5.4.8.4. explicit_buy

Code: 'E','B'

Signature: int explicit_buy(uint8_t *buffer, uint32_t buffer_size)

Supported architectures: Arm-S RISC-V

Returns: BOOTROM_OK (0) on success, negative error code on error.

Perform an "explicit buy" of an executable launched via an IMAGE_DEF which was TBYB (Section 5.1.17) flagged. A "flash

update" boot of such an image is a way to have the image execute once, but only become the "current" image if it safely

calls back into the bootrom via this call.

This call may perform the following:

• Erase and rewrite the part of flash containing the TBYB flag in order to clear said flag.

• Erase the first sector of the other partition in an A/B partition scenario, if this new IMAGE_DEF is a version downgrade

(so this image will boot again when not doing a normal boot)

• Update the rollback version in OTP if the chip is secure, and a rollback version is present in the image.

 NOTE

The device may reboot while updating the rollback version, if multiple rollback rows need to be written - this occurs

when the version crosses a multiple of 24 (for example upgrading from version 23 to 25 requires a reboot, but 23 to

24 or 24 to 25 doesn’t). The application should therefore be prepared to reboot when calling this function, if rollback

versions are in use.

 NOTE

The first of the above requires 4 kB of scratch space, so you should pass a word aligned buffer of at least 4 kB to

this method in this case, or BOOTROM_ERROR_BAD_ALIGNMENT / BOOTROM_ERROR_INSUFFICIENT_RESOURCES will be returned.

5.4.8.5. flash_devinfo16-ptr

Code: 'F','D'

Type: uint16_t *flash_devinfo16_ptr
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Pointer to the flash device info used by the flash APIs, e.g. for bounds checking against size of flash devices, and

configuring the GPIO used for secondary QSPI chip select.

If BOOT_FLAGS0.FLASH_DEVINFO_ENABLE is set, this boot RAM location is initialised from FLASH_DEVINFO at startup,

otherwise it is initialised to:

• Chip select 0 size: 16 MB

• Chip select 1 size: 0 bytes

• No chip select 1 GPIO

• No D8h erase command support

The flash APIs use this boot RAM copy of FLASH_DEVINFO, so flash device info can updated by Secure code at runtime by

writing through this pointer.

5.4.8.6. flash_enter_cmd_xip

Code: 'C','X'

Signature: void flash_enter_cmd_xip(void)

Supported architectures: Arm-S, RISC-V

Compatibility alias for flash_select_xip_read_mode(0, 12);.

Configure the QMI to generate a standard 03h serial read command, with 24 address bits, upon each XIP access. This is

a slow XIP configuration, but is widely supported. CLKDIV is set to 12. The debugger may call this function to ensure

that flash is readable following a program/erase operation.

Note that the same setup is performed by flash_exit_xip(), and the RP2350 flash program/erase functions do not leave

XIP in an inaccessible state, so calls to this function are largely redundant. It is provided for compatibility with RP2040.

5.4.8.7. flash_exit_xip

Code: 'E','X'

Signature: void flash_exit_xip(void)

Supported architectures: Arm-S, RISC-V

Initialise the QMI for serial operations (direct mode), and also initialise a basic XIP mode, where the QMI will perform

03h serial read commands at low speed (CLKDIV=12) in response to XIP reads.

Then, issue a sequence to the QSPI device on chip select 0, designed to return it from continuous read mode ("XIP

mode") and/or QPI mode to a state where it will accept serial commands. This is necessary after system reset to

restore the QSPI device to a known state, because resetting RP2350 does not reset attached QSPI devices. It is also

necessary when user code, having already performed some continuous-read-mode or QPI-mode accesses, wishes to

return the QSPI device to a state where it will accept the serial erase and programming commands issued by the

bootrom’s flash access functions.

If a GPIO for the secondary chip select is configured via FLASH_DEVINFO, then the XIP exit sequence is also issued to chip

select 1.

The QSPI device should be accessible for XIP reads after calling this function; the name flash_exit_xip refers to

returning the QSPI device from its XIP state to a serial command state.

5.4.8.8. flash_flush_cache

Code: 'F','C'
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Signature: void flash_flush_cache(void)

Supported architectures: Arm-S, RISC-V

Flush the entire XIP cache, by issuing an invalidate by set/way maintenance operation to every cache line (Section

4.4.1). This ensures that flash program/erase operations are visible to subsequent cached XIP reads.

Note that this unpins pinned cache lines, which may interfere with cache-as-SRAM use of the XIP cache.

No other operations are performed.

5.4.8.9. flash_op

Code: 'F','O'

Signature: int flash_op(uint32_t flags, uint32_t addr, uint32_t size_bytes, uint8_t *buf)

Supported architectures: Arm-S, Arm-NS, RISC-V

Returns: BOOTROM_OK (0) on success, negative error code on error.

Perform a flash read, erase, or program operation. Erase operations must be sector-aligned (4096 bytes) and sector-

multiple-sized, and program operations must be page-aligned (256 bytes) and page-multiple-sized; misaligned erase

and program operations will return BOOTROM_ERROR_BAD_ALIGNMENT. The operation — erase, read, program — is selected by

the CFLASH_OP_BITS bitfield of the flags argument.

addr is the address of the first flash byte to be accessed, ranging from XIP_BASE to XIP_BASE + 0x1ffffff inclusive. This may

be a runtime or storage address. buf contains data to be written to flash, for program operations, and data read back

from flash, for read operations. buf is never written by program operations, and is completely ignored for erase

operations.

The flash operation is bounds-checked against the known flash devices specified by the runtime value of FLASH_DEVINFO,

stored in boot RAM. This is initialised by the bootrom to the OTP value FLASH_DEVINFO, if

BOOT_FLAGS0.FLASH_DEVINFO_ENABLE is set; otherwise it is initialised to 16 MB for chip select 0 and 0 bytes for chip

select 1. FLASH_DEVINFO can be updated at runtime by writing to its location in boot RAM, the pointer to which can be

looked up in the ROM table.

If a resident partition table is in effect, then the flash operation is also checked against the partition permissions. The

Secure version of this function can specify the caller’s effective security level (Secure, Non-secure, bootloader) using

the CFLASH_SECLEVEL_BITS bitfield of the flags argument, whereas the Non-secure function is always checked against the

Non-secure permissions for the partition. Flash operations which span two partitions are not allowed, and will fail

address validation.

If FLASH_DEVINFO.D8H_ERASE_SUPPORTED is set, erase operations will use a D8h 64 kB block erase command where

possible (without erasing outside the specified region), for faster erase time. Otherwise, only 20h 4 kB sector erase

commands are used.

Optionally, this API can translate addr from flash runtime addresses to flash storage addresses, according to the

translation currently configured by QMI address translation registers, ATRANS0 through ATRANS7. For example, an

image stored at a +2 MB offset in flash (but mapped at XIP address 0 at runtime), writing to an offset of +1 MB into the

image, will write to a physical flash storage address of 3 MB. Translation is enabled by setting the CFLASH_ASPACE_BITS

bitfield in the flags argument.

When translation is enabled, flash operations which cross address holes in the XIP runtime address space (created by

non-maximum ATRANSx_SIZE) will return an error response. This check may tear: the transfer may be partially performed

before encountering an address hole and ultimately returning failure.

When translation is enabled, flash operations are permitted to cross chip select boundaries, provided this does not span

an ATRANS address hole. When translation is disabled, the entire operation must target a single flash chip select (as

determined by bits 24 and upward of the address), else address validation will fail.

A typical call sequence for erasing a flash sector in the runtime address space from Secure code would be:
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• connect_internal_flash();

• flash_exit_xip();

• flash_op((CFLASH_OP_VALUE_ERASE << CFLASH_OP_LSB) | (CFLASH_SECLEVEL_VALUE_SECURE << CFLASH_SECLEVEL_LSB) |

(CFLASH_ASPACE_VALUE_RUNTIME << CFLASH_ASPACE_LSB), addr, 4096, NULL);

• flash_flush_cache();

• Copy the XIP setup function from boot RAM to SRAM and execute it, to restore the original XIP mode

◦ The bootrom will have written a default setup function which restores the mode/clkdiv parameters found

during flash search; user code can overwrite this with its own custom setup function.

A similar sequence is required for program operations. Read operations can leave the current XIP mode in effect, so

only the flash_op(…); call is required.

Note that the RP2350 bootrom leaves the flash in a basic XIP state in between program/erase operations. However,

during a program/erase operation, the QMI is in direct mode (Section 12.14.5) and any attempted XIP access will return

a bus error response.

5.4.8.10. flash_range_erase

Code: 'R','E'

Signature: void flash_range_erase(uint32_t addr, size_t count, uint32_t block_size, uint8_t block_cmd)

Supported architectures: Arm-S, RISC-V

Erase count bytes, starting at addr (offset from start of flash). Optionally, pass a block erase command e.g. D8h block

erase, and the size of the block erased by this command — this function will use the larger block erase where possible,

for much higher erase speed. addr must be aligned to a 4096-byte sector, and count must be a multiple of 4096 bytes.

This is a low-level flash API, and no validation of the arguments is performed. See flash_op() for a higher-level API which

checks alignment, flash bounds and partition permissions, and can transparently apply a runtime-to-storage address

translation.

The QSPI device must be in a serial command state before calling this API, which can be achieved by calling

connect_internal_flash() followed by flash_exit_xip(). After the erase, the flash cache should be flushed via

flash_flush_cache() to ensure the modified flash data is visible to cached XIP accesses.

Finally, the original XIP mode should be restored by copying the saved XIP setup function from boot RAM into SRAM,

and executing it: the bootrom provides a default function which restores the flash mode/clkdiv discovered during flash

scanning, and user programs can override this with their own XIP setup function.

For the duration of the erase operation, QMI is in direct mode (Section 12.14.5) and attempting to access XIP from

DMA, the debugger or the other core will return a bus fault. XIP becomes accessible again once the function returns.

5.4.8.11. flash_range_program

Code: 'R','P'

Signature: void flash_range_program(uint32_t addr, const uint8_t *data, size_t count)

Supported architectures: Arm-S, RISC-V

Program data to a range of flash storage addresses starting at addr (offset from the start of flash) and count bytes in

size. addr must be aligned to a 256-byte boundary, and count must be a multiple of 256.

This is a low-level flash API, and no validation of the arguments is performed. See flash_op() for a higher-level API which

checks alignment, flash bounds and partition permissions, and can transparently apply a runtime-to-storage address

translation.

The QSPI device must be in a serial command state before calling this API — see notes on flash_range_erase().
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5.4.8.12. flash_reset_address_trans

Code: 'R','A'

Signature: void flash_reset_address_trans(void)

Supported architectures: Arm-S, RISC-V

Restore the QMI address translation registers, ATRANS0 through ATRANS7, to their reset state. This makes the runtime-

to-storage address map an identity map, i.e. the mapped and unmapped address are equal, and the entire space is fully

mapped. See Section 12.14.4.

5.4.8.13. flash_runtime_to_storage_addr

Code: 'F','A'

Signature: int flash_runtime_to_storage_addr(uint32_t addr)

Supported architectures: Arm-S, Arm-NS, RISC-V

Returns: A positive value on success (the translated address), or negative error code on error

Applies the address translation currently configured by QMI address translation registers, ATRANS0 through ATRANS7.

See Section 12.14.4.

Translating an address outside of the XIP runtime address window, or beyond the bounds of an ATRANSx_SIZE field,

returns BOOTROM_ERROR_INVALID_ADDRESS, which is not a valid flash storage address. Otherwise, return the storage address

which QMI would access when presented with the runtime address addr. This is effectively a virtual-to-physical address

translation for QMI.

5.4.8.14. flash_select_xip_read_mode

Code: 'X','M'

Signature: void flash_select_xip_read_mode(bootrom_xip_mode_t mode, uint8_t clkdiv)

Supported architectures: Arm-S, RISC-V

Configure QMI for one of a small menu of XIP read modes supported by the bootrom. This mode is configured for both

memory windows (both chip selects), and the clock divisor is also applied to direct mode.

The available modes are:

• 0: 03h serial read: serial address, serial data, no wait cycles

• 1: 0Bh serial read: serial address, serial data, 8 wait cycles

• 2: BBh dual-IO read: dual address, dual data, 4 wait cycles (including MODE bits, which are driven to 0)

• 3: EBh quad-IO read: quad address, quad data, 6 wait cycles (including MODE bits, which are driven to 0)

The XIP write command/format are not configured by this function.

When booting from flash, the bootrom tries each of these modes in turn, from 3 down to 0. The first mode that is found

to work is remembered, and a default XIP setup function is written into boot RAM that calls this function

(flash_select_xip_read_mode) with the parameters discovered during flash scanning. This can be called at any time to

restore the flash parameters discovered during flash boot.

All XIP modes configured by the bootrom have an 8-bit serial command prefix, so that the flash device can remain in a

serial command state, meaning XIP accesses can be mixed more freely with program/erase serial operations. This has

a performance penalty, so users can perform their own flash setup after flash boot using continuous read mode or QPI

mode to avoid or alleviate the command prefix cost.
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5.4.8.15. get_b_partition

Code: 'G','B'

Signature: int get_b_partition(uint partition_a)

Supported architectures: Arm-S RISC-V

Returns: The index of the B partition of partition A if a partition table is present and loaded, and there is a partition A with

a corresponding B partition; otherwise returns BOOTROM_ERROR_NOT_FOUND.

5.4.8.16. get_partition_table_info

Code: 'G','P'

Signature: int get_partition_table_info(uint32_t *out_buffer, uint32_t out_buffer_word_size, uint32_t flags_and_partition)

Supported architectures: Arm-S, Arm-NS, RISC-V

Returns: >= 0 on success (the number of words filled in out_buffer), negative error code on error.

Fills a buffer with information from the partition table. Note that this API is also used to return information over the

PICOBOOT interface.

On success, the buffer is filled, and the number of words filled in the buffer is returned. If the partition table has not been

loaded (e.g. from a watchdog or RAM boot), then this method will return BOOTROM_ERROR_PRECONDITION_NOT_MET, and you

should load the partition table via load_partition_table() first.

Note that not all data from the partition table is kept resident in memory by the bootrom due to size constraints. To

protect against changes being made in flash after the bootrom has loaded the resident portion, the bootrom keeps a

hash of the partition table as of the time it loaded it. If the hash has changed by the time this method is called, then it

will return BOOTROM_ERROR_INVALID_STATE.

The information returned is chosen by the flags_and_partition parameter; the first word in the returned buffer, is the

(sub)set of those flags that the API supports. You should always check this value before interpreting the buffer.

Following the first word, returns words of data for each present flag in order. With the exception of PT_INFO, all the flags

select "per partition" information, so each field is returned in flag order for one partition after the next. The special

SINGLE_PARTITION flag indicates that data for only a single partition is required. Flags include:

• 0x0001 - PT_INFO : information about the partition table as a whole. The second two words for unpartitioned space in

the same form described in Section 5.9.4.2.

◦ Word 0 : partition_count (low 8 bits), partition_table_present (bit 8)

◦ Word 1 : unpartitioned_space_permissions_and_location

◦ Word 2 : unpartitioned_space_permissions_and_flags

• 0x8000 - SINGLE_PARTITION : only return data for a single partition; the partition number is stored in the top 8 bits of

flags_and_partition

Per-partition fields:

• 0x0010 - PARTITION_LOCATION_AND_FLAGS : the core information about a partition. The format of these fields is described

in Section 5.9.4.2.

◦ Word 0 - permissions_and_location

◦ Word 1 - permissions_and_flags

• 0x0020 - PARTITION_ID : the optional 64-bit identifier for the partition. If the HAS_ID bit is set in the partition flags, then

the 64 bit ID is returned:

◦ Word 0 - first 32 bits
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◦ Word 1 - second 32 bits

• 0x0040 - PARTITION_FAMILY_IDS : Any additional UF2 family IDs that the partition supports being downloaded into it via

the MSD bootloader beyond the standard ones flagged in the permissions_and_flags field (see Section 5.9.4.2).

• 0x0080 - PARTITION_NAME : The optional name for the partition. If the HAS_NAME field bit in permissions_and_flags is not set,

then no data is returned for this partition; otherwise the format is as follows:

◦ Byte 0 : 7 bit length of the name (LEN); top bit reserved

◦ Byte 1 : first character of name

◦ …

◦ Byte LEN : last character of name

◦ … (padded up to the next word boundary)

 NOTE

Unpartitioned space is always reported in Word 1 as having a base offset of 0x0 and a size of 0x2000 sectors (32 MB).

The bootrom applies unpartitioned space permissions to any flash storage address that is not covered by a partition.

5.4.8.17. get_sys_info

Code: 'G','S'

Signature: int get_sys_info(uint32_t *out_buffer, uint32_t out_buffer_word_size, uint32_t flags)

Supported architectures: Arm-S, Arm-NS, RISC-V

Returns: A positive value on success (the number of words filled in out_buffer), negative error code on error.

Fills a buffer with various system information. Note that this API is also used to return information over the PICOBOOT

interface.

The information returned is chosen by the flags parameter; the first word in the returned buffer, is the (sub)set of those

flags that the API supports. You should always check this value before interpreting the buffer.

Following the first word, returns words of data for each present flag in order:

• 0x0001 : CHIP_INFO - unique identifier for the chip (3 words)

◦ Word 0 : Value of the CHIP_INFO_PACKAGE_SEL register

◦ Word 1 : RP2350 device id

◦ Word 2 : RP2350 wafer id

• 0x0002 : CRITICAL (1 word)

◦ Word 0 : Value of the OTP CRITICAL register, containing critical boot flags read out on last OTP reset event

• 0x0004 : CPU_INFO (1 word)

◦ Word 0 : Current CPU architecture

▪ 0 - Arm

▪ 1 - RISC-V

• 0x0008 : FLASH_DEV_INFO (1 word)

◦ Word 0 : Flash device info in the format of OTP FLASH_DEVINFO

• 0x0010 : BOOT_RANDOM - a 128-bit random number generated on each boot (4 words)

◦ Word 0 : Per boot random number 0
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◦ Word 1 : Per boot random number 1

◦ Word 2 : Per boot random number 2

◦ Word 3 : Per boot random number 3

• 0x0020 : NONCE - not supported

• 0x0040 : BOOT_INFO (4 words)

◦ Word 0 : 0xttppbbdd

▪ tt - recent boot TBYB and update info (updated on regular non BOOTSEL boots)

▪ pp - recent boot partition (updated on regular not BOOTSEL boots)

▪ bb - boot type of the most recent boot

▪ dd - recent boot diagnostic "partition"

◦ Word 1 : Recent boot diagnostic. Diagnostic information from a recent boot (with information from the

partition (or slot) indicated by dd above. "partition" numbers here are:

▪ 0-15 : a partition number

▪ -1 : none

▪ -2 : slot 0

▪ -3 : slot 1

▪ -4 : image (the diagnostic came from the launch of a RAM image, OTP boot image or user chain_image()

call).

◦ Word 2 : Last reboot param 0

◦ Word 3 : Last reboot param 1

"Boot Diagnostic" information is intended to help identify the cause of a failed boot, or booting into an unexpected

binary. This information can be retrieved via PICOBOOT after a watchdog reboot, however it will not survive a reset via

the RUN pin or POWMAN reset.

There is only one word of diagnostic information. What it records is based on the pp selection above, which is itself set

as a parameter when rebooting programmatically into a normal boot.

To get diagnostic info, pp must refer to a slot or an "A" partition; image diagnostics are automatically selected on boot

from OTP or RAM image, or when chain_image() is called.)

The diagnostic word thus contains data for either slot 0 and slot 1, or the "A" partition (and its "B" partition if it has one).

The low half word of the diagnostic word contains information from slot 0 or partition A; the high half word contains

information from slot 1 or partition B.

The format of each half-word is as follows (using the word region to refer to slot or partition)

• 0x0001 : REGION_SEARCHED - The region was searched for a block loop.

• 0x0002 : INVALID_BLOCK_LOOP - A block loop was found but it was invalid

• 0x0004 : VALID_BLOCK_LOOP - A valid block loop was found (Blocks from a loop wholly contained within the region, and

the blocks have the correct structure. Each block consists of items whose sizes sum to the size of the block)

• 0x0008 : VALID_IMAGE_DEF - A valid IMAGE_DEF was found in the region. A valid IMAGE_DEF must parse correctly and must

be executable.

• 0x0010 : HAS_PARTITION_TABLE - Whether a partition table is present. This partition table must have a correct structure

formed if VALID_BLOCK_LOOP is set. If the partition table turns out to be invalid, then INVALID_BLOCK_LOOP is set too (thus

both VALID_BLOCK_LOOP and INVALID_BLOCK_LOOP will both be set).

• 0x0020 : CONSIDERED - There was a choice of partition/slot and this one was considered. The first slot/partition is

chosen based on a number of factors. If the first choice fails verification, then the other choice will be considered.
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◦ the version of the PARTITION_TABLE/IMAGE_DEF present in the slot/partition respectively.

◦ whether the slot/partition is the "update region" as per a FLASH_UPDATE reboot.

◦ whether an IMAGE_DEF is marked as "explicit buy"

• 0x0040 : CHOSEN - This slot/partition was chosen (or was the only choice)

• 0x0080 : PARTITION_TABLE_MATCHING_KEY_FOR_VERIFY - if a signature is required for the PARTITION_TABLE (via OTP setting),

then whether the PARTITION_TABLE is signed with a key matching one of the four stored in OTP

• 0x0100 : PARTITION_TABLE_HASH_FOR_VERIFY - set if a hash value check could be performed. In the case a signature is

required, this value is identical to PARTITION_TABLE_MATCHING_KEY_FOR_VERIFY

• 0x0200 : PARTITION_TABLE_VERIFIED_OK - whether the PARTITION_TABLE passed verification (signature/hash if

present/required)

• 0x0400 : IMAGE_DEF_MATCHING_KEY_FOR_VERIFY - if a signature is required for the IMAGE_DEF due to secure boot, then

whether the IMAGE_DEF is signed with a key matching one of the four stored in OTP.

• 0x0800 : IMAGE_DEF_HASH_FOR_VERIFY - set if a hash value check could be performed. In the case a signature is required,

this value is identical to IMAGE_DEF_MATCHING_KEY_FOR_VERIFY

• 0x1000 : IMAGE_DEF_VERIFIED_OK - whether the PARTITION_TABLE passed verification (signature/hash if present/required)

and any LOAD_MAP is valid

• 0x2000 : LOAD_MAP_ENTRIES_LOADED - whether any code was copied into RAM due to a LOAD_MAP

• 0x4000 : IMAGE_LAUNCHED - whether an IMAGE_DEF from this region was launched

• 0x8000 : IMAGE_CONDITION_FAILURE - whether the IMAGE_DEF failed final checks before launching; these checks include:

◦ verification failed (if it hasn’t been verified earlier in the CONSIDERED phase).

◦ a problem occurred setting up any rolling window.

◦ the rollback version could not be set in OTP (if required in Secure mode)

◦ the image was marked as Non-secure

◦ the image was marked as "explicit buy", and this was a flash boot, but then region was not the "flash update"

region

◦ the image has the wrong architecture, but architecture auto-switch is disabled (or the correct architecture is

disabled)

 NOTE

The non-sensical combination of BOOT_DIAGNOSTIC_INVALID_BLOCK_LOOP and BOOT_DIAGNOSTIC_VALID_BLOCK_LOOP both being

set is used to flag a PARTITION_TABLE which passed the initial verification (and hash/sig), but was later discovered to

have invalid contents when it was fully parsed.

To get a full picture of a failed boot involving slots and multiple partitions, the device can be rebooted multiple times to

gather the information.

5.4.8.18. get_uf2_target_partition

Code: 'G','U'

Signature: int get_uf2_target_partition(uint8_t *workarea_base, uint32_t workarea_size, uint32_t family_id,

resident_partition_t *partition_out)

Supported architectures: Arm-S RISC-V. Note on RISC-V this function requires additional stack; see Section 5.4.8.26.

Returns: >= 0 on success (the target partition index), or a negative error code on error.

This method performs the same operation to decide on a taget partition for a UF2 family ID as when a UF2 is dragged
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onto the USB drive in BOOTSEL mode.

This method potentially requires similar complexity to the boot path in terms of picking amongst versions, checking

signatures etc. As a result it requires a user provided memory buffer as a work area. The work area should byte word-

aligned and of sufficient size or BOOTROM_ERROR_INSUFFICIENT_RESOURCES will be returned. The work area size currently

required is 3064, so 3K is a good choice.

If the partition table has not been loaded (e.g. from a watchdog or RAM boot), then this method will return

BOOTROM_ERROR_PRECONDITION_NOT_MET, and you should load the partition table via load_partition_table() first.

5.4.8.19. git_revision

Code: 'G','R'

Type: const uint32_t git_revision

The 8 most significant hex digits of the bootrom git revision. Uniquely identifies this version of the bootrom.

 NOTE

This is the git revision built at chip tapeout; the git hash in the public repository is different due to squashed history,

even though the contents are identical. The contents can be verified by building the public bootrom source and

comparing the resulting binary with one binary dumped from the chip.

5.4.8.20. load_partition_table

Code: 'L','P'

Signature: int load_partition_table(uint8_t *workarea_base, uint32_t workarea_size, bool force_reload)

Supported architectures: Arm-S, RISC-V. Note on RISC-V this function requires additional stack; see Section 5.4.8.26.

Returns: BOOTROM_OK (0) on success, or a negative error code on error.

Loads the current partition table from flash, if present.

This method potentially requires similar complexity to the boot path in terms of picking amongst versions, checking

signatures etc. As a result it requires a user provided memory buffer as a work area. The work area should byte word-

aligned and of sufficient size or BOOTROM_ERROR_INSUFFICIENT_RESOURCES will be returned. The work area size currently

required is 3064, so 3K is a good choice.

If force_reload is false, then this method will return BOOTROM_OK immediately if the bootrom is loaded, otherwise it will

reload the partition table if it has been loaded already, allowing for the partition table to be updated in a running

program.

5.4.8.21. otp_access

Code: 'O','A'

Signature: int otp_access(uint8_t *buf, uint32_t buf_len, uint32_t row_and_flags)

Supported architectures: Arm-S, Arm-NS, RISC-V

Returns: BOOTROM_OK (0) on success, or a negative error code on error.

Writes data from a buffer into OTP, or reads data from OTP into a buffer.

• 0x0000ffff - ROW_NUMBER: 16 low bits are row number (0-4095)

• 0x00010000 - IS_WRITE: if set, do a write (not a read)
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• 0x00020000 - IS_ECC: if this bit is set, each value in the buffer is 2 bytes and ECC is used when read/writing from 24 bit

value in OTP. If this bit is not set, each value in the buffer is 4 bytes, the low 24-bits of which are written to or read

from OTP.

The buffer must be aligned to 2 bytes or 4 bytes according to the IS_ECC flag.

This method will read and write rows until the first row it encounters that fails a key or permission check at which it will

return BOOTROM_ERROR_NOT_PERMITTED.

Writing will also stop at the first row where an attempt is made to set an OTP bit from a 1 to a 0, and

BOOTROM_ERROR_UNSUPPORTED_MODIFICATION will be returned.

If all rows are read/written successfully, then BOOTROM_OK will be returned.

5.4.8.22. partition_table_ptr

Code: 'P','T'

Type: resident_partition_table **partition_table_ptr

A pointer to the pointer to the resident partition table info. The resident partition table is the subset of the full partition

table that is kept in memory, and used for flash permissions.

The public part of the resident partition table info is of the form:

Word Bytes Value

0 1 partition_count (0-16)

1 partition_count_with_permissions (0-16). Set this to > partition_count when adding extra

permission regions at runtime (do not modify the original partitions)

1 loaded (0x01 if a partition table has been loaded from flash)

1 0x00 (pad)

1 1 unpartitioned_space_permissions_and_flags

2-3 Partition 0

1 permissions_and_location for partition 0

1 permissions_and_flags for partition 0

4-5 Partition 1

1 permissions_and_location for partition 1

1 permissions_and_flags for partition 1

… … …

32-33 Partition 15

1 permissions_and_location for partition 15

1 permissions_and_flags for partition 15

Details of the fields permissions_and_location and permissions_and_flags can be found in Section 5.9.4.

5.4.8.23. pick_ab_partition

Code: 'A','B'

Signature: int pick_ab_partition(uint8_t *workarea_base, uint32_t workarea_size, uint partition_a_num)
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Supported architectures: Arm-S, RISC-V. Note on RISC-V this function requires additional stack; see Section 5.4.8.26.

Returns: >= 0 on success (the partition index), or a negative error code on error.

Determines which of the partitions has the "better" IMAGE_DEF. In the case of executable images, this is the one that would

be booted

This method potentially requires similar complexity to the boot path in terms of picking amongst versions, checking

signatures etc. As a result it requires a user provided memory buffer as a work area. The work area should bye word

aligned, and of sufficient size or BOOTROM_ERROR_INSUFFICIENT_RESOURCES will be returned. The work area size currently

required is 3064, so 3K is a good choice.

The passed partition number can be any valid partition number other than the "B" partition of an A/B pair.

This method returns a negative error code, or the partition number of the picked partition if (i.e. partition_a_num or the

number of its "B" partition if any).

 NOTE

This method does not look at owner partitions, only the A partition passed and its corresponding B partition.

5.4.8.24. reboot

Code: 'R','B'

Signature: int reboot(uint32_t flags, uint32_t delay_ms, uint32_t p0, uint32_t p1)

Supported architectures: Arm-S, Arm-NS, RISC-V

Returns: BOOTROM_OK (or doesn’t return) on success, a negative error code on error.

Resets the RP2350 and uses the watchdog facility to restart.

The delay_ms is the millisecond delay before the reboot occurs. Note: by default this method is asynchronous (unless

NO_RETURN_ON_SUCCESS is set - see below), so the method will return and the reboot will happen this many milliseconds

later.

The flags field contains one of the following values:

• 0x0000 : REBOOT_TYPE_NORMAL - reboot into the normal boot path.

• 0x0002 : REBOOT_TYPE_BOOTSEL - reboot into BOOTSEL mode.

◦ p0 - the GPIO number to use as an activity indicator (enabled by flag in p1).

◦ p1 - a set of flags:

▪ 0x01 : DISABLE_MSD_INTERFACE - Disable the BOOTSEL USB drive (see Section 5.5)

▪ 0x02 : DISABLE_PICOBOOT_INTERFACE - Disable the PICOBOOT interface (see Section 5.6).

▪ 0x10 : GPIO_PIN_ACTIVE_LOW - The GPIO in p0 is active low.

▪ 0x20 : GPIO_PIN_ENABLED - Enable the activity indicator on the specified GPIO.

• 0x0003 : REBOOT_TYPE_RAM_IMAGE - reboot into an image in RAM. The region of RAM or XIP RAM is searched for an

image to run. This is the type of reboot used when a RAM UF2 is dragged onto the BOOTSEL USB drive.

◦ p0 - the region start address (word-aligned).

◦ p1 - the region size (word-aligned).

• 0x0004 : REBOOT_TYPE_FLASH_UPDATE - variant of REBOOT_TYPE_NORMAL to use when flash has been updated. This is the type

of reboot used after dragging a flash UF2 onto the BOOTSEL USB drive.

◦ p0 - the address of the start of the region of flash that was updated. If this address matches the start address

of a partition or slot, then that partition or slot is treated preferentially during boot (when there is a choice).
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This type of boot facilitates TBYB (Section 5.1.17) and version downgrades.

• 0x000d : REBOOT_TYPE_PC_SP - reboot to a specific PC and SP. Note: this is not allowed in the Arm-NS variant.

◦ p0 - the initial program counter (PC) to start executing at. This must have the lowest bit set for Arm and clear

for RISC-V

◦ p1 - the initial stack pointer (SP).

All of the above, can have optional flags ORed in:

• 0x0010 : REBOOT_TO_ARM - switch both cores to the Arm architecture (rather than leaving them as is). The call will fail

with BOOTROM_ERROR_INVALID_STATE if the Arm architecture is not supported.

• 0x0020 : REBOOT_TO_RISCV - switch both cores to the RISC-V architecture (rather than leaving them as is). The call will

fail with BOOTROM_ERROR_INVALID_STATE if the RISC-V architecture is not supported.

• 0x0100 : NO_RETURN_ON_SUCCESS - the watchdog hardware is asynchronous. Setting this bit forces this method not to

return if the reboot is successfully initiated.

5.4.8.25. secure_call

Code: 'S','C'

Signature: int secure_call(…)

Supported architectures: Arm-NS

Returns: >= 0 on success, a negative error code on error.

Call a Secure method from Non-secure code, passing the method to be called in the register r4 (other arguments

passed as normal).

This method provides the ability to decouple the Non-secure code from the Secure code, allowing the former to call

methods in the latter without needing to know the location of the methods.

This call will always return BOOTROM_ERROR_INVALID_STATE unless Secure Arm code has provided a handler function via

set_rom_callback(); if there is a handler function, this method will return the return code that the handler returns, with

the convention that BOOTROM_ERROR_INVALID_ARG if the "function selector" (in r4) is not supported.

Certain well-known "function selectors" will be pre-defined to facilitate interaction between Secure and Non-secure SDK

code, or indeed with other environments (e.g. logging to secure UART/USB CDC, launch of core 1 from NS code,

watchdog reboot from NS code back into NS code, etc.)

To avoid conflicts the following bit patterns are used for "function selectors":

• 0b0xxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx - a "well known" function selector; do not use for your own methods

• 0b10xx xxxx xxxx xxxx xxxx xxxx xxxx xxxx - a "unique" function selector intended to be unlikely to clash with others'.

The lower 30 bits should be chosen at random

• 0b11xx xxxx xxxx xxxx xxxx xxxx xxxx xxxx - a "private" function selector intended for use by tightly coupled NS and S

code

5.4.8.26. set_bootrom_stack

Code: 'S','S'

Signature: int set_bootrom_stack(uint32_t base_size[2])

Supported architectures: RISC-V

Returns: BOOTROM_OK (0) on success, a negative error code on error.

Most bootrom functions are written just once, in Arm code, to save space. As a result these functions are emulated

when running under the RISC-V architecture. This is largely transparent to the user, however the stack used by the Arm
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emulation is separate from the calling user’s stack, and is stored in boot RAM and is of quite limited size. When using

certain of the more complex APIs or if nesting bootrom calls from within IRQs, you may need to provide a larger stack.

This method allows the caller to specify a region of RAM to use as the stack for the current core by passing a pointer to

two values: the word aligned base address, and the size in bytes (multiple of 4).

The method fills in the previous base/size values into the passed array before returning.

5.4.8.27. set_ns_api_permission

Code: 'S','P'

Signature: int set_ns_api_permission(uint ns_api_num, bool allowed)

Supported architectures: Arm-S

Returns: BOOTROM_OK (0) on success, a negative error code on error.

Allow or disallow the specific NS API (note all NS APIs default to disabled).

ns_api_num is one of the following, configuring Arm-NS access to the given API. When an NS API is disabled, calling it will

return BOOTROM_ERROR_NOT_PERMITTED.

• 0x0: get_sys_info

• 0x1: flash_op

• 0x2: flash_runtime_to_storage_addr

• 0x3: get_partition_table_info

• 0x4: secure_call

• 0x5: otp_access

• 0x6: reboot

• 0x7: get_b_partition

 NOTE

All permissions default to disallowed after a reset (see also bootrom_state_reset()).

5.4.8.28. set_rom_callback

Code: 'R','C'

Signature: int set_rom_callback(uint callback_number, int (*callback)(…))

Supported architectures: Arm-S, RISC-V

Returns: >= 0 (the old callback pointer) on success, a negative error code on error.

The only currently supported callback_number is 0 which sets the callback used for the secure_call API.

A callback pointer of 0 deletes the callback function, a positive callback pointer (all valid function pointers are on

RP2350) sets the callback function, but a negative callback pointer can be passed to get the old value without setting a

new value.

If successful, returns >=0 (the existing value of the function pointer on entry to the function).
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5.4.8.29. validate_ns_buffer

Code: 'V','B'

Signature: void validate_ns_buffer(const void *addr, uint32_t size, uint32_t write, uint32_t *ok)

Supported architectures: Arm-S

Returns: BOOTROM_OK (0) on success, a negative error code on error.

Utility method that can be used by Secure Arm code to validate a buffer passed to it from Non-secure code.

Both the write parameter and the (out) result parameter ok are RCP booleans, so 0xa500a500 for true, and 0x00c300c3 for

false. This enables hardening of this function, and indeed the write parameter must be one of these values or the RCP

will hang the system.

For success, the entire buffer must fit in range XIP_BASE → SRAM_END, and must be accessible by the Non-secure caller

according to SAU + NS MPU (privileged or not based on current processor IPSR and NS CONTROL flag). Buffers in USB

RAM are also allowed if access is granted to NS via ACCESSCTRL.

5.4.8.30. xip_setup_func_ptr

Code: 'X','F'

Type: void *(xip_setup_func_ptr)(void)'

5.5. USB Mass Storage Interface

The Bootrom provides a standard USB bootloader that makes a writeable drive available for copying code to the

RP2350 using UF2 files (see Section 5.5.2).

A suitable UF2 file copied to the drive is downloaded and written to Flash or RAM, and the device is automatically

rebooted, making it trivial to download and run code on the RP2350 using only a USB connection.

5.5.1. The RP2350 Drive

RP2350 appears as a standard 128MB flash drive named RP2350 formatted as a single partition with FAT16. There are

only ever two actual files visible on the drive specified.

• INFO_UF2.TXT - contains a string description of the UF2 bootloader and version.

• INDEX.HTM - redirects to information about the RP2350 device.

The default INDEX.HTM for RP2350 A2 is https://raspberrypi.com/device/RP2?version=5A09D5312E22. The contents of

these files and the name of the drive may be customised, see Section 5.7.

Any type of files may be written to the USB drive from the host, however in general these are not stored, and only appear

to be so because of caching on the host side.

When a suitable UF2 file is written to the device however, the special contents are recognised and data is written to

specified locations in RAM or Flash.

Where flash targeted UF2s are written on RP2350 is determined by the family id of the UF2 contents and the partition

table.

If there is no partition table, then UF2s are stored at the address they specify; otherwise they (with the exception of the

special ABSOLUTE family id) are stored into a single partition, with UF2 flash address 0x10000000 mapping to the start of

the partition.

It is possible, based on the partition table or family id, that the UF2 is not downloadable anywhere in flash, in which case
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it will be ignored. Further detail can be discovered via GET_INFO - UF2_STATUS On the completed download of an entire

valid UF2 file, RP2350 automatically reboots to run the newly downloaded code.

 NOTE

Invalid UF2 files may not write at all or only write partially to RP2350 before failing. Not all operating systems notify

you of disk write errors after a failed write. You can use picotool verify to verify that a UF2 file wrote correctly to

RP2350.

5.5.2. UF2 Format Details

This section describes the constraints on a UF2 file to be valid for download.

 TIP

To generate UF2 files, you can use the picootol uf2 convert functionality in picotool.

All data destined for the device must be in UF2 blocks with:

• A familyID present, with a value in the reserved range 0xe48bff58 through 0xe48bff5b or a user family ID configured in

a partition table (see table in Section 5.5.3)

• A payload_size of 256

All data must be destined for (and fit entirely within) the following memory ranges (depending on the type of binary

being downloaded which is determined by the address of the first UF2 block encountered):

• A regular flash image

◦ 0x10000000-0x12000000 flash: All blocks must be targeted at 256 byte alignments. Writes beyond the end of

physical flash will wrap back to the beginning of flash.

• A RAM only image

◦ 0x20000000-0x20082000 main RAM: Blocks can be positioned with byte alignment.

◦ 0x13ffc000-0x14000000 XIP RAM: (since flash is not being targeted, the flash cache is available for use as RAM

with same properties as main RAM).

 NOTE

Traditionally UF2 has only been used to write to flash, but this is more a limitation of using the metadata-free

.BIN file as the source to generate the UF2 file. RP2350 takes full advantage of the inherent flexibility of UF2 to

support the full range of binaries in the richer .ELF format produced by the build to be used as the source for the

UF2 file.

• The numBlocks must specify a total size of the binary that fits in the regions specified above

• A change of numBlocks or the binary type (determined by UF2 block target address) will discard the current transfer

in progress.

• A change in the familyID will discard the current transfer in progress.

• All device destined data must be in blocks without the UF2_FLAG_NOT_MAIN_FLASH marking which relates to content to

be ignored rather than flash vs RAM.
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 NOTE

When targeting flash, the UF2 block target addresses are interpreted to be in the content of a flash binary that starts

at 0x10000000. The UF2 image may be downloaded into a partition that starts somewhere else in flash, so the actual

storage address is uf2_image_target_base + uf2_block_target_addr - 0x10000000.

The flash is always erased a 4 kB sector at a time, so including data for only a subset of the 256-byte pages within a

sector in a flash-binary UF2 will leave the remaining 256-byte pages of the sector erased but undefined.

A binary is considered "downloaded" when each of the numBlocks blocks has been seen at least once in the course of a

single valid transfer. The data for a block is only written the first time in case of the host resending duplicate blocks.

After a UF2 is completely downloaded, the RP2350 reboots, ostensibly to run the new binary. Since RP2350 supports

downloading a variety of executable and non-executable UF2s into partitions, the partition contains a flag which can be

used to turn off this reboot behaviour on a case by case basis.

 NOTE

When rebooting after a flash download, a flash update boot is performed. As a result, the newly written partition will

be preferred when considered in an A/B choice, but it will not be booted if another bootable image is found in an

earlier partition. When rebooting after a RAM download, then the image search starts at the lowest address of a

downloaded block (with main RAM considered lower than flash cache if both are present, and the search only

spanning one of either main RAM or the flash cache)

It is possible for host software to temporarily disable UF2 writes via the PICOBOOT interface to prevent interference

with operations being performed via that interface (see below), in which case any UF2 file write in progress will be

aborted.

 NOTE

If a problem is encountered downloading the UF2, then it will appear as if nothing has happened since the device will

not reboot. The picotool command uf2 info can be used to determine the status of the last download in this case

(see also GET_INFO - UF2_STATUS).

5.5.3. UF2 Targeting Rules

When the first block of a UF2 is downloaded, a choice is made where to store the UF2 in flash based on the family ID of

the UF2. This choice is performed by the same code as the get_uf2_target_partition() API (see Section 5.4.8.18).

The following family IDs are defined by the bootrom, however the user is free to use their own for more specific

targeting:

Table 452. Table of

standard UF2 family

IDs understood by the

RP2350 bootrom

Name Value Description

absolute 0xe48bff57 Special family ID for content intended to be written directly to flash, ignoring

partitions

rp2040 0xe48bff56 RP2040 executable image

data 0xe48bff58 Generic catch-all for data UF2s

rp2350_arm_s 0xe48bff59 RP2350 Arm Secure image (i.e. one intended to be booted by the bootrom)

rp2350_riscv 0xe48bff5a RP2350 RISC-V image

rp2350_arm_ns 0xe48bff5b RP2350 Arm Non-secure image. Not directly bootable by the bootrom,

however Secure user code is likely to want to be able to locate binaries of this

type
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 NOTE

The only information available to the algorithm that makes the choice of where to store the UF2, is the UF2 family ID;

the algorithm cannot look inside at the UF2 contents as UF2 data sectors may appear at the device in any order.

A UF2 with the absolute family ID is downloaded without regard to partition boundaries. A partition table (if present) or

OTP configuration can define whether absolute family ID downloads are allowed, and download to the start of flash. The

default factory settings allow for absolute family ID downloads

If there is a partition table present, any other family IDs download to a single partition; if there is no partition table

present then the data, rp2350-arm-s (if Arm architecture is enabled) and rp2350-riscv (if RISC-V architecture is enabled)

family IDs are allowed by default, and the UF2 is always downloaded to the start of flash.

If a partition table is present, then up to four passes are made over the partition table (from first to last partition

encountered) until a matching partition is found; Each pass has different selection criteria:

1. Look for an (unowned) A partition, ignoring those marked NOT_BOOTABLE for the current CPU architecture

Use of the NOT_BOOTABLE_ flags allows you to have separate boot partitions for each CPU architecture (Arm or RISC-

V); were you not to use NOT_BOOTABLE_ flags in this scenario, and say the first encountered partition has an Arm

IMAGE_DEF, then, when booting under the RISC-V architecture with auto architecture switching enabled, the bootrom

would just switch back into the Arm architecture to boot the Arm binary. Marking the first partition as

NOT_BOOTABLE_RISCV in the partition table solves this problem.

The correct CPU architecture refers to a match between the architecture of the UF2 (determined by family ID of

rp2350_arm_s or rp2350_riscv) and the current CPU architecture.

This pass allows the user to drop either Arm or RISC-V UF2s, and have them stored as you’d want for the

NOT_BOOTABLE_ flag scenario.

2. If auto architecture switching is enabled and the other architecture is available, look for an (unowned) A partition,

ignoring those marked NOT_BOOTABLE for that CPU architecture.

This pass is designed to match the boot use case of booting images from the other architecture as a fallback. If

there is a partition that would be booted as a result auto architecture switching then this a reasonable place to

store this UF2 for the alternative architecture.

3. Look for any unowned A partition that accepts the family ID

This pass provides a way to target any UF2s to a partitions based on family ID, but assumes that you’d prefer a

UF2 to go into a matching top-level partition vs an owned partition.

4. Finally, look for any A partition that accepts the family ID

This pass implicitly only looks at owned partitions, since unowned partitions would have been matched in the

previous pass.

If none of the passes find a match, then the UF2 contents will not be downloaded. The picotool command uf2 info can

be used to determine the status of the last download in this case (see also GET_INFO - UF2_STATUS).

5.5.3.1. A/B Partitions And Ownership

You will note that each of the above passes refers to finding an A partition (remember, any partition that isn’t a B

partition is an A partition; i.e. an unpaired partition is classed as an A partition).

If the found A partition does not have a B partition paired with it, then the A partition is the UF2 target partition.

If however, the A partition has a B partition, then a further choice must be made as to which of the A/B partitions should

be targeted.

1. If the A partition is unowned, then the partition choice is made based on any current valid IMAGE_DEF in those

partitions. The valid partition with the higher version number is not chosen; in the case of executable IMAGE_DEFs,

this is the opposite of what would happen during boot; this makes sense as you want to drop the UF2 on the
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partition which isn’t currently booting.

2. If the A partition is marked owned, then the contents of the A partition and B partition are assumed not to contain

IMAGE_DEFs which can be used to make a version based choice. Therefore, the owner of the A partition (Aowner) and its

B partition (Bowner) are used to make the choice

It is however dependent on the use case whether you would want a UF2 that is destined for partition A / partition B

to go into partition A when partition Aowner has an IMAGE_DEF with the higher version (i.e. would boot if the IMAGE_DEF

was executable) or when Bowner has an IMAGE_DEF with the higher version. By default, the bootrom picks partition A

when partition Aowner has the higher versioned IMAGE_DEF, however this can be changed by setting the

UF2_DOWNLOAD_AB_NON_BOOTABLE_OWNER_AFFINITY flag in partition A.

5.5.3.2. Multiple UF2 families

It is possible to include sectors targeting different family IDs in the same UF2 file. The intention in the UF2 specification

is to allow one file to be shipped for multiple different devices, but the expectation is that each device only accepts one

UF2 family ID.

Similarly on RP2350, it is only supported to download a UF2 file containing multiple family IDs if only one of those family

IDs is acceptable for download to the device according to the above rules.

5.6. USB PICOBOOT Interface

The PICOBOOT interface is a low level USB protocol for interacting with the RP2350 while it is in BOOTSEL mode. This

interface may be used concurrently with the USB Mass Storage Interface.

It provides for flexible reading from and writing to RAM or Flash, rebooting, executing code on the device and a handful

of other management functions.

Constants and structures related to the interface can be found in the SDK header picoboot.h in the SDK

5.6.1. Identifying The Device

A RP2350 device can recognised by the Vendor ID and Product ID in its device descriptor (shown in Table 453), unless

different values have been set in OTP (see Section 5.7)

Table 453. RP2350

Boot Device

Descriptor

Field Value

bLength 18

bDescriptorType 1

bcdUSB 2.10

bDeviceClass 0

bDeviceSubClass 0

bDeviceProtocol 0

bMaxPacketSize0 64

idVendor 0x2e8a - this value may be overridden in OTP

idProduct 0x000f - this value may be overridden in OTP

bcdDevice 1.00 - this value may be overridden in OTP

iManufacturer 1

iProduct 2

RP2350 Datasheet

5.6. USB PICOBOOT Interface 395

https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/boot_picoboot_headers/include/boot/picoboot.h
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/boot_picoboot_headers/include/boot/picoboot.h


Field Value

iSerial 3

bNumConfigurations 1

5.6.2. Identifying The Interface

The PICOBOOT interface is recognised by the vendor-specific Interface Class, the zero Interface Sub Class, and

Interface Protocol (shown in Table 454).

Do not rely on the interface number, as that is dependent on whether the device is currently exposing the Mass Storage

Interface. The device may not be currently exposing the PICOBOOT interface at all, so you should not assume it is

present.

Table 454. PICOBOOT

Interface Descriptor
Field Value

bLength 9

bDescriptorType 4

bInterfaceNumber varies

bAlternateSetting 0

bNumEndpoints 2

bInterfaceClass 0xff (vendor specific)

bInterfaceSubClass 0

bInterfaceProtocol 0

iInterface 0

5.6.3. Identifying The Endpoints

The PICOBOOT interface provides a single BULK_OUT and a single BULK_IN endpoint. These can be identified by their

direction and type. You should not rely on endpoint numbers.

5.6.4. PICOBOOT Commands

The two bulk endpoints are used for sending commands and retrieved successful command results. All commands are

exactly 32 bytes (see Table 455) and sent to the BULK_OUT endpoint.

Table 455. PICOBOOT

Command Definition
Offset Name Description

0x00 dMagic The value 0x431fd10b

0x04 dToken A user provided token to identify this request by

0x08 bCmdId The ID of the command. Note that the top bit indicates data transfer direction

(0x80 = IN)

0x09 bCmdSize Number of bytes of valid data in the args field

0x0a reserved 0x0000

0x0c dTransferLength The number of bytes the host expects to send or receive over the bulk channel

0x10 args 16 bytes of command-specific data padded with zeros
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If a command sent is invalid or not recognised, the bulk endpoints will be stalled. Further information will be available

via the GET_COMMAND_STATUS request (see Section 5.6.5.2).

Following the initial 32 byte packet, if dTransferLength is non-zero, then that many bytes are transferred over the bulk pipe

and the command is completed with an empty packet in the opposite direction. If dTransferLength is zero then command

success is indicated by an empty IN packet.

The following commands are supported (note common fields dMagic, dToken, and reserved are omitted for clarity)

5.6.4.1. EXCLUSIVE_ACCESS (0x01)

Claim or release exclusive access for writing to the RP2350 over USB (versus the Mass Storage Interface)

Table 456. PICOBOOT

EXCLUSIVE_ACCESS

command structure

Offset Name Value / Description

0x08 bCmdId 0x01 (EXCLUSIVE_ACCESS)

0x09 bCmdSize 0x01

0x0c dTransferLength 0x00000000

0x10 bExclusive NOT_EXCLUSIVE (0) No restriction on USB Mass Storage operation

EXCLUSIVE (1) Disable USB Mass Storage writes (the host should

see them as write protect failures, but in any case

any active UF2 download will be aborted)

EXCLUSIVE_AND_EJECT (2) Lock the USB Mass Storage Interface out by

marking the drive media as not present (ejecting

the drive)

5.6.4.2. REBOOT (0x02)

Not supported on RP2350.

Use Section 5.6.4.10 instead.

5.6.4.3. FLASH_ERASE (0x03)

Erases a contiguous range of flash sectors.

Table 457. PICOBOOT

FLASH_ERASE

command structure

Offset Name Value / Description

0x08 bCmdId 0x03 (FLASH_ERASE)

0x09 bCmdSize 0x08

0x0c dTransferLength 0x00000000

0x10 dAddr The address in flash to erase, starting at this location. This must be sector

(4 kB) aligned

0x14 dSize The number of bytes to erase. This must an exact multiple number of sectors

(4 kB)

5.6.4.4. READ (0x84)

Read a contiguous memory (Flash or RAM or ROM) range from the RP2350
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Table 458. PICOBOOT

Read memory

command (Flash,

RAM, ROM) structure

Offset Name Value / Description

0x08 bCmdId 0x84 (READ)

0x09 bCmdSize 0x08

0x0c dTransferLength Must be the same as dSize

0x10 dAddr The address to read from. May be in Flash or RAM or ROM

0x14 dSize The number of bytes to read

5.6.4.5. WRITE (0x05)

Writes a contiguous memory range of memory (Flash or RAM) on the RP2350.

Table 459. PICOBOOT

Write memory

command (Flash,

RAM) structure

Offset Name Value / Description

0x08 bCmdId 0x05 (WRITE)

0x09 bCmdSize 0x08

0x0c dTransferLength Must be the same as dSize

0x10 dAddr The address to write from. May be in Flash or RAM, however must be page

(256 byte) aligned if in Flash. Note the flash must be erased first or the results

are undefined.

0x14 dSize The number of bytes to write. If writing to flash and the size is not an exact

multiple of pages (256 bytes) then the last page is zero-filled to the end.

5.6.4.6. EXIT_XIP (0x06)

A no-op provided for compatibility with RP2040. An XIP exit sequence (flash_exit_xip()) is issued once before entering

the USB bootloader, which returns the external QSPI device from whatever XIP state it was in to a serial command state,

and the external QSPI device then remains in this state until reboot.

Table 460. PICOBOOT

EXIT_XIP command

structure

Offset Name Value / Description

0x08 bCmdId 0x06 (EXIT_XIP)

0x09 bCmdSize 0x00

0x0c dTransferLength 0x00000000

5.6.4.7. ENTER_XIP (0x07)

A no-op provided for compatibility with RP2040. Note that, unlike RP2040, the low-level bootrom flash operations do not

leave the QSPI interface in a state where XIP is inaccessible, therefore there is no need to reinitialise the interface each

time. XIP setup is performed once before entering the USB bootloader, using an 03h command with a fixed clock divisor

of 6.

Table 461. PICOBOOT

Enter Execute in place

(XIP) command

Offset Name Value / Description

0x08 bCmdId 0x07 (ENTER_XIP)

0x09 bCmdSize 0x00

0x0c dTransferLength 0x00000000
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5.6.4.8. EXEC (0x08)

Not supported on RP2350.

5.6.4.9. VECTORIZE_FLASH (0x09)

Not supported on RP2350.

5.6.4.10. REBOOT2 (0x0a)

Reboots the RP2350 out of BOOTSEL mode. Note that BOOTSEL mode may be re-entered if no valid bootable image is

found.

The parameters flags, delay_ms, p0, p1 are the same as for api_reboot()

Table 462. PICOBOOT

REBOOT2 command

structure

Offset Name Value / Description

0x08 bCmdId 0x0a (REBOOT2)

0x09 bCmdSize 0x10

0x0c dTransferLength 0x00000000

0x10 dAddr flags

0x14 dSize delay_ms

0x18 dSize p0

0x1c dSize p1

5.6.4.11. GET_INFO (0x8b)

Generic conduit for retrieving information from the device.

The transfer length indicates the maximum number of bytes to be retrieved. The fist word returned indicates the number

of significant words of data that follow. A full "transfer length" is always returned, padding with zeroes as necessary.

Note "Word 0" below refers to the first word of the actual response (i.e. the word after the count word).

Table 463. PICOBOOT

GET_INFO command

structure

Offset Name Value / Description

0x08 bCmdId 0x0b (GET_INFO)

0x09 bCmdSize 0x10

0x0c dTransferLength the size of data to be received. Note this must be a multiple of 4, and less than

256

RP2350 Datasheet

5.6. USB PICOBOOT Interface 399



Offset Name Value / Description

0x10 bType the type of information being retrieved:

• 0x1 - INFO_SYS : Retrieves information from get_sys_info(); the flag

parameter for that function comes from dParam0.

• 0x2 - PARTITION : Retrieves information from get_partition_table_info(); the

flags_and_partition parameter for that function comes from dParam0.

• 0x03 - UF2_TARGET_PARTITION : Retrieves the partition that a given UF2

family_id would be downloaded into (if it were dragged on the USB drive

in BOOTSEL mode). The family id is passed in dParam0.

◦ Word 0 : Target partition number:

▪ 0-15 : the partition number the family would be downloaded to

▪ 0xff : if the family would be downloaded at an absolute

location

▪ -1 : if there is nowhere to download the family

◦ Word 1 : Target partition Section 5.9.4.2 if the partition number is

not -1

◦ Word 2 : Target partition Section 5.9.4.2 if the partition number is

not -1

• 0x04 - UF2_STATUS : Retrieves information about the current/recent UF2

download

◦ Word 0 - 0xnnrr00af

▪ 'n' - no reboot flag; if 0x01, there is no reboot when the UF2

download completes

▪ 'r' - if 0x01, the UF2 being download is a RAM UF2

▪ 'a' - UF2 download abort reason flags

▪ 0x1 EXCLUSIVELY_LOCKED

▪ 0x2 BAD_ADDRESS

▪ 0x4 WRITE_ERROR

▪ 0x8 REBOOT_FAILURE // if the UF2 targeted a disabled

architecture

▪ 'f' - UF2 download status flags

▪ 0x1 IGNORED_FAMILY

◦ Word 1 - the current family id

◦ Word 2 - the number of 256 byte blocks successfully downloaded

◦ Word 3 - the total number of 256 byte blocks in the UF2 to download

5.6.4.12. OTP_READ (0x8c)

Reads data out of OTP. (see also otp_access() which provides the data). Data returned is subject to the "BL" OTP

permissions, which define bootloader OTP access permissions.
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Table 464. PICOBOOT

OTP_READ command

structure

Offset Name Value / Description

0x08 bCmdId 0x8c (OTP_READ)

0x09 bCmdSize 0x05

0x0c dTransferLength

0x10 wRow the first row number to read

0x12 wRowCount the number of rows to read

0x14 bEcc • 0 - if reading raw rows (32 bits are returned per row, the top 8 of which

are zero)

• 1 - if reading rows as ECC rows (16 bits per row are returned)

5.6.4.13. OTP_WRITE (0x0d)

Reads data out of OTP. (see also otp_access() which performs the operation). Writing is subject to the "BL" OTP

permissions, which define bootloader OTP access permissions.

Table 465. PICOBOOT

OTP_WRITE command

structure

Offset Name Value / Description

0x08 bCmdId 0x0d (OTP_WRITE)

0x09 bCmdSize 0x05

0x0c dTransferLength

0x10 wRow the first row number to read

0x12 wRowCount the number of rows to read

0x14 bEcc • 0 - if writing raw rows (32 bits are provided per row, the top 8 of which

are ignored)

• 1 - if writing ECC rows (16 bits are provided per row, and are written with

error correcting information to the OTP)

5.6.5. Control Requests

The following requests are sent to the interface via the default control pipe.

5.6.5.1. INTERFACE_RESET (0x41)

The host sends this control request to reset the PICOBOOT interface. This command:

• Clears the HALT condition (if set) on each of the bulk endpoints

• Aborts any in-process PICOBOOT or Mass Storage transfer and any flash write (this method is the only way to kill a

stuck flash transfer).

• Clears the previous command result

• Removes EXCLUSIVE_ACCESS and remounts the Mass Storage drive if it was ejected due to exclusivity.
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Table 466. PICOBOOT

Reset PICOBOOT

interface control

bmRequestType bRequest wValue wIndex wLength Data

01000001b 01000001b 0000h Interface 0000h none

This command responds with an empty packet on success.

5.6.5.2. GET_COMMAND_STATUS (0x42)

Retrieve the status of the last command (which may be a command still in progress). Successful completion of a

PICOBOOT Protocol Command is acknowledged over the bulk pipe, however if the operation is still in progress or has

failed (stalling the bulk pipe), then this method can be used to determine the operation’s status.

Table 467. PICOBOOT

Get last command

status control

bmRequestType bRequest wValue wIndex wLength Data

11000001b 01000010b 0000h Interface 0000h none

The command responds with the following 16 byte response

Table 468. PICOBOOT

Get last command

status control

response

Offset Name Description

0x00 dToken The user token specified with the command
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Offset Name Description

0x04 dStatusCode OK (0) The command completed successfully (or is in still in

progress)

UNKNOWN_CMD (1) The ID of the command was not recognised

INVALID_CMD_LENGTH (2) The length of the command request was incorrect

INVALID_TRANSFER_LENGTH (3) The data transfer length was incorrect given the

command

INVALID_ADDRESS (4) The address specified was invalid for the command type;

i.e. did not match the type Flash/RAM that the command

was expecting

BAD_ALIGNMENT (5) The address specified was not correctly aligned according

to the requirements of the command

INTERLEAVED_WRITE (6) A Mass Storage Interface UF2 write has interfered with the

current operation. The command was abandoned with

unknown status. Note this will not happen if you have

exclusive access.

REBOOTING (7) The device is in the process of rebooting, so the command

has been ignored.

UNKNOWN_ERROR (8) Some non-specific error occurred.

INVALID_STATE (9) Something happened or failed to happen in the past, and

consequently the request can’t (currently) be serviced.

NOT_PERMITTED (10) Permission violation e.g. write to read-only flash partition.

INVALID_ARG (11) Argument is outside of range of supported values.

BUFFER_TOO_SMALL (12) The provided buffer was too small to hold the result.

PRECONDITION_NOT_MET (13) The operation failed because another bootrom function

must be called first.

MODIFIED_DATA (14) Cached data was determined to be inconsistent with the

full version of the data it was calculated from.

INVALID_DATA (15) A data structure failed to validate.

NOT_FOUND (16) Attempted to access something that does not exist; or, a

search failed.

UNSUPPORTED_MODIFICATION (17) Write is impossible based on previous writes; e.g.

attempted to clear an OTP bit.

0x08 bCmdId The ID of the command

0x09 bInProgress 1 if the command is still in

progress

0 otherwise

0x0a reserved (6 zero bytes)

5.7. USB White-Labelling

To brand RP2350-based products, customers may replace identifying information exposed by USB interfaces. We call

this white-labelling, and you can accomplish it in RP2350 by specifying values in OTP.
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1. Write the OTP location of the white-label data structure via USB_WHITE_LABEL_ADDR (see that register description

for the data structure contents).

2. Initialize the fields you wish to override in the white-label data structure and mark them valid.

3. Set USB_BOOT_FLAGS.WHITE_LABEL_ADDR_VALID to mark the white-labelling as valid.

The following fields can be modified:

5.7.1. USB Device Descriptor

The USB device descriptor includes the following 16-bit values:

• VID (default 0x2e8a)

• PID (default 0x000f)

• BCD_DEVICE (default 0x0100)

• LANG_ID (default 0x0409)

5.7.2. USB Device Strings

• MANUFACTURER (default "Raspberry Pi", max-length 30 UTF-16 or ASCII chars)

• PRODUCT (default "RP2350 Boot", max-length 30 UTF-16 or ASCII chars)

• SERIAL_NUMBER (default hex string of device_id_lo, device_id_hi, wafer_id_lo, wafer_id_hi - i.e. first 4 rows of OTP, max-

length 30 UTF-16 or ASCII chars)

5.7.3. USB Configuration Descriptor

The USB Configuration Description is not strictly white-labelling, but is still helpful for users:

• ATTRIBUTES_MAX_POWER_VALUES (default 0xfa80 i.e. bMaxPower of 0xfa, bmAttributes=0x80)

5.7.4. MSD Drive

• VOLUME_LABEL (default "RP2350", max-length 11 ASCII chars)

5.7.5. UF2 INDEX.HTM File

This is of the form:

<html>
    <head>
        <meta http-equiv="refresh" content="0;URL='*REDIRECT_URL*'"/>
    </head>
    <body>Redirecting to <a href='`*REDIRECT_URL*'>`*REDIRECT_NAME*</a></body>
</html>

• REDIRECT_URL (default "https://raspberrypi.com/device/RP2?version=5A09D5312E22", note the 12 hex digits are the

first 6 of the SYSINFO_GITREF_RP2350 and the first 6 of the bootrom gitref, max-length 127 ASCII chars)

• REDIRECT_NAME (default "raspberrypi.com", max-length 127 ASCII chars)
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5.7.6. UF2 INFO_UF2.TXT File

This is of the form:

UF2 Bootloader v1.0
Model: MODEL
Board-ID: BOARD_ID

• MODEL (default "Raspberry Pi RP2350", max-length 127 ASCII chars)

• BOARD_ID (default "RP2350", max-length 127 ASCII chars)

5.7.7. SCSI Inquiry

Returned via the SCSI Inquiry command:

• VENDOR (default "RPI", max-length 8 ASCII chars)

• PRODUCT (default "RP2350", max-length 16 ASCII chars)

• VERSION (default "1", max-length 4 ASCII chars)

5.7.8. Volume Label Simple Example

Newer versions of picotool can load white-label data from a JSON file using the picotool otp white-label -s <start row>

<JSON filename> command. An example JSON file to set the volume label to "SPOON" would be:

{
    "volume": {
        "label": "SPOON"
    }
}

The <start row> is the OTP row where the white-label structure will be written - for example 0x400.

The full set of white-label fields which can be written using a JSON file are shown below. The manufacturer, product and

serial_number fields support Unicode characters, if you need special characters or emoji in your product name, but this

will take up twice as much room per character in the OTP for that field.

{
    "device": {
        "vid": "0x2e8b",
        "pid": "0x000e",
        "bcd": 2.15,
        "lang_id": "0x0c09",
        "manufacturer": "Test's Pis",
        "product": "Test RP2350?",
        "serial_number": "notnecessarilyanumber",
        "max_power": "0x20",
        "attributes": "0xe0"
    },
    "scsi": {
        "vendor": "TestPi",
        "product": "MyPi",
        "version": "v897"
    },
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    "volume": {
        "label": "TestPi Boot",
        "redirect_url": "https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf",
        "redirect_name": "The datasheet",
        "model": "My Test Pi",
        "board_id": "TPI-RP2350"
    }
}

5.7.9. Volume Label In-Depth Example

The following example demonstrates how to manually change the volume label using picotool to the value "SPOON":

1. First, define the row of white label structure to be 0x400:

$ picotool otp set -e OTP_DATA_USB_WHITE_LABEL_ADDR 0x400

2. Next, because the volume label is located at index 0x8 within OTP_DATA_USB_WHITE_LABEL_ADDR, write to 0x408. Define the

location of the volume label string to be offset from OTP_DATA_USB_WHITE_LABEL_ADDR by 0x30. For this example,

"SPOON" has 5 characters, so we write 0x3005 to 0x408:

$ picotool otp set -e 0x408 0x3005

3. Then, write the "S" and "P" characters:

$ picotool otp set -e 0x430 0x5053

4. Then, write the "O" and "O" characters:

$ picotool otp set -e 0x431 0x4f4f

5. Then, write the "N" character:

$ picotool otp set -e 0x432 0x4e

6. Finally, enable the valid override to use the new values (bit 8 marks the VOLUME_LABEL override as valid, and bit 22

marks the OTP_DATA_USB_WHITE_LABEL_ADDR override as valid):

$ picotool otp set -r OTP_DATA_USB_BOOT_FLAGS 0x400100

7. To put your changes into effect, reboot the device:

$ picotool reboot -u
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5.8. UART Boot

UART boot is a minimal interface for bootstrapping a flashless RP2350 from a simple host, such as another

microcontroller. It is available by default on a blank device, so it allows RP2350 to be deployed into the field on multi-

device boards without loading firmware or programming OTP bits in advance.

To select UART boot, drive QSPI CSn low (BOOTSEL mode) and drive QSPI SD1 high. The bootrom checks these signals

shortly after device reset is released. UART TX appears on QSPI SD2, and UART RX appears on QSPI SD3.

The UART mode is 8n1: one start bit, eight data bits, no parity, one stop bit. Data within each UART frame is sent and

received LSB-first. The baud rate is fixed at 1 Mbaud.

5.8.1. Baud Rate and Clock Requirements

The nominal baud rate for UART boot is 1 Mbaud, divided from a nominal 48 MHz system clock frequency. UART boot

uses the USB PLL to derive the system clock and UART baud clock, so you must either provide a crystal or drive a stable

clock into the crystal oscillator XIN pad. The host baud rate must match the RP2350 baud rate within 3%.

By default the crystal is assumed to be 12 MHz, but the BOOTSEL_PLL_CFG and BOOTSEL_XOSC_CFG OTP locations

override this to achieve a nominal 48 MHz system clock from any supported crystal. The same OTP configuration is

used for both USB and UART boot.

 TIP

You may drive a somewhat faster or slower clock into XIN without any OTP configuration, if you scale your UART

baud rate appropriately. The permissible range is 7.5 to 16 MHz on XIN, limited by the PLL VCO frequency range.

5.8.2. UART Boot Shell Protocol

After the bootrom samples QSPI CSn and SD1, there will be a delay of several milliseconds as the bootrom goes through

some necessary steps such as switching from the ring oscillator to the PLL, and erasing SRAM before releasing it to the

Non-secure UART bootloader.

The UART bootloader signals it is ready to begin by printing the ASCII splash string RP2350. In bytes, this is 0x52, 0x50, 0x32,

0x33, 0x35, 0x30.

Before sending any commands, you must send a special knock sequence to unlock the interface. This is a measure to

avoid transient effects due to noise on GPIOs and ensure the host and device are initially well-synchronised. The

sequence is: 0x56, 0xff, 0x8b, 0xe4. This is the RP2040 UF2 family ID, chosen as a well-known magic number. Any

sequence of bytes ending with this four-byte sequence is detected.

A UART boot shell command is always in the host-to-device direction (RP2350 receives), and consists of a single

command byte, optionally followed by a 32-byte write payload. RP2350 responds with an optional 32-byte read payload

followed by an echo of the command byte. You should wait for the command echo before sending the next command.

The supported commands are:

Command

(ASCII)

Command

(hex)

Description

n 0x6e No-op. Do nothing, and report back when you’ve done it. Used to ping the interface when

recovering lost synchronisation. Echoes the command byte, 'n'.

w 0x77 Write a 32-byte payload to the current value of the read/write pointer. Increment the address

pointer by 32. Echoes the command byte, 'w', once all 32 bytes are written to memory.

r 0x72 Read a 32-byte payload from the current value of the read/write pointer. Increment the

address pointer by 32. Echoes the command byte, 'r', after transmitting the 32-byte read

payload.
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Command

(ASCII)

Command

(hex)

Description

c 0x63 Clear the read/write pointer. The pointer resets to the first location in SRAM 0x20000000, and

you can begin a new read or write sequence from there. Echoes the command byte, 'c'.

x 0x78 Execute the payload that has been written to memory. Echoes the command byte, 'x', and

then reboots, passing a RAM boot search window spanning all of main SRAM. If a valid binary

was successfully written into SRAM before sending this command, it will execute.

Unrecognised commands are echoed with no other effect. More commands may be added in future versions.

5.8.3. UART Boot Programming Flow

1. Reset or power down the RP2350 device.

2. Drive CSn low to select BOOTSEL, and SD1 high to select UART.

3. Release the reset or power up the device.

4. Wait for the splash string to be transmitted on QSPI SD2 (TX).

5. Transmit the knock sequence 0x56, 0xff, 0x8b, 0xe4 on QSPI SD3 (RX)

6. Send a 'n' nop command to ensure the interface is awake; if there is no reply, send the knock sequence again.

7. Send 'w' commands until your entire write payload transfers.

8. (Optional) Send a 'c' clear command to reset the address pointer, and then send 'r' read commands to read back

and verify the payload.

9. Send an 'x' execute command to attempt to run the payload.

There is no feedback from UART boot after echoing the final 'x' command. At this point the device reboots to attempt a

RAM image boot on the data loaded by the Non-secure UART bootloader. If the RAM image boot fails, the bootrom falls

through to the next boot source, continuing the normal boot flow. Maintaining CSn driven low and SD1 driven high will

cause the bootrom to fall through back to UART boot a second time, re-sending the UART splash screen: this indicates

the bootrom failed to recognise the UART boot binary.

5.8.4. Recovering from a Stuck Interface

Noise on the GPIOs may cause the UART boot shell to stop replying to commands, for example because it thinks the

host is part way through a write payload, and the host thinks that it is not. To resynchronise to the start of the next

command:

1. Wait 1 ms for the link to quiesce

2. Send 33 'n' NOP commands (size of longest command)

3. Wait 1 ms and flush your receive data

4. Send 1 'n' NOP command and confirm the device responds with an echoed NOP

If the interface fails to recover, reboot the device and try again. Failure may be caused by:

• Noise on GPIOs (particularly over long traces or wires)

• Incorrect baud rate matching

• An unstable frequency reference on XOSC XIN

• Mismatch of voltage levels (for example a QSPI_IOVDD of 1.8 V on RP2350, and a 3.3 V IO voltage on the host)
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5.8.5. Requirements for UART Boot Binaries

A UART boot binary is a normal RAM binary. It must have a valid IMAGE_DEF in order for the boot path to recognise it as a

bootable binary. The search window for the IMAGE_DEF is the whole of SRAM, but it’s recommended to place it close to

the beginning, because the bootrom searches linearly forward for the beginning of the IMAGE_DEF.

The maximum size for a UART boot binary is the entirety of main SRAM: 520 kB, or 532 480 bytes.

UART boot only supports loading to the start of SRAM, so your binary must be linked to run at address 0x20000000.

Sparse loading is not supported: your program must load as a single flat binary image.

All security requirements relating to RAM image boot apply to UART boot too. If secure boot is enabled, your binary

must be signed. Likewise, if OTP anti-rollback versioning is in effect, your binary’s rollback version must be no lower

than the version number stored in OTP.

5.9. Metadata Block Details

5.9.1. Blocks And block loops

Blocks consist of a fixed 32-bit header, one or more items, a 32-bit relative offset to the next block, and a fixed 32-bit

footer. All multi-byte values within a block are little-endian. Blocks must start on a word-aligned boundary, and the total

size is always an exact number of words (a multiple of four bytes).

The final item in a block must be of type PICOBIN_BLOCK_ITEM_LAST, which encodes the total word count of the block’s

items.

The 32-bit relative link forms a linked list of blocks. To be valid, this linked list must eventually link back to the first block

in the list, forming a closed block loop; failure to close the loop results in the entire linked list being ignored. The loop

rule is used to avoid treating orphaned blocks from partially overwritten images being treated as valid.

Due to RAM restrictions in the boot path, size of blocks is limited to 640 bytes for PARTITION_TABLEs and 384 bytes for

IMAGE_DEFs. Blocks larger than this are ignored.

The format of a simple block with two items is shown:

Item Word Bytes Value

HEADER 0 4 0xffffded3

ITEM 0 1 1 size_flag:1 (0 means 1 byte size, 1 means 2 byte size), item_type:7:

1 s0 % 256

1 s0 / 256 if size_flag == 1 or type specific data for blocks that are never > 256

words

1 Type specific data

… … …

ITEM 1 1 + s0 1 size_flag:1 = 0 means 1 byte size, 1 means 2 byte size, item_type:7_

1 s1 % 256

1 s1 / 256 if size_flag == 1 or type specific data for blocks that are never > 256

words

1 Type specific data

… … …
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Item Word Bytes Value

LAST_ITEM 1 + s0 + s1 1 0xff (size_flag == 1, item type == BLOCK_ITEM_LAST)

2 s1 + s2 (other items' size)

1 0x00 (pad)

LINK 2 + s0 + s1 4 Relative position in bytes of next block HEADER relative to this block’s HEADER. this

forms a loop, so a single block loop has 0 here.

FOOTER 3 + s0 + s1 4 0xab123579

IMAGE_DEF and PARTITION_TABLE blocks are recognised by their first item being an IMAGE_DEF or PARTITION_TABLE item.

Constants describing blocks can be found in the SDK in picobin.h in the SDK.

5.9.2. Common Block Items

The following items may appear in a IMAGE_DEF or a PARTITION_TABLE block.

5.9.2.1. VERSION item

A major/minor version number for the binary, 32 bits total, plus optionally a 16-bit rollback version and a list of OTP

rows which can be read to determine the (thermometer-coded) minimum major rollback version which this device will

allow to be installed. The major and minor are always present, whereas the rollback version and OTP row list are

generally only included if rollback protection is required.

 NOTE

The rollback version and OTP row list are only valid for IMAGE_DEFs, and are ignored on a RP2350 that has not been

secured.

If the number of OTP row entries is zero, there is no rollback version for this block.

Word Bytes Value

0 1 0x48 (size_flag == 0, item_type == PICOBIN_BLOCK_ITEM_1BS_VERSION)

1 2 + ((num_otp_row_entries != 0) + num_row_entries + 1) / 2

1 0x00 (pad)

1 num_otp_row_entries

1 2 Minor Version

2 Major Version

(2) (2) Rollback version (if num_otp_entries != 0)

(2) First 16-bit OTP Row index (if num_otp_entries != 0`)

… … Remaining 16-OTP Row indexes (padded with a zero to make a word boundary if necessary)

Each OTP row entry indicates the row number (1 through 4095 inclusive) of the first in a group of 3 OTP rows. The three

OTP rows are each read as a 24 bit raw value, combined via a bitwise majority vote, and then the index of the most-

significant 1 bit determines the version number. So, a single group of three rows can encode rollback versions from 0 to

23 inclusive, or, when all 24 bits are set, an indeterminate version of at least 24. Each additional OTP row index indicates

a further group of 3 rows that increases the maximum version by 24.

There is no requirement for different OTP row entries to be contiguous in OTP. They should not overlap, though the
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bootrom does not need to check this (the boot signing tool may).

 NOTE

For this entry to be considered valid, the number of available bits in the indicated OTP rows must be strictly greater

than the rollback version. This means that it is always possible to determine that the device’s minimum rollback

version is greater than the rollback version indicated in this block, even if we don’t know the full list of OTP rows

used by later major versions.

The major/minor version are used to disambiguate which is newer out of two binaries with the same major rollback

version. For example, to select which A/B image to boot from. when no major rollback version is specified, A/B

comparisons will treat the missing major version as zero, but no rollback check will be performed.

5.9.2.2. HASH_DEF item

Optional item with information about what how to hash:

Word Bytes Value

0 1 0x47 (size_flag == 0, item_type == PICOBIN_BLOCK_ITEM_1BS_HASH_DEF)

1 0x03 (size_lo)

1 0x00 (pad)

1 0x01 (PICOBIN_HASH_SHA-256)

1 2 Number of words of block hashed (not including HEADER word at the start of the block)

2 0x0000 (pad)

block_words_hashed must include this item if using this item for a signature.

The most recent LOAD_MAP item (see Section 5.9.3.2) that defines what to hash.

5.9.2.3. HASH_VALUE item

Optional item containing a hash value that can be used by the bootrom to hash check an image.

Word Bytes Value

0 1 0x09 (size_flag == 0, item_type == PICOBIN_BLOCK_ITEM_HASH_VALUE)

1 0x01 + n where n is the number of hash words included (1-16)

2 0x0000 (pad)

1 4 Hash Value (lowest significant 32 bits)

… … …

n 4 Hash Value (highest significant 32 bits)
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 TIP

Whilst A SHA-256 hash is 16 words, you can include less (down to 1 word) to save space if you like.

This HASH_VALUE item is paired with the most recent HASH_DEF item (Section 5.9.2.2) which defines what is being hashed.

5.9.2.4. SIGNATURE item

Optional item containing cryptographic signature that can be used by the bootrom to signature check the hashed

contents of an image.

Word Bytes Value

0 1 0x4b (size_flag == 0, item_type == PICOBIN_BLOCK_ITEM_SIGNATURE)

1 0x21 (Block size in words)

1 0x00 (pad)

1 0x01 (PICOBIN_SIGNATURE_SECP256K1)

1 4 Public Key SHA-256 hash (lowest significant 32 bits)

… … …

16 4 Public Key SHA-256 hash (highest significant 32 bits)

17 4 Signature (lowest significant 32 bits)

… … …

32 4 Signature (highest significant 32 bits)

This SIGNATURE item is paired with the most recent HASH_DEF item (Section 5.9.2.2) which defines what the hash value

whose signature is checked.

5.9.3. Image Definition Items

5.9.3.1. IMAGE_DEF item

The IMAGE_DEF item must be the first item within an Image Definition:

Word Bytes Value

0 1 0x42 (size_flag == 0, item_type == PICOBIN_BLOCK_ITEM_1BS_IMAGE_TYPE)

1 0x01 (Block size in words)

2 image_type_flags

The flags are defined in the SDK in picobin.h in the SDK, but are summarised here:

Bits Field Values

0-3 Image Type 0 IMAGE_TYPE_INVALID

1 IMAGE_TYPE_EXE : Image is executable

2 IMAGE_TYPE_DATA : Image is valid, but is not intended to be executed

3 reserved

The remaining bits are specific to the Image Type Values are only currently defined for the EXE Image Type:

RP2350 Datasheet

5.9. Metadata Block Details 412

https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/boot_picobin_headers/include/boot/picobin.h
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/boot_picobin_headers/include/boot/picobin.h


Bits Field Values

4-5 EXE Security 0 EXE_SECURITY_UNSPECIFIED

1 EXE_SECURITY_NS : Image runs in Non-secure mode

2 EXE_SECURITY_S : Image runs in Secure mode

3 reserved

6-7 reserved 0

8-10 EXE CPU 0 EXE_CPU_ARM : Image is for the Arm architecture

1 EXE_CPU_RISCV : Image is for the RISC-V architecture

2-7 reserved

11 reserved 0

12-14 EXE CHIP 0 EXE_CHIP_RP2040

1 EXE_CHIP_RP2350

2-7 reserved

15 EXE TBYB 0 not set

1 EXE_TBYB : Image is flagged for "Try Before You Buy"

5.9.3.2. LOAD_MAP item

Optional item with a similar representation to the ELF program header. This is used both to define the content to hash,

and also to "load" data before image execution (e.g. a secure flash binary can be loaded into RAM prior to both

signature check and execution).

The load map is a collection of runtime address, physical address, size and flags.

1. For a "packaged" binary, the information tells the bootrom where to load the code/data.

2. For a hashed or signed binary, the runtime addresses and size indicate code/data that must be included in the

hash to be verified or signature checked.

 NOTE

If the runtime_address is in equal to the storage_address, then data is never copied, it is just hashed in place.

Explanation of terms:

physical address

Where the data is stored in the logical address space of the image. For instance, the start of a flash image, even if

stored in a partition, could have a physical address of 0x10000000. The closest ELF concept is LMA.

runtime address

The address of the data at runtime. The closest ELF concept is VMA.

storage address

an absolute location where the data is stored in flash. Not necessarily the same as physical address for flash when

partitions are in use.

RP2350 uses physical addresses in the LOAD_MAP, not storage addresses, since this data is written by a tool working on

the ELF which will not necessarily know where the binary will finally be stored in flash.

This serves several purposes:
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Word Bytes Value

0 1 0x06 (size_flag == 0, item_type == PICOBIN_BLOCK_ITEM_LOAD_MAP)

2 1 + num_entries * 3 (Block size in words)

1 absolute:1, num_entries:7

1-3 Load Map Entry 0

4 • if absolute == 0

storage_start_address_rel (storage start address relative to the address of this word)

• if absolute == 1

storage_start_address (absolute storage start address)

Note: If this value is 0x00000000 irrespective of the value of the absolute flag, then the runtime

address range is filled with zeros. In this case, the 32 bit size itself is hashed rather than size

zero bytes.

4 runtime_start_address (absolute runtime start address)

4 • if absolute == 0

size (of memory range in bytes)

• if absolute == 1

storage_end_address (absolute storage end address)

(4-6) (Load Map Entry 1)

… …

 NOTE

All addresses must be word aligned, and sizes a multiple of 4

5.9.3.2.1. XIP Pinning via LOAD_MAP

Normally, when entering a binary, the XIP cache is un-pinned and flushed. This makes sense both for entering a flash

binary, and for security purposes.

If, however, you have a non-flash binary with code or data in the XIP RAM address space, then you need to add a special

LOAD_MAP entry to indicate to the bootrom that the XIP contents should be pinned.

Any load-map entry (with storage_address == runtime_address) and a valid size of greater than zero will suffice, as for

example in this simple load map:

Word Bytes Value

0 1 0x06 (size_flag == 0, item_type == PICOBIN_BLOCK_ITEM_LOAD_MAP)

2 0x04 (Block size in words)

1 0x81 (absolute == 1, num_entries == 1)

1-3 Load Map Entry 0

4 XIP_SRAM_BASE (storage_start_address)

4 XIP_SRAM_BASE (runtime_start_address)

4 0x04 (size in bytes)
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5.9.3.3. VECTOR_TABLE item

Optional Arm only item for that specifies the location of the initial Arm vector table. The entry_point/initial_sp will be

taken from here if present (unless there is also an ENTRY_POINT Item). Note if there is no ENTRY_POINT or VECTOR_TABLE, Item,

then a VECTOR_TABLE at the start of the image is assumed.

Word Bytes Value

0 1 0x03 (size_flag == 0, item_type == PICOBIN_BLOCK_ITEM_1BS_VECTOR_TABLE)

1 0x02 (Block size in words)

2 0x0000 (pad)

1 4 Vector table (runtime) address

 NOTE

The VECTOR_TABLE Item is ignored on RISC-V.

5.9.3.4. ENTRY_POINT item

Optional item with info on initial PC, SP, and optionally the SP limit

Word Bytes Value

0 1 0x44 (size_flag == 0, item_type == PICOBIN_BLOCK_ITEM_1BS_ENTRY_POINT)

1 0x03 or 0x04 (Block size in words)

2 0x0000 (pad)

1 4 Inital PC (runtime) address (aka entry point)

2 4 Initial SP address (aka stack pointer)

(3) 4 Optional SP limit address (aka stack limit)

5.9.3.5. ROLLING_WINDOW_DELTA item

Optional item that allow for binaries that aren’t intended to be run at 0x10000000. Note that this delta is in addition to the

roll resulting from the binary being stored in a partition in flash.

Word Bytes Value

0 1 0x05 (size_flag == 0, item_type == PICOBIN_BLOCK_ITEM_1BS_ROLLING_WINDOW_DELTA)

1 0x02 (Block size in words)

2 0x0000 (pad)

1 4 signed 32 bit delta

The delta is the number of bytes into the image that 0x10000000 should be mapped.

If positive, the delta must be a multiple of 4 kB, and allows for "skipping over" other data before the start of the binary. If

negative, the delta must be a multiple of 4 MB, and allows for running flash binaries linked to run at 0x10400000, 0x01080000

and 0x010c0000 as well as the standard 0x10000000
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 NOTE

The ROLLING_WINDOW_DELTA Item is ignored for non-flash binaries.

5.9.4. Partition Table Items

Partition tables allows dividing the 32 MB flash region (2 × 16 MB) into partitions. Permissions and other partition

attributes may be specified for each partition, along with permissions for the un-partitioned space.

The permission specify read/write access for Secure code, Non-secure code, and "NSBoot" which refers to the boot

loader (and PICOBOOT)

 NOTE

These permissions are only advisory to Secure code, however they are respected by flash_op(), the PICOBOOT flash

access commands, and UF2 downloads.

5.9.4.1. PARTITION_TABLE item

Word Bytes Value

0 1 0x44 (size_flag == 0, item_type == PICOBIN_BLOCK_ITEM_PARTITION_TABLE)

2 Block size in words

1 singleton_flag:1, pad:3 , partition_count:4

1 4 unpartitioned_space_permissions_and_flags

Partition 0

2 4 permissions_and_location for partition 0

3 4 permissions_and_flags for partition 0

if _partition_0_has_id:

3 4 partition_0_ID_lo

4 4 partition_0_ID_hi

one word per additional family ID (can be none):

x 4 partition_0_family ID_0

x + 1 4 partition_0_family ID_1

… …

if _partition_0_has_name:

y 1 reserved:1 (0), name_len_bytes:7

1 partition_0_name_byte_0

1 partition_0_name_byte_1

1 partition_0_name_byte_2
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Word Bytes Value

y+1 1 partition_0_name_byte_3

1 partition_0_name_byte_4

1 partition_0_name_byte_5

1 partition_0_name_byte_6

… … …

? partition_0_name_byte_n_minus_x to partition_0_name_byte_n_minus_2

1 partition_0_name_byte_n_minus_1

? (padding zero bytes to reach word alignment)

(Partition 1)

… … …

5.9.4.2. Partition location, permissions and flags

Two common words are stored in the partition table for both un-partitioned space and each partition. These common

words describe the size/location, along with access permissions and various flags.

The permission fields are repeated in both words, hence the two words are permissions_and_location and

permissions_and_flags.

Table 469. Permission

Fields. 'P' means the

field applies to

partitions, 'U' means

the field applies to un-

partitioned space,

however the word

"partition" is always

used in the description

Mask AppliesTo Description

0x04000000u 'P' 'U' PERMISSION_S_R_BITS

If set, the partition is readable by Secure code. See Section 5.1.3

0x08000000u 'P' 'U' PERMISSION_S_W_BITS

If set, the partition is writable by Secure code. See Section 5.1.3

0x10000000u 'P' 'U' PERMISSION_NS_R_BITS

If set, the partition is readable by Non-secure code. See Section 5.1.3

0x20000000u 'P' 'U' PERMISSION_NS_W_BITS

If set, the partition is writable by Non-secure code. See Section 5.1.3

0x40000000u 'P' 'U' PERMISSION_NSBOOT_R_BITS

If set, the partition is readable by NSBOOT (i.e. boot loader) Secure code. See Section 5.1.3

0x80000000u 'P' 'U' PERMISSION_NSBOOT_W_BITS

If set, the partition is writable by NSBOOT (i.e. boot loader) Secure code. See Section 5.1.3

Table 470. Location

Fields. 'P' means the

field applies to

partitions, 'U' means

the field applies to un-

partitioned space,

however the word

"partition" is always

used in the description

Mask AppliesTo Description

0x00001fffu 'P' 'U' LOCATION_FIRST_SECTOR_BITS

The sector number (0-4095) of the first sector in the partition (a sector is 4 kB)

0x03ffe000u 'P' 'U' LOCATION_LAST_SECTOR_BITS

The sector number (0-4095) of the last sector in the partition (a sector is 4 kB)
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Table 471. Flags

Fields. 'P' means the

field applies to

partitions, 'U' means

the field applies to un-

partitioned space,

however the word

"partition" is always

used in the description

Mask AppliesTo Description

0x00000001u 'P' FLAGS_HAS_ID_BITS

If set, the partition has a 64 bit identifier

0x00000006u 'P' FLAGS_LINK_TYPE_BITS

The type of link stored in the partition:

• 0x0 - None

• 0x1 - A_PARTITION : This is a "B" partition, and The LINK_VALUE field stores the partition

number of the corresponding "A" partition

• 0x2 - OWNER : This is an "A" partition, and the LINK_VALUE field stores the partition number of

the owning partition (which should also be an "A" partition).

0x00000078u 'P' FLAGS_LINK_VALUE_BITS

If LINK_TYPE is non zero, then this field holds the partition number of the linked partition.

0x00000180u 'P' FLAGS_ACCEPTS_NUM_EXTRA_FAMILIES_BITS

0-3 the number of extra non-standard UF2 family ids the partition accepts.

0x00000200u 'P' FLAGS_NOT_BOOTABLE_ARM_BITS

If set then this partition is marked non-bootable on Arm, and will be ignored during Arm boot.

Setting this for non Arm bootable partitions can improve boot performance.

0x00000400u 'P' FLAGS_NOT_BOOTABLE_RISCV_BITS

If set then this partition is marked non-bootable on RISC-V, and will be ignored during RISC-V

boot. Setting this for non RISC-V bootable partitions can improve boot performance.

0x00000800u 'P' FLAGS_UF2_DOWNLOAD_AB_NON_BOOTABLE_OWNER_AFFINITY

0x00001000u 'P' FLAGS_HAS_NAME_BITS

If set, the partition has a name.

0x00002000u 'P' 'U' FLAGS_UF2_DOWNLOAD_NO_REBOOT_BITS

If set, the RP2350 will not reboot after dragging a UF2 into this partition.

0x00004000u 'P' 'U' FLAGS_ACCEPTS_DEFAULT_FAMILY_RP2040_BITS

If set, a UF2 with the RP2040 family id 0xe48bff56 may be downloaded into this partition.

0x00008000u 'U' FLAGS_ACCEPTS_DEFAULT_FAMILY_ABSOLUTE_BITS

If set for un-partitioned spaced, a UF2 with the ABSOLUTE family id 0xe48bff57 may be

downloaded onto the RP2350 and will be written at the addresses specified in the UF2 without

regard to partition locations. Partition-defined flash access permissions will however still be

respected (i.e. the UF2 download will fail if it needs to write over a read-only region of flash).

0x00010000u 'P' 'U' FLAGS_ACCEPTS_DEFAULT_FAMILY_DATA_BITS

If set, a UF2 with the DATA family id 0xe48bff58 may be downloaded into this partition.

0x00020000u 'P' 'U' FLAGS_ACCEPTS_DEFAULT_FAMILY_RP2350_ARM_S_BITS

If set, a UF2 with the RP2350_ARM_S family id 0xe48bff59 may be downloaded into this partition.

0x00040000u 'P' 'U' FLAGS_ACCEPTS_DEFAULT_FAMILY_RP2350_RISCV_BITS

If set, a UF2 with the RP2350_RISC_V family id 0xe48bff5a may be downloaded into this partition.
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Mask AppliesTo Description

0x00080000u 'P' 'U' FLAGS_ACCEPTS_DEFAULT_FAMILY_RP2350_ARM_NS_BITS

If set, a UF2 with the RP2350_ARM_NS family id 0xe48bff5b may be downloaded into this partition.

0x03f00000u 'P' 'U' reserved; should be 0

5.9.5. Minimum Viable Image Metadata

A minimum amount of metadata (i.e. a valid IMAGE_DEF block) must be embedded in any binary for the bootrom to

recognise it as a valid program image, as opposed to, for example, blank flash contents or a disconnected flash device.

This must appear within the first 4 kB of a flash image, or anywhere in a RAM or OTP image.

Unlike RP2040, there is no requirement for flash binaries to have a checksummed "boot2" flash setup function at flash

address 0. The RP2350 bootrom performs a simple best-effort XIP setup during flash scanning, and a flash-resident

program can continue executing in this state, or can choose to reconfigure the QSPI interface at a later time for best

performance.

5.9.5.1. Minimum Arm IMAGE_DEF

Assuming CRIT1.SECURE_BOOT_ENABLE is clear, the minimum valid IMAGE_DEF is the following 20-byte sequence:

Word LE Value Bytes Description

0 0xffffded3 4 PICOBIN_BLOCK_MARKER_START

1 0x10210142 1 0x42(item_type == PICOBIN_BLOCK_ITEM_1BS_IMAGE_TYPE)

1 0x01 (Item is 1 word in size)

2 0x1021

(PICOBIN_IMAGE_TYPE_IMAGE_TYPE_AS_BITS(EXE) |

PICOBIN_IMAGE_TYPE_EXE_SECURITY_AS_BITS(S) |

PICOBIN_IMAGE_TYPE_EXE_CPU_AS_BITS(Arm) |

PICOBIN_IMAGE_TYPE_EXE_CHIP_AS_BITS(RP23500))

2 0x000001ff 1 0xff(size_type == 1, item_type_ == PICOBIN_BLOCK_ITEM_2BS_LAST)

2 0x0001 (size)

1 0x00 (pad)

3 0x00000000 4 Relative pointer to next block in block loop - 0x00000000 means link to self, i.e. a

loop containing just this block

4 0xab123579 4 PICOBIN_BLOCK_MARKER_END

The LE Value column indicates a 32-bit little-endian value that should appear verbatim in your program image.

Since the above block does not specify an explicit entry point, the bootrom will assume the binary starts with a Cortex-M

vector table, and enter via the reset handler and initial stack pointer specified in that table (offsets +4 and +0 bytes into

the table). An explicit vector table pointer can be provided by a PICOBIN_BLOCK_ITEM_1BS_VECTOR_TABLE item, or the entry

point can be specified directly by a PICOBIN_BLOCK_ITEM_1BS_ENTRY_POINT item.

5.9.5.2. Minimum RISC-V IMAGE_DEF

The minimum valid IMAGE_DEF is the following 20-byte sequence:
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Word LE Value Bytes Description

0 0xffffded3 4 PICOBIN_BLOCK_MARKER_START

1 0x11010142 1 0x42(item_type == PICOBIN_BLOCK_ITEM_1BS_IMAGE_TYPE)

1 0x01 (Item is 1 word in size)

2 0x1101

(PICOBIN_IMAGE_TYPE_IMAGE_TYPE_AS_BITS(EXE) |

PICOBIN_IMAGE_TYPE_EXE_CPU_AS_BITS(RISCV) |

PICOBIN_IMAGE_TYPE_EXE_CHIP_AS_BITS(RP23500))

2 0x000001ff 1 0xff(size_type == 1, item_type_ == PICOBIN_BLOCK_ITEM_2BS_LAST)

2 0x0001 (size)

1 0x00 (pad)

3 0x00000000 4 Relative pointer to next block in block loop - 0x00000000 means link to self, i.e. a

loop containing just this block

4 0xab123579 4 PICOBIN_BLOCK_MARKER_END

The LE Value column indicates a 32-bit little-endian value that should appear verbatim in your program image.

Since the above block does not specify an explicit entry point, the bootrom will enter the binary at its lowest address,

which is the default behaviour on RISC-V. This default entry point can be overridden by a

PICOBIN_BLOCK_ITEM_1BS_ENTRY_POINT item. Note that PICOBIN_BLOCK_ITEM_1BS_VECTOR_TABLE is not valid on RISC-V, as unlike

Cortex-M the RISC-V vector table does not define the program entry point.

5.10. Example Boot Scenarios

This section describes the setup and configuration steps for various different boot scenarios.

5.10.1. Secure Boot

To enable secure boot on RP2350, you must:

1. Set the SHA-256 hashes of the boot keys you will be using in BOOTKEY0_0 onwards

2. Set bits in BOOT_FLAGS1.KEY_VALID for the keys you will be using

3. Optionally set bits in BOOT_FLAGS1.KEY_INVALID for all unused keys — this is recommended to prevent a

malicious actor installing their own boot keys at a later date

4. Set CRIT1.SECURE_BOOT_ENABLE to turn on secure boot.

 NOTE

These steps are the minimum for enabling secure boot support in the bootrom. See Section 10.5 for additional steps

you must take to fully secure your device, such as disabling hardware debug.

All of the above can be achieved with picotool. For example, when signing using picotool seal you can add an OTP JSON

output file, to which it will add the relevant OTP field values to enable secure boot (BOOTKEY0_0,

BOOT_FLAGS1.KEY_VALID and CRIT1.SECURE_BOOT_ENABLE):
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$ picotool seal --sign unsigned.elf signed.elf private.pem /path/to/otp.json

To configure the SDK to output this OTP JSON file when signing, add the following command to your CMakeLists.txt:

pico_set_otp_key_output_file(target_name /path/to/otp.json)

You can then issue the following command to write this OTP JSON file to the device, thus enabling secure boot:

$ picotool otp load /path/to/otp.json

Once secure boot is enabled, the bootrom verifies signatures of images from all supported media: flash, OTP, and

images preloaded into SRAM via the UART and USB bootloaders. At this point you lose the ability to run unsigned

images; during development you may find it more convenient to leave secure boot disabled. The next section describes

the generation of signed images to run on a secure-boot-enabled device.

5.10.2. Signed images

 TIP

This section refers to the concepts of block loops and image definitions (and the associated IMAGE_DEF data

structure) described in Section 5.1. You should read the bootrom concepts section before this one.

An example of an image (and its block loop) produced by the SDK is shown below.
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Block 

Loop

IMAGE_DEF Item

IGNORED Item

Vector table

Data

Initial Metadata Block 

(must be in first 4kB)

Empty Block

(placed at the end by 

default to catch 

overwrite at the end 

of the binary)

Code

The first block must be within the first 4 kB of the image, and is an IMAGE_DEF block describing the image. This block is

linking to an empty block at the end of the image, that is included in the block loop to help detect partially written

binaries. If the end of the image is missing or overwritten, then the block loop not be properly closed and will be

considered invalid.

picotool can be used to sign a binary, in which case it modifies the image as follows:
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IMAGE_DEF Item

IGNORED Item

LOAD_MAP Item

HASH_DEF Item

SIGNATURE Item

HASH_VALUE Item

Block 

Loop

LOAD_MAP

entry covers 

this region

or

IMAGE_DEF Item

(this will be 

superceded by later 

IMAGE_DEF in the 

block loop)

Vector table

Data

Signature Block

Initial Metadata Block 

(must be in first 4kB)

Code

Note that the marker block at the end of the image has been replaced with a new IMAGE_DEF block including the first

block’s information along with additional new information. The new information includes the signature (or hash value if

hashing only), along with a LOAD_MAP entry indicating the regions of the image that are signed or hashed.

At runtime, the bootrom will pick the last valid IMAGE_DEF in the block loop as the one to boot.

Signing requires a SHA-256 hash of the data specified in the LOAD_MAP, along with the words of the block specified by the

HASH_VALUE Item (which must include the first word of the SIGNATURE Item). This hash is then signed with an ECDSA

secp256k1 private key, to produce the 64 byte signature stored in the SIGNATURE Item.

For secure boot, it is recommended to use packaged SRAM binaries instead of flash binaries, as the signature check is

only performed during boot, so a malicious actor with physical access could replace the data on the external flash after

the signature check to run unsigned code.

To sign and/or hash a binary in the SDK, you can add the following functions to your CMakeLists.txt file:

pico_sign_binary(target_name /path/to/keyfile.pem)
pico_hash_binary(target_name)

This will invoke the picotool seal command to sign and/or hash your binary when you call pico_add_extra_outputs. You

can manually invoke picotool seal to sign and/or hash a binary using:

$ picotool seal --sign --hash unsigned.elf signed.elf private.pem
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5.10.3. Packaged Binaries

A packaged binary is an SRAM/XIP RAM-only binary that has been post-processed for storage in flash. To create a

packaged SRAM binary, you can take a binary compiled to run in SRAM (no_flash binary in the SDK) and add a relative

LOAD_MAP Item into the IMAGE_DEF block, with the runtime address(es) in SRAM. The subsequent binary can then be run

normally from RAM, or stored in flash to be loaded into RAM by the bootrom. This LOAD_MAP item will be added to all

binaries when using picotool seal.

To package binaries in the SDK, add the following to your CMakeLists.txt file. This will target the UF2 file to the start of

flash when dragged and dropped, and will invoke picotool seal to add an appropriate LOAD_MAP.

pico_package_uf2_output(target_name 0x10000000)

Alternatively you can use an absolute LOAD_MAP, with the storage_address in Flash and the runtime_address in SRAM, but

these binaries will can only be run after storing in flash and cannot be booted directly in SRAM for debugging.

For example, if you have a binary compiled to run at 0x20000000 of length 0x8000, and a metadata block at the end of the

binary containing the LOAD_MAP as the second Item (after the IMAGE_DEF, which means the LOAD_MAP is 8 bytes into the

block), then the relative LOAD_MAP would be:

Word Bytes Value

0 1 0x06 (size_flag == 0, item_type == PICOBIN_BLOCK_ITEM_LOAD_MAP)

2 0x04 (Block size in words)

1 0x01 (absolute == 0, num_entries == 1)

1-3 Load Map Entry 0

4 -0x8008 = 0xFFFF7FF8 (storage_start_address_rel)

4 0x20000000 (runtime_start_address)

4 0x8000 (size in bytes)

The absolute LOAD_MAP would be:

Word Bytes Value

0 1 0x06 (size_flag == 0, item_type == PICOBIN_BLOCK_ITEM_LOAD_MAP)

2 0x04 (Block size in words)

1 0x81 (absolute == 1, num_entries == 1)

1-3 Load Map Entry 0

4 0x10000000 (storage_start_address)

4 0x20000000 (runtime_start_address)

4 0x20008000 (runtime_end_address)

5.10.4. A/B Booting

This is a common boot scenario, to be able to update the software without overwriting it. A simple partition layout

would be:
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Partition 0
  Accepts UF2 Families: rp2350-arm-s, rp2350-riscv
Partition 1
  Accepts UF2 Families: rp2350-arm-s, rp2350-riscv
  Link Type: "A"
  Link Value: 0

This is a partition table with 2 partitions, where partition 0 is the A partition of partition 1 (which is thus the B partition).

 NOTE

To avoid confusion, it is a recommended best practice to have the same permissions for both partitions, and for

both partitions to accept the same UF2 families. The bootrom will only look at the UF2 families from the A partition

when deciding if a given A/B pair accepts a particular family, and will not allow download to partition A even if it is

writable if partition B isn’t.

When dragging a UF2 to the device, it will target whichever partition is not currently booting. The bootrom will then

perform a FLASH_UPDATE boot into the new binary (see Section 5.1.16)

 NOTE

When starting with blank A/B partitions, the first download actually goes into partition B.

To create the partition table above with picotool partition create, the following json could be used:

{
  "version": [1, 0],
  "unpartitioned": {
    "families": ["absolute"],
    "permissions": {
      "secure": "rw",
      "nonsecure": "rw",
      "bootloader": "rw"
    }
  },
  "partitions": [
    {
      "name": "Example A",
      "id": 0,
      "size": "2044K",
      "families": ["rp2350-arm-s", "rp2350-riscv"],
      "permissions": {
        "secure": "rw",
        "nonsecure": "rw",
        "bootloader": "rw"
      }
    },
    {
      "name": "Example B",
      "id": 1,
      "size": "2044K",
      "families": ["rp2350-arm-s", "rp2350-riscv"],
      "permissions": {
        "secure": "rw",
        "nonsecure": "rw",
        "bootloader": "rw"
      },
      "link": ["a", 0]
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    }
  ]
}

This can then be installed onto the device using picotool load, or UF2 drag and drop if you output the partition table as a

UF2 file.

5.10.5. A/B Booting with Owned Partitions

The concept of owned partitions applies when:

• you require separate data partitions (which generally won’t contain a block loop), but

• you would like these to be associated with a specific boot partition in an A/B pair

An example partition table for this scenario would be:

Partition 0
  Accepts Families: rp2350-arm-s, rp2350-riscv
Partition 1
  Accepts Families: rp2350-arm-s, rp2350-riscv
  Link Type: "A"
  Link Value: 0
Partition 2
  Accepts Families: data
  Link Type: "Owner"
  Link Value: 0
  ignored_during_arm_boot: true
  ignored_during_riscv_boot: true
Partition 3
  Accepts Families: data
  Link Type: "A"
  Link Value: 2
  ignored_during_arm_boot: true
  ignored_during_riscv_boot: true

This is a partition table with 4 partitions. As before, partition 0 is the A partition of partition 1 (which is thus a B

partition). Additionally, partition 2 is the A partition of partition 3 (which is thus a B partition). Finally, partition 0 is the

"owner" partition of partition 2.

As a result partitions 2 and 3 "belong to" partitions 0 and 1.

When downloading a UF2 into an owned partition, the bootloader will select which partition out of 2/3 it goes to target

based on which partition out of 0/1 is currently booting. For example, if partition 1 is currently booting (due to having a

higher version than partition 0), then any UF2 downloads with the data family ID will target partition 3.

 TIP

There is a flag in each partition in the partition, that you can use to swap the "affinity" (i.e. have the data family ID

target partition 2 instead of partition 3 in the scenario above.
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 NOTE

Only the get_uf2_target_partition() bootrom function considers owner partitions. The pick_ab_partition() function

always pick solely based on the A/B partition it is passed, in other words if passed partition 2, it would not look at

partitions 0 and 1.

To create this partition table using picotool partition create, the following JSON could be used:

{
  "version": [1, 0],
  "unpartitioned": {
    "families": ["absolute"],
    "permissions": {
      "secure": "rw",
      "nonsecure": "rw",
      "bootloader": "rw"
    }
  },
  "partitions": [
    {
      "name": "Example A",
      "id": 0,
      "size": 128k,
      "families": ["rp2350-arm-s", "rp2350-riscv"],
      "permissions": {
        "secure": "rw",
        "nonsecure": "rw",
        "bootloader": "rw"
      }
    },
    {
      "name": "Example B",
      "id": 1,
      "size": 128k,
      "families": ["rp2350-arm-s", "rp2350-riscv"],
      "permissions": {
        "secure": "rw",
        "nonsecure": "rw",
        "bootloader": "rw"
      },
      "link": ["a", 0]
    },
    {
      "name": "Example a",
      "id": 2,
      "size": 20k,
      "families": ["data"],
      "permissions": {
        "secure": "rw",
        "nonsecure": "rw",
        "bootloader": "rw"
      },
      "link": ["owner", 0],
      "ignored_during_arm_boot": true,
      "ignored_during_riscv_boot": true
    },
    {
      "name": "Example b",
      "id": 3,
      "size": 20k,
      "families": ["data"],
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      "permissions": {
        "secure": "rw",
        "nonsecure": "rw",
        "bootloader": "rw"
      },
      "link": ["a", 2],
      "ignored_during_arm_boot": true,
      "ignored_during_riscv_boot": true
    }
  ]
}

This can then be installed onto the device using picotool load, or UF2 drag and drop if you output the partition table as a

UF2 file.

5.10.6. Custom Bootloader

In this scenario, a bootloader is run before booting into an image. This could perform additional validation, or set up

peripherals for use by the image. For this to work, the block loop must contain both an IMAGE_DEF for the bootloader and

a PARTITION_TABLE to define the flash layout.

In this example, we want to have A / B versions of the bootloader, so we use both slot 0 and slot 1. See Section 5.1.15

for more details of this, as you may well need to increase the size of slot 0 in order to fit the bootloader.

 WARNING

Making a slot size change is not reversible, so feel free to leave out slot 1 if you try this in practice.

An example flash layout might resemble the following:

 Slot 0 (0x00000000-0x00008000)
  Bootloader Image 0
  Partition Table 0
 Slot 1 (0x00008000-0x00010000)
  Bootloader Image 1
  Partition Table 1
 Partition 0 (0x00010000-0x00020000)
  Binary A
 Partition 1 (0x00020000-0x00030000)
  Link Type: "A"
  Link Value: 0
  Binary B

The block loop with both IMAGE_DEF and PARTITION_TABLE might look like this (after signing in this case):
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IMAGE_DEF Item

IGNORED Item

LOAD_MAP Item

HASH_DEF Item

SIGNATURE Item

HASH_VALUE Item

Block 

Loop

LOAD_MAP

entry covers 

this region

or

IMAGE_DEF Item

(this will be 

superceded by later 

IMAGE_DEF in the 

block loop)

Vector table

Data

Partition Table

Signature Block

Initial Metadata Block 

(must be in first 4kB)

Code

Note the 3 blocks in the block loop:

1. Original block in first 4 kB (contents doesn’t matter, as it will be superseded by the later IMAGE_DEF)

2. PARTITION_TABLE at end of binary

3. Signed IMAGE_DEF

 NOTE

It is possible to sign both the PARTITION_TABLE and the IMAGE_DEF separately, however for the fastest boot speed, the

bootrom also allows you to use a "covering" LOAD_MAP in the IMAGE_DEF. As long as the LOAD_MAP defined area to be

hashed/signed includes the entirety of the PARTITION_TABLE block, the "covering" signature is used to validate the

PARTITION_TABLE too.

For the bootloader to find and launch a new image, it may wish to utilize various bootrom methods:

• get_partition_table_info() to get the full partition information.

• or get_partition_table_info() with SINGLE_PARTITION, the chosen partition number, and PARTITION_LOCATION_AND_FLAGS, to

get the address of a single partition
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uint32_t partition_info[3];
get_partition_table_info(partition_info, 3, PT_INFO_PARTITION_LOCATION_AND_FLAGS
    | PT_INFO_SINGLE_PARTITION | (boot_partition << 24));
uint16_t first_sector_number = (partition_info[1]
    & PICOBIN_PARTITION_LOCATION_FIRST_SECTOR_BITS)
    >> PICOBIN_PARTITION_LOCATION_FIRST_SECTOR_LSB;
uint16_t last_sector_number = (partition_info[1]
    & PICOBIN_PARTITION_LOCATION_LAST_SECTOR_BITS)
    >> PICOBIN_PARTITION_LOCATION_LAST_SECTOR_LSB;
uint32_t data_start_addr = first_sector_number * 0x1000;
uint32_t data_end_addr = (last_sector_number + 1) * 0x1000;
uint32_t data_size = data_end_addr - data_start_addr;

• get_sys_info() with BOOT_INFO, to get the flash_update_boot_window_base if any:

 uint32_t sys_info[5];
 get_sys_info(sys_info, 5*4, SYS_INFO_BOOT_INFO);
 uint32_t flash_update_boot_window_base = sys_info[3];

• pick_ab_partition() to pick the boot partition between A/B partitions if desired:

uint8_t boot_partition = pick_ab_partition(workarea, 0xC00, 0,
flash_update_boot_window_base);

• or get_b_partition() to find the other partition directly.

• chain_image() with data_start_addr and data_size, to boot a chosen image:

// note a negative 3rd parameter indicates to chain_image that the image is being chanined as
// part of a "flash update" boot, so TBYB and/or version downgrade may be in play
chain_image( workarea,
             0xc00,
            (XIP_BASE + data_start_addr) * (info.boot_type == BOOT_TYPE_FLASH_UPDATE ? -1 :
1),
            data_size
);

 NOTE

The workarea used must not overlap the image being chained into, so beware SRAM or packaged binaries. If the

binary overlaps the workarea, the results are undefined, but hardly likely to be good.

5.10.7. OTP Bootloader

This is similar to the custom bootloader scenario, but it will be stored in the OTP and will run in SRAM.

One possible use case could place decryption code into OTP which decrypts an executable image from a flash partition

into RAM.

The entire bootloader will need to fit in the OTP rows from 0x0C0 to 0xF48 to avoid interfering with other reserved OTP

functionality, giving a maximum size of 7440 bytes (2 bytes per ECC row). If some boot keys and OTP keys are unused,

this region can extend slightly on either end.
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The OTP bootloader itself should be stored in ECC format, starting from the row set in OTPBOOT_SRC with size set in

OTPBOOT_LEN. When booting, it will be loaded into the address specified in OTPBOOT_DST0 and OTPBOOT_DST1,

which must be in the main SRAM. The bootloader must fulfil the same criteria as a standard image: it must include an

IMAGE_DEF, which must be signed if secure boot is enabled.

Once the OTP bootloader has been written to OTP, and the OTPBOOT_SRC, OTPBOOT_LEN, OTPBOOT_DST0 and

OTPBOOT_DST1 set, OTP booting can be enabled by setting BOOT_FLAGS0.ENABLE_OTP_BOOT. If the OTP image fails

the bootrom’s launch checks, then, by default, boot continues along the normal flash boot path. You can prevent this by

setting BOOT_FLAGS0.DISABLE_FLASH_BOOT.

 WARNING

Take extreme care when writing an OTP bootloader. Once the ECC rows are written, they cannot be modified.

5.10.8. Rollback Versions And Bootloaders

 WARNING

Ignoring the advice in this section could render your device unable to boot.

For bootloaders that need to chain into executable images with rollback versions on a secured RP2350, you must use

separate OTP rows for:

• the bootloader rollback version

• the chained executable image’s rollback version

Otherwise, bumping the version of the chained executable image renders the OTP bootloader and your device unable to

boot.

You must also make sure that both the bootloader and the executable image have non-zero rollback versions, as the

OTP flags relating to requiring rollback versions are global. Failure to do so will render your device unable to boot.

We recommend using the DEFAULT_BOOT_VERSION0 and DEFAULT_BOOT_VERSION1 rows for the binary’s rollback

version, and selecting some other unused rows in the OTP for the bootloader’s rollback version.
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Chapter 6. Power

6.1. Power Supplies

RP2350 requires five separate power supplies. However, in most applications, several of these can be combined and

connected to a single power source. Typical applications only require a single 3.3 V supply. See Figure 19.

The power supplies and a number of potential power supply schemes are described in the following sections. Detailed

power supply parameters are provided in Section 14.9.5.

6.1.1. Digital IO Supply (IOVDD)

IOVDD provides the IO supply for the chip’s GPIO, and should be powered at a nominal voltage between 1.8 V and 3.3 V.

The supply voltage sets the external signal level for the digital IO, and should be chosen based on the level required, see

Section 14.9 for details. All GPIOs share the same power supply and operate at the same signal level.

If the digital IO is powered at a nominal 1.8 V, the IO input thresholds should be adjusted by setting the

VOLTAGE_SELECT register to 1. VOLTAGE_SELECT is set to 0 by default, which results in input thresholds that are valid

for a nominal IO voltage between 2.5 V and 3.3 V. See Chapter 9 for details.

 CAUTION

Powering the IOVDD at 1.8 V with input thresholds set for a 2.5 V to 3.3 V supply is a safe operating mode, but will

result in input thresholds that do not meet specification. Powering the IO at voltages greater than 1.8 V with input

thresholds set for a 1.8 V supply may result in damage to the chip.

6.1.2. QSPI IO Supply (QSPI_IOVDD)

QSPI_IOVDD provides the IO supply for the chip’s QSPI interface, and should be powered at a nominal voltage between

1.8 V and 3.3 V. The supply voltage sets the external signal level for the QSPI interface, and should be chosen based on

the level required, see Section 14.9 for details. In most applications the QSPI interface will be connected to an external

flash device, which will determine the required signal level.

If the QSPI interface is powered at a nominal 1.8 V, the IO input thresholds should be adjusted by setting the

VOLTAGE_SELECT register to 1. VOLTAGE_SELECT is set to 0 by default, which results in input thresholds that are valid

for a nominal IO voltage between 2.5 V and 3.3 V. See Chapter 9 for details.

 CAUTION

Powering the IOVDD at 1.8 V with input thresholds set for a 2.5 V to 3.3 V supply is a safe operating mode, but will

result in input thresholds that do not meet specification. Powering the IO at voltages greater than 1.8 V with input

thresholds set for a 1.8 V supply may result in damage to the chip.

6.1.3. Digital Core Supply (DVDD)

The chip’s core digital logic is powered by DVDD, which should be at a nominal 1.1 V. A dedicated on-chip core voltage

regulator allows DVDD to be generated from a 2.7 V to 5.5 V input supply. See Section 6.3 for details. Alternatively, DVDD

can be supplied directly from an off-chip power source.

If the on-chip core voltage regulator is used, the two DVDD pins closest to the regulator should be decoupled with a 100nF

capacitor close to the pins. The DVDD pin furthest from the regulator should be decoupled with a 4.7μF capacitor close to
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the pin.

6.1.4. USB PHY and OTP Supply (USB_OTP_VDD)

USB_OTP_VDD supplies the chip’s USB PHY and OTP memory, and should be powered at a nominal 3.3 V. To reduce the

number of external power supplies, USB_OTP_VDD can use the same power source as the core voltage regulator analogue

supply (VREG_AVDD), or digital IO supply (IOVDD), assuming IOVDD is also powered at 3.3 V. This supply must always be

provided, even in applications where the USB PHY is never used.

USB_OTP_VDD should be decoupled with a 100nF capacitor close to the chip’s USB_OTP_VDD pin.

6.1.5. ADC Supply (ADC_AVDD)

ADC_AVDD supplies the chip’s Analogue to Digital Converter (ADC). It can be powered at a nominal voltage between 1.8 V

and 3.3 V, but the performance of the ADC will be compromised at voltages below 2.97 V. To reduce the number of

external power supplies, ADC_AVDD can use the same power source as the core voltage regulator analogue supply

(VREG_AVDD) or digital IO supply (IOVDD).

 NOTE

It is safe to supply ADC_AVDD at a higher or lower voltage than IOVDD, e.g. to power the ADC at 3.3 V, for optimum

performance, while supporting 1.8 V signal levels on the digital IO. But the voltage on the ADC analogue inputs must

not exceed IOVDD, e.g. if IOVDD is powered at 1.8 V, the voltage on the ADC inputs should be limited to 1.8 V. Voltages

greater than IOVDD will result in leakage currents through the ESD protection diodes. See Section 14.9 for details.

ADC_AVDD should be decoupled with a 100nF capacitor close to the chip’s ADC_AVDD pin.

6.1.6. Core Voltage Regulator Input Supply (VREG_VIN)

VREG_VIN is the input supply for the on-chip core voltage regulator, and should be in the range 2.7 V to 5.5 V. To reduce

the number of external power supplies, VREG_VIN can use the same power source as the voltage regulator analogue

supply (VREG_AVDD), or digital IO supply (IOVDD). Though care should be taken to minimise the noise on VREG_AVDD.

A 4.7μF capacitor should be connected between VREG_VIN and ground close to the chip’s VREG_VIN pin.

For more details on the on-chip voltage regulator see Section 6.3.

6.1.7. On-Chip Voltage Regulator Analogue Supply (VREG_AVDD)

VREG_AVDD supplies the on chip voltage regulator’s analogue control circuits, and should be powered at a nominal 3.3 V.

To reduce the number of external power supplies, VREG_AVDD can use the same power source as the voltage regulator

input supply (VREG_VIN), or the digital IO supply (IOVDD). Though care should be taken to minimise the noise on VREG_AVDD.

A passive low pass filter may be required, see Section 6.3.7 for details.

 NOTE

VREG_AVDD also powers the chip’s power-on reset and brownout detection blocks, so it must be powered even if the

on-chip voltage regulator is not used.
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6.1.8. Power Supply Sequencing

With the exception of the two voltage regulator supplies (VREG_VIN and VREG_AVDD), which should be powered up together,

RP2350’s power supplies may be powered up or down in any order. However, small transient currents may flow in the

ADC supply (ADC_AVDD) if it is powered up before, or powered down after, the digital core supply (DVDD). This will not

damage the chip, but can be avoided by powering up DVDD before or at the same time as ADC_AVDD, and powering down

DVDD after or at the same time as ADC_AVDD. In the most common power supply scheme, where the chip is powered from

a single 3.3 V supply, DVDD will be powered up shortly after ADC_AVDD due to the startup time of the on-chip voltage

regulator. This is acceptable behaviour.

6.2. Power Management

RP2350 retains the power control features of RP2040, but extends them by splitting the chip’s digital core into a number

of power domains, which can be selectively powered off. This allows significant power saving in applications where the

chip is not continuously active. This section describes the core power domains and how they are controlled. The legacy

RP2040 power control features still offer useful power savings, and are described in Section 6.5.

Power domains, and transitions between power states, are controlled by a Power manager. The Power manager runs

from either an internal low power oscillator lposc, or the reference clock clk_ref. The device may be configured to power

down under software control and can wakeup on a GPIO or timer event. Configuration of the power manager is via the

POWMAN registers in Section 6.4 .

6.2.1. Core Power Domains

RP2350’s core logic is divided into five power domains. With some restrictions, these domains can be selectively

powered off to reduce the chip’s power consumption. The five domains are:

• AON - Always On - a small amount of logic that is always powered on when chip’s core supply (DVDD) is available

• SWCORE - Switched Core - the remaining core logic functions, including processors, bus fabric, peripherals, etc.

• XIP - XIP cache SRAM and Boot RAM

• SRAM0 - SRAM Power Domain 0 - the lower half of the large SRAM banks

• SRAM1 - SRAM Power Domain 1 - the upper half of the large SRAM banks, and the scratch SRAMs

Logic in the AON domain controls the power state of the other power domains, which can be powered on or off

independently. The only exception is the XIP domain, which must always be powered when the SWCORE domain is

powered. SRAMs that are powered on retain their contents when the switched core is powered off.

Figure 18 gives an overview of the core power domains.
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DVDD Always on Power Domain

Switched Core Power Domain

XIP Power Domain
Boot SRAM (1 instances of 1kB)
XIP Cache SRAM (2 instances of 16kB)

SRAM Power Domain 0
SRAM Banks 0–3 (4 instances of 64kB)

SRAM Power Domain 1
SRAM Banks 4–7 (4 instances of 64kB)
SRAM Banks 8–9 (2 instances of 4kB)

AON

SWCORE

1kB

16kB

4kB

64kB

64kB

Figure 18. core power

domains

6.2.2. Power States

RP2350 can operate in a number of power states, depending on which domains are powered on or off. Power states

have names in the form Pc.m where:

• c indicates the state of the switched core (SWCORE) domain: 0 = on / 1 = off

• m is a 3 bit binary representation of the memory power domains, in the order XIP, SRAM0, SRAM1

P0.m states, where the switched core is powered on, are Normal Operating states. P1.m states, where the switched core is

powered off, are Low Power states

Table 472 shows the available power states.

Table 472. supported

power states
Power State Description AON SWCORE XIP SRAM0 SRAM1

P0.0 Normal Operation on on on on on

P0.1 Normal Operation (SRAM1 off) on on on on off

P0.2 Normal Operation (SRAM0 off) on on on off on

P0.3 Normal Operation (SRAM0 & SRAM1 off) on on on off off

P1.0 Low Power on off on on on

P1.1 Low Power (SRAM1 off) on off on on off

P1.2 Low Power (SRAM0 off) on off on off on
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Power State Description AON SWCORE XIP SRAM0 SRAM1

P1.3 Low Power (SRAM0 & SRAM1 off) on off on off off

P1.4 Low Power (XIP off) on off off on on

P1.5 Low Power (XIP & SRAM1 off) on off off on off

P1.6 Low Power (XIP & SRAM0 off) on off off off on

P1.7 Low Power (XIP & SRAM0 & SRAM1 off) on off off off off

OFF Not Powered off off off off off

In the OFF state, the chip has no external power and all domains are unpowered. The chip moves from OFF to P0.0

automatically as soon as external power is applied.

To determine the current power state, read the STATE.CURRENT field. CURRENT is a 4 bit field representing the power

state of the switched core and memory power domains.

6.2.3. Power State Transitions

Transitions between power states can be initiated by software, hardware, or via the chip’s debug subsystem. Once

initiated, transitions are managed by autonomous power sequencers in the chip’s AON power domain. The power

sequencers can be configured, in a limited way, via the SEQ_CFG register. The sequencers can also be observed and

controlled, again in a limited way, via the RP-AP registers in the chip’s debug subsystem. These registers are described

in Section 3.5.10.

Valid power state transitions are as follows:

• all transitions from one P0.m state (switched core powered on) to another P0.m state (switched core powered on), if

they increase or decrease the number of SRAM domains that are powered on

• all transitions from a P0.m state (switched core powered on) to a P1.m state (switched core powered off), except

transitions that would result in a powered off SRAM domain becoming powered on

• all transitions from a P1.m state (switched core powered off) to a P0.m state (switched core powered on), except

transitions that would result in a powered on SRAM domain becoming powered off

Transitions from one P1.m state (switched core powered off) to another P1.m state (switched core powered off) are not

supported, and will be prevented by the hardware.

Valid transitions are shown in the table below.

Table 473. valid power

state transitions
From To

P0.0 P0.1 P0.2 P0.3 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7

P0.1 P0.0 P0.3 P1.1 P1.3 P1.5 P1.7

P0.2 P0.0 P0.3 P1.2 P1.3 P1.6 P1.7

P0.3 P0.0 P0.1 P0.2 P1.3 P1.7

P1.0 P0.0

P1.1 P0.0 P0.1

P1.2 P0.0 P0.2

P1.3 P0.0 P0.1 P0.2 P0.3

P1.4 P0.0

P1.5 P0.0 P0.1
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From To

P1.6 P0.0 P0.2

P1.7 P0.0 P0.1 P0.2 P0.3

6.2.3.1. Transitions from Normal Operating (P0.m) States

Transitions from a Normal Operating (P0.m) state to either a Low Power (P1.m) state, or another Normal Operating (P0.m)

state, are initiated by writing to the STATE.REQ field. REQ is a 4-bit field representing the requested power state of the

switched core and memory power domains. The STATE.WAITING field will be set immediately, followed by the the

STATE.CHANGING field, once the actual state change starts. If a transition to a Low Power (P0.m) state is requested,

WAITING will remain set until the processors have gone into a low power state (via __wfi()). In the WAITING state, writing to

the STATE.REQ field can change or cancel the initial request. The requested state can not be changed once in the

CHANGING state.

A request to move to an unsupported state, or a state that would result in an invalid transition, causes the

STATE.BAD_SW_REQ field to be set.

If a hardware power up request is received while in the WAITING state, the transition requested via STATE.REQ will be

halted and the power up request completed. The STATE.PWRUP_WHILE_WAITING and STATE.REQ_IGNORED fields will

be set.

On writing to STATE.REQ:

• If there is a pending power up request, STATE.REQ_IGNORED is set and no further action is taken

• If the requested state is invalid, STATE.BAD_SW_REQ is set and no further action is taken

• If the switched core is being powered off, STATE.WAITING is set until both processors enter __wfi(). After which

STATE.CHANGING will be set, but no processors will be powered up to read the flag at this time

◦ If there is a power up request while in STATE.WAITING, STATE.PWRUP_WHILE_WAITING is set, which can

also raise an interrupt to bring the processors out of __wfi(). No further action is taken

◦ You can get out of the WAITING state by writing a new request to STATE.REQ before both processors have gone

into __wfi()

• Any state request that isn’t powering down the switched core, such as powering up or down SRAM domain 0 or 1

starts immediately. Software should wait until STATE.CHANGING has cleared to know the power down sequence.

Once the STATE.CHANGING flag is cleared STATE.CURRENT is updated.

• If powering up, software should also wait for STATE.CHANGING to make sure everything is powered up before

continuing. In practice this is handled by the RP2350 bootrom.

Invalid state transitions are:

• any combination of power up and power down requests

• any request which would result in power down of XIP/bootRAM and power up of swcore

If XIP, boot RAM, sram0, or sram1 remain powered while swcore is powered off, the sram will automatically switch to a

low power state. Stored data will be retained.

Before transitioning to a switched-core power down state (P1.m), software needs to configure:

• the GPIO wakeup conditions if required

• the wakeup alarm if required

• the return state of the SRAM0 & SRAM1 domains
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6.2.3.2. Transitions from Low Power (P1.m) States

Transitions from P1.m to P0.m states are initiated by GPIO events or the timer alarm.

There are up to 5 wakeup sources:

• up to 4 GPIO wakeups (level high/low or falling edge/rising edge)

• 1 alarm wakeup

GPIO wakeups are configured by the PWRUP0-PWRUP3 registers. The wakeups are not enabled until the power

sequencer completes the power down operation.

The alarm wakeup is configured by writing to the ALARM_TIME_15TO0-ALARM_TIME_63TO48 registers. The alarm

wakeup has a resolution of 1ms. Once set, the alarm wakeup is armed by writing a 1 to both TIMER.PWRUP_ON_ALARM

and TIMER.ALARM_ENAB. If the alarm fires during the power down sequence, a power up sequence will start when the

power down sequence completes.

The LAST_SWCORE_PWRUP register indicates which event caused the most recent power up.

6.2.3.3. Debugger Initiated Power State Transitions

The debugger can be used to trigger a power up sequence via the CSYSPWRUPREQ output from the SW-DP CTRL/STAT register.

This powers all domains (i.e. returns to state P0.0) and also inhibits any further software initiated power state

transitions.

When CSYSPWRUPREQ is asserted, the power sequencer will:

• complete any power state transitions that are in progress

• return to power state P0.0

• assert CSYSPWRUPACK to signal completion to the debug host

If CSYSPWRUPREQ is de-asserted then software initiated power transitions will be able to resume. The user can detect when

a software requested transition is ignored because of CSYSPWRUPREQ using the following hints:

• Getting a STATE.REQ_IGNORED after a write to STATE.REQ

• CURRENT_PWRUP_REQ will have bit 5 (coresight) set

• Either:

◦ Get the debugger to de-assert CSYSPWRUPREQ or

◦ Mask out CSYSPWRUPREQ by setting DBG_PWRCFG.IGNORE

 NOTE

DBG_PWRCFG.IGNOREis useful to test going to sleep with a debugger attached or ignoring CSYSPWRUPREQ. A debugger

will likely leave CSYSPWRUPREQ set when disconnecting. It would be impossible to go to sleep after this without

DBG_PWRCFG.IGNORE.

6.2.3.4. Power mode aware GPIO Control

The power manager sequencer is able to switch the state of two GPIO outputs on entry to and exit from a P1.m state, i.e.

one where the switched core is powered down. This allows external devices to be power-aware. The GPIOs switch to

indicate the low power state after the core is powered down and switch to indicate the high power state before the core

is powered up. This ensures the high power state of the external components always overlaps the high power state of

the core. The GPIOs are configured by the EXT_CTRL0 and EXT_CTRL1 registers.
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6.2.3.5. Isolation

When powering down swcore, the pad control and data signals are latched and isolated from the IO logic. This avoids

transitions on pads which could potentially corrupt external components. On swcore power up, the isolation is not

released automatically. The user releases the isolation by clearing the ISO field of the pad control register (for example

GPIO0.ISO) once the IO logic has been configured.

6.3. Core Voltage Regulator

RP2350 provides an on-chip voltage regulator for its digital core supply (DVDD). The regulator requires a 2.7 V to 5.5 V

input supply (VREG_VIN), allowing DVDD to be generated directly from a single lithium ion cell, or a USB power supply. A

separate, nominally 3.3 V, low noise supply (VREG_AVDD) is required for the regulator’s analogue control circuits. The

regulator supports both switching and linear modes of regulation, allowing efficient operation at both high and low

loads.

To allow the chip to start up, the regulator is enabled by default, and will power-up as soon as its supplies are available.

The regulator starts in switching mode, with a nominal 1.1 V output, but its operating mode and output voltage can be

changed once the chip is out of reset. The output voltage can be set in the range 0.55 V to 3.30 V, and the regulator can

supply up to 200mA.

Although intended for the chip’s digital core supply (DVDD), the regulator can be used for other purposes if DVDD is

powered directly from an external power supply.

6.3.1. Operating Modes

The regulator has the following three modes of operation.

6.3.1.1. Normal Mode

In Normal mode, the regulator operates in a switching mode, and can supply up to 200mA. Normal mode is used for

P0.x power states, when the chip’s switched core is powered on. The regulator must be in Normal Mode before the core

supply current is allowed to exceed 1mA. The regulator starts up in Normal mode when its input supplies are first

applied.

6.3.1.2. Low Power Mode

In Low Power mode, the regulator operates in a linear mode, and can only supply up to 1mA. Low Power mode can be

used for P1.x power states, where the chip’s switched core is powered off. The core supply current must be less than

1mA before the regulator is moved to Low Power mode. The regulator’s output voltage is limited to 1.3 V in Low Power

mode.

 CAUTION

In Low Power mode, the output of the regulator is directly connected to DVDD. It is not possible to disconnect the

regulator from DVDD in this mode. Do not put the regulator into Low Power mode if DVDD is being powered from an

external supply.

6.3.1.3. High Impedance Mode

In High Impedance mode, the regulator is disabled, its power consumption is minimised, and its outputs are set to a

high impedance state. This mode should only be used if the digital core supply (DVDD) is provided by an external
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regulator. If the on-chip regulator is supplying DVDD, entering high impedance mode causes a reset event, returning the

on-chip regulator to Normal mode.

6.3.2. Software Control

 WARNING

Once enabled, software control cannot be disabled.

The regulator can be directly controlled by software, but must first be unlocked by writing a 1 to the UNLOCK field in the

VREG_CTRL register. Once unlocked, the regulator can be controlled via the VREG register.

The regulator’s operating mode defaults to Normal, at initial power up or after a reset event, but can be switched to High

Impedance by writing a 1 to the VREG register’s HIZ field. The regulator’s output voltage can be set by writing to the

register’s VSEL field, see the VREG register description for details on available settings. To prevent accidental over-

voltage, the output voltage is limited to 1.3 V unless the DISABLE_VOLTAGE_LIMIT field in the VREG_CTRL is set. The output

voltage defaults to 1.1 V at initial power-on or after a reset event.

The UPDATE_IN_PROGRESS field in the VREG register is set while the regulator’s operating mode or output voltage are being

updated. When UPDATE_IN_PROGRESS is set, writes to the register are ignored.

It is not possible to place the regulator in Low Power mode under software control, as the load current will exceed 1mA

when software is running.

 CAUTION

The regulator’s output voltage can be varied between 0.55 V and 3.3 V, but RP2350 may not operate reliably with its

digital core supply (DVDD) at a voltage other than 1.1 V.

6.3.3. Power Manager Control

The regulator’s operating mode and output voltage can also be controlled by the Power Manager. Power Manager

control is typically used when the chip enters or exits a low power (P1.x) state, when software may not be running.

In addition to Normal and High Impedance modes, Power Manager control allows the regulator to be placed in Low

Power mode. By default, the regulator switches to Low Power mode when entering a low power (P1.x) state, and returns

to Normal mode when returning to a normal (P0.x) state.

The operating mode and output voltage in the low power state are set by the values in the VREG_LP_ENTRY register.

And the operating mode and output voltage to be used when the chip has returned to a normal state are set by values in

the VREG_LP_EXIT register. The registers contain an additional MODE field that allows Low Power mode to be selected.

The values in the registers must be written by software before requesting a transition to a low power state, as software

will not be running during or after the transition. The actual transitions to and from the low power state are handled by

the Power Manager. Once the chip has returned to a normal state, software can be run and the regulator controlled

directly. The values in the VREG register reflect the regulator’s current operating mode and output voltage once the chip

has returned to a normal state.

RP2350 Datasheet

6.3. Core Voltage Regulator 440



 CAUTION

Low Power mode should only be used when the regulator is providing the chip’s digital core supply (DVDD), as the

regulator’s low power output is connected to DVDD on chip.

6.3.4. Status

To determine the status of the regulator, read the VREG_STS register, which contains two fields:

• VOUT_OK indicates whether the voltage regulator’s output is being correctly regulated. At power-on, VOUT_OK remains

low until the regulator has started up and the output voltage reaches the VOUT_OK assertion threshold (VOUT_OKTH.ASSERT).

It then remains high until the voltage drops below the VOUT_OK de-assertion threshold (VOUT_OKTH.DEASSERT), remaining low

until the output voltage is above the assertion threshold again. VOUT_OKTH.ASSERT is nominally 90% of the selected output

voltage, 0.99 V if the selected output voltage is 1.1 V, and VOUT_OKTH.DEASSERT is nominally 87% of the selected output

voltage, 0.957 V if the selected output voltage is 1.1 V. See Section 14.9.6 for details.

• STARTUP is high when the regulator is starting up, and remains high until the regulator’s operating mode or output

voltage are changed, either by software or the Power Manager

 NOTE

Adjusting the output voltage to a higher voltage will cause VOUT_OK to go low until the assertion threshold for the

higher voltage is reached. VOUT_OK will also go low if the regulator is placed in High Impedance mode.

6.3.5. Current Limit

The voltage regulator includes a current limit to prevent the load current exceeding the maximum rated value. The

output voltage will not be regulated and will drop below the selected value when the current limit is active. See Section

14.9.6 for details.

6.3.6. Over Temperature Protection

The voltage regulator will terminate regulation, and disable its power transistors, if the transistor junction temperature

rises above a threshold set by the HT_TH field in the VREG_CTRL register. The regulator will restart regulation when the

transistor junction temperature drops to approximately 20°C below the temperature threshold.

6.3.7. Application Circuit

The regulator requires two external power supplies, the input supply (VREG_VIN), and a separate low noise supply for its

analogue control circuits (VREG_AVDD). VREG_VIN must be in the range 2.7 V to 5.5 V, and VREG_AVDD must be in the range

3.135 V to 3.63 V.

If VREG_VIN is limited to the range 3.135 V to 3.63 V, a single combined supply can be used for both VREG_VIN and

VREG_AVDD. This approach is shown in Figure 19. Care must be taken to minimise noise on VREG_AVDD.
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Figure 19. core

voltage regulator with

combined supplies

Alternatively, to support input voltages above 3.63 V, VREG_VIN and VREG_AVDD can be powered separately. This is shown in

Figure 20.

D
V

D
D

DVDD DVDD

2.7V to 5.5V supply

3.135V to 3.63V supply

4.7µF

GND

100nF

GND

100nF

GND

4.7µF

GND

4.7µF3.3µH

V
R

E
G

_P
G

N
D

V
R

E
G

_L
X

V
R

E
G

_A
V

D
D

V
R

E
G

_V
IN

V
R

E
G

_F
B

Figure 20. core

voltage regulator with

separate supplies

6.3.8. External Components and PCB layout requirements

The most critical part of an RP2350 PCB layout is the core voltage regulator. This should be placed first on any board

design and these guidelines must be strictly followed.
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Figure 21. Regulator

section of the

Raspberry Pi Pico 2

schematic. The nets

highlighted in bold

show the high

switching current

paths
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Figure 22. Regulator

section of the

Raspberry Pi Pico 2

PCB layout showing

the high current paths

for each of the

regulator’s switching

phases. The TBD

inductor’s case size is

0806 (2016 metric),

the resistor and

capacitors are 0402

(1005 metric)

Designers should follow the above schematic Figure 21 and layout Figure 22 as closely as possible as this has had the

most verification and is considered our best practice layout. This circuit design is present on the Raspberry Pi Pico 2

and RP2350 reference design (see Hardware design with RP2350, Minimal Design Example) and both of these designs

are made available in either Cadence Allegro or Kicad formats respectively. Figure 22 shows the regulator layout on the

top layer of the Raspberry Pi Pico 2 PCB. The bottom layer under the regulator is a ground plane which connects to the

QFN GND central pad.

6.3.8.1. Layout Recommendations

• VREG_AVDD is a noise sensitive signal and must be RC filtered as per Figure 21.

◦ Avoid doing anything that may couple noise into VREG_AVDD.

◦ CIN needs its own separate GND via / low impedance path back to the RP2350 GND pad.

• The red and green arrows in Figure 22 show the high current paths for each of the regulator’s switching phases. It

is critical keep the loop area of these current paths as small and low-impedance as possible, while also keeping

them isolated (i.e. only connect to main GND at one point).

◦ Follow this layout as closely as possibly.

◦ Do not place any of CIN/LX/COUT on the opposite side of the PCB.

• Reduce parasitics on the VREG_LX node.

• On the top layer make sure to cut away any extra copper underneath the inductor, cut back copper near the VREG_LX

trace where possible.
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◦ For a multi-layer board (4 or more layers) please cut away any copper immediately underneath LX/VREG_LX

node. For example, Figure 23 illustrates this.

• The GND via placement is critical.

◦ There must be a short-as-possible, low impedance GND path back to the Raspberry Pi Pico 2 QFN GND pad

from the high-current GND at one single point (using 2 adjacent vias to reduce the impedance).

◦ CFILT must also have a low impedance and short-as-possible path back to the QFN GND pad (Do not share any

GND vias with the CIN/COUT high current GND).

• The VREG_FB pin should be fed from the output of COUT, avoiding routing directly underneath LX.

• COUT is critical for regulator performance and EMI. It must be placed between VREG_VIN and VREG_PGND as close to the

pins as practically possible.

◦ In addition to COUT, for best performance we recommend a second 4.7μF capacitor is used on the VOUT net,

located on the bottom edge of the package (DVDD pin 23 on the QFN-60). Do not place this near LX/COUT.

Layer 2
Figure 23. Cut-out

beneath LX/VREG_LX

net on layer 2 of 4 (or

more) layer PCBs

6.3.8.2. Component Values

• CIN should be at least 4.7μF and have a maximum parasitic resistance of 50mΩ.

• COUT must be 4.7μF ±20% with a maximum parasitic resistance of 250mΩ and a maximum inductance of 6nH.

• LX must be fully shielded, 3.3μH ±20% and with a maximum DC resistance of 250mΩ. Saturation current should be

at least 1.5A. The inductor must be marked for polarity (see Figure 24) and placed on the layout as indicated in

Figure 22. As discussed below, we recommend the TBD.
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6.3.8.3. Regulator Sensitivities

The RP2350 regulator has a few sensitivities:

• The VREG_AVDD supply is noise sensitive.

• Efficiency is quite sensitive to inductance roll-off with inductor current, so an inductor with low roll-off is required

for best operation (generally the higher saturation current the better).

• Even with nominally fully shielded inductors, leakage magnetic field coupling into the loop formed by the output

VREG_LX node through the inductor and output capacitor (COUT) seems to affect the regulator control loop and output

voltage. Field orientation (and hence inductor orientation) matters - the inductor has to be the right way around to

make sure the regulator operates properly especially at higher output currents and for higher load transients. This

necessitates an inductor with marked polarity.

To meet the above requirements, Raspberry Pi have worked with Abracon to create a custom 2.0×1.6mm 3.3μH polarity-

marked inductor, part number TBD (see Figure 24 and Figure 24). These will be available in general distribution in time,

but for now please contact Raspberry Pi to request samples / production volumes.

Raspberry Pi is still working with the regulator IP vendor to fully verify and qualify the regulator and custom inductor.

Magnetic Field Direction

orientation
indicator

I
(amps)+ -

Figure 24. TBD

inductor with

orientation marking,

showing current and

magnetic field

directions
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Figure 25. Dimensions

of the TBD inductor

6.3.9. List of Registers

The voltage regulator shares a register address space with other power management subsystems in the always-on

domain. This address space is referred to as POWMAN elsewhere in this document, and a complete list of POWMAN registers is

provided in Section 6.4. For reference information on POWMAN registers associated with the voltage regulator is repeated

here.

The POWMAN registers start at a base address of 0x40100000 (defined as POWMAN_BASE in the SDK).

• VREG_CTRL

• VREG_STS

• VREG

• VREG_LP_ENTRY

• VREG_LP_EXIT

6.4. Power Management (POWMAN) Registers

Password-protected POWMAN registers require a password (0x5AFE) to be written to the top 16 bits to enable the write

operation. This protects against accidental writes which could crash the chip untraceably. Writes to protected registers

that do not include the password are ignored, setting a flag in the BADPASSWD register. Reads from protected registers

do not return the password, to protect against erroneous read-modify-write operations.

Protected registers obviously do not have writeable fields in the top 16 bits, however they may have read-only fields in

that range.

All registers with address offsets up to and including 0x000000ac are password protected. Therefore, the following

writeable registers are unprotected and have 32-bit write access:
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• POWMAN_SCRATCH0 → POWMAN_SCRATCH7

• POWMAN_BOOT0 → POWMAN_BOOT3

• POWMAN_INTR

• POWMAN_INTE

• POWMAN_INTF

Table 474. List of

POWMAN registers
Offset Name Info

0x00 BADPASSWD Indicates a bad password has been used

0x04 VREG_CTRL Voltage Regulator Control

0x08 VREG_STS Voltage Regulator Status

0x0c VREG Voltage Regulator Settings

0x10 VREG_LP_ENTRY Voltage Regulator Low Power Entry Settings

0x14 VREG_LP_EXIT Voltage Regulator Low Power Exit Settings

0x18 BOD_CTRL Brown-out Detection Control

0x1c BOD Brown-out Detection Settings

0x20 BOD_LP_ENTRY Brown-out Detection Low Power Entry Settings

0x24 BOD_LP_EXIT Brown-out Detection Low Power Exit Settings

0x28 LPOSC Low power oscillator control register.

0x2c CHIP_RESET Chip reset control and status

0x30 WDSEL Allows a watchdog reset to reset the internal state of powman in

addition to the power-on state machine (PSM).

Note that powman ignores watchdog resets that do not select at

least the CLOCKS stage or earlier stages in the PSM. If using

these bits, it’s recommended to set PSM_WDSEL to all-ones in

addition to the desired bits in this register. Failing to select

CLOCKS or earlier will result in the POWMAN_WDSEL register

having no effect.

0x34 SEQ_CFG For configuration of the power sequencer

Writes are ignored while POWMAN_STATE_CHANGING=1
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Offset Name Info

0x38 STATE This register controls the power state of the 4 power domains.

The current power state is indicated in

POWMAN_STATE_CURRENT which is read-only.

To change the state, write to POWMAN_STATE_REQ.

The coding of POWMAN_STATE_CURRENT &

POWMAN_STATE_REQ corresponds to the power states

defined in the datasheet:

bit 3 = SWCORE

bit 2 = XIP cache

bit 1 = SRAM0

bit 0 = SRAM1

0 = powered up

1 = powered down

When POWMAN_STATE_REQ is written, the

POWMAN_STATE_WAITING flag is set while the Power Manager

determines what is required. If an invalid transition is requested

the Power Manager will still register the request in

POWMAN_STATE_REQ but will also set the POWMAN_BAD_REQ

flag. It will then implement the power-up requests and ignore the

power down requests. To do nothing would risk entering an

unrecoverable lock-up state. Invalid requests are: any

combination of power up and power down requests any request

that results in swcore being powered and xip unpowered If the

request is to power down the switched-core domain then

POWMAN_STATE_WAITING stays active until the processors

halt. During this time the POWMAN_STATE_REQ field can be re-

written to change or cancel the request. When the power state

transition begins the POWMAN_STATE_WAITING_flag is cleared,

the POWMAN_STATE_CHANGING flag is set and POWMAN

register writes are ignored until the transition completes.

0x3c POW_FASTDIV

0x40 POW_DELAY power state machine delays

0x44 EXT_CTRL0 Configures a gpio as a power mode aware control output

0x48 EXT_CTRL1 Configures a gpio as a power mode aware control output

0x4c EXT_TIME_REF Select a GPIO to use as a time reference, the source can be used

to drive the low power clock at 32kHz, or to provide a 1ms tick to

the timer, or provide a 1Hz tick to the timer. The tick selection is

controlled by the POWMAN_TIMER register.

0x50 LPOSC_FREQ_KHZ_INT Informs the AON Timer of the integer component of the clock

frequency when running off the LPOSC.

0x54 LPOSC_FREQ_KHZ_FRAC Informs the AON Timer of the fractional component of the clock

frequency when running off the LPOSC.

0x58 XOSC_FREQ_KHZ_INT Informs the AON Timer of the integer component of the clock

frequency when running off the XOSC.

0x5c XOSC_FREQ_KHZ_FRAC Informs the AON Timer of the fractional component of the clock

frequency when running off the XOSC.

0x60 SET_TIME_63TO48

0x64 SET_TIME_47TO32
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Offset Name Info

0x68 SET_TIME_31TO16

0x6c SET_TIME_15TO0

0x70 READ_TIME_UPPER

0x74 READ_TIME_LOWER

0x78 ALARM_TIME_63TO48

0x7c ALARM_TIME_47TO32

0x80 ALARM_TIME_31TO16

0x84 ALARM_TIME_15TO0

0x88 TIMER

0x8c PWRUP0 4 GPIO powerup events can be configured to wake the chip up

from a low power state.

The pwrups are level/edge sensitive and can be set to trigger on

a high/rising or low/falling event

The number of gpios available depends on the package option.

An invalid selection will be ignored

source = 0 selects gpio0

.

.

source = 47 selects gpio47

source = 48 selects qspi_ss

source = 49 selects qspi_sd0

source = 50 selects qspi_sd1

source = 51 selects qspi_sd2

source = 52 selects qspi_sd3

source = 53 selects qspi_sclk

level = 0 triggers the pwrup when the source is low

level = 1 triggers the pwrup when the source is high

0x90 PWRUP1 4 GPIO powerup events can be configured to wake the chip up

from a low power state.

The pwrups are level/edge sensitive and can be set to trigger on

a high/rising or low/falling event

The number of gpios available depends on the package option.

An invalid selection will be ignored

source = 0 selects gpio0

.

.

source = 47 selects gpio47

source = 48 selects qspi_ss

source = 49 selects qspi_sd0

source = 50 selects qspi_sd1

source = 51 selects qspi_sd2

source = 52 selects qspi_sd3

source = 53 selects qspi_sclk

level = 0 triggers the pwrup when the source is low

level = 1 triggers the pwrup when the source is high
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Offset Name Info

0x94 PWRUP2 4 GPIO powerup events can be configured to wake the chip up

from a low power state.

The pwrups are level/edge sensitive and can be set to trigger on

a high/rising or low/falling event

The number of gpios available depends on the package option.

An invalid selection will be ignored

source = 0 selects gpio0

.

.

source = 47 selects gpio47

source = 48 selects qspi_ss

source = 49 selects qspi_sd0

source = 50 selects qspi_sd1

source = 51 selects qspi_sd2

source = 52 selects qspi_sd3

source = 53 selects qspi_sclk

level = 0 triggers the pwrup when the source is low

level = 1 triggers the pwrup when the source is high

0x98 PWRUP3 4 GPIO powerup events can be configured to wake the chip up

from a low power state.

The pwrups are level/edge sensitive and can be set to trigger on

a high/rising or low/falling event

The number of gpios available depends on the package option.

An invalid selection will be ignored

source = 0 selects gpio0

.

.

source = 47 selects gpio47

source = 48 selects qspi_ss

source = 49 selects qspi_sd0

source = 50 selects qspi_sd1

source = 51 selects qspi_sd2

source = 52 selects qspi_sd3

source = 53 selects qspi_sclk

level = 0 triggers the pwrup when the source is low

level = 1 triggers the pwrup when the source is high

0x9c CURRENT_PWRUP_REQ Indicates current powerup request state

pwrup events can be cleared by removing the enable from the

pwrup register. The alarm pwrup req can be cleared by clearing

timer.alarm_enab

0 = chip reset, for the source of the last reset see

POWMAN_CHIP_RESET

1 = pwrup0

2 = pwrup1

3 = pwrup2

4 = pwrup3

5 = coresight_pwrup

6 = alarm_pwrup

RP2350 Datasheet

6.4. Power Management (POWMAN) Registers 451



Offset Name Info

0xa0 LAST_SWCORE_PWRUP Indicates which pwrup source triggered the last switched-core

power up

0 = chip reset, for the source of the last reset see

POWMAN_CHIP_RESET

1 = pwrup0

2 = pwrup1

3 = pwrup2

4 = pwrup3

5 = coresight_pwrup

6 = alarm_pwrup

0xa4 DBG_PWRCFG

0xa8 BOOTDIS Tell the bootrom to ignore the BOOT0..3 registers following the

next RSM reset (e.g. the next core power down/up).

If an early boot stage has soft-locked some OTP pages in order

to protect their contents from later stages, there is a risk that

Secure code running at a later stage can unlock the pages by

powering the core up and down.

This register can be used to ensure that the bootloader runs as

normal on the next power up, preventing Secure code at a later

stage from accessing OTP in its unlocked state.

Should be used in conjunction with the OTP BOOTDIS register.

0xac DBGCONFIG

0xb0 SCRATCH0 Scratch register. Information persists in low power mode

0xb4 SCRATCH1 Scratch register. Information persists in low power mode

0xb8 SCRATCH2 Scratch register. Information persists in low power mode

0xbc SCRATCH3 Scratch register. Information persists in low power mode

0xc0 SCRATCH4 Scratch register. Information persists in low power mode

0xc4 SCRATCH5 Scratch register. Information persists in low power mode

0xc8 SCRATCH6 Scratch register. Information persists in low power mode

0xcc SCRATCH7 Scratch register. Information persists in low power mode

0xd0 BOOT0 Scratch register. Information persists in low power mode

0xd4 BOOT1 Scratch register. Information persists in low power mode

0xd8 BOOT2 Scratch register. Information persists in low power mode

0xdc BOOT3 Scratch register. Information persists in low power mode

0xe0 INTR Raw Interrupts

0xe4 INTE Interrupt Enable

0xe8 INTF Interrupt Force

0xec INTS Interrupt status after masking & forcing

POWMAN: BADPASSWD Register

Offset: 0x00
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Table 475.

BADPASSWD Register
Bits Description Type Reset

31:1 Reserved. - -

0 Indicates a bad password has been used WC 0x0

POWMAN: VREG_CTRL Register

Offset: 0x04

Description

Voltage Regulator Control

Table 476.

VREG_CTRL Register
Bits Description Type Reset

31:16 Reserved. - -

15 RST_N: returns the regulator to its startup settings

0 - reset

1 - not reset (default)

RW 0x1

14 Reserved. - -

13 UNLOCK: unlocks the VREG control interface after power up

0 - Locked (default)

1 - Unlocked

It cannot be relocked when it is unlocked.

RW 0x0

12 ISOLATE: isolates the VREG control interface

0 - not isolated (default)

1 - isolated

RW 0x0

11:9 Reserved. - -

8 DISABLE_VOLTAGE_LIMIT: 0=not disabled, 1=enabled RW 0x0

7 Reserved. - -

6:4 HT_TH: high temperature protection threshold

regulator power transistors are disabled when junction temperature exceeds

threshold

000 - 100C

001 - 105C

010 - 110C

011 - 115C

100 - 120C

101 - 125C

110 - 135C

111 - 150C

RW 0x5

3:2 Reserved. - -

1:0 RESERVED: write 0 to this field RW 0x0

POWMAN: VREG_STS Register

Offset: 0x08

Description

Voltage Regulator Status

Table 477. VREG_STS

Register
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Bits Description Type Reset

31:5 Reserved. - -

4 VOUT_OK: output regulation status

0=not in regulation, 1=in regulation

RO 0x0

3:1 Reserved. - -

0 STARTUP: startup status

0=startup complete, 1=starting up

RO 0x0

POWMAN: VREG Register

Offset: 0x0c

Description

Voltage Regulator Settings

Table 478. VREG

Register
Bits Description Type Reset

31:16 Reserved. - -

15 UPDATE_IN_PROGRESS: regulator state is being updated

writes to the vreg register will be ignored when this field is set

RO 0x0

14:9 Reserved. - -
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Bits Description Type Reset

8:4 VSEL: output voltage select

the regulator output voltage is limited to 1.3V unless the voltage limit

is disabled using the disable_voltage_limit field in the vreg_ctrl register

00000 - 0.55V

00001 - 0.60V

00010 - 0.65V

00011 - 0.70V

00100 - 0.75V

00101 - 0.80V

00110 - 0.85V

00111 - 0.90V

01000 - 0.95V

01001 - 1.00V

01010 - 1.05V

01011 - 1.10V (default)

01100 - 1.15V

01101 - 1.20V

01110 - 1.25V

01111 - 1.30V

10000 - 1.35V

10001 - 1.40V

10010 - 1.50V

10011 - 1.60V

10100 - 1.65V

10101 - 1.70V

10110 - 1.80V

10111 - 1.90V

11000 - 2.00V

11001 - 2.35V

11010 - 2.50V

11011 - 2.65V

11100 - 2.80V

11101 - 3.00V

11110 - 3.15V

11111 - 3.30V

RW 0x0b

3 Reserved. - -

2 RESERVED: write 0 to this field RW 0x0

1 HIZ: high impedance mode select

0=not in high impedance mode, 1=in high impedance mode

RW 0x0

0 Reserved. - -

POWMAN: VREG_LP_ENTRY Register

Offset: 0x10

Description

Voltage Regulator Low Power Entry Settings

Table 479.

VREG_LP_ENTRY

Register

Bits Description Type Reset

31:9 Reserved. - -
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Bits Description Type Reset

8:4 VSEL: output voltage select

the regulator output voltage is limited to 1.3V unless the voltage limit

is disabled using the disable_voltage_limit field in the vreg_ctrl register

00000 - 0.55V

00001 - 0.60V

00010 - 0.65V

00011 - 0.70V

00100 - 0.75V

00101 - 0.80V

00110 - 0.85V

00111 - 0.90V

01000 - 0.95V

01001 - 1.00V

01010 - 1.05V

01011 - 1.10V (default)

01100 - 1.15V

01101 - 1.20V

01110 - 1.25V

01111 - 1.30V

10000 - 1.35V

10001 - 1.40V

10010 - 1.50V

10011 - 1.60V

10100 - 1.65V

10101 - 1.70V

10110 - 1.80V

10111 - 1.90V

11000 - 2.00V

11001 - 2.35V

11010 - 2.50V

11011 - 2.65V

11100 - 2.80V

11101 - 3.00V

11110 - 3.15V

11111 - 3.30V

RW 0x0b

3 Reserved. - -

2 MODE: selects either normal (switching) mode or low power (linear) mode

low power mode can only be selected for output voltages up to 1.3V

0 = normal mode (switching)

1 = low power mode (linear)

RW 0x1

1 HIZ: high impedance mode select

0=not in high impedance mode, 1=in high impedance mode

RW 0x0

0 Reserved. - -

POWMAN: VREG_LP_EXIT Register

Offset: 0x14

Description

Voltage Regulator Low Power Exit Settings
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Table 480.

VREG_LP_EXIT

Register

Bits Description Type Reset

31:9 Reserved. - -

8:4 VSEL: output voltage select

the regulator output voltage is limited to 1.3V unless the voltage limit

is disabled using the disable_voltage_limit field in the vreg_ctrl register

00000 - 0.55V

00001 - 0.60V

00010 - 0.65V

00011 - 0.70V

00100 - 0.75V

00101 - 0.80V

00110 - 0.85V

00111 - 0.90V

01000 - 0.95V

01001 - 1.00V

01010 - 1.05V

01011 - 1.10V (default)

01100 - 1.15V

01101 - 1.20V

01110 - 1.25V

01111 - 1.30V

10000 - 1.35V

10001 - 1.40V

10010 - 1.50V

10011 - 1.60V

10100 - 1.65V

10101 - 1.70V

10110 - 1.80V

10111 - 1.90V

11000 - 2.00V

11001 - 2.35V

11010 - 2.50V

11011 - 2.65V

11100 - 2.80V

11101 - 3.00V

11110 - 3.15V

11111 - 3.30V

RW 0x0b

3 Reserved. - -

2 MODE: selects either normal (switching) mode or low power (linear) mode

low power mode can only be selected for output voltages up to 1.3V

0 = normal mode (switching)

1 = low power mode (linear)

RW 0x0

1 HIZ: high impedance mode select

0=not in high impedance mode, 1=in high impedance mode

RW 0x0

0 Reserved. - -

POWMAN: BOD_CTRL Register

Offset: 0x18

Description

Brown-out Detection Control
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Table 481. BOD_CTRL

Register
Bits Description Type Reset

31:13 Reserved. - -

12 ISOLATE: isolates the brown-out detection control interface

0 - not isolated (default)

1 - isolated

RW 0x0

11:0 Reserved. - -

POWMAN: BOD Register

Offset: 0x1c

Description

Brown-out Detection Settings

Table 482. BOD

Register
Bits Description Type Reset

31:9 Reserved. - -

8:4 VSEL: threshold select

00000 - 0.473V

00001 - 0.516V

00010 - 0.559V

00011 - 0.602V

00100 - 0.645VS

00101 - 0.688V

00110 - 0.731V

00111 - 0.774V

01000 - 0.817V

01001 - 0.860V (default)

01010 - 0.903V

01011 - 0.946V

01100 - 0.989V

01101 - 1.032V

01110 - 1.075V

01111 - 1.118V

10000 - 1.161

10001 - 1.204V

RW 0x0b

3:1 Reserved. - -

0 EN: enable brown-out detection

0=not enabled, 1=enabled

RW 0x1

POWMAN: BOD_LP_ENTRY Register

Offset: 0x20

Description

Brown-out Detection Low Power Entry Settings

Table 483.

BOD_LP_ENTRY

Register

Bits Description Type Reset

31:9 Reserved. - -
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Bits Description Type Reset

8:4 VSEL: threshold select

00000 - 0.473V

00001 - 0.516V

00010 - 0.559V

00011 - 0.602V

00100 - 0.645VS

00101 - 0.688V

00110 - 0.731V

00111 - 0.774V

01000 - 0.817V

01001 - 0.860V (default)

01010 - 0.903V

01011 - 0.946V

01100 - 0.989V

01101 - 1.032V

01110 - 1.075V

01111 - 1.118V

10000 - 1.161

10001 - 1.204V

RW 0x0b

3:1 Reserved. - -

0 EN: enable brown-out detection

0=not enabled, 1=enabled

RW 0x0

POWMAN: BOD_LP_EXIT Register

Offset: 0x24

Description

Brown-out Detection Low Power Exit Settings

Table 484.

BOD_LP_EXIT Register
Bits Description Type Reset

31:9 Reserved. - -

8:4 VSEL: threshold select

00000 - 0.473V

00001 - 0.516V

00010 - 0.559V

00011 - 0.602V

00100 - 0.645VS

00101 - 0.688V

00110 - 0.731V

00111 - 0.774V

01000 - 0.817V

01001 - 0.860V (default)

01010 - 0.903V

01011 - 0.946V

01100 - 0.989V

01101 - 1.032V

01110 - 1.075V

01111 - 1.118V

10000 - 1.161

10001 - 1.204V

RW 0x0b

3:1 Reserved. - -
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Bits Description Type Reset

0 EN: enable brown-out detection

0=not enabled, 1=enabled

RW 0x1

POWMAN: LPOSC Register

Offset: 0x28

Description

Low power oscillator control register.

Table 485. LPOSC

Register
Bits Description Type Reset

31:10 Reserved. - -

9:4 TRIM: Frequency trim - the trim step is typically 1% of the reset frequency, but

can be up to 3%

RW 0x20

3:2 Reserved. - -

1:0 MODE: This feature has been removed RW 0x3

POWMAN: CHIP_RESET Register

Offset: 0x2c

Description

Chip reset control and status

Table 486.

CHIP_RESET Register
Bits Description Type Reset

31:29 Reserved. - -

28 HAD_WATCHDOG_RESET_PSM: Last reset was a watchdog timeout which

was configured to reset the power-on state machine

This resets:

double_tap flag no

DP no

RPAP no

rescue_flag no

timer no

powman no

swcore no

psm yes

and does not change the power state

RO 0x0

27 HAD_HZD_SYS_RESET_REQ: Last reset was a system reset from the hazard

debugger

This resets:

double_tap flag no

DP no

RPAP no

rescue_flag no

timer no

powman no

swcore no

psm yes

and does not change the power state

RO 0x0
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Bits Description Type Reset

26 HAD_GLITCH_DETECT: Last reset was due to a power supply glitch

This resets:

double_tap flag no

DP no

RPAP no

rescue_flag no

timer no

powman no

swcore no

psm yes

and does not change the power state

RO 0x0

25 HAD_SWCORE_PD: Last reset was a switched core powerdown

This resets:

double_tap flag no

DP no

RPAP no

rescue_flag no

timer no

powman no

swcore yes

psm yes

then starts the power sequencer

RO 0x0

24 HAD_WATCHDOG_RESET_SWCORE: Last reset was a watchdog timeout

which was configured to reset the switched-core

This resets:

double_tap flag no

DP no

RPAP no

rescue_flag no

timer no

powman no

swcore yes

psm yes

then starts the power sequencer

RO 0x0

23 HAD_WATCHDOG_RESET_POWMAN: Last reset was a watchdog timeout

which was configured to reset the power manager

This resets:

double_tap flag no

DP no

RPAP no

rescue_flag no

timer yes

powman yes

swcore yes

psm yes

then starts the power sequencer

RO 0x0
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Bits Description Type Reset

22 HAD_WATCHDOG_RESET_POWMAN_ASYNC: Last reset was a watchdog

timeout which was configured to reset the power manager asynchronously

This resets:

double_tap flag no

DP no

RPAP no

rescue_flag no

timer yes

powman yes

swcore yes

psm yes

then starts the power sequencer

RO 0x0

21 HAD_RESCUE: Last reset was a rescue reset from the debugger

This resets:

double_tap flag no

DP no

RPAP no

rescue_flag no, it sets this flag

timer yes

powman yes

swcore yes

psm yes

then starts the power sequencer

RO 0x0

20 Reserved. - -

19 HAD_DP_RESET_REQ: Last reset was an reset request from the arm debugger

This resets:

double_tap flag no

DP no

RPAP no

rescue_flag yes

timer yes

powman yes

swcore yes

psm yes

then starts the power sequencer

RO 0x0

18 HAD_RUN_LOW: Last reset was from the RUN pin

This resets:

double_tap flag no

DP yes

RPAP yes

rescue_flag yes

timer yes

powman yes

swcore yes

psm yes

then starts the power sequencer

RO 0x0
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Bits Description Type Reset

17 HAD_BOR: Last reset was from the brown-out detection block

This resets:

double_tap flag yes

DP yes

RPAP yes

rescue_flag yes

timer yes

powman yes

swcore yes

psm yes

then starts the power sequencer

RO 0x0

16 HAD_POR: Last reset was from the power-on reset

This resets:

double_tap flag yes

DP yes

RPAP yes

rescue_flag yes

timer yes

powman yes

swcore yes

psm yes

then starts the power sequencer

RO 0x0

15:5 Reserved. - -

4 RESCUE_FLAG: This is set by a rescue reset from the RP-AP.

Its purpose is to halt before the bootrom before booting from flash in order to

recover from a boot lock-up.

The debugger can then attach once the bootrom has been halted and flash

some working code that does not lock up.

WC 0x0

3:1 Reserved. - -

0 DOUBLE_TAP: This flag is set by double-tapping RUN. It tells bootcode to go

into the bootloader.

RW 0x0

POWMAN: WDSEL Register

Offset: 0x30

Description

Allows a watchdog reset to reset the internal state of powman in addition to the power-on state machine (PSM).

Note that powman ignores watchdog resets that do not select at least the CLOCKS stage or earlier stages in the

PSM. If using these bits, it’s recommended to set PSM_WDSEL to all-ones in addition to the desired bits in this

register. Failing to select CLOCKS or earlier will result in the POWMAN_WDSEL register having no effect.

Table 487. WDSEL

Register
Bits Description Type Reset

31:13 Reserved. - -

12 RESET_PSM: If set to 1, a watchdog reset will run the full power-on state

machine (PSM) sequence

From a user perspective it is the same as setting RSM_WDSEL_PROC_COLD

From a hardware debug perspective it has the same effect as a reset from a

glitch detector

RW 0x0

11:9 Reserved. - -
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Bits Description Type Reset

8 RESET_SWCORE: If set to 1, a watchdog reset will reset the switched core

power domain and run the full power-on state machine (PSM) sequence

From a user perspective it is the same as setting RSM_WDSEL_PROC_COLD

From a hardware debug perspective it has the same effect as a power-on

reset for the switched core power domain

RW 0x0

7:5 Reserved. - -

4 RESET_POWMAN: If set to 1, a watchdog reset will restore powman defaults,

reset the timer, reset the switched core power domain

and run the full power-on state machine (PSM) sequence

This relies on clk_ref running. Use reset_powman_async if that may not be true

RW 0x0

3:1 Reserved. - -

0 RESET_POWMAN_ASYNC: If set to 1, a watchdog reset will restore powman

defaults, reset the timer,

reset the switched core domain and run the full power-on state machine

(PSM) sequence

This does not rely on clk_ref running

RW 0x0

POWMAN: SEQ_CFG Register

Offset: 0x34

Description

For configuration of the power sequencer

Writes are ignored while POWMAN_STATE_CHANGING=1

Table 488. SEQ_CFG

Register
Bits Description Type Reset

31:21 Reserved. - -

20 USING_FAST_POWCK: 0 indicates the POWMAN clock is running from the low

power oscillator (32kHz)

1 indicates the POWMAN clock is running from the reference clock (2-50MHz)

RO 0x1

19:18 Reserved. - -

17 USING_BOD_LP: Indicates the brown-out detector (BOD) mode

0 = BOD high power mode which is the default

1 = BOD low power mode

RO 0x0

16 USING_VREG_LP: Indicates the voltage regulator (VREG) mode

0 = VREG high power mode which is the default

1 = VREG low power mode

RO 0x0

15:13 Reserved. - -

12 USE_FAST_POWCK: selects the reference clock (clk_ref) as the source of the

POWMAN clock when switched-core is powered. The POWMAN clock always

switches to the slow clock (lposc) when switched-core is powered down

because the fast clock stops running.

0 always run the POWMAN clock from the slow clock (lposc)

1 run the POWMAN clock from the fast clock when available

This setting takes effect when a power up sequence is next run

RW 0x1

11:9 Reserved. - -
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Bits Description Type Reset

8 RUN_LPOSC_IN_LP: Set to 0 to stop the low power osc when the switched-

core is powered down, which is unwise if using it to clock the timer

This setting takes effect when the swcore is next powered down

RW 0x1

7 USE_BOD_HP: Set to 0 to prevent automatic switching to bod high power

mode when switched-core is powered up

This setting takes effect when the swcore is next powered up

RW 0x1

6 USE_BOD_LP: Set to 0 to prevent automatic switching to bod low power mode

when switched-core is powered down

This setting takes effect when the swcore is next powered down

RW 0x1

5 USE_VREG_HP: Set to 0 to prevent automatic switching to vreg high power

mode when switched-core is powered up

This setting takes effect when the swcore is next powered up

RW 0x1

4 USE_VREG_LP: Set to 0 to prevent automatic switching to vreg low power

mode when switched-core is powered down

This setting takes effect when the swcore is next powered down

RW 0x1

3:2 Reserved. - -

1 HW_PWRUP_SRAM0: Specifies the power state of SRAM0 when powering up

swcore from a low power state (P1.xxx) to a high power state (P0.0xx).

0=power-up

1=no change

RW 0x0

0 HW_PWRUP_SRAM1: Specifies the power state of SRAM1 when powering up

swcore from a low power state (P1.xxx) to a high power state (P0.0xx).

0=power-up

1=no change

RW 0x0

POWMAN: STATE Register

Offset: 0x38

Description

This register controls the power state of the 4 power domains.

The current power state is indicated in POWMAN_STATE_CURRENT which is read-only.

To change the state, write to POWMAN_STATE_REQ.

The coding of POWMAN_STATE_CURRENT & POWMAN_STATE_REQ corresponds to the power states

defined in the datasheet:

bit 3 = SWCORE

bit 2 = XIP cache

bit 1 = SRAM0

bit 0 = SRAM1

0 = powered up

1 = powered down

When POWMAN_STATE_REQ is written, the POWMAN_STATE_WAITING flag is set while the Power Manager

determines what is required. If an invalid transition is requested the Power Manager will still register the request in

POWMAN_STATE_REQ but will also set the POWMAN_BAD_REQ flag. It will then implement the power-up requests

and ignore the power down requests. To do nothing would risk entering an unrecoverable lock-up state. Invalid

requests are: any combination of power up and power down requests any request that results in swcore being

powered and xip unpowered If the request is to power down the switched-core domain then

POWMAN_STATE_WAITING stays active until the processors halt. During this time the POWMAN_STATE_REQ field

can be re-written to change or cancel the request. When the power state transition begins the

POWMAN_STATE_WAITING_flag is cleared, the POWMAN_STATE_CHANGING flag is set and POWMAN register

writes are ignored until the transition completes.
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Table 489. STATE

Register
Bits Description Type Reset

31:14 Reserved. - -

13 CHANGING: Indicates a power state change is in progress RO 0x0

12 WAITING: Indicates the power manager has received a state change request

and is waiting for other actions to complete before executing it

RO 0x0

11 BAD_HW_REQ: Invalid hardware initiated state request, power up requests

actioned, power down requests ignored

RO 0x0

10 BAD_SW_REQ: Invalid software initiated state request ignored RO 0x0

9 PWRUP_WHILE_WAITING: Indicates that a power state change request was

ignored because of a pending power state change request

WC 0x0

8 REQ_IGNORED: Indicates that a software state change request was ignored

because it clashed with an ongoing hardware or debugger request

WC 0x0

7:4 REQ: This is written by software or hardware to request a new power state RW 0x0

3:0 CURRENT: Indicates the current power state RO 0xf

POWMAN: POW_FASTDIV Register

Offset: 0x3c

Table 490.

POW_FASTDIV

Register

Bits Description Type Reset

31:11 Reserved. - -

10:0 divides the POWMAN clock to provide a tick for the delay module and state

machines

when clk_pow is running from the slow clock it is not divided

when clk_pow is running from the fast clock it is divided by tick_div

RW 0x040

POWMAN: POW_DELAY Register

Offset: 0x40

Description

power state machine delays

Table 491.

POW_DELAY Register
Bits Description Type Reset

31:16 Reserved. - -

15:8 SRAM_STEP: timing between the sram0 and sram1 power state machine

steps

measured in units of the powman tick period (>=1us), 0 gives a delay of 1 unit

RW 0x20

7:4 XIP_STEP: timing between the xip power state machine steps

measured in units of the lposc period, 0 gives a delay of 1 unit

RW 0x1

3:0 SWCORE_STEP: timing between the swcore power state machine steps

measured in units of the lposc period, 0 gives a delay of 1 unit

RW 0x1

POWMAN: EXT_CTRL0 Register

Offset: 0x44

Description

Configures a gpio as a power mode aware control output
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Table 492. EXT_CTRL0

Register
Bits Description Type Reset

31:15 Reserved. - -

14 LP_EXIT_STATE: output level when exiting the low power state RW 0x0

13 LP_ENTRY_STATE: output level when entering the low power state RW 0x0

12 INIT_STATE RW 0x0

11:9 Reserved. - -

8 INIT RW 0x0

7:6 Reserved. - -

5:0 GPIO_SELECT: selects from gpio 0→30

set to 31 to disable this feature

RW 0x3f

POWMAN: EXT_CTRL1 Register

Offset: 0x48

Description

Configures a gpio as a power mode aware control output

Table 493. EXT_CTRL1

Register
Bits Description Type Reset

31:15 Reserved. - -

14 LP_EXIT_STATE: output level when exiting the low power state RW 0x0

13 LP_ENTRY_STATE: output level when entering the low power state RW 0x0

12 INIT_STATE RW 0x0

11:9 Reserved. - -

8 INIT RW 0x0

7:6 Reserved. - -

5:0 GPIO_SELECT: selects from gpio 0→30

set to 31 to disable this feature

RW 0x3f

POWMAN: EXT_TIME_REF Register

Offset: 0x4c

Description

Select a GPIO to use as a time reference, the source can be used to drive the low power clock at 32kHz, or to

provide a 1ms tick to the timer, or provide a 1Hz tick to the timer. The tick selection is controlled by the

POWMAN_TIMER register.

Table 494.

EXT_TIME_REF

Register

Bits Description Type Reset

31:5 Reserved. - -

4 DRIVE_LPCK: Use the selected GPIO to drive the 32kHz low power clock, in

place of LPOSC. This field must only be written when

POWMAN_TIMER_RUN=0

RW 0x0

3:2 Reserved. - -
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Bits Description Type Reset

1:0 SOURCE_SEL: 0 → gpio12

1 → gpio20

2 → gpio14

3 → gpio22

RW 0x0

Enumerated values:

0x0 → gpio12

0x1 → gpio20

0x2 → gpio14

0x3 → gpio22

POWMAN: LPOSC_FREQ_KHZ_INT Register

Offset: 0x50

Description

Informs the AON Timer of the integer component of the clock frequency when running off the LPOSC.

Table 495.

LPOSC_FREQ_KHZ_IN

T Register

Bits Description Type Reset

31:6 Reserved. - -

5:0 Integer component of the LPOSC or GPIO clock source frequency in kHz.

Default = 32 This field must only be written when POWMAN_TIMER_RUN=0 or

POWMAN_TIMER_USING_XOSC=1

RW 0x20

POWMAN: LPOSC_FREQ_KHZ_FRAC Register

Offset: 0x54

Description

Informs the AON Timer of the fractional component of the clock frequency when running off the LPOSC.

Table 496.

LPOSC_FREQ_KHZ_FR

AC Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 Fractional component of the LPOSC or GPIO clock source frequency in kHz.

Default = 0.768 This field must only be written when POWMAN_TIMER_RUN=0

or POWMAN_TIMER_USING_XOSC=1

RW 0xc49c

POWMAN: XOSC_FREQ_KHZ_INT Register

Offset: 0x58

Description

Informs the AON Timer of the integer component of the clock frequency when running off the XOSC.

RP2350 Datasheet

6.4. Power Management (POWMAN) Registers 468



Table 497.

XOSC_FREQ_KHZ_INT

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 Integer component of the XOSC frequency in kHz. Default = 12000 Must be >1

This field must only be written when POWMAN_TIMER_RUN=0 or

POWMAN_TIMER_USING_XOSC=0

RW 0x2ee0

POWMAN: XOSC_FREQ_KHZ_FRAC Register

Offset: 0x5c

Description

Informs the AON Timer of the fractional component of the clock frequency when running off the XOSC.

Table 498.

XOSC_FREQ_KHZ_FRA

C Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 Fractional component of the XOSC frequency in kHz. This field must only be

written when POWMAN_TIMER_RUN=0 or POWMAN_TIMER_USING_XOSC=0

RW 0x0000

POWMAN: SET_TIME_63TO48 Register

Offset: 0x60

Table 499.

SET_TIME_63TO48

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 For setting the time, do not use for reading the time, use

POWMAN_READ_TIME_UPPER and POWMAN_READ_TIME_LOWER. This field

must only be written when POWMAN_TIMER_RUN=0

RW 0x0000

POWMAN: SET_TIME_47TO32 Register

Offset: 0x64

Table 500.

SET_TIME_47TO32

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 For setting the time, do not use for reading the time, use

POWMAN_READ_TIME_UPPER and POWMAN_READ_TIME_LOWER. This field

must only be written when POWMAN_TIMER_RUN=0

RW 0x0000

POWMAN: SET_TIME_31TO16 Register

Offset: 0x68

Table 501.

SET_TIME_31TO16

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 For setting the time, do not use for reading the time, use

POWMAN_READ_TIME_UPPER and POWMAN_READ_TIME_LOWER. This field

must only be written when POWMAN_TIMER_RUN=0

RW 0x0000

POWMAN: SET_TIME_15TO0 Register

Offset: 0x6c
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Table 502.

SET_TIME_15TO0

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 For setting the time, do not use for reading the time, use

POWMAN_READ_TIME_UPPER and POWMAN_READ_TIME_LOWER. This field

must only be written when POWMAN_TIMER_RUN=0

RW 0x0000

POWMAN: READ_TIME_UPPER Register

Offset: 0x70

Table 503.

READ_TIME_UPPER

Register

Bits Description Type Reset

31:0 For reading bits 63:32 of the timer. When reading all 64 bits it is possible for

the LOWER count to rollover during the read. It is recommended to read

UPPER, then LOWER, then re-read UPPER and, if it has changed, re-read

LOWER.

RO 0x00000000

POWMAN: READ_TIME_LOWER Register

Offset: 0x74

Table 504.

READ_TIME_LOWER

Register

Bits Description Type Reset

31:0 For reading bits 31:0 of the timer. RO 0x00000000

POWMAN: ALARM_TIME_63TO48 Register

Offset: 0x78

Table 505.

ALARM_TIME_63TO48

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 This field must only be written when POWMAN_ALARM_ENAB=0 RW 0x0000

POWMAN: ALARM_TIME_47TO32 Register

Offset: 0x7c

Table 506.

ALARM_TIME_47TO32

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 This field must only be written when POWMAN_ALARM_ENAB=0 RW 0x0000

POWMAN: ALARM_TIME_31TO16 Register

Offset: 0x80

Table 507.

ALARM_TIME_31TO16

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 This field must only be written when POWMAN_ALARM_ENAB=0 RW 0x0000

POWMAN: ALARM_TIME_15TO0 Register

Offset: 0x84

RP2350 Datasheet

6.4. Power Management (POWMAN) Registers 470



Table 508.

ALARM_TIME_15TO0

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 This field must only be written when POWMAN_ALARM_ENAB=0 RW 0x0000

POWMAN: TIMER Register

Offset: 0x88

Table 509. TIMER

Register
Bits Description Type Reset

31:20 Reserved. - -

19 USING_GPIO_1HZ: Timer is synchronised to a 1hz gpio source RO 0x0

18 USING_GPIO_1KHZ: Timer is running from a 1khz gpio source RO 0x0

17 USING_LPOSC: Timer is running from lposc RO 0x0

16 USING_XOSC: Timer is running from xosc RO 0x0

15:14 Reserved. - -

13 USE_GPIO_1HZ: Selects the gpio source as the reference for the sec counter.

The msec counter will continue to use the lposc or xosc reference.

RW 0x0

12:11 Reserved. - -

10 USE_GPIO_1KHZ: switch to gpio as the source of the 1kHz timer tick SC 0x0

9 USE_XOSC: switch to xosc as the source of the 1kHz timer tick SC 0x0

8 USE_LPOSC: Switch to lposc as the source of the 1kHz timer tick SC 0x0

7 Reserved. - -

6 ALARM: Alarm has fired. Write to 1 to clear the alarm. WC 0x0

5 PWRUP_ON_ALARM: Alarm wakes the chip from low power mode RW 0x0

4 ALARM_ENAB: Enables the alarm. The alarm must be disabled while writing

the alarm time.

RW 0x0

3 Reserved. - -

2 CLEAR: Clears the timer, does not disable the timer and does not affect the

alarm. This control can be written at any time.

SC 0x0

1 RUN: Timer enable. Setting this bit causes the timer to begin counting up from

its current value. Clearing this bit stops the timer from counting.

Before enabling the timer, set the POWMAN_LPOSC_FREQ* and

POWMAN_XOSC_FREQ* registers to configure the count rate, and initialise the

current time by writing to SET_TIME_63TO48 through SET_TIME_15TO0. You

must not write to the SET_TIME_x registers when the timer is running.

Once configured, start the timer by setting POWMAN_TIMER_RUN=1. This will

start the timer running from the LPOSC. When the XOSC is available switch the

reference clock to XOSC then select it as the timer clock by setting

POWMAN_TIMER_USE_XOSC=1

RW 0x0

0 NONSEC_WRITE: Control whether Non-secure software can write to the timer

registers. All other registers are hardwired to be inaccessible to Non-secure.

RW 0x0

POWMAN: PWRUP0 Register
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Offset: 0x8c

Description

4 GPIO powerup events can be configured to wake the chip up from a low power state.

The pwrups are level/edge sensitive and can be set to trigger on a high/rising or low/falling event

The number of gpios available depends on the package option. An invalid selection will be ignored

source = 0 selects gpio0

1. +

2. + source = 47 selects gpio47

source = 48 selects qspi_ss

source = 49 selects qspi_sd0

source = 50 selects qspi_sd1

source = 51 selects qspi_sd2

source = 52 selects qspi_sd3

source = 53 selects qspi_sclk

level = 0 triggers the pwrup when the source is low

level = 1 triggers the pwrup when the source is high

Table 510. PWRUP0

Register
Bits Description Type Reset

31:11 Reserved. - -

10 RAW_STATUS: Value of selected gpio pin (only if enable == 1) RO 0x0

9 STATUS: Status of gpio wakeup. Write to 1 to clear a latched edge detect. WC 0x0

8 MODE: Edge or level detect. Edge will detect a 0 to 1 transition (or 1 to 0

transition). Level will detect a 1 or 0. Both types of event get latched into the

current_pwrup_req register.

RW 0x0

Enumerated values:

0x0 → level

0x1 → edge

7 DIRECTION RW 0x0

Enumerated values:

0x0 → low_falling

0x1 → high_rising

6 ENABLE: Set to 1 to enable the wakeup source. Set to 0 to disable the wakeup

source and clear a pending wakeup event.

If using edge detect a latched edge needs to be cleared by writing 1 to the

status register also.

RW 0x0

5:0 SOURCE RW 0x3f

POWMAN: PWRUP1 Register

Offset: 0x90

Description

4 GPIO powerup events can be configured to wake the chip up from a low power state.

The pwrups are level/edge sensitive and can be set to trigger on a high/rising or low/falling event

The number of gpios available depends on the package option. An invalid selection will be ignored

source = 0 selects gpio0

1. +
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2. + source = 47 selects gpio47

source = 48 selects qspi_ss

source = 49 selects qspi_sd0

source = 50 selects qspi_sd1

source = 51 selects qspi_sd2

source = 52 selects qspi_sd3

source = 53 selects qspi_sclk

level = 0 triggers the pwrup when the source is low

level = 1 triggers the pwrup when the source is high

Table 511. PWRUP1

Register
Bits Description Type Reset

31:11 Reserved. - -

10 RAW_STATUS: Value of selected gpio pin (only if enable == 1) RO 0x0

9 STATUS: Status of gpio wakeup. Write to 1 to clear a latched edge detect. WC 0x0

8 MODE: Edge or level detect. Edge will detect a 0 to 1 transition (or 1 to 0

transition). Level will detect a 1 or 0. Both types of event get latched into the

current_pwrup_req register.

RW 0x0

Enumerated values:

0x0 → level

0x1 → edge

7 DIRECTION RW 0x0

Enumerated values:

0x0 → low_falling

0x1 → high_rising

6 ENABLE: Set to 1 to enable the wakeup source. Set to 0 to disable the wakeup

source and clear a pending wakeup event.

If using edge detect a latched edge needs to be cleared by writing 1 to the

status register also.

RW 0x0

5:0 SOURCE RW 0x3f

POWMAN: PWRUP2 Register

Offset: 0x94

Description

4 GPIO powerup events can be configured to wake the chip up from a low power state.

The pwrups are level/edge sensitive and can be set to trigger on a high/rising or low/falling event

The number of gpios available depends on the package option. An invalid selection will be ignored

source = 0 selects gpio0

1. +

2. + source = 47 selects gpio47

source = 48 selects qspi_ss

source = 49 selects qspi_sd0

source = 50 selects qspi_sd1

source = 51 selects qspi_sd2

source = 52 selects qspi_sd3

source = 53 selects qspi_sclk

level = 0 triggers the pwrup when the source is low
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level = 1 triggers the pwrup when the source is high

Table 512. PWRUP2

Register
Bits Description Type Reset

31:11 Reserved. - -

10 RAW_STATUS: Value of selected gpio pin (only if enable == 1) RO 0x0

9 STATUS: Status of gpio wakeup. Write to 1 to clear a latched edge detect. WC 0x0

8 MODE: Edge or level detect. Edge will detect a 0 to 1 transition (or 1 to 0

transition). Level will detect a 1 or 0. Both types of event get latched into the

current_pwrup_req register.

RW 0x0

Enumerated values:

0x0 → level

0x1 → edge

7 DIRECTION RW 0x0

Enumerated values:

0x0 → low_falling

0x1 → high_rising

6 ENABLE: Set to 1 to enable the wakeup source. Set to 0 to disable the wakeup

source and clear a pending wakeup event.

If using edge detect a latched edge needs to be cleared by writing 1 to the

status register also.

RW 0x0

5:0 SOURCE RW 0x3f

POWMAN: PWRUP3 Register

Offset: 0x98

Description

4 GPIO powerup events can be configured to wake the chip up from a low power state.

The pwrups are level/edge sensitive and can be set to trigger on a high/rising or low/falling event

The number of gpios available depends on the package option. An invalid selection will be ignored

source = 0 selects gpio0

1. +

2. + source = 47 selects gpio47

source = 48 selects qspi_ss

source = 49 selects qspi_sd0

source = 50 selects qspi_sd1

source = 51 selects qspi_sd2

source = 52 selects qspi_sd3

source = 53 selects qspi_sclk

level = 0 triggers the pwrup when the source is low

level = 1 triggers the pwrup when the source is high

Table 513. PWRUP3

Register
Bits Description Type Reset

31:11 Reserved. - -

10 RAW_STATUS: Value of selected gpio pin (only if enable == 1) RO 0x0

9 STATUS: Status of gpio wakeup. Write to 1 to clear a latched edge detect. WC 0x0
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Bits Description Type Reset

8 MODE: Edge or level detect. Edge will detect a 0 to 1 transition (or 1 to 0

transition). Level will detect a 1 or 0. Both types of event get latched into the

current_pwrup_req register.

RW 0x0

Enumerated values:

0x0 → level

0x1 → edge

7 DIRECTION RW 0x0

Enumerated values:

0x0 → low_falling

0x1 → high_rising

6 ENABLE: Set to 1 to enable the wakeup source. Set to 0 to disable the wakeup

source and clear a pending wakeup event.

If using edge detect a latched edge needs to be cleared by writing 1 to the

status register also.

RW 0x0

5:0 SOURCE RW 0x3f

POWMAN: CURRENT_PWRUP_REQ Register

Offset: 0x9c

Table 514.

CURRENT_PWRUP_RE

Q Register

Bits Description Type Reset

31:7 Reserved. - -

6:0 Indicates current powerup request state

pwrup events can be cleared by removing the enable from the pwrup register.

The alarm pwrup req can be cleared by clearing timer.alarm_enab

0 = chip reset, for the source of the last reset see POWMAN_CHIP_RESET

1 = pwrup0

2 = pwrup1

3 = pwrup2

4 = pwrup3

5 = coresight_pwrup

6 = alarm_pwrup

RO 0x00

POWMAN: LAST_SWCORE_PWRUP Register

Offset: 0xa0
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Table 515.

LAST_SWCORE_PWRU

P Register

Bits Description Type Reset

31:7 Reserved. - -

6:0 Indicates which pwrup source triggered the last switched-core power up

0 = chip reset, for the source of the last reset see POWMAN_CHIP_RESET

1 = pwrup0

2 = pwrup1

3 = pwrup2

4 = pwrup3

5 = coresight_pwrup

6 = alarm_pwrup

RO 0x00

POWMAN: DBG_PWRCFG Register

Offset: 0xa4

Table 516.

DBG_PWRCFG

Register

Bits Description Type Reset

31:1 Reserved. - -

0 IGNORE: Ignore pwrup req from debugger. If pwrup req is asserted then this

will prevent power down and set powerdown blocked. Set ignore to stop

paying attention to pwrup_req

RW 0x0

POWMAN: BOOTDIS Register

Offset: 0xa8

Description

Tell the bootrom to ignore the BOOT0..3 registers following the next RSM reset (e.g. the next core power down/up).

If an early boot stage has soft-locked some OTP pages in order to protect their contents from later stages, there is a risk

that Secure code running at a later stage can unlock the pages by powering the core up and down.

This register can be used to ensure that the bootloader runs as normal on the next power up, preventing Secure code at

a later stage from accessing OTP in its unlocked state.

Should be used in conjunction with the OTP BOOTDIS register.

Table 517. BOOTDIS

Register
Bits Description Type Reset

31:2 Reserved. - -

1 NEXT: This flag always ORs writes into its current contents. It can be set but

not cleared by software.

The BOOTDIS_NEXT bit is OR’d into the BOOTDIS_NOW bit when the core is

powered down. Simultaneously, the BOOTDIS_NEXT bit is cleared. Setting this

bit means that the BOOT0..3 registers will be ignored following the next reset

of the RSM by powman.

This flag should be set by an early boot stage that has soft-locked OTP pages,

to prevent later stages from unlocking it by power cycling.

RW 0x0
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Bits Description Type Reset

0 NOW: When powman resets the RSM, the current value of BOOTDIS_NEXT is

OR’d into BOOTDIS_NOW, and BOOTDIS_NEXT is cleared.

The bootrom checks this flag before reading the BOOT0..3 registers. If it is set,

the bootrom clears it, and ignores the BOOT registers. This prevents Secure

software from diverting the boot path before a bootloader has had the chance

to soft lock OTP pages containing sensitive data.

WC 0x0

POWMAN: DBGCONFIG Register

Offset: 0xac

Table 518.

DBGCONFIG Register
Bits Description Type Reset

31:4 Reserved. - -

3:0 DP_INSTID: Configure DP instance ID for SWD multidrop selection.

Recommend that this is NOT changed until you require debug access in multi-

chip environment

RW 0x0

POWMAN: SCRATCH0, SCRATCH1, …, SCRATCH6, SCRATCH7 Registers

Offsets: 0xb0, 0xb4, …, 0xc8, 0xcc

Table 519. SCRATCH0,

SCRATCH1, …,

SCRATCH6,

SCRATCH7 Registers

Bits Description Type Reset

31:0 Scratch register. Information persists in low power mode RW 0x00000000

POWMAN: BOOT0, BOOT1, BOOT2, BOOT3 Registers

Offsets: 0xd0, 0xd4, 0xd8, 0xdc

Table 520. BOOT0,

BOOT1, BOOT2,

BOOT3 Registers

Bits Description Type Reset

31:0 Scratch register. Information persists in low power mode RW 0x00000000

POWMAN: INTR Register

Offset: 0xe0

Description

Raw Interrupts

Table 521. INTR

Register
Bits Description Type Reset

31:4 Reserved. - -

3 PWRUP_WHILE_WAITING: Source is state.pwrup_while_waiting RO 0x0

2 STATE_REQ_IGNORED: Source is state.req_ignored RO 0x0

1 TIMER RO 0x0

0 VREG_OUTPUT_LOW WC 0x0

POWMAN: INTE Register

Offset: 0xe4
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Description

Interrupt Enable

Table 522. INTE

Register
Bits Description Type Reset

31:4 Reserved. - -

3 PWRUP_WHILE_WAITING: Source is state.pwrup_while_waiting RW 0x0

2 STATE_REQ_IGNORED: Source is state.req_ignored RW 0x0

1 TIMER RW 0x0

0 VREG_OUTPUT_LOW RW 0x0

POWMAN: INTF Register

Offset: 0xe8

Description

Interrupt Force

Table 523. INTF

Register
Bits Description Type Reset

31:4 Reserved. - -

3 PWRUP_WHILE_WAITING: Source is state.pwrup_while_waiting RW 0x0

2 STATE_REQ_IGNORED: Source is state.req_ignored RW 0x0

1 TIMER RW 0x0

0 VREG_OUTPUT_LOW RW 0x0

POWMAN: INTS Register

Offset: 0xec

Description

Interrupt status after masking & forcing

Table 524. INTS

Register
Bits Description Type Reset

31:4 Reserved. - -

3 PWRUP_WHILE_WAITING: Source is state.pwrup_while_waiting RO 0x0

2 STATE_REQ_IGNORED: Source is state.req_ignored RO 0x0

1 TIMER RO 0x0

0 VREG_OUTPUT_LOW RO 0x0

6.5. Power Reduction Strategies

RP2350 retains the SLEEP and DORMANT states for dynamic power control from RP2040. It extends these states by

introducing power domains (Section 6.2.1), which allow power to be removed from various components on chip,

virtually eliminating the leakage currents, and allowing lower power modes to be supported.
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6.5.1. Top-level Clock Gates

Each clock domain (for example, the system clock) may drive a large number of distinct hardware blocks, not all of

which may be required at once. To avoid unnecessary power dissipation, each individual endpoint of each clock (for

example, the UART system clock input) may be disabled at any time.

Enabling and disabling a clock gate is glitch-free. If a peripheral clock is temporarily disabled, and subsequently re-

enabled, the peripheral will be in the same state as prior to the clock being disabled. No reset or reinitialisation should

be required.

Clock gates are controlled by two sets of registers: the WAKE_ENx registers (starting at WAKE_EN0) and SLEEP_ENx registers

(starting at SLEEP_EN0). These two sets of registers are identical at the bit level, each possessing a flag to control each

clock endpoint. The WAKE_EN registers specify which clocks are enabled whilst the system is awake, and the SLEEP_ENx

registers select which clocks are enabled while the processor is in the SLEEP state (Section 6.5.2).

The two processors do not have externally-controllable clock gates. Instead, the processors gate the clocks of their

subsystems autonomously, based on execution of WFI/WFE instructions, and external Event and IRQ signals.

6.5.2. SLEEP State

RP2350 enters the SLEEP state when all of the following are true:

• Both processors are asleep (e.g. in a WFE or WFI instruction)

• The system DMA has no outstanding transfers on any channel

RP2350 exits the SLEEP state when either processor is awoken by an interrupt.

When in the SLEEP state, the top-level clock gates are masked by the SLEEP_ENx registers (starting at SLEEP_EN0), rather

than the WAKE_ENx registers (starting at WAKE_EN0). This permits more aggressive pruning of the clock tree when the

processors are asleep.

 NOTE

Though it is possible for a clock to be enabled during SLEEP and disabled outside of SLEEP, this is generally not

useful.

For example, if the system is sleeping until a character interrupt from a UART, the entire system except for the UART

can be clock-gated (SLEEP_ENx = all-zeroes except for CLK_SYS_UART0 and CLK_PERI_UART0). This includes system

infrastructure such as the bus fabric.

When the UART asserts its interrupt and wakes a processor, RP2350 leaves SLEEP mode and switches back to the

WAKE_ENx clock mask. At the minimum, this should include the bus fabric and the memory devices containing the

processor’s stack and interrupt vectors.

A system-level clock request handshake holds the processors off the bus until the clocks are re-enabled.

6.5.3. DORMANT State

The DORMANT state is a true zero-dynamic-power sleep state, where all clocks (and all oscillators) are disabled. The

system can awake from the DORMANT state upon a GPIO event (high/low level or rising/falling edge), or an AON Timer

alarm: this restarts one of the oscillators (either ring oscillator or crystal oscillator) and ungates the oscillator output

once it is stable. System state is retained, so code execution resumes immediately upon leaving the DORMANT state.

If relying on the AON Timer (Section 12.10) to wake from the DORMANT state, the AON Timer must run from the LPOSC

or an external clock source. The AON Timer accepts clock frequencies as low as 1Hz.

DORMANT does not halt PLLs. To avoid unnecessary power dissipation, software should power down PLLs before

entering the DORMANT state, and power up and reconfigure the PLLs again after exiting.
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If you halt the crystal oscillator (XOSC), you must also halt the PLLs to prevent them losing lock when their input

reference clock stops. The PLL VCO may behave erratically when the frequency reference is lost, such as increasing to

a very high frequency. Reconfigure and re-enable the PLLs after the XOSC starts again. Do not attempt to run clocks

from the PLLs while the XOSC is stopped.

The DORMANT state is entered by writing a keyword to the DORMANT register in whichever oscillator is active: ring

oscillator (Section 8.3) or crystal oscillator (Section 8.2). If both are active, the one providing the processor clock must

be stopped last because it will stop software from executing.

6.5.3.1. Waking from the DORMANT State

The system exits the DORMANT state on any of the following events:

• an alarm from the AON Timer which causes TIMER.ALARM to assert

• the assertion of an interrupt from GPIO Bank 0 to the DORMANT_WAKE interrupt destination

• the assertion of an interrupt from GPIO Bank 1 to the DORMANT_WAKE interrupt destination

When waking from the AON Timer you do not have to enable the IRQ output from POWMAN. It is sufficient for the timer

to fire, without being mapped to an interrupt output. Any AON Timer alarm comparison event which causes

TIMER.ALARM to assert causes the system to exit the DORMANT state. It is the actual alarm event which causes the

exit, not the TIMER.ALARM status; if you enter the DORMANT state with the TIMER.ALARM status set to 1, but the timer

alarm comparison logic disabled by TIMER.ALARM_ENAB, you will not exit the DORMANT state.

The GPIO Bank registers have interrupt enable registers for interrupts targeting the DORMANT mode wake logic, such

as DORMANT_WAKE_INTE0. These are identical to the interrupt enable registers for interrupts targeting the processors,

such as PROC0_INTE0.

Waking from the DORMANT state restarts the oscillator which was disabled by entry to the DORMANT state. It does not

restart any other oscillators, or change any system-level clock configuration.

6.5.4. Memory Periphery Power Down

The main system memories (SRAM0 → SRAM9, mapped to bus addresses 0x20000000 to 0x20081fff), as well as the USB

DPRAM, can be partially powered down via the MEMPOWERDOWN register in the SYSCFG registers (see Section

12.15.2). This powers down the analogue circuitry used to access the SRAM storage array (the periphery of the SRAM)

but the storage array itself remains powered. Memories retain their current contents, but cannot be accessed. Static

power is reduced.

 CAUTION

Memories must not be accessed when powered down. Doing so can corrupt memory contents.

When powering a memory back up, a 20ns delay is required before accessing the memory again.

The XIP cache (see Section 4.4) can also be powered down, with CTRL.POWER_DOWN. The XIP hardware will not

generate cache accesses whilst the cache is powered down. Note that this is unlikely to produce a net power savings if

code continues to execute from XIP, due to the comparatively high voltages and switching capacitances of the external

QSPI bus.

6.5.5. Full Memory Power Down

RP2350 can completely power down its internal SRAM. Unlike the memory periphery power down described in Section

6.5.4, this completely disconnects the SRAM from the power supply, reducing static power to near zero.

Contents are lost when fully powering down memories. When you power memories up again following a power down,
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the contents is completely undefined.

There are three distinct SRAM power domains:

SRAM0

Contains main system SRAM for addresses 0x20000000 through 0x2003ffff (SRAM banks 0 through 3).

SRAM1

Contains main system SRAM for addresses 0x20040000 through 0x20081fff (SRAM banks 4 through 9).

XIP

Contains the XIP cache and the boot RAM.

The XIP power domain is always powered when the switched core domain is powered. The switched core domain is the

domain which includes all core logic, such as processors, bus fabric and peripherals. This means the memories in this

domain are always powered whenever software is running.

Besides powering memory down to save power, you can also leave memories powered up whilst powering down the

switched core domain. This retains program state in SRAM while eliminating static power dissipation in core logic.

For more information see:

• Chapter 4 for a list of RP2350 memory resources, including main system SRAM, the XIP cache and boot RAM

• Section 6.2.1 for the definition of core power domains, including the memory power domains enumerated above

• Section 6.2.2 for the list of supported memory power states

• Section 6.2.3 for information on initiating power state transitions to power memories up or down

• Section 14.9.7.2 for typical power consumption in low-power states including memory power down

6.5.6. Programmer’s Model

6.5.6.1. Sleep

The hello_sleep example (hello_sleep.c in the pico-playground GitHub repository) demonstrates sleep mode. The

hello_sleep application (and underlying functions) takes the following steps:

1. Switches all clocks in the system to run from XOSC.

2. Configures an alarm in the AON Timer for 10 seconds in the future.

3. Sets the AON Timer clock as the only clock running in sleep mode using the SLEEP_ENx registers (see SLEEP_EN0).

4. Enables deep sleep in the processor.

5. Calls __wfi on processor, which will put the processor into deep sleep until woken by the AON Timer interrupt.

6. After 10 seconds, the AON Timer interrupt clears the alarm and then calls a user supplied callback function.

7. The callback function ends the example application.

 NOTE

To enter sleep mode, you must enable deep sleep on both proc0 and proc1, call __wfi, and ensure the DMA is

stopped.

hello_sleep makes use of functions in pico_sleep of the Pico Extras. In particular, sleep_goto_sleep_until puts the

processor to sleep until woken up by an AON Timer time assumed to be in the future.
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Pico Extras: https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c Lines 106 - 122

106 void sleep_goto_sleep_until(datetime_t *t, rtc_callback_t callback) {
107     // We should have already called the sleep_run_from_dormant_source function
108     assert(dormant_source_valid(_dormant_source));
109 
110     // Turn off all clocks when in sleep mode except for RTC
111     clocks_hw->sleep_en0 = CLOCKS_SLEEP_EN0_CLK_RTC_RTC_BITS;
112     clocks_hw->sleep_en1 = 0x0;
113 
114     rtc_set_alarm(t, callback);
115 
116     uint save = scb_hw->scr;
117     // Enable deep sleep at the proc
118     scb_hw->scr = save | M0PLUS_SCR_SLEEPDEEP_BITS;
119 
120     // Go to sleep
121     __wfi();
122 }

6.5.6.2. DORMANT

The hello_dormant example, hello_dormant.c in the pico-playground GitHub repository, demonstrates the DORMANT state.

The example takes the following steps:

1. Switches all clocks in the system to run from XOSC.

2. Configures a GPIO interrupt for the dormant_wake hardware, which can wake both the ROSC and XOSC from dormant

mode.

3. Puts the XOSC into dormant mode, which stops all processor execution (and all other clocked logic on the chip)

immediately.

4. When GPIO 10 goes high, the XOSC restarts and program execution continues.

hello_dormant uses sleep_goto_dormant_until_pin under the hood:

Pico Extras: https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c Lines 134 - 155

134 void sleep_goto_dormant_until_pin(uint gpio_pin, bool edge, bool high) {
135     bool low = !high;
136     bool level = !edge;
137 
138     // Configure the appropriate IRQ at IO bank 0
139     assert(gpio_pin < NUM_BANK0_GPIOS);
140 
141     uint32_t event = 0;
142 
143     if (level && low) event = IO_BANK0_DORMANT_WAKE_INTE0_GPIO0_LEVEL_LOW_BITS;
144     if (level && high) event = IO_BANK0_DORMANT_WAKE_INTE0_GPIO0_LEVEL_HIGH_BITS;
145     if (edge && high) event = IO_BANK0_DORMANT_WAKE_INTE0_GPIO0_EDGE_HIGH_BITS;
146     if (edge && low) event = IO_BANK0_DORMANT_WAKE_INTE0_GPIO0_EDGE_LOW_BITS;
147 
148     gpio_set_dormant_irq_enabled(gpio_pin, event, true);
149 
150     _go_dormant();
151     // Execution stops here until woken up
152 
153     // Clear the irq so we can go back to dormant mode again if we want
154     gpio_acknowledge_irq(gpio_pin, event);
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155 }
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Chapter 7. Resets

7.1. Overview

Resets are divided into three categories, each of which applies to a subset of RP2350:

Chip-level Resets

apply to the entire chip. Used to put the entire chip into a default state. These are initiated by hardware events, the

watchdog, or the debugger. When all chip level resets are de-asserted, the system resets are released and the

processors boot.

System Resets

apply to components essential to processor operation. System components have interdependencies, therefore their

resets are de-asserted in sequence by the Power-on State Machine (PSM). The full PSM sequence is triggered by

deassertion of chip-level resets. A full or partial sequence can be triggered by the watchdog or debugger. The

sequence culminates in processor boot.

Subsystem Resets

apply to components not essential for operation of the processors. The resets can be independently asserted by

writing to the RESETS registers and de-asserted by software, the watchdog, or the debugger.

The watchdog can be programmed to trigger any of the above categories.

7.2. Changes from RP2040

RP2350 retains all RP2040 chip-level reset features.

RP2350 adds the following features:

• new chip reset sources:

◦ glitch detector

◦ watchdog

◦ debugger

• new destinations:

◦ new power management components

RP2350 makes the following modifications to existing features:

• Modified the CHIP_RESET register, which records the source of the last chip level reset. In RP2040, CHIP_RESET was

stored in the LDO_POR register block. In RP2350, CHIP_RESET was extended and moved to the POWMAN register block,

which is in the new always-on power domain (AON).

• Renamed the brownout reset (BOR) registers to brownout detect (BOD), added functionality, and moved them to the

new POWlMAN register block.

• Added more system reset stages. To support this, added additional Power-on State Machine fields and rearranged

the existing fields.

• Added additional RESETS registers and rearranged the existing fields.

• Extended watchdog options to enable triggers for new resets.
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 NOTE

Watchdog scratch registers are not preserved when the watchdog triggers a chip-level reset. However, watchdog

scratch registers are preserved after a system or subsystem reset. For general purpose scratch registers that do not

reset after a chip-level reset, see the POWMAN register block Section 6.4, “Power Management (POWMAN) Registers”.

7.3. Chip Level Resets

Chip-level resets put the entire chip into a default state. These resets are only initiated by hardware events, the

debugger, or a watchdog timeout.

7.3.1. Chip-Level Reset table

Table 525, “List of chip-level reset causes” shows the components reset by each of the chip-level reset sources. A dash

(—) indicates no change caused by this source.

Table 525. List of

chip-level reset causes
Reset Source SW-DP AON Scratch POWMAN Power State Double Tap Rescue

POR reset reset hard reset → P0.0 reset reset

BOR reset reset hard reset → P0.0 reset reset

EXTERNAL RESET (RUN) reset reset hard reset → P0.0  —  reset

DEBUGGER RESET REQ  —   —  hard reset → P0.0  —  reset

DEBUGGER RESCUE  —   —  hard reset → P0.0  —  set

WATCHDOG POWMAN ASYNC RESET  —   —  hard reset → P0.0  —   — 

WATCHDOG POWMAN RESET  —   —  soft reset → P0.0  —   — 

WATCHDOG SWCORE RESET  —   —   —  → P0.0  —   — 

SWCORE POWERDOWN  —   —   —  → P0.x  —   — 

GLITCH_DETECTOR  —   —   —   —   —   — 

WATCHDOG RESET PSM  —   —   —   —   —   — 

All chip-level resets sources in the table also reset the Power-on State Machine (PSM). This asserts all of the system

resets downstream of the PSM. System resets includes low-level chip infrastructure like the system-level clock

generators, as well as the processor cold and warm reset domains.

All chip-level reset sources in the table also reset the system watchdog peripheral. This includes watchdog scratch

registers SCRATCH0 → SCRATCH7.

You can interpret the table columns as follows:

Reset Source

Indicates which of the events listed in Chip-level Reset Sources is responsible for this chip-level reset.

SW-DP

Indicates the SWD Debug Port and the RP-AP (Section 3.5.10, “RP-AP”) are reset.

AON Scratch

Indicates scratch register state in POWMAN SCRATCH0 → SCRATCH7 and BOOT0 → BOOT3 registers is lost.

These registers are always-on, meaning they are preserved across power-down of the switched core domain.

RP2350 Datasheet

7.3. Chip Level Resets 485



POWMAN

Indicates some or all of the register state of the power manager (POWMAN) is reset.

Power State

Indicates a change to the powered/unpowered status of core voltage domains.

Double Tap

Indicates the CHIP_RESET.DOUBLE_TAP bit is reset.

Rescue

Indicates changes to the CHIP_RESET.RESCUE_FLAG bit.

7.3.2. Chip-level Reset Destinations

Chip-level resets apply to the following primary components:

• the SW-DP and RP-AP debug components

• power manager scratch and boot registers

• power manager including the always-on timer

• power state (restored to state P0.0, in which all domains are powered, see Section 6.2.2, “Power States”)

• system resets (any chip-level reset triggers the PSM (power-on state machine), which sequences the system

resets, see Section 7.4, “System Resets (Power-on State Machine)”)

• watchdog (reset by any chip-level reset, including one triggered by the watchdog)

Chip-level resets also reset the following two CHIP_RESET register flags:

• CHIP_RESET.DOUBLE_TAP: the bootrom can use this flag to detect a double-press of a button connected to the

RUN pin, and enter the USB or UART bootloader. See the BOOT_FLAGS1.DOUBLE_TAP OTP flag.

• CHIP_RESET.RESCUE_FLAG: this flag instructs the bootrom to halt the boot process. The bootrom clears the flag

to acknowledge. You can use this to perform a full-system reset from almost any state (particularly ones where all

system clocks are stopped), and catch the processors before they re-run the code that caused the bad state.

 NOTE

When the SW-DP and RP-AP are out of reset, you can use them to perform low-level debug operations like a rescue

reset or a forced power-up over SWD. However accessing any other debug hardware, such as the Mem-APs, requires

the system clock to be running.

 NOTE

These flags are located in located in the CHIP_RESET register in the POWMAN register space, so they are included in

the always-on (AON) power domain.

7.3.3. Chip-level Reset Sources

In order of severity, the following events can trigger a chip-level reset:

Power-On Reset (POR)

The power-on reset ensures the chip starts up cleanly when power is first applied by holding it in reset until the

digital core supply (DVDD) reaches a voltage high enough to reliably power the chip’s core logic. The POR

component is described in detail in Section 7.6.1, “Power-on Reset (POR)”.
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Brownout Detection (BOD)

The brownout detector prevents unreliable operation when the digital core supply (DVDD) drops below a safe

operating level. The BOD component is described in detail in Section 7.6.2, “Brownout Detection (BOD)”. The reset

asserted by the BOD is referred to as the brownout reset, or BOR.

External Reset

The chip can be reset by taking the RUN pin low. This holds the chip in reset irrespective of the state of the core

power supply (DVDD), the power-on reset block, and brownout detection block. RUN can be used to extend the initial

power-on reset, or can be driven from an external source to start and stop the chip as required. If RUN is not used, it

should be tied high. Double-tapping the RUN low will set CHIP_RESET.DOUBLE_TAP. Boot code reads this flag and

selects an alternate boot sequence if the flag is set.

Debugger Reset Request

The debugger is able to initiate a chip-level reset using the CDBGPWRUPREQ control. For more information, see Section

3.5, “Debug”.

Rescue Debug Port Reset

The chip can also be reset via the Rescue Debug Port. This allows the chip to be recovered from a locked-up state.

In addition to resetting the chip, a Rescue Debug Port reset also sets CHIP_RESET.RESCUE_FLAG. This is checked

by boot code at startup, causing it to enter a safe state if the bit is set. See Section 3.5.8, “Rescue Reset” for more

information.

Watchdog

The watchdog can trigger various levels of chip-level reset by setting appropriate bits in the WDSEL register. A chip-

level reset triggered by a watchdog reset will reset the watchdog and the watchdog scratch registers. Additional

general purpose scratch registers are available in POWMAN. These are not reset by a chip-level reset triggered by the

watchdog.

SWCORE Powerdown

For a list of operations that power down the switched-core power domain (SWCORE) and trigger this reset, see

Section 6.2, “Power Management”.

Glitch Detector

This reset fires if a glitch is detected in SWCORE power supply. For more information, see Section 10.9, “Glitch

Detector”.

RISC-V Non-Debug-Module Reset

The dmcontrol.ndmreset bit in the RISC-V Debug Module resets all RISC-V harts in the system. It resets no other

hardware. However, it is recorded as a chip-level reset reason in CHIP_RESET.HAD_HZD_SYS_RESET_REQ. See

Section 3.5.3, “RISC-V Debug” for details of the RISC-V debug subsystem.

The source of the last chip-level reset is recorded in the CHIP_RESET register.

A complete list of POWMAN registers is provided in Section 6.4, “Power Management (POWMAN) Registers”.

7.4. System Resets (Power-on State Machine)
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Sequence

System Resets apply to components essential to processor operation. System components have interdependencies,

therefore their resets are de-asserted in sequence by the Power-on State Machine (PSM). Each stage of the sequencer

outputs a reset done signal when complete, rst_done, which releases the reset input to the next stage. A partial

sequence runs after a write to the FRCE_OFF register or a watchdog timeout. Note that the FRCE_ON register is intended for

internal use only and is disabled in production devices.

The Power-on State Machine sequences system-level reset release following a power-up of the switched core power

domain. It is distinct from the power manager (POWMAN) which controls power domain switching, see Section 6.2,

“Power Management”.

7.4.1. Reset Sequence

Following a chip-level reset, the Power-on State Machine (PSM):

1. Removes cold reset to processors.

2. Takes OTP out of reset. OTP reads any content required to boot and asserts rst_done.

3. Starts the Ring Oscillator. Asserts rst_done once the oscillator output is stable.

4. Removes Crystal Oscillator (XOSC) controller reset. The XOSC does not start yet, so rst_done is asserted

immediately.

5. Deasserts the master subsystem reset, but does not remove individual subsystem resets.

6. Starts the clk_ref and clk_sys clock generators. In the initial configuration, clk_ref runs from the ring oscillator with

no divider and clk_sys runs from clk_ref.

7. The PSM confirms the clocks are active.

8. Removes Bus Fabric reset and initialises logic.

9. Removes various memory controllers' resets and initialises logic.

10. Removes Single-cycle IO subsystem (SIO) reset and initialises logic.

11. Removes Access Controller reset and initialises logic.

12. Deasserts Processor Complex reset. Both core 0 and core 1 start executing the boot code from ROM. The boot

code reads the core id and core 1 sleeps, leaving core 0 to continue bootrom execution.
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Following a watchdog reset trigger, the PSM restarts from a point selected by the PSM WDSEL register.

7.4.2. Register Control

The PSM is a fully automated piece of hardware: it requires no input from the user to work. The debugger can trigger a

full or partial sequence by writing to the FRCE_OFF register. The FRCE_ON register is a development feature that does

nothing in production devices.

7.4.3. Interaction with Watchdog

The watchdog can trigger a full or partial sequence by writing to the WDSEL register.

7.4.4. List of Registers

The PSM registers start at a base address of 0x40018000 (defined as PSM_BASE in SDK).

Table 526. List of PSM

registers
Offset Name Info

0x0 FRCE_ON Force block out of reset (i.e. power it on)

0x4 FRCE_OFF Force into reset (i.e. power it off)

0x8 WDSEL Set to 1 if the watchdog should reset this

0xc DONE Is the subsystem ready?

PSM: FRCE_ON Register

Offset: 0x0

Description

Force block out of reset (i.e. power it on)

Table 527. FRCE_ON

Register
Bits Description Type Reset

31:25 Reserved. - -

24 PROC1 RW 0x0

23 PROC0 RW 0x0

22 ACCESSCTRL RW 0x0

21 SIO RW 0x0

20 XIP RW 0x0

19 SRAM9 RW 0x0

18 SRAM8 RW 0x0

17 SRAM7 RW 0x0

16 SRAM6 RW 0x0

15 SRAM5 RW 0x0

14 SRAM4 RW 0x0

13 SRAM3 RW 0x0

12 SRAM2 RW 0x0
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Bits Description Type Reset

11 SRAM1 RW 0x0

10 SRAM0 RW 0x0

9 BOOTRAM RW 0x0

8 ROM RW 0x0

7 BUSFABRIC RW 0x0

6 PSM_READY RW 0x0

5 CLOCKS RW 0x0

4 RESETS RW 0x0

3 XOSC RW 0x0

2 ROSC RW 0x0

1 OTP RW 0x0

0 PROC_COLD RW 0x0

PSM: FRCE_OFF Register

Offset: 0x4

Description

Force into reset (i.e. power it off)

Table 528. FRCE_OFF

Register
Bits Description Type Reset

31:25 Reserved. - -

24 PROC1 RW 0x0

23 PROC0 RW 0x0

22 ACCESSCTRL RW 0x0

21 SIO RW 0x0

20 XIP RW 0x0

19 SRAM9 RW 0x0

18 SRAM8 RW 0x0

17 SRAM7 RW 0x0

16 SRAM6 RW 0x0

15 SRAM5 RW 0x0

14 SRAM4 RW 0x0

13 SRAM3 RW 0x0

12 SRAM2 RW 0x0

11 SRAM1 RW 0x0

10 SRAM0 RW 0x0

9 BOOTRAM RW 0x0

8 ROM RW 0x0

RP2350 Datasheet

7.4. System Resets (Power-on State Machine) 490



Bits Description Type Reset

7 BUSFABRIC RW 0x0

6 PSM_READY RW 0x0

5 CLOCKS RW 0x0

4 RESETS RW 0x0

3 XOSC RW 0x0

2 ROSC RW 0x0

1 OTP RW 0x0

0 PROC_COLD RW 0x0

PSM: WDSEL Register

Offset: 0x8

Description

Set to 1 if the watchdog should reset this

Table 529. WDSEL

Register
Bits Description Type Reset

31:25 Reserved. - -

24 PROC1 RW 0x0

23 PROC0 RW 0x0

22 ACCESSCTRL RW 0x0

21 SIO RW 0x0

20 XIP RW 0x0

19 SRAM9 RW 0x0

18 SRAM8 RW 0x0

17 SRAM7 RW 0x0

16 SRAM6 RW 0x0

15 SRAM5 RW 0x0

14 SRAM4 RW 0x0

13 SRAM3 RW 0x0

12 SRAM2 RW 0x0

11 SRAM1 RW 0x0

10 SRAM0 RW 0x0

9 BOOTRAM RW 0x0

8 ROM RW 0x0

7 BUSFABRIC RW 0x0

6 PSM_READY RW 0x0

5 CLOCKS RW 0x0

4 RESETS RW 0x0

RP2350 Datasheet

7.4. System Resets (Power-on State Machine) 491



Bits Description Type Reset

3 XOSC RW 0x0

2 ROSC RW 0x0

1 OTP RW 0x0

0 PROC_COLD RW 0x0

PSM: DONE Register

Offset: 0xc

Description

Is the subsystem ready?

Table 530. DONE

Register
Bits Description Type Reset

31:25 Reserved. - -

24 PROC1 RO 0x0

23 PROC0 RO 0x0

22 ACCESSCTRL RO 0x0

21 SIO RO 0x0

20 XIP RO 0x0

19 SRAM9 RO 0x0

18 SRAM8 RO 0x0

17 SRAM7 RO 0x0

16 SRAM6 RO 0x0

15 SRAM5 RO 0x0

14 SRAM4 RO 0x0

13 SRAM3 RO 0x0

12 SRAM2 RO 0x0

11 SRAM1 RO 0x0

10 SRAM0 RO 0x0

9 BOOTRAM RO 0x0

8 ROM RO 0x0

7 BUSFABRIC RO 0x0

6 PSM_READY RO 0x0

5 CLOCKS RO 0x0

4 RESETS RO 0x0

3 XOSC RO 0x0

2 ROSC RO 0x0

1 OTP RO 0x0

0 PROC_COLD RO 0x0
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7.5. Subsystem Resets

7.5.1. Overview

The reset controller allows software to reset non-critical components in RP2350. The reset controller can reset the

following components:

• USB Controller

• PIO

• Peripherals, including UART, I2C, SPI, PWM, Timer, ADC

• PLLs

• IO and Pad registers

For a full list of components that can be reset using the reset controller, see the register descriptions (Section 7.5.3,

“List of Registers”).

When reset, components are held in reset at power-up. To use the component, software must deassert the reset.

 NOTE

The SDK automatically deasserts some components after a reset.

7.5.2. Programmer’s Model

The SDK uses the following struct to represent the resets registers:

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2350/hardware_structs/include/hardware/structs/resets.h Lines 63 - 159

 63 typedef struct {
 64     _REG_(RESETS_RESET_OFFSET) // RESETS_RESET
 65     // 0x10000000 [28]    USBCTRL      (1)
 66     // 0x08000000 [27]    UART1        (1)
 67     // 0x04000000 [26]    UART0        (1)
 68     // 0x02000000 [25]    TRNG         (1)
 69     // 0x01000000 [24]    TIMER1       (1)
 70     // 0x00800000 [23]    TIMER0       (1)
 71     // 0x00400000 [22]    TBMAN        (1)
 72     // 0x00200000 [21]    SYSINFO      (1)
 73     // 0x00100000 [20]    SYSCFG       (1)
 74     // 0x00080000 [19]    SPI1         (1)
 75     // 0x00040000 [18]    SPI0         (1)
 76     // 0x00020000 [17]    SHA256       (1)
 77     // 0x00010000 [16]    PWM          (1)
 78     // 0x00008000 [15]    PLL_USB      (1)
 79     // 0x00004000 [14]    PLL_SYS      (1)
 80     // 0x00002000 [13]    PIO2         (1)
 81     // 0x00001000 [12]    PIO1         (1)
 82     // 0x00000800 [11]    PIO0         (1)
 83     // 0x00000400 [10]    PADS_QSPI    (1)
 84     // 0x00000200 [9]     PADS_BANK0   (1)
 85     // 0x00000100 [8]     JTAG         (1)
 86     // 0x00000080 [7]     IO_QSPI      (1)
 87     // 0x00000040 [6]     IO_BANK0     (1)
 88     // 0x00000020 [5]     I2C1         (1)
 89     // 0x00000010 [4]     I2C0         (1)
 90     // 0x00000008 [3]     HSTX         (1)
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 91     // 0x00000004 [2]     DMA          (1)
 92     // 0x00000002 [1]     BUSCTRL      (1)
 93     // 0x00000001 [0]     ADC          (1)
 94     io_rw_32 reset;
 95 
 96     _REG_(RESETS_WDSEL_OFFSET) // RESETS_WDSEL
 97     // 0x10000000 [28]    USBCTRL      (0)
 98     // 0x08000000 [27]    UART1        (0)
 99     // 0x04000000 [26]    UART0        (0)
100     // 0x02000000 [25]    TRNG         (0)
101     // 0x01000000 [24]    TIMER1       (0)
102     // 0x00800000 [23]    TIMER0       (0)
103     // 0x00400000 [22]    TBMAN        (0)
104     // 0x00200000 [21]    SYSINFO      (0)
105     // 0x00100000 [20]    SYSCFG       (0)
106     // 0x00080000 [19]    SPI1         (0)
107     // 0x00040000 [18]    SPI0         (0)
108     // 0x00020000 [17]    SHA256       (0)
109     // 0x00010000 [16]    PWM          (0)
110     // 0x00008000 [15]    PLL_USB      (0)
111     // 0x00004000 [14]    PLL_SYS      (0)
112     // 0x00002000 [13]    PIO2         (0)
113     // 0x00001000 [12]    PIO1         (0)
114     // 0x00000800 [11]    PIO0         (0)
115     // 0x00000400 [10]    PADS_QSPI    (0)
116     // 0x00000200 [9]     PADS_BANK0   (0)
117     // 0x00000100 [8]     JTAG         (0)
118     // 0x00000080 [7]     IO_QSPI      (0)
119     // 0x00000040 [6]     IO_BANK0     (0)
120     // 0x00000020 [5]     I2C1         (0)
121     // 0x00000010 [4]     I2C0         (0)
122     // 0x00000008 [3]     HSTX         (0)
123     // 0x00000004 [2]     DMA          (0)
124     // 0x00000002 [1]     BUSCTRL      (0)
125     // 0x00000001 [0]     ADC          (0)
126     io_rw_32 wdsel;
127 
128     _REG_(RESETS_RESET_DONE_OFFSET) // RESETS_RESET_DONE
129     // 0x10000000 [28]    USBCTRL      (0)
130     // 0x08000000 [27]    UART1        (0)
131     // 0x04000000 [26]    UART0        (0)
132     // 0x02000000 [25]    TRNG         (0)
133     // 0x01000000 [24]    TIMER1       (0)
134     // 0x00800000 [23]    TIMER0       (0)
135     // 0x00400000 [22]    TBMAN        (0)
136     // 0x00200000 [21]    SYSINFO      (0)
137     // 0x00100000 [20]    SYSCFG       (0)
138     // 0x00080000 [19]    SPI1         (0)
139     // 0x00040000 [18]    SPI0         (0)
140     // 0x00020000 [17]    SHA256       (0)
141     // 0x00010000 [16]    PWM          (0)
142     // 0x00008000 [15]    PLL_USB      (0)
143     // 0x00004000 [14]    PLL_SYS      (0)
144     // 0x00002000 [13]    PIO2         (0)
145     // 0x00001000 [12]    PIO1         (0)
146     // 0x00000800 [11]    PIO0         (0)
147     // 0x00000400 [10]    PADS_QSPI    (0)
148     // 0x00000200 [9]     PADS_BANK0   (0)
149     // 0x00000100 [8]     JTAG         (0)
150     // 0x00000080 [7]     IO_QSPI      (0)
151     // 0x00000040 [6]     IO_BANK0     (0)
152     // 0x00000020 [5]     I2C1         (0)
153     // 0x00000010 [4]     I2C0         (0)
154     // 0x00000008 [3]     HSTX         (0)
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155     // 0x00000004 [2]     DMA          (0)
156     // 0x00000002 [1]     BUSCTRL      (0)
157     // 0x00000001 [0]     ADC          (0)
158     io_ro_32 reset_done;
159 } resets_hw_t;

This struct defines the following registers:

• reset: This register contains a bit for each component that can be reset. When set to 1, the reset is asserted. If the

bit is cleared, the reset is deasserted.

• wdsel: This register contains a bit for each component that can be reset. When set to 1, this component will reset if

the watchdog fires. If you reset the power-on state machine, the entire reset controller will reset, which includes

every component.

• reset_done: This register contains a bit for each component that is automatically set when the component is out of

reset. This allows software to wait for this status bit in case the component requires initialisation before use.

The SDK defines reset functions as follows:

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_resets/include/hardware/resets.h Lines 121 - 123

121 static __force_inline void reset_block(uint32_t bits) {
122     reset_block_mask(bits);
123 }

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_resets/include/hardware/resets.h Lines 125 - 127

125 static __force_inline void unreset_block(uint32_t bits) {
126     unreset_block_mask(bits);
127 }

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_resets/include/hardware/resets.h Lines 129 - 131

129 static __force_inline void unreset_block_wait(uint32_t bits) {
130     return unreset_block_mask_wait_blocking(bits);
131 }

One example use of reset functions is the UART driver, which defines a uart_reset function that selects a different bit of

the reset register depending on the UART specified:

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_uart/uart.c Lines 32 - 38

32 static inline void uart_reset(uart_inst_t *uart) {
33     reset_block_num(uart_get_reset_num(uart));
34 }
35 
36 static inline void uart_unreset(uart_inst_t *uart) {
37     unreset_block_num_wait_blocking(uart_get_reset_num(uart));
38 }

7.5.3. List of Registers

The reset controller registers start at a base address of 0x40020000 (defined as RESETS_BASE in SDK).
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Table 531. List of

RESETS registers
Offset Name Info

0x0 RESET

0x4 WDSEL

0x8 RESET_DONE

RESETS: RESET Register

Offset: 0x0

Table 532. RESET

Register
Bits Description Type Reset

31:29 Reserved. - -

28 USBCTRL RW 0x1

27 UART1 RW 0x1

26 UART0 RW 0x1

25 TRNG RW 0x1

24 TIMER1 RW 0x1

23 TIMER0 RW 0x1

22 TBMAN RW 0x1

21 SYSINFO RW 0x1

20 SYSCFG RW 0x1

19 SPI1 RW 0x1

18 SPI0 RW 0x1

17 SHA256 RW 0x1

16 PWM RW 0x1

15 PLL_USB RW 0x1

14 PLL_SYS RW 0x1

13 PIO2 RW 0x1

12 PIO1 RW 0x1

11 PIO0 RW 0x1

10 PADS_QSPI RW 0x1

9 PADS_BANK0 RW 0x1

8 JTAG RW 0x1

7 IO_QSPI RW 0x1

6 IO_BANK0 RW 0x1

5 I2C1 RW 0x1

4 I2C0 RW 0x1

3 HSTX RW 0x1

2 DMA RW 0x1

1 BUSCTRL RW 0x1
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Bits Description Type Reset

0 ADC RW 0x1

RESETS: WDSEL Register

Offset: 0x4

Table 533. WDSEL

Register
Bits Description Type Reset

31:29 Reserved. - -

28 USBCTRL RW 0x0

27 UART1 RW 0x0

26 UART0 RW 0x0

25 TRNG RW 0x0

24 TIMER1 RW 0x0

23 TIMER0 RW 0x0

22 TBMAN RW 0x0

21 SYSINFO RW 0x0

20 SYSCFG RW 0x0

19 SPI1 RW 0x0

18 SPI0 RW 0x0

17 SHA256 RW 0x0

16 PWM RW 0x0

15 PLL_USB RW 0x0

14 PLL_SYS RW 0x0

13 PIO2 RW 0x0

12 PIO1 RW 0x0

11 PIO0 RW 0x0

10 PADS_QSPI RW 0x0

9 PADS_BANK0 RW 0x0

8 JTAG RW 0x0

7 IO_QSPI RW 0x0

6 IO_BANK0 RW 0x0

5 I2C1 RW 0x0

4 I2C0 RW 0x0

3 HSTX RW 0x0

2 DMA RW 0x0

1 BUSCTRL RW 0x0

0 ADC RW 0x0

RESETS: RESET_DONE Register
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Offset: 0x8

Table 534.

RESET_DONE Register
Bits Description Type Reset

31:29 Reserved. - -

28 USBCTRL RO 0x0

27 UART1 RO 0x0

26 UART0 RO 0x0

25 TRNG RO 0x0

24 TIMER1 RO 0x0

23 TIMER0 RO 0x0

22 TBMAN RO 0x0

21 SYSINFO RO 0x0

20 SYSCFG RO 0x0

19 SPI1 RO 0x0

18 SPI0 RO 0x0

17 SHA256 RO 0x0

16 PWM RO 0x0

15 PLL_USB RO 0x0

14 PLL_SYS RO 0x0

13 PIO2 RO 0x0

12 PIO1 RO 0x0

11 PIO0 RO 0x0

10 PADS_QSPI RO 0x0

9 PADS_BANK0 RO 0x0

8 JTAG RO 0x0

7 IO_QSPI RO 0x0

6 IO_BANK0 RO 0x0

5 I2C1 RO 0x0

4 I2C0 RO 0x0

3 HSTX RO 0x0

2 DMA RO 0x0

1 BUSCTRL RO 0x0

0 ADC RO 0x0

7.6. Power-on Reset & Brownout Detection
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7.6.1. Power-on Reset (POR)

The power-on reset block ensures the chip starts up cleanly when power is first applied. It accomplishes this by holding

the chip in reset until the digital core supply (DVDD) reaches a voltage high enough to reliably power the chip’s core logic.

The block holds its por_n output low until DVDD exceeds the power-on reset threshold (DVDDTH.POR) for a period greater

than the power-on reset assertion delay (tPOR.ASSERT). Once high, por_n remains high even if DVDD subsequently falls below

DVDDTH.POR. The behaviour of por_n when power is applied is shown in Figure 27, “A power-on reset cycle”.

DVDD

por_n

DVDDTH.POR

tPOR.ASSERT

Figure 27. A power-on

reset cycle

DVDDTH.POR is fixed at a nominal 0.957V, which should result in a threshold between 0.924V and 0.99V. The threshold

assumes a nominal DVDD of 1.1V at initial power-on, and por_n may never go high if a lower voltage is used. Once the chip

is out of reset, DVDD can be reduced without por_n going low.

7.6.1.1. Detailed Specifications

Table 535. Power-on

Reset Parameters
Parameter Description Min Typ Max Units

DVDDTH.POR power-on reset

threshold

0.924 0.957 0.99 V

tPOR.ASSERT power-on reset

assertion delay

3 10 μs

7.6.2. Brownout Detection (BOD)

The brownout detection block prevents unreliable operation when the digital core supply (DVDD) drops below a safe

operating level. If enabled, the block resets the chip by taking its bor_n output low when DVDD drops below the brownout

detection assertion threshold (DVDDTH.BOD.ASSERT) for a period greater than the brownout detection assertion delay

(tBOD.ASSERT). If DVDD subsequently rises above the brownout detection de-assertion threshold (DVDDTH.BOD.DEASSERT) for a

period greater than the brownout detection de-assertion delay (tBOD.DEASSERT), the block releases reset by taking bor_n

high. A brownout, followed by supply recovery, is shown in Figure 28, “A brownout detection cycle”.
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Figure 28. A brownout

detection cycle

7.6.2.1. Detection Enable

Brownout detection is always enabled at initial power-on. There is, however, a short delay, the brownout detection

activation delay (tBOD.ACTIVE), between por_n going high and detection becoming active. This is shown in Figure 29,

“Activation of brownout detection at initial power-on and following a brownout event.”.

Figure 29. Activation

of brownout detection

at initial power-on and

following a brownout

event.

Once the chip is out of reset, detection can be disabled under software control. This saves a small amount of power. If

detection is subsequently re-enabled, there will be another short delay, the brownout detection enable delay (tBOD.ENABLE),

before it becomes active again. This is shown in Figure 30, “Disabling and enabling brownout detection”.

Detection is disabled by writing a 0 to the EN field in the BOD register and is re-enabled by writing a 1 to the same field. The

block’s bod_n output is high when detection is disabled.

EN

tBOD.ENABLE

detection 
inactive

1 0 1

detection 
inactive

detection 
active

Figure 30. Disabling

and enabling brownout

detection

Detection is re-enabled if the BOD register is reset, as this sets the register’s EN field to 1. Again, detection will become
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active after a delay equal to the brownout detection enable delay (tBOD.ENABLE).

 NOTE

If the BOD register is reset by a power-on or brownout-initiated reset, the delay between the register being reset and

brownout detection becoming active will be equal to the brownout detection activation delay (tBOD.ACTIVE). The delay

will be equal to the brownout detection enable delay (tBOD.ENABLE) for all other reset sources.

7.6.2.2. Adjusting the Detection Threshold

The brownout detection threshold (DVDDTH.BOD) has a nominal value of 0.946V at initial power-on or after a reset event.

This should result in a detection threshold between 0.913V and 0.979V. Once out of reset, the threshold can be adjusted

under software control. The new detection threshold will take effect after the brownout detection programming delay

((tBOD.PROG). An example of this is shown in Figure 31, “Adjusting the brownout detection threshold”.

The threshold is adjusted by writing to the VSEL field in the BOD register. See the BOD register description for details.

 NOTE

The nominal supply voltage for DVDD is 1.1 V. You should not increase the brownout detection threshold above the

nominal supply voltage.

VSEL

tBOD.PROG

threshold 
0.86V

1001 0111

threshold 
0.774V

Figure 31. Adjusting

the brownout

detection threshold

7.6.2.3. Detailed Specifications

Table 536. Brownout

Detection Parameters
Parameter Description Min Typ Max Units

DVDDTH.BOD.ASSERT brownout

detection

assertion

threshold

96.5 100 103.5 % of selected

threshold voltage

DVDDTH.BOD.DEASSERT brownout

detection de-

assertion

threshold

97.4 101 105 % of selected

threshold voltage

tBOD.ACTIVE brownout

detection

activation delay

55 80 μs

tBOD.ASSERT brownout

detection

assertion delay

3 10 μs
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Parameter Description Min Typ Max Units

tBOD.DEASSERT brownout

detection de-

assertion delay

55 80 μs

tBOD.ENABLE brownout

detection enable

delay

35 55 μs

tBOD.PROG brownout

detection

programming

delay

20 30 μs

7.6.3. Supply Monitor

The power-on and brownout reset blocks are powered by the core voltage regulator’s analogue supply (VREG_AVDD). The

blocks are initialised when power is first applied, but may not be reliably re-initialised if power is removed and then

reapplied before VREG_AVDD has dropped to a sufficiently low level. To prevent this happening, VREG_AVDD is monitored and

the power-on reset block is re-initialised if it drops below the VREG_AVDD activation threshold (VREG_AVDDTH.ACTIVE).

VREG_AVDDTH.ACTIVE is fixed at a nominal 1.1V, which should result in a threshold between 0.87V and 1.26V. This

threshold does not represent a safe operating voltage. Instead, it represents the voltage that VREG_AVD must drop below

to reliably re-initialise the power-on reset block. For safe operation, VREG_AVDD must be at a nominal voltage of 3.3V. See

Table 1438, “Power Supply Specifications”.

7.6.3.1. Detailed Specifications

Table 537. Voltage

Regulator Input Supply

Monitor Parameters

Parameter Description Min Typ Max Units

VREG_VINTH.ACTIVE VREG_VIN activation

threshold

0.87 1.1 1.26 V

7.6.4. List of Registers

The chip-level reset subsystem shares a register address space with other power management subsystems in the

always-on domain. The address space is referred to as POWMAN elsewhere in this document. A complete list of POWMAN

registers is provided in Section 6.4, “Power Management (POWMAN) Registers”, but information on registers

associated with the brownout detector are repeated here.

The POWMAN registers start at a base address of 0x40100000 (defined as POWMAN_BASE in SDK).

• BOD_CTRL

• BOD

• BOD_LP_ENTRY

• BOD_LP_EXIT

RP2350 Datasheet

7.6. Power-on Reset & Brownout Detection 502



Chapter 8. Clocks

8.1. Overview

The clocks block provides independent clocks to on-chip and external components. It takes inputs from a variety of

clock sources, allowing the user to trade off performance against cost, board area and power consumption. From these

sources it uses multiple clock generators to provide the required clocks. This architecture allows the user flexibility to

start and stop clocks independently and to vary some clock frequencies whilst maintaining others at their optimum

frequencies.

GPCLK0 - 1 
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GPIO Muxing

External 

clocks or 

Relaxation 

oscillators
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Clock 
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clk_sys
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Figure 32. Clocks

overview

The Crystal Oscillator (XOSC) provides a reference to two PLLs which provide high precision clocks to the processors

and peripherals. These are slow to start when waking from the various low power modes, so the on-chip Ring Oscillator

(ROSC) is provided to boot the device until they are available. When the switched-core is powered down or the device is

in DORMANT mode (see Section 6.5.3, “DORMANT State”) the on-chip 32kHz Low Power Oscillator (LPOSC) provides a

clock to the power manager and a tick to the Always-on Timer (AON Timer).
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The clock generators select from the clock sources and optionally divide the selected clock before outputting through

enable logic which provides automatic clock disabling in sleep mode (see Section 8.1.2.5.2, “System Sleep Mode”).

An on-chip frequency counter facilitates debugging of the clock setup and also allows measurement of the frequencies

of LPOSC, ROSC and external clocks. If the system clock stops accidentally, the on-chip resus (short for resuscitate)

component restarts it from a known good clock. This allows the software debugger to access registers and debug the

problem.

When the switched-core is powered, the power manager clock automatically switches to the reference clock (clk_ref).

The user can optionally switch the AON Timer tick, though we recommend waiting until clk_ref is running from the

XOSC, because the ROSC frequency is imprecise.

You can substitute the clock sources with up to 2 GPIO clock inputs. This helps avoid adding a second crystal into

systems that already have an accurate clock source and enables replacement of the ROSC and LPOSC with more

accurate external sources.

You can also output up to 4 generated clocks to GPIOs at up to 50MHz. This enables you to supply clocks to external

devices, reducing the need for additional clock components that consume power and board area.

8.1.1. Clock sources

RP2350 can use a variety of clock sources. This flexibility allows the user to optimise the clock setup for performance,

cost, board area and power consumption. RP2350 supports the following potential clock sources:

• on-chip 32kHz Low Power Oscillator (Section 8.4, “Low Power Oscillator (LPOSC)”)

• on-chip Ring Oscillator (Section 8.3, “Ring Oscillator (ROSC)”)

• Crystal Oscillator (Section 8.2, “Crystal Oscillator (XOSC)”)

• external clocks from GPIOs (Section 8.1.5.4, “Configuring a GPIO input clock”) and PLLs (Section 8.6, “PLL”)

The list of clock sources is different per clock generator and can be found as enumerated values in the CTRL register.

See CLK_SYS_CTRL as an example.

8.1.1.1. Low Power Oscillator

The on-chip 32kHz Low Power Oscillator (Section 8.4, “Low Power Oscillator (LPOSC)”) requires no external

components. It starts automatically when the always-on domain is powered, providing a clock for the power manager

and a tick for the Always-on Timer (AON Timer) when the switched-core power domain is powered off.

The LPOSC can be tuned to 1% accuracy, and the divider in the AON Timer tick generator can further tune the 1ms tick.

However, the LPOSC frequency varies with voltage and temperature, so fine-tuning is only useful in systems with stable

voltage and temperature.

When the switched-core is powered, the LPOSC clock can drive the reference clock (clk_ref), which in turn can drive the

system clock (clk_sys). This allows another low power mode where the processors remain powered but, unlike the

SLEEP and DORMANT modes, clocks are running. The LPOSC clock can also be sent to the frequency counter for

calibration or output to a GPIO.

8.1.1.2. Ring Oscillator

The on-chip Ring Oscillator (Section 8.3, “Ring Oscillator (ROSC)”) requires no external components. It starts

automatically when the switched-core domain is powered and is used to clock the chip during the initial boot stages.

During boot, the ROSC runs at a nominal 11MHz, but varies with PVT (Process, Voltage, and Temperature). The ROSC

frequency is guaranteed to be in the range 4.6MHz to 19.6MHz.

For low-cost applications where frequency accuracy is unimportant, the chip can continue to run from the ROSC. If your

application requires greater performance, the frequency can be increased by programming the registers as described in
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Section 8.3, “Ring Oscillator (ROSC)”. Because the frequency varies with PVT (Process, Voltage, and Temperature), the

user must take care to avoid exceeding the maximum frequencies described in the clock generators section. For

information about reducing this variation when running the ROSC at frequencies close to the maximum, see Section

8.1.1.2.1, “Mitigate ROSC frequency variation due to process”. Alternatively, use an external clock or the XOSC to

provide a stable reference clock and use the PLLs to generate higher frequencies. However, this approach requires

external components, which will cost board area and increase power consumption.

When using an external clock or the XOSC, you can stop the ROSC to save power. Before stopping the ROSC, you must

switch the reference clock generator and the system clock generator to an alternate source.

The ROSC is unpowered when the switched-core domain is powered down, but starts immediately when the switched-

core powers up. It is not affected by sleep mode. To save power, reduce the frequency before entering sleep mode.

When entering DORMANT mode, the ROSC is automatically stopped. When exiting DORMANT mode, the ROSC restarts

in the same configuration. If you drive clocks at close to their maximum frequencies with the ROSC, drop the frequency

before entering SLEEP or DORMANT mode. This allows for frequency variation due to changes in environmental

conditions during SLEEP or DORMANT mode.

To use ROSC clock externally, output it to a GPIO pin using one of the clk_gpclk0-3 generators.

The following sections describe techniques for mitigating PVT variation of the ROSC frequency. They also provide some

interesting design challenges for use in teaching both the effects of PVT and writing software to control real time

functions.

 TIP

Because the ROSC frequency varies with PVT (Process, Voltage, and Temperature), you can use the ROSC frequency

to measure any one of the three PVT variables as long as you know the other two variables.

8.1.1.2.1. Mitigate ROSC frequency variation due to process

Process varies for the following reasons:

• Chips leave the factory with a spread of process parameters. This causes variation in the ROSC frequency across

chips.

• Process parameters vary slightly as the chip ages. This is only observable over many thousands of hours of

operation.

To mitigate process variation, the user can characterise individual chips and program the ROSC frequency accordingly.

This is an adequate solution for small numbers of chips, but does not scale well to volume production. For high-volume

applications, consider using automatic mitigation.

8.1.1.2.2. Mitigate ROSC frequency variation due to voltage

Supply voltage varies for the following reasons:

• The power supply itself may vary.

• As chip activity varies, on-chip IR varies.

To mitigate voltage variation, calibrate for the minimum performance target of your application, then adjust the ROSC

frequency to always exceed that minimum.

8.1.1.2.3. Mitigate ROSC frequency variation due to temperature

Temperature varies for the following reasons:

• The ambient temperature may vary.
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• The chip temperature varies as chip activity varies due to self-heating.

To mitigate temperature variations, stabilise the temperature. You can use a temperature controlled environment,

passive cooling, or active cooling. Alternatively, track the temperature using the on-chip temperature sensor and adjust

the ROSC frequency so it remains within the required bounds.

8.1.1.2.4. Automatic mitigation of ROSC frequency variation due to PVT

Techniques for automatic ROSC frequency control avoid the need to calibrate individual chips, but require periodic

access to a clock reference or to a time reference.

If a clock reference is available, you can use it to periodically measure the ROSC frequency and adjust accordingly. The

on-chip XOSC is one potential clock reference. You can even run the XOSC intermittently to save power for very low

power application where it is too costly to run the XOSC continuously or use the PLLs to achieve high frequencies.

If a time reference is available, you can clock the on-chip AON Timer from the ROSC and periodically compare it against

the time reference, adjusting the ROSC frequency as necessary. Using these techniques, the ROSC frequency still drifts

due to voltage and temperature variation. As a result, you should also implement mitigations for voltage and

temperature to ensure that variations do not allow the ROSC frequency to drift out of the acceptable range.

8.1.1.2.5. Automatic overclocking using the ROSC

The datasheet maximum frequencies for any digital device are quoted for worst case PVT. Most chips in most normal

environments can run significantly faster than the quoted maximum, and therefore support overclocking. When RP2350

runs from the ROSC, PVT affects both both the ROSC and the digital components. As the ROSC gets faster, the

processors can also run faster. This means the user can overclock from the ROSC, then rely on the ROSC frequency

tracking with PVT variations. The tracking of ROSC frequency and the processor capability is not perfect, and currently

there is insufficient data to specify a safe ROSC setting for this mode of operation, so some experimentation is

required.

This mode of operation maximises processor performance, but causes variations in the time taken to complete a task.

Only use overclocking for applications where this variation is acceptable. If your application uses frequency sensitive

interfaces such as USB or UART, you must use the XOSC and PLL to provide a precise clock for those components.

8.1.1.3. Crystal Oscillator

The Crystal Oscillator (Section 8.2, “Crystal Oscillator (XOSC)”) provides a precise, stable clock reference and should be

used where accurate timing is required and no suitable external clocks are available. The XOSC requires an external

crystal component. The external crystal determines the frequency. RP2350 supports 1MHz to 50MHz crystals and the

RP2350 reference design (see Hardware design with RP2350, Minimal Design Example) uses a 12MHz crystal. Using

the XOSC and the PLLs, you can run on-chip components at their maximum frequencies. Appropriate margin is built into

the design to tolerate up to 1000ppm variation in the XOSC frequency.

The XOSC is unpowered when the switched-core domain is powered down. It remains inactive when the switched-core

is powered up. If required, you must enable it in software. XOSC startup takes several milliseconds, and software must

wait for the XOSC_STABLE flag to be set before starting the PLLs and changing any clock generators. Before the XOSC

completes startup, output may be non-existent or exhibit very short pulse widths; this will corrupt logic if used. Once

XOSC startup is complete, the reference clock (clk_ref) and the system clock (clk_sys) can run from the XOSC. If you

switch the system and reference clocks to run from the XOSC, you can stop the ROSC to save power.

The XOSC is not affected by sleep mode. It automatically stops and restarts in the same configuration when entering

and exiting DORMANT mode.

To use the XOSC clock externally, output it to a GPIO pin using one of the clk_gpclk0-clk_gpclk03 generators. You cannot

take XOSC output directly from the XIN (XI) or XOUT (XO) pins.
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8.1.1.4. External Clocks

If external clocks exist in the hardware design, you can use them to clock RP2350. You can use clocks individually or in

conjunction with the other (internal or external) clock sources. Use XIN and one of GPIN0-GPIN1 to input external

clocks.

If you drive an external clock into XIN, you don’t need an external crystal. When driving an external clock into XIN, you

must configure the XOSC to pass through the XIN signal. When the switched-core powers down, this configuration will

be lost, but the configuration is unaffected by SLEEP and DORMANT modes. The input is limited to 50MHz, but the on-

chip PLLs can synthesise higher frequencies from the XIN input if required.

GPIN0-GPIN1 can provide system and peripherals clocks, but is limited to 50MHz. This can potentially save power and

allows components on RP2350 to run synchronously with external components, which simplifies data transfer between

chips. If the frequency accuracy of the external clocks is poorer than 1000ppm, the generated clocks should not run at

their maximum frequencies since they could exceed their design margins. Once the external clocks begin to run, the

reference clock (clk_ref) and the system clock (clk_sys) can run from the external clocks and you can stop the ROSC to

save power. When the switched-core powers down, GPIN0-GPIN1 configuration will be lost, but the configuration is

unaffected by SLEEP and DORMANT modes.

To provide a more accurate tick to the AON Timer, use one of the GPIN0-GPIN3 inputs to replace the clock from the

LPOSC. These inputs are limited to 29MHz. GPIN0-GPIN3 configuration is unaffected by switched-core power down,

sleep mode, and DORMANT mode.

8.1.1.5. Relaxation Oscillators

If there is no appropriate clock available, but you still want to replace or supplement external clocks with another clock

source, you can construct one or two relaxation oscillators from external passive components. Send the clock source

(GPIN0-GPIN1) to one of the clk_gpclk0-clk_gpclk03 generators, invert it through the GPIO inverter OUTOVER, and connect

back to the clock source input via an RC circuit:

Figure 33. Simple

relaxation oscillator

example

The frequency of clocks generated from relaxation oscillators depend on the delay through the chip and the drive

current from the GPIO output, both of which vary with PVT. The frequency and frequency accuracy depend on the

quality and accuracy of the external components. More elaborate external components such as ceramic resonators, can

improve performance, but also increase cost and complexity. Such an oscillator will not achieve 1000ppm, so they

cannot drive internal clocks at their maximum frequencies. To drive internal clocks at the maximum possible frequency,

use the XOSC.

The configuration of the relaxation oscillators will be lost when the switched-core powers down, but is not affected by

sleep mode or DORMANT mode.

8.1.1.6. PLLs

The PLLs (Section 8.6, “PLL”) are used to provide fast clocks when running from the XOSC or an external clock source

driven into the XIN pin. In a fully-featured application, the USB PLL provides a fixed 48MHz clock to the ADC and USB

while clk_ref is driven from the XOSC or external clock source. This allows the user to drive clk_sys from the system PLL

and vary the frequency according to demand to save power without having to change the setups of the other clocks.

clk_peri can be driven either from the fixed frequency USB PLL or from the variable frequency system PLL. If clk_sys

never needs to exceed 48MHz, one PLL can be used and the divider in the clk_sys clock generator can scale the clk_sys

frequency according to demand.

When a PLL starts, you cannot use the output until the PLL locks as indicated by the LOCK bit in the STATUS register. As a
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result, the PLL output cannot be used during changes to the reference clock divider, the output dividers or the bypass

mode. The output can be used during feedback divisor changes, though the output frequency may overshoot or

undershoot during large changes to the feedback divisor. For more information, see Section 8.6, “PLL”.

The PLLs can drive clocks at their maximum frequency as long as the reference clock is accurate to 1000ppm, since

this keeps the frequency of the generated clocks within design margins.

The PLLs are not affected by sleep mode. To save power in sleep mode, switch all clock generators away from the PLLs

stop them in software before entering sleep mode.

The PLLs do not stop and restart automatically when entering and exiting DORMANT mode. If the PLLs are running

when entering DORMANT mode, they will be corrupted because the reference clock in the XOSC stops. This generates

out-of-control clocks that consume power unnecessarily. Before entering DORMANT mode, always switch all clock

generators away from the PLLs and stop the PLLs in software.

8.1.2. Clock Generators

The clock generators are built on a standard design which incorporates clock source multiplexing, division, duty cycle

correction and sleep mode enabling. To save chip area and power, individual clock generators do not support all

features.

Figure 34. A generic

clock generator

8.1.2.1. Instances

RP2350 has several clock generators which are listed below.

Table 538. RP2350

clock generators
Clock Description Nominal Frequency

clk_gpout0 Clock output to GPIO. Can be used to

clock external devices or debug on

chip clocks with a logic analyser or

oscilloscope.

N/A

clk_gpout1

clk_gpout2

clk_gpout3

clk_ref Reference clock that is always running

unless in DORMANT mode. Runs from

Ring Oscillator (ROSC) at power-up

but can be switched to Crystal

Oscillator (XOSC) for more accuracy.

6 - 12MHz

clk_sys System clock that is always running

unless in DORMANT mode. Runs from

clk_ref at power-up, but is typically

switched to a PLL.

150MHz

clk_peri Peripheral clock. Typically runs from

clk_sys but allows peripherals to run at

a consistent speed if clk_sys is

changed by software.

12 - 150MHz

clk_usb USB reference clock. Must be 48MHz. 48MHz

clk_adc ADC reference clock. Must be 48MHz. 48MHz
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Clock Description Nominal Frequency

clk_hstx HSTX clock. 150MHz

For a full list of clock sources for each clock generator, see the appropriate CTRL register. For example, CLK_SYS_CTRL.

8.1.2.2. Multiplexers

All clock generators have a multiplexer referred to as the auxiliary (aux) mux. This mux has a conventional design

whose output will glitch when changing the select control. The reference clock (clk_ref) and the system clock (clk_sys)

have an additional multiplexer referred to as the glitchless mux. The glitchless mux can switch between clock sources

without generating a glitch on the output.

Before switching the clock source of an auxiliary mux you must either:

• temporarily switch the glitchless mux away from aux (if a glitchless mux is available)

• temporarily disable the clock generator using its CTRL_ENABLE bit

• hold the destination in reset so that a potential clock glitch does not cause undefined operation

Failure to do at least one of the above may cause a glitch on the clock input of all hardware currently clocked by this

clock generator. Avoid clock glitches at all costs: they may corrupt the logic running on the clock.

Clock generators require two cycles of the source clock to stop the output and two cycles of the new source to restart

the output. Wait for the generator to stop before changing the auxiliary mux. When the destination clock is much slower

than the system clock, there is a danger that software changes the aux mux source before the clock generator has

come to a safe halt. Avoid this by polling the clock generator’s CTRL_ENABLED status until it matches the value of

CTRL_ENABLE.

The glitchless mux is only implemented for always-on clocks. On RP2350, the always-on clocks are the reference clock

(clk_ref) and the system clock (clk_sys). Such clocks must run continuously unless the chip is in DORMANT mode. The

glitchless mux has a status output (SELECTED) which indicates which source is selected. You can read this status output

from software to confirm that a change of clock source has completed.

The recommended control sequences are as follows.

To switch between clock sources for the glitchless mux:

1. Switch the glitchless mux to an alternate source.

2. Poll the SELECTED register until the switch completes.

To switch between clock sources for the aux mux when the generator has a glitchless mux:

1. Switch the glitchless mux to a source that isn’t the aux mux.

2. Poll the SELECTED register until the switch completes.

3. Change the auxiliary mux select control.

4. Switch the glitchless mux back to the aux mux.

5. If required, poll the SELECTED register until the switch completes.

To switch between clock sources for the aux mux when the generator does not have a glitchless mux:

1. Disable the clock divider.

2. Wait for the generated clock to stop (two cycles of the clock source).

3. Change the auxiliary mux select control.

4. Enable the clock divider.

5. If required, wait for the clock generator to restart (two cycles of the clock source).
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See Section 8.1.5.1, “Configuring a clock generator” for a code example of this.

8.1.2.3. Divider

A fully featured divider divides by 1 or a fractional number in the range 2.0 to 216. Fractional division is achieved by

toggling between 2 integer divisors; this yields a jittery clock which may not be suitable for some applications. For

example, when dividing by 2.4 the divider divides by 2 for 3 cycles and by 3 for 2 cycles. For divisors with large integer

components, the jitter will be much smaller and less critical.

Figure 35. An example

of fractional division.

All dividers support on-the-fly divisor changes: the output clock can switch cleanly from one divisor to another. The

clock generator does not need to be stopped during clock divisor changes, because the dividers synchronise the divisor

change to the end of the clock cycle. Similarly, dividers synchronise the enable to the end of the clock cycle to avoid

glitches when the clock generator is enabled or disabled. Clock generators for always-on clocks are permanently

enabled and therefore do not have an enable control.

In the event that a clock generator locks up and never completes the current clock cycle, it can be forced to stop using

the KILL control. This may result in an output glitch, which may corrupt the logic driven by the clock. Always reset the

destination logic before using the KILL control. Clock generators for always-on clocks are permanently active and

therefore do not have a KILL control.

 NOTE

This clock generator design has been used in numerous chips and has never been known to lock up. The KILL control

is inelegant and unnecessary and should not be used as an alternative to the enable.

8.1.2.4. Duty Cycle Correction

The divider operates on the rising edge of the input clock, so it does not generate an even duty cycle clock when dividing

by odd numbers. For example, divide by 3 gives a duty cycle of 33.3%, and divide by 5 gives a duty cycle of 40%.

If enabled, duty cycle correction logic will shift the falling edge of the output clock to the falling edge of the input clock

and restore a 50% duty cycle. The duty cycle correction can be enabled and disabled while the clock is running. It will

not operate when dividing by an even number.

Clock source

Generated clock 
without DCC

Generated clock 
with DCC

Figure 36. An example

of

duty_cycle_correction.

8.1.2.5. Clock Enables

Each clock goes to multiple destinations. With a few exceptions, each destination has two enables. Use the WAKE_EN

registers to enable the clocks when the system is awake. Use the SLEEP_EN registers to enable the clocks when the

system is in sleep mode. Enables help reduce power in the clock distribution networks for unused components. Any

component which is not clocked will retain its configuration so it can restart quickly.
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 NOTE

By default, the WAKE_EN and SLEEP_EN registers reset to 0x1, which enables all clocks. Only use this feature for low-

power designs.

8.1.2.5.1. Clock Enable Exceptions

The following destinations do not have clock enables:

• the clk_gpclk0-clk_gpclk03 generators

• the processor cores, because they require a clock at all times to manage their own power-saving features

• clk_sys_busfabric (in wake mode), because that would prevent the cores from accessing any chip registers,

including those that control the clock enables

• clk_sys_clocks (in wake mode), because that would prevent the cores from accessing the clocks control registers

8.1.2.5.2. System Sleep Mode

System sleep mode is entered automatically when both cores are in sleep and the DMA has no outstanding

transactions. In system sleep mode, the clock enables described in the previous paragraphs are switched from the

WAKE_EN registers to the SLEEP_EN registers. Sleep mode helps reduce power consumed in the clock distribution networks

when the chip is inactive. If the user has not configured the WAKE_EN and SLEEP_EN registers, system sleep does nothing.

There is little value in using system sleep without taking other measures to reduce power before the cores are put to

sleep. Things to consider include:

• stop unused clock sources such as the PLLs and Crystal Oscillator

• reduce the frequencies of generated clocks by increasing the clock divisors

• stop external clocks

For maximum power saving when the chip is inactive, the user should consider DORMANT (see Section 6.5.3,

“DORMANT State”) mode in which clocks are sourced from the Crystal Oscillator and/or the Ring Oscillator and those

clock sources are stopped.

For more information about sleep, see Section 6.5.2, “SLEEP State”.

8.1.3. Frequency Counter

The frequency counter measures the frequency of internal and external clocks by counting the clock edges seen over a

test interval. The interval is defined by counting cycles of clk_ref, which must be driven either from XOSC or a stable

external source of known frequency.

The user can pick between accuracy and test time using the FC0_INTERVAL register. Table 539, “Frequency Counter

Test Interval vs Accuracy” shows this trade off:

Table 539. Frequency

Counter Test Interval

vs Accuracy

Interval Register Test Interval Accuracy

0 1μs 2048kHz

1 2μs 1024kHz

2 4μs 512kHz

3 8μs 256kHz

4 16μs 128kHz

5 32μs 64kHz
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Interval Register Test Interval Accuracy

6 64μs 32kHz

7 125μs 16kHz

8 250μs 8kHz

9 500μs 4kHz

10 1ms 2kHz

11 2ms 1kHz

12 4ms 500Hz

13 8ms 250Hz

14 16ms 125Hz

15 32ms 62.5Hz

8.1.4. Resus

It is possible to write software that inadvertently stops clk_sys. This normally causes an unrecoverable lock-up of the

cores and the on-chip debugger, leaving the user unable to trace the problem. To mitigate against unrecoverable core

lock-up, an automatic resuscitation circuit is provided; this switches clk_sys to a known good clock source (clk_ref) if it

detects no edges over a user-defined interval. clk_ref can be driven from the XOSC, ROSC or an external source. The

interval is programmable via CLK_SYS_RESUS_CTRL.

 WARNING

There is no way for resus to revive the chip if clk_ref is also stopped.

To enable the resus:

• set the timeout interval

• set the ENABLE bit in CLK_SYS_RESUS_CTRL

To detect a resus event:

• enable the CLK_SYS_RESUS interrupt by setting the interrupt enable bit in INTE

• enable the CLOCKS_DEFAULT_IRQ processor interrupt (see Section 3.2, “Interrupts”)

Resus is intended as a debugging aid, so the user can trace the software error that triggered the resus, then correct the

error and reboot. It is possible to continue running after a resus event by reconfiguring clk_sys, then clearing the resus

by writing the CLEAR bit in CLK_SYS_RESUS_CTRL.

 WARNING

Only use resus for debugging. If clk_sys runs slower than expected, a resus could trigger. This could result in a

clk_sys glitch, which could corrupt the chip.

8.1.5. Programmer’s Model

8.1.5.1. Configuring a clock generator

The SDK defines an enum of clocks:
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SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2350/hardware_structs/include/hardware/structs/clocks.h Lines 30 - 42

30 typedef enum clock_num_rp2350 {
31     clk_gpout0 = 0, ///< Select CLK_GPOUT0 as clock source
32     clk_gpout1 = 1, ///< Select CLK_GPOUT1 as clock source
33     clk_gpout2 = 2, ///< Select CLK_GPOUT2 as clock source
34     clk_gpout3 = 3, ///< Select CLK_GPOUT3 as clock source
35     clk_ref = 4, ///< Select CLK_REF as clock source
36     clk_sys = 5, ///< Select CLK_SYS as clock source
37     clk_peri = 6, ///< Select CLK_PERI as clock source
38     clk_hstx = 7, ///< Select CLK_HSTX as clock source
39     clk_usb = 8, ///< Select CLK_USB as clock source
40     clk_adc = 9, ///< Select CLK_ADC as clock source
41     CLK_COUNT
42 } clock_num_t;

Additionally, the SDK defines a struct to describe the registers of a clock generator:

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2350/hardware_structs/include/hardware/structs/clocks.h Lines 116 - 137

116 typedef struct {
117     _REG_(CLOCKS_CLK_GPOUT0_CTRL_OFFSET) // CLOCKS_CLK_GPOUT0_CTRL
118     // Clock control, can be changed on-the-fly (except for auxsrc)
119     // 0x10000000 [28]    ENABLED      (0) clock generator is enabled
120     // 0x00100000 [20]    NUDGE        (0) An edge on this signal shifts the phase of the
    output by...
121     // 0x00030000 [17:16] PHASE        (0x0) This delays the enable signal by up to 3 cycles
    of the...
122     // 0x00001000 [12]    DC50         (0) Enables duty cycle correction for odd divisors, can
    be...
123     // 0x00000800 [11]    ENABLE       (0) Starts and stops the clock generator cleanly
124     // 0x00000400 [10]    KILL         (0) Asynchronously kills the clock generator, enable
    must be...
125     // 0x000001e0 [8:5]   AUXSRC       (0x0) Selects the auxiliary clock source, will glitch
    when switching
126     io_rw_32 ctrl;
127 
128     _REG_(CLOCKS_CLK_GPOUT0_DIV_OFFSET) // CLOCKS_CLK_GPOUT0_DIV
129     // 0xffff0000 [31:16] INT          (0x0001) Integer part of clock divisor, 0 -> max+1, can
    be...
130     // 0x0000ffff [15:0]  FRAC         (0x0000) Fractional component of the divisor, can be
    changed on-the-fly
131     io_rw_32 div;
132 
133     _REG_(CLOCKS_CLK_GPOUT0_SELECTED_OFFSET) // CLOCKS_CLK_GPOUT0_SELECTED
134     // Indicates which src is currently selected (one-hot)
135     // 0x00000001 [0]     CLK_GPOUT0_SELECTED (1) This slice does not have a glitchless mux
    (only the...
136     io_ro_32 selected;
137 } clock_hw_t;

Clock configuration requires the following pieces of information:

• The frequency of the clock source

• The mux / aux mux position of the clock source

• The desired output frequency

The SDK provides clock_configure to configure a clock:
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SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/clocks.c Lines 40 - 119

 40 static void clock_configure_internal(clock_handle_t clock, uint32_t src, uint32_t auxsrc,
    uint32_t actual_freq, uint32_t div) {
 41     clock_hw_t *clock_hw = &clocks_hw->clk[clock];
 42 
 43     // If increasing divisor, set divisor before source. Otherwise set source
 44     // before divisor. This avoids a momentary overspeed when e.g. switching
 45     // to a faster source and increasing divisor to compensate.
 46     if (div > clock_hw->div)
 47         clock_hw->div = div;
 48 
 49     // If switching a glitchless slice (ref or sys) to an aux source, switch
 50     // away from aux *first* to avoid passing glitches when changing aux mux.
 51     // Assume (!!!) glitchless source 0 is no faster than the aux source.
 52     if (has_glitchless_mux(clock) && src ==
    CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX) {
 53         hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS);
 54         while (!(clock_hw->selected & 1u))
 55             tight_loop_contents();
 56     }
 57     // If no glitchless mux, cleanly stop the clock to avoid glitches
 58     // propagating when changing aux mux. Note it would be a really bad idea
 59     // to do this on one of the glitchless clocks (clk_sys, clk_ref).
 60     else {
 61         // Disable clock. On clk_ref and clk_sys this does nothing,
 62         // all other clocks have the ENABLE bit in the same position.
 63         hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
 64         if (configured_freq[clock] > 0) {
 65             // Delay for 3 cycles of the target clock, for ENABLE propagation.
 66             // Note XOSC_COUNT is not helpful here because XOSC is not
 67             // necessarily running, nor is timer...
 68             uint delay_cyc = configured_freq[clk_sys] / configured_freq[clock] + 1;
 69             busy_wait_at_least_cycles(delay_cyc * 3);
 70         }
 71     }
 72 
 73     // Set aux mux first, and then glitchless mux if this clock has one
 74     hw_write_masked(&clock_hw->ctrl,
 75         (auxsrc << CLOCKS_CLK_SYS_CTRL_AUXSRC_LSB),
 76         CLOCKS_CLK_SYS_CTRL_AUXSRC_BITS
 77     );
 78 
 79     if (has_glitchless_mux(clock)) {
 80         hw_write_masked(&clock_hw->ctrl,
 81             src << CLOCKS_CLK_REF_CTRL_SRC_LSB,
 82             CLOCKS_CLK_REF_CTRL_SRC_BITS
 83         );
 84         while (!(clock_hw->selected & (1u << src)))
 85             tight_loop_contents();
 86     }
 87 
 88     // Enable clock. On clk_ref and clk_sys this does nothing,
 89     // all other clocks have the ENABLE bit in the same position.
 90     hw_set_bits(&clock_hw->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
 91 
 92     // Now that the source is configured, we can trust that the user-supplied
 93     // divisor is a safe value.
 94     clock_hw->div = div;
 95     configured_freq[clock] = actual_freq;
 96 }
 97 
 98 bool clock_configure(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq,
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    uint32_t freq) {
 99     assert(src_freq >= freq);
100 
101     if (freq > src_freq)
102         return false;
103 
104     uint32_t div = (uint32_t)((((uint64_t) src_freq) << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) /
freq);
105     uint32_t actual_freq = (uint32_t) ((((uint64_t) src_freq) <<
CLOCKS_CLK_GPOUT0_DIV_INT_LSB) / div);
106 
107     clock_configure_internal(clock, src, auxsrc, actual_freq, div);
108     // Store the configured frequency
109     return true;
110 }
111 
112 void clock_configure_int_divider(clock_handle_t clock, uint32_t src, uint32_t auxsrc,
uint32_t src_freq, uint32_t int_divider) {
113     clock_configure_internal(clock, src, auxsrc, src_freq / int_divider, int_divider <<
CLOCKS_CLK_GPOUT0_DIV_INT_LSB);
114 }
115 
116 void clock_configure_undivided(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t
src_freq) {
117     clock_configure_internal(clock, src, auxsrc, src_freq, 1u <<
CLOCKS_CLK_GPOUT0_DIV_INT_LSB);
118 }

clocks_init calls clock_configure for each clock. The following example shows the clk_sys configuration:

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/runtime_init_clocks.c Lines 89 - 93

89         // CLK SYS = PLL SYS (usually) 125MHz / 1 = 125MHz
90         clock_configure_undivided(clk_sys,
91                         CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
92                         CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
93                         SYS_CLK_HZ);

Once a clock is configured, call clock_get_hz to get the output frequency in Hz.

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/clocks.c Lines 123 - 125

123 uint32_t clock_get_hz(clock_handle_t clock) {
124     return configured_freq[clock];
125 }

 WARNING

The frequency returned by clock_get_hz will be inaccurate if the provided source frequency is incorrect.

8.1.5.2. Using the frequency counter

To use the frequency counter, the programmer must:

1. Set the reference frequency: clk_ref.

2. Set the mux position of the source they want to measure. See FC0_SRC.
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3. Wait for the DONE status bit in FC0_STATUS to be set.

4. Read the result.

The SDK defines a frequency_count function which takes the source as an argument and returns the frequency in kHz:

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/clocks.c Lines 133 - 160

133 uint32_t frequency_count_khz(uint src) {
134     fc_hw_t *fc = &clocks_hw->fc0;
135 
136     // If frequency counter is running need to wait for it. It runs even if the source is NULL
137     while(fc->status & CLOCKS_FC0_STATUS_RUNNING_BITS) {
138         tight_loop_contents();
139     }
140 
141     // Set reference freq
142     fc->ref_khz = clock_get_hz(clk_ref) / 1000;
143 
144     // FIXME: Don't pick random interval. Use best interval
145     fc->interval = 10;
146 
147     // No min or max
148     fc->min_khz = 0;
149     fc->max_khz = 0xffffffff;
150 
151     // Set SRC which automatically starts the measurement
152     fc->src = src;
153 
154     while(!(fc->status & CLOCKS_FC0_STATUS_DONE_BITS)) {
155         tight_loop_contents();
156     }
157 
158     // Return the result
159     return fc->result >> CLOCKS_FC0_RESULT_KHZ_LSB;
160 }

There is also a wrapper function to change the unit to MHz:

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/include/hardware/clocks.h Lines 329 - 331

329 static inline float frequency_count_mhz(uint src) {
330     return ((float) (frequency_count_khz(src))) / KHZ;
331 }

 NOTE

The frequency counter can also be used in a test mode. This allows the hardware to check if the frequency is

between a minimum and a maximum frequency, set in FC0_MIN_KHZ and FC0_MAX_KHZ. This mode will set one of

the following bits in FC0_STATUS when DONE is set:

• SLOW: if the frequency is below the specified range

• PASS: if the frequency is within the specified range

• FAST: if the frequency is above the specified range

• DIED: if the clock is stopped or stops running

Test mode will also set the FAIL bit if DIED, FAST, or SLOW are set.
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8.1.5.3. Configuring a GPIO output clock

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/clocks.c Lines 231 - 255

231 void clock_gpio_init_int_frac(uint gpio, uint src, uint32_t div_int, uint8_t div_frac) {
232     // Bit messy but it's as much code to loop through a lookup
233     // table. The sources for each gpout generators are the same
234     // so just call with the sources from GP0
235     uint gpclk = 0;
236     if      (gpio == 21) gpclk = clk_gpout0;
237     else if (gpio == 23) gpclk = clk_gpout1;
238     else if (gpio == 24) gpclk = clk_gpout2;
239     else if (gpio == 25) gpclk = clk_gpout3;
240     else if (gpio == 13) gpclk = clk_gpout0;
241     else if (gpio == 15) gpclk = clk_gpout1;
242     else {
243         invalid_params_if(HARDWARE_CLOCKS, true);
244     }
245 
246     // Set up the gpclk generator
247     clocks_hw->clk[gpclk].ctrl = (src << CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_LSB) |
248                                  CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS;
249     clocks_hw->clk[gpclk].div = (div_int << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) | div_frac;
250 
251     // Set gpio pin to gpclock function
252     gpio_set_function(gpio, GPIO_FUNC_GPCK);
253 }

8.1.5.4. Configuring a GPIO input clock

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/clocks.c Lines 292 - 322

292 bool clock_configure_gpin(clock_handle_t clock, uint gpio, uint32_t src_freq, uint32_t freq)
    {
293     // Configure a clock to run from a GPIO input
294     uint gpin = 0;
295     if      (gpio == 20) gpin = 0;
296     else if (gpio == 22) gpin = 1;
297     else if (gpio == 12) gpin = 0;
298     else if (gpio == 14) gpin = 1;
299     else {
300         invalid_params_if(HARDWARE_CLOCKS, true);
301     }
302 
303     // Work out sources. GPIN is always an auxsrc
304     uint src = 0;
305 
306     // GPIN1 == GPIN0 + 1
307     uint auxsrc = gpin0_src[clock] + gpin;
308 
309     if (has_glitchless_mux(clock)) {
310         // AUX src is always 1
311         src = 1;
312     }
313 
314     // Set the GPIO function
315     gpio_set_function(gpio, GPIO_FUNC_GPCK);
316 
317     // Now we have the src, auxsrc, and configured the gpio input
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318     // call clock configure to run the clock from a gpio
319     return clock_configure(clock, src, auxsrc, src_freq, freq);
320 }

8.1.5.5. Enabling resus

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/clocks.c Lines 207 - 229

207 void clocks_enable_resus(resus_callback_t resus_callback) {
208     // Restart clk_sys if it is stopped by forcing it
209     // to the default source of clk_ref. If clk_ref stops running this will
210     // not work.
211 
212     // Store user's resus callback
213     _resus_callback = resus_callback;
214 
215     irq_set_exclusive_handler(CLOCKS_IRQ, clocks_irq_handler);
216 
217     // Enable the resus interrupt in clocks
218     clocks_hw->inte = CLOCKS_INTE_CLK_SYS_RESUS_BITS;
219 
220     // Enable the clocks irq
221     irq_set_enabled(CLOCKS_IRQ, true);
222 
223     // 2 * clk_ref freq / clk_sys_min_freq;
224     // assume clk_ref is 3MHz and we want clk_sys to be no lower than 1MHz
225     uint timeout = 2 * 3 * 1;
226 
227     // Enable resus with the maximum timeout
228     clocks_hw->resus.ctrl = CLOCKS_CLK_SYS_RESUS_CTRL_ENABLE_BITS | timeout;
229 }

8.1.5.6. Configuring sleep mode

Sleep mode is active when neither processor core nor the DMA are requesting clocks. For example, sleep mode is active

when the DMA is not active and both core 0 and core 1 are waiting for an interrupt.

The SLEEP_EN registers set what clocks run in sleep mode. The hello_sleep example (hello_sleep.c in the pico-playground

GitHub repository) illustrates how to put the chip to sleep until the AON Timer fires.

 NOTE

clk_sys is always sent to proc0 and proc1 during sleep mode, as some logic must be clocked for the processor to

wake up again.

Pico Extras: https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c Lines 106 - 122

106 void sleep_goto_sleep_until(datetime_t *t, rtc_callback_t callback) {
107     // We should have already called the sleep_run_from_dormant_source function
108     assert(dormant_source_valid(_dormant_source));
109 
110     // Turn off all clocks when in sleep mode except for RTC
111     clocks_hw->sleep_en0 = CLOCKS_SLEEP_EN0_CLK_RTC_RTC_BITS;
112     clocks_hw->sleep_en1 = 0x0;
113 
114     rtc_set_alarm(t, callback);
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115 
116     uint save = scb_hw->scr;
117     // Enable deep sleep at the proc
118     scb_hw->scr = save | M0PLUS_SCR_SLEEPDEEP_BITS;
119 
120     // Go to sleep
121     __wfi();
122 }

8.1.6. List of Registers

The clocks registers start at a base address of 0x40010000 (defined as CLOCKS_BASE in SDK).

Table 540. List of

CLOCKS registers
Offset Name Info

0x00 CLK_GPOUT0_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x04 CLK_GPOUT0_DIV

0x08 CLK_GPOUT0_SELECTED Indicates which src is currently selected (one-hot)

0x0c CLK_GPOUT1_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x10 CLK_GPOUT1_DIV

0x14 CLK_GPOUT1_SELECTED Indicates which src is currently selected (one-hot)

0x18 CLK_GPOUT2_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x1c CLK_GPOUT2_DIV

0x20 CLK_GPOUT2_SELECTED Indicates which src is currently selected (one-hot)

0x24 CLK_GPOUT3_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x28 CLK_GPOUT3_DIV

0x2c CLK_GPOUT3_SELECTED Indicates which src is currently selected (one-hot)

0x30 CLK_REF_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x34 CLK_REF_DIV

0x38 CLK_REF_SELECTED Indicates which src is currently selected (one-hot)

0x3c CLK_SYS_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x40 CLK_SYS_DIV

0x44 CLK_SYS_SELECTED Indicates which src is currently selected (one-hot)

0x48 CLK_PERI_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x4c CLK_PERI_DIV

0x50 CLK_PERI_SELECTED Indicates which src is currently selected (one-hot)

0x54 CLK_HSTX_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x58 CLK_HSTX_DIV

0x5c CLK_HSTX_SELECTED Indicates which src is currently selected (one-hot)

0x60 CLK_USB_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x64 CLK_USB_DIV

0x68 CLK_USB_SELECTED Indicates which src is currently selected (one-hot)
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Offset Name Info

0x6c CLK_ADC_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x70 CLK_ADC_DIV

0x74 CLK_ADC_SELECTED Indicates which src is currently selected (one-hot)

0x78 DFTCLK_XOSC_CTRL

0x7c DFTCLK_ROSC_CTRL

0x80 DFTCLK_LPOSC_CTRL

0x84 CLK_SYS_RESUS_CTRL

0x88 CLK_SYS_RESUS_STATUS

0x8c FC0_REF_KHZ Reference clock frequency in kHz

0x90 FC0_MIN_KHZ Minimum pass frequency in kHz. This is optional. Set to 0 if you

are not using the pass/fail flags

0x94 FC0_MAX_KHZ Maximum pass frequency in kHz. This is optional. Set to 0x1ffffff

if you are not using the pass/fail flags

0x98 FC0_DELAY Delays the start of frequency counting to allow the mux to settle

Delay is measured in multiples of the reference clock period

0x9c FC0_INTERVAL The test interval is 0.98us * 2**interval, but let’s call it 1us *

2**interval

The default gives a test interval of 250us

0xa0 FC0_SRC Clock sent to frequency counter, set to 0 when not required

Writing to this register initiates the frequency count

0xa4 FC0_STATUS Frequency counter status

0xa8 FC0_RESULT Result of frequency measurement, only valid when

status_done=1

0xac WAKE_EN0 enable clock in wake mode

0xb0 WAKE_EN1 enable clock in wake mode

0xb4 SLEEP_EN0 enable clock in sleep mode

0xb8 SLEEP_EN1 enable clock in sleep mode

0xbc ENABLED0 indicates the state of the clock enable

0xc0 ENABLED1 indicates the state of the clock enable

0xc4 INTR Raw Interrupts

0xc8 INTE Interrupt Enable

0xcc INTF Interrupt Force

0xd0 INTS Interrupt status after masking & forcing

CLOCKS: CLK_GPOUT0_CTRL Register

Offset: 0x00

Description

Clock control, can be changed on-the-fly (except for auxsrc)
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Table 541.

CLK_GPOUT0_CTRL

Register

Bits Description Type Reset

31:29 Reserved. - -

28 ENABLED: clock generator is enabled RO 0x0

27:21 Reserved. - -

20 NUDGE: An edge on this signal shifts the phase of the output by 1 cycle of the

input clock

This can be done at any time

RW 0x0

19:18 Reserved. - -

17:16 PHASE: This delays the enable signal by up to 3 cycles of the input clock

This must be set before the clock is enabled to have any effect

RW 0x0

15:13 Reserved. - -

12 DC50: Enables duty cycle correction for odd divisors, can be changed on-the-

fly

RW 0x0

11 ENABLE: Starts and stops the clock generator cleanly RW 0x0

10 KILL: Asynchronously kills the clock generator, enable must be set low before

deasserting kill

RW 0x0

9 Reserved. - -

8:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0

Enumerated values:

0x0 → clksrc_pll_sys

0x1 → clksrc_gpin0

0x2 → clksrc_gpin1

0x3 → clksrc_pll_usb

0x4 → clksrc_pll_usb_primary_ref_opcg

0x5 → rosc_clksrc

0x6 → xosc_clksrc

0x7 → lposc_clksrc

0x8 → clk_sys

0x9 → clk_usb

0xa → clk_adc

0xb → clk_ref

0xc → clk_peri

0xd → clk_hstx

0xe → otp_clk2fc

4:0 Reserved. - -

CLOCKS: CLK_GPOUT0_DIV Register

Offset: 0x04
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Table 542.

CLK_GPOUT0_DIV

Register

Bits Description Type Reset

31:16 INT: Integer part of clock divisor, 0 → max+1, can be changed on-the-fly RW 0x0001

15:0 FRAC: Fractional component of the divisor, can be changed on-the-fly RW 0x0000

CLOCKS: CLK_GPOUT0_SELECTED Register

Offset: 0x08

Description

Indicates which src is currently selected (one-hot)

Table 543.

CLK_GPOUT0_SELECT

ED Register

Bits Description Type Reset

31:1 Reserved. - -

0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x1

CLOCKS: CLK_GPOUT1_CTRL Register

Offset: 0x0c

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 544.

CLK_GPOUT1_CTRL

Register

Bits Description Type Reset

31:29 Reserved. - -

28 ENABLED: clock generator is enabled RO 0x0

27:21 Reserved. - -

20 NUDGE: An edge on this signal shifts the phase of the output by 1 cycle of the

input clock

This can be done at any time

RW 0x0

19:18 Reserved. - -

17:16 PHASE: This delays the enable signal by up to 3 cycles of the input clock

This must be set before the clock is enabled to have any effect

RW 0x0

15:13 Reserved. - -

12 DC50: Enables duty cycle correction for odd divisors, can be changed on-the-

fly

RW 0x0

11 ENABLE: Starts and stops the clock generator cleanly RW 0x0

10 KILL: Asynchronously kills the clock generator, enable must be set low before

deasserting kill

RW 0x0

9 Reserved. - -

8:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0

Enumerated values:

0x0 → clksrc_pll_sys

0x1 → clksrc_gpin0

0x2 → clksrc_gpin1

0x3 → clksrc_pll_usb
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Bits Description Type Reset

0x4 → clksrc_pll_usb_primary_ref_opcg

0x5 → rosc_clksrc

0x6 → xosc_clksrc

0x7 → lposc_clksrc

0x8 → clk_sys

0x9 → clk_usb

0xa → clk_adc

0xb → clk_ref

0xc → clk_peri

0xd → clk_hstx

0xe → otp_clk2fc

4:0 Reserved. - -

CLOCKS: CLK_GPOUT1_DIV Register

Offset: 0x10

Table 545.

CLK_GPOUT1_DIV

Register

Bits Description Type Reset

31:16 INT: Integer part of clock divisor, 0 → max+1, can be changed on-the-fly RW 0x0001

15:0 FRAC: Fractional component of the divisor, can be changed on-the-fly RW 0x0000

CLOCKS: CLK_GPOUT1_SELECTED Register

Offset: 0x14

Description

Indicates which src is currently selected (one-hot)

Table 546.

CLK_GPOUT1_SELECT

ED Register

Bits Description Type Reset

31:1 Reserved. - -

0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x1

CLOCKS: CLK_GPOUT2_CTRL Register

Offset: 0x18

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 547.

CLK_GPOUT2_CTRL

Register

Bits Description Type Reset

31:29 Reserved. - -

28 ENABLED: clock generator is enabled RO 0x0

27:21 Reserved. - -

RP2350 Datasheet

8.1. Overview 523



Bits Description Type Reset

20 NUDGE: An edge on this signal shifts the phase of the output by 1 cycle of the

input clock

This can be done at any time

RW 0x0

19:18 Reserved. - -

17:16 PHASE: This delays the enable signal by up to 3 cycles of the input clock

This must be set before the clock is enabled to have any effect

RW 0x0

15:13 Reserved. - -

12 DC50: Enables duty cycle correction for odd divisors, can be changed on-the-

fly

RW 0x0

11 ENABLE: Starts and stops the clock generator cleanly RW 0x0

10 KILL: Asynchronously kills the clock generator, enable must be set low before

deasserting kill

RW 0x0

9 Reserved. - -

8:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0

Enumerated values:

0x0 → clksrc_pll_sys

0x1 → clksrc_gpin0

0x2 → clksrc_gpin1

0x3 → clksrc_pll_usb

0x4 → clksrc_pll_usb_primary_ref_opcg

0x5 → rosc_clksrc_ph

0x6 → xosc_clksrc

0x7 → lposc_clksrc

0x8 → clk_sys

0x9 → clk_usb

0xa → clk_adc

0xb → clk_ref

0xc → clk_peri

0xd → clk_hstx

0xe → otp_clk2fc

4:0 Reserved. - -

CLOCKS: CLK_GPOUT2_DIV Register

Offset: 0x1c
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Table 548.

CLK_GPOUT2_DIV

Register

Bits Description Type Reset

31:16 INT: Integer part of clock divisor, 0 → max+1, can be changed on-the-fly RW 0x0001

15:0 FRAC: Fractional component of the divisor, can be changed on-the-fly RW 0x0000

CLOCKS: CLK_GPOUT2_SELECTED Register

Offset: 0x20

Description

Indicates which src is currently selected (one-hot)

Table 549.

CLK_GPOUT2_SELECT

ED Register

Bits Description Type Reset

31:1 Reserved. - -

0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x1

CLOCKS: CLK_GPOUT3_CTRL Register

Offset: 0x24

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 550.

CLK_GPOUT3_CTRL

Register

Bits Description Type Reset

31:29 Reserved. - -

28 ENABLED: clock generator is enabled RO 0x0

27:21 Reserved. - -

20 NUDGE: An edge on this signal shifts the phase of the output by 1 cycle of the

input clock

This can be done at any time

RW 0x0

19:18 Reserved. - -

17:16 PHASE: This delays the enable signal by up to 3 cycles of the input clock

This must be set before the clock is enabled to have any effect

RW 0x0

15:13 Reserved. - -

12 DC50: Enables duty cycle correction for odd divisors, can be changed on-the-

fly

RW 0x0

11 ENABLE: Starts and stops the clock generator cleanly RW 0x0

10 KILL: Asynchronously kills the clock generator, enable must be set low before

deasserting kill

RW 0x0

9 Reserved. - -

8:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0

Enumerated values:

0x0 → clksrc_pll_sys

0x1 → clksrc_gpin0

0x2 → clksrc_gpin1

0x3 → clksrc_pll_usb
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Bits Description Type Reset

0x4 → clksrc_pll_usb_primary_ref_opcg

0x5 → rosc_clksrc_ph

0x6 → xosc_clksrc

0x7 → lposc_clksrc

0x8 → clk_sys

0x9 → clk_usb

0xa → clk_adc

0xb → clk_ref

0xc → clk_peri

0xd → clk_hstx

0xe → otp_clk2fc

4:0 Reserved. - -

CLOCKS: CLK_GPOUT3_DIV Register

Offset: 0x28

Table 551.

CLK_GPOUT3_DIV

Register

Bits Description Type Reset

31:16 INT: Integer part of clock divisor, 0 → max+1, can be changed on-the-fly RW 0x0001

15:0 FRAC: Fractional component of the divisor, can be changed on-the-fly RW 0x0000

CLOCKS: CLK_GPOUT3_SELECTED Register

Offset: 0x2c

Description

Indicates which src is currently selected (one-hot)

Table 552.

CLK_GPOUT3_SELECT

ED Register

Bits Description Type Reset

31:1 Reserved. - -

0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x1

CLOCKS: CLK_REF_CTRL Register

Offset: 0x30

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 553.

CLK_REF_CTRL

Register

Bits Description Type Reset

31:7 Reserved. - -

6:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0

Enumerated values:

0x0 → clksrc_pll_usb
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Bits Description Type Reset

0x1 → clksrc_gpin0

0x2 → clksrc_gpin1

0x3 → clksrc_pll_usb_primary_ref_opcg

4:2 Reserved. - -

1:0 SRC: Selects the clock source glitchlessly, can be changed on-the-fly RW -

Enumerated values:

0x0 → rosc_clksrc_ph

0x1 → clksrc_clk_ref_aux

0x2 → xosc_clksrc

0x3 → lposc_clksrc

CLOCKS: CLK_REF_DIV Register

Offset: 0x34

Table 554.

CLK_REF_DIV Register
Bits Description Type Reset

31:24 Reserved. - -

23:16 INT: Integer part of clock divisor, 0 → max+1, can be changed on-the-fly RW 0x01

15:0 Reserved. - -

CLOCKS: CLK_REF_SELECTED Register

Offset: 0x38

Description

Indicates which src is currently selected (one-hot)

Table 555.

CLK_REF_SELECTED

Register

Bits Description Type Reset

31:4 Reserved. - -

3:0 The glitchless multiplexer does not switch instantaneously (to avoid glitches),

so software should poll this register to wait for the switch to complete. This

register contains one decoded bit for each of the clock sources enumerated in

the CTRL SRC field. At most one of these bits will be set at any time, indicating

that clock is currently present at the output of the glitchless mux. Whilst

switching is in progress, this register may briefly show all-0s.

RO 0x1

CLOCKS: CLK_SYS_CTRL Register

Offset: 0x3c

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 556.

CLK_SYS_CTRL

Register

Bits Description Type Reset

31:8 Reserved. - -

7:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0
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Bits Description Type Reset

Enumerated values:

0x0 → clksrc_pll_sys

0x1 → clksrc_pll_usb

0x2 → rosc_clksrc

0x3 → xosc_clksrc

0x4 → clksrc_gpin0

0x5 → clksrc_gpin1

4:1 Reserved. - -

0 SRC: Selects the clock source glitchlessly, can be changed on-the-fly RW 0x0

Enumerated values:

0x0 → clk_ref

0x1 → clksrc_clk_sys_aux

CLOCKS: CLK_SYS_DIV Register

Offset: 0x40

Table 557.

CLK_SYS_DIV Register
Bits Description Type Reset

31:16 INT: Integer part of clock divisor, 0 → max+1, can be changed on-the-fly RW 0x0001

15:0 FRAC: Fractional component of the divisor, can be changed on-the-fly RW 0x0000

CLOCKS: CLK_SYS_SELECTED Register

Offset: 0x44

Description

Indicates which src is currently selected (one-hot)

Table 558.

CLK_SYS_SELECTED

Register

Bits Description Type Reset

31:2 Reserved. - -

1:0 The glitchless multiplexer does not switch instantaneously (to avoid glitches),

so software should poll this register to wait for the switch to complete. This

register contains one decoded bit for each of the clock sources enumerated in

the CTRL SRC field. At most one of these bits will be set at any time, indicating

that clock is currently present at the output of the glitchless mux. Whilst

switching is in progress, this register may briefly show all-0s.

RO 0x1

CLOCKS: CLK_PERI_CTRL Register

Offset: 0x48

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 559.

CLK_PERI_CTRL

Register

Bits Description Type Reset

31:29 Reserved. - -

28 ENABLED: clock generator is enabled RO 0x0
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Bits Description Type Reset

27:12 Reserved. - -

11 ENABLE: Starts and stops the clock generator cleanly RW 0x0

10 KILL: Asynchronously kills the clock generator, enable must be set low before

deasserting kill

RW 0x0

9:8 Reserved. - -

7:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0

Enumerated values:

0x0 → clk_sys

0x1 → clksrc_pll_sys

0x2 → clksrc_pll_usb

0x3 → rosc_clksrc_ph

0x4 → xosc_clksrc

0x5 → clksrc_gpin0

0x6 → clksrc_gpin1

4:0 Reserved. - -

CLOCKS: CLK_PERI_DIV Register

Offset: 0x4c

Table 560.

CLK_PERI_DIV

Register

Bits Description Type Reset

31:18 Reserved. - -

17:16 INT: Integer part of clock divisor, 0 → max+1, can be changed on-the-fly RW 0x1

15:0 Reserved. - -

CLOCKS: CLK_PERI_SELECTED Register

Offset: 0x50

Description

Indicates which src is currently selected (one-hot)

Table 561.

CLK_PERI_SELECTED

Register

Bits Description Type Reset

31:1 Reserved. - -

0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x1

CLOCKS: CLK_HSTX_CTRL Register

Offset: 0x54

Description

Clock control, can be changed on-the-fly (except for auxsrc)

RP2350 Datasheet

8.1. Overview 529



Table 562.

CLK_HSTX_CTRL

Register

Bits Description Type Reset

31:29 Reserved. - -

28 ENABLED: clock generator is enabled RO 0x0

27:21 Reserved. - -

20 NUDGE: An edge on this signal shifts the phase of the output by 1 cycle of the

input clock

This can be done at any time

RW 0x0

19:18 Reserved. - -

17:16 PHASE: This delays the enable signal by up to 3 cycles of the input clock

This must be set before the clock is enabled to have any effect

RW 0x0

15:12 Reserved. - -

11 ENABLE: Starts and stops the clock generator cleanly RW 0x0

10 KILL: Asynchronously kills the clock generator, enable must be set low before

deasserting kill

RW 0x0

9:8 Reserved. - -

7:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0

Enumerated values:

0x0 → clk_sys

0x1 → clksrc_pll_sys

0x2 → clksrc_pll_usb

0x3 → clksrc_gpin0

0x4 → clksrc_gpin1

4:0 Reserved. - -

CLOCKS: CLK_HSTX_DIV Register

Offset: 0x58

Table 563.

CLK_HSTX_DIV

Register

Bits Description Type Reset

31:18 Reserved. - -

17:16 INT: Integer part of clock divisor, 0 → max+1, can be changed on-the-fly RW 0x1

15:0 Reserved. - -

CLOCKS: CLK_HSTX_SELECTED Register

Offset: 0x5c

Description

Indicates which src is currently selected (one-hot)

Table 564.

CLK_HSTX_SELECTED

Register

Bits Description Type Reset

31:1 Reserved. - -
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Bits Description Type Reset

0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x1

CLOCKS: CLK_USB_CTRL Register

Offset: 0x60

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 565.

CLK_USB_CTRL

Register

Bits Description Type Reset

31:29 Reserved. - -

28 ENABLED: clock generator is enabled RO 0x0

27:21 Reserved. - -

20 NUDGE: An edge on this signal shifts the phase of the output by 1 cycle of the

input clock

This can be done at any time

RW 0x0

19:18 Reserved. - -

17:16 PHASE: This delays the enable signal by up to 3 cycles of the input clock

This must be set before the clock is enabled to have any effect

RW 0x0

15:12 Reserved. - -

11 ENABLE: Starts and stops the clock generator cleanly RW 0x0

10 KILL: Asynchronously kills the clock generator, enable must be set low before

deasserting kill

RW 0x0

9:8 Reserved. - -

7:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0

Enumerated values:

0x0 → clksrc_pll_usb

0x1 → clksrc_pll_sys

0x2 → rosc_clksrc_ph

0x3 → xosc_clksrc

0x4 → clksrc_gpin0

0x5 → clksrc_gpin1

4:0 Reserved. - -

CLOCKS: CLK_USB_DIV Register

Offset: 0x64

Table 566.

CLK_USB_DIV Register
Bits Description Type Reset

31:20 Reserved. - -

19:16 INT: Integer part of clock divisor, 0 → max+1, can be changed on-the-fly RW 0x1

15:0 Reserved. - -
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CLOCKS: CLK_USB_SELECTED Register

Offset: 0x68

Description

Indicates which src is currently selected (one-hot)

Table 567.

CLK_USB_SELECTED

Register

Bits Description Type Reset

31:1 Reserved. - -

0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x1

CLOCKS: CLK_ADC_CTRL Register

Offset: 0x6c

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 568.

CLK_ADC_CTRL

Register

Bits Description Type Reset

31:29 Reserved. - -

28 ENABLED: clock generator is enabled RO 0x0

27:21 Reserved. - -

20 NUDGE: An edge on this signal shifts the phase of the output by 1 cycle of the

input clock

This can be done at any time

RW 0x0

19:18 Reserved. - -

17:16 PHASE: This delays the enable signal by up to 3 cycles of the input clock

This must be set before the clock is enabled to have any effect

RW 0x0

15:12 Reserved. - -

11 ENABLE: Starts and stops the clock generator cleanly RW 0x0

10 KILL: Asynchronously kills the clock generator, enable must be set low before

deasserting kill

RW 0x0

9:8 Reserved. - -

7:5 AUXSRC: Selects the auxiliary clock source, will glitch when switching RW 0x0

Enumerated values:

0x0 → clksrc_pll_usb

0x1 → clksrc_pll_sys

0x2 → rosc_clksrc_ph

0x3 → xosc_clksrc

0x4 → clksrc_gpin0

0x5 → clksrc_gpin1

4:0 Reserved. - -
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CLOCKS: CLK_ADC_DIV Register

Offset: 0x70

Table 569.

CLK_ADC_DIV Register
Bits Description Type Reset

31:20 Reserved. - -

19:16 INT: Integer part of clock divisor, 0 → max+1, can be changed on-the-fly RW 0x1

15:0 Reserved. - -

CLOCKS: CLK_ADC_SELECTED Register

Offset: 0x74

Description

Indicates which src is currently selected (one-hot)

Table 570.

CLK_ADC_SELECTED

Register

Bits Description Type Reset

31:1 Reserved. - -

0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x1

CLOCKS: DFTCLK_XOSC_CTRL Register

Offset: 0x78

Table 571.

DFTCLK_XOSC_CTRL

Register

Bits Description Type Reset

31:2 Reserved. - -

1:0 SRC RW 0x0

Enumerated values:

0x0 → NULL

0x1 → clksrc_pll_usb_primary

0x2 → clksrc_gpin0

CLOCKS: DFTCLK_ROSC_CTRL Register

Offset: 0x7c

Table 572.

DFTCLK_ROSC_CTRL

Register

Bits Description Type Reset

31:2 Reserved. - -

1:0 SRC RW 0x0

Enumerated values:

0x0 → NULL

0x1 → clksrc_pll_sys_primary_rosc

0x2 → clksrc_gpin1

CLOCKS: DFTCLK_LPOSC_CTRL Register

Offset: 0x80
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Table 573.

DFTCLK_LPOSC_CTRL

Register

Bits Description Type Reset

31:2 Reserved. - -

1:0 SRC RW 0x0

Enumerated values:

0x0 → NULL

0x1 → clksrc_pll_usb_primary_lposc

0x2 → clksrc_gpin1

CLOCKS: CLK_SYS_RESUS_CTRL Register

Offset: 0x84

Table 574.

CLK_SYS_RESUS_CTR

L Register

Bits Description Type Reset

31:17 Reserved. - -

16 CLEAR: For clearing the resus after the fault that triggered it has been

corrected

RW 0x0

15:13 Reserved. - -

12 FRCE: Force a resus, for test purposes only RW 0x0

11:9 Reserved. - -

8 ENABLE: Enable resus RW 0x0

7:0 TIMEOUT: This is expressed as a number of clk_ref cycles

and must be >= 2x clk_ref_freq/min_clk_tst_freq

RW 0xff

CLOCKS: CLK_SYS_RESUS_STATUS Register

Offset: 0x88

Table 575.

CLK_SYS_RESUS_STA

TUS Register

Bits Description Type Reset

31:1 Reserved. - -

0 RESUSSED: Clock has been resuscitated, correct the error then send

ctrl_clear=1

RO 0x0

CLOCKS: FC0_REF_KHZ Register

Offset: 0x8c

Table 576.

FC0_REF_KHZ Register
Bits Description Type Reset

31:20 Reserved. - -

19:0 Reference clock frequency in kHz RW 0x00000

CLOCKS: FC0_MIN_KHZ Register

Offset: 0x90

Table 577.

FC0_MIN_KHZ

Register

Bits Description Type Reset

31:25 Reserved. - -
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Bits Description Type Reset

24:0 Minimum pass frequency in kHz. This is optional. Set to 0 if you are not using

the pass/fail flags

RW 0x0000000

CLOCKS: FC0_MAX_KHZ Register

Offset: 0x94

Table 578.

FC0_MAX_KHZ

Register

Bits Description Type Reset

31:25 Reserved. - -

24:0 Maximum pass frequency in kHz. This is optional. Set to 0x1ffffff if you are

not using the pass/fail flags

RW 0x1ffffff

CLOCKS: FC0_DELAY Register

Offset: 0x98

Table 579. FC0_DELAY

Register
Bits Description Type Reset

31:3 Reserved. - -

2:0 Delays the start of frequency counting to allow the mux to settle

Delay is measured in multiples of the reference clock period

RW 0x1

CLOCKS: FC0_INTERVAL Register

Offset: 0x9c

Table 580.

FC0_INTERVAL

Register

Bits Description Type Reset

31:4 Reserved. - -

3:0 The test interval is 0.98us * 2**interval, but let’s call it 1us * 2**interval

The default gives a test interval of 250us

RW 0x8

CLOCKS: FC0_SRC Register

Offset: 0xa0

Table 581. FC0_SRC

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 Clock sent to frequency counter, set to 0 when not required

Writing to this register initiates the frequency count

RW 0x00

Enumerated values:

0x00 → NULL

0x01 → pll_sys_clksrc_primary

0x02 → pll_usb_clksrc_primary

0x03 → rosc_clksrc

0x04 → rosc_clksrc_ph

0x05 → xosc_clksrc

0x06 → clksrc_gpin0

0x07 → clksrc_gpin1
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Bits Description Type Reset

0x08 → clk_ref

0x09 → clk_sys

0x0a → clk_peri

0x0b → clk_usb

0x0c → clk_adc

0x0d → clk_hstx

0x0e → lposc_clksrc

0x0f → otp_clk2fc

0x10 → pll_usb_clksrc_primary_dft

CLOCKS: FC0_STATUS Register

Offset: 0xa4

Description

Frequency counter status

Table 582.

FC0_STATUS Register
Bits Description Type Reset

31:29 Reserved. - -

28 DIED: Test clock stopped during test RO 0x0

27:25 Reserved. - -

24 FAST: Test clock faster than expected, only valid when status_done=1 RO 0x0

23:21 Reserved. - -

20 SLOW: Test clock slower than expected, only valid when status_done=1 RO 0x0

19:17 Reserved. - -

16 FAIL: Test failed RO 0x0

15:13 Reserved. - -

12 WAITING: Waiting for test clock to start RO 0x0

11:9 Reserved. - -

8 RUNNING: Test running RO 0x0

7:5 Reserved. - -

4 DONE: Test complete RO 0x0

3:1 Reserved. - -

0 PASS: Test passed RO 0x0

CLOCKS: FC0_RESULT Register

Offset: 0xa8

Description

Result of frequency measurement, only valid when status_done=1
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Table 583.

FC0_RESULT Register
Bits Description Type Reset

31:30 Reserved. - -

29:5 KHZ RO 0x0000000

4:0 FRAC RO 0x00

CLOCKS: WAKE_EN0 Register

Offset: 0xac

Description

enable clock in wake mode

Table 584. WAKE_EN0

Register
Bits Description Type Reset

31 CLK_SYS_SIO RW 0x1

30 CLK_SYS_SHA256 RW 0x1

29 CLK_SYS_PSM RW 0x1

28 CLK_SYS_ROSC RW 0x1

27 CLK_SYS_ROM RW 0x1

26 CLK_SYS_RESETS RW 0x1

25 CLK_SYS_PWM RW 0x1

24 CLK_SYS_POWMAN RW 0x1

23 CLK_REF_POWMAN RW 0x1

22 CLK_SYS_PLL_USB RW 0x1

21 CLK_SYS_PLL_SYS RW 0x1

20 CLK_SYS_PIO2 RW 0x1

19 CLK_SYS_PIO1 RW 0x1

18 CLK_SYS_PIO0 RW 0x1

17 CLK_SYS_PADS RW 0x1

16 CLK_SYS_OTP RW 0x1

15 CLK_REF_OTP RW 0x1

14 CLK_SYS_JTAG RW 0x1

13 CLK_SYS_IO RW 0x1

12 CLK_SYS_I2C1 RW 0x1

11 CLK_SYS_I2C0 RW 0x1

10 CLK_SYS_HSTX RW 0x1

9 CLK_HSTX RW 0x1

8 CLK_SYS_GLITCH_DETECTOR RW 0x1

7 CLK_SYS_DMA RW 0x1

6 CLK_SYS_BUSFABRIC RW 0x1

5 CLK_SYS_BUSCTRL RW 0x1
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Bits Description Type Reset

4 CLK_SYS_BOOTRAM RW 0x1

3 CLK_SYS_ADC RW 0x1

2 CLK_ADC_ADC RW 0x1

1 CLK_SYS_ACCESSCTRL RW 0x1

0 CLK_SYS_CLOCKS RW 0x1

CLOCKS: WAKE_EN1 Register

Offset: 0xb0

Description

enable clock in wake mode

Table 585. WAKE_EN1

Register
Bits Description Type Reset

31 Reserved. - -

30 CLK_SYS_XOSC RW 0x1

29 CLK_SYS_XIP RW 0x1

28 CLK_SYS_WATCHDOG RW 0x1

27 CLK_USB RW 0x1

26 CLK_SYS_USBCTRL RW 0x1

25 CLK_SYS_UART1 RW 0x1

24 CLK_PERI_UART1 RW 0x1

23 CLK_SYS_UART0 RW 0x1

22 CLK_PERI_UART0 RW 0x1

21 CLK_SYS_TRNG RW 0x1

20 CLK_SYS_TIMER1 RW 0x1

19 CLK_SYS_TIMER0 RW 0x1

18 CLK_SYS_TICKS RW 0x1

17 CLK_REF_TICKS RW 0x1

16 CLK_SYS_TBMAN RW 0x1

15 CLK_SYS_SYSINFO RW 0x1

14 CLK_SYS_SYSCFG RW 0x1

13 CLK_SYS_SRAM9 RW 0x1

12 CLK_SYS_SRAM8 RW 0x1

11 CLK_SYS_SRAM7 RW 0x1

10 CLK_SYS_SRAM6 RW 0x1

9 CLK_SYS_SRAM5 RW 0x1

8 CLK_SYS_SRAM4 RW 0x1

7 CLK_SYS_SRAM3 RW 0x1
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Bits Description Type Reset

6 CLK_SYS_SRAM2 RW 0x1

5 CLK_SYS_SRAM1 RW 0x1

4 CLK_SYS_SRAM0 RW 0x1

3 CLK_SYS_SPI1 RW 0x1

2 CLK_PERI_SPI1 RW 0x1

1 CLK_SYS_SPI0 RW 0x1

0 CLK_PERI_SPI0 RW 0x1

CLOCKS: SLEEP_EN0 Register

Offset: 0xb4

Description

enable clock in sleep mode

Table 586. SLEEP_EN0

Register
Bits Description Type Reset

31 CLK_SYS_SIO RW 0x1

30 CLK_SYS_SHA256 RW 0x1

29 CLK_SYS_PSM RW 0x1

28 CLK_SYS_ROSC RW 0x1

27 CLK_SYS_ROM RW 0x1

26 CLK_SYS_RESETS RW 0x1

25 CLK_SYS_PWM RW 0x1

24 CLK_SYS_POWMAN RW 0x1

23 CLK_REF_POWMAN RW 0x1

22 CLK_SYS_PLL_USB RW 0x1

21 CLK_SYS_PLL_SYS RW 0x1

20 CLK_SYS_PIO2 RW 0x1

19 CLK_SYS_PIO1 RW 0x1

18 CLK_SYS_PIO0 RW 0x1

17 CLK_SYS_PADS RW 0x1

16 CLK_SYS_OTP RW 0x1

15 CLK_REF_OTP RW 0x1

14 CLK_SYS_JTAG RW 0x1

13 CLK_SYS_IO RW 0x1

12 CLK_SYS_I2C1 RW 0x1

11 CLK_SYS_I2C0 RW 0x1

10 CLK_SYS_HSTX RW 0x1

9 CLK_HSTX RW 0x1
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Bits Description Type Reset

8 CLK_SYS_GLITCH_DETECTOR RW 0x1

7 CLK_SYS_DMA RW 0x1

6 CLK_SYS_BUSFABRIC RW 0x1

5 CLK_SYS_BUSCTRL RW 0x1

4 CLK_SYS_BOOTRAM RW 0x1

3 CLK_SYS_ADC RW 0x1

2 CLK_ADC_ADC RW 0x1

1 CLK_SYS_ACCESSCTRL RW 0x1

0 CLK_SYS_CLOCKS RW 0x1

CLOCKS: SLEEP_EN1 Register

Offset: 0xb8

Description

enable clock in sleep mode

Table 587. SLEEP_EN1

Register
Bits Description Type Reset

31 Reserved. - -

30 CLK_SYS_XOSC RW 0x1

29 CLK_SYS_XIP RW 0x1

28 CLK_SYS_WATCHDOG RW 0x1

27 CLK_USB RW 0x1

26 CLK_SYS_USBCTRL RW 0x1

25 CLK_SYS_UART1 RW 0x1

24 CLK_PERI_UART1 RW 0x1

23 CLK_SYS_UART0 RW 0x1

22 CLK_PERI_UART0 RW 0x1

21 CLK_SYS_TRNG RW 0x1

20 CLK_SYS_TIMER1 RW 0x1

19 CLK_SYS_TIMER0 RW 0x1

18 CLK_SYS_TICKS RW 0x1

17 CLK_REF_TICKS RW 0x1

16 CLK_SYS_TBMAN RW 0x1

15 CLK_SYS_SYSINFO RW 0x1

14 CLK_SYS_SYSCFG RW 0x1

13 CLK_SYS_SRAM9 RW 0x1

12 CLK_SYS_SRAM8 RW 0x1

11 CLK_SYS_SRAM7 RW 0x1
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Bits Description Type Reset

10 CLK_SYS_SRAM6 RW 0x1

9 CLK_SYS_SRAM5 RW 0x1

8 CLK_SYS_SRAM4 RW 0x1

7 CLK_SYS_SRAM3 RW 0x1

6 CLK_SYS_SRAM2 RW 0x1

5 CLK_SYS_SRAM1 RW 0x1

4 CLK_SYS_SRAM0 RW 0x1

3 CLK_SYS_SPI1 RW 0x1

2 CLK_PERI_SPI1 RW 0x1

1 CLK_SYS_SPI0 RW 0x1

0 CLK_PERI_SPI0 RW 0x1

CLOCKS: ENABLED0 Register

Offset: 0xbc

Description

indicates the state of the clock enable

Table 588. ENABLED0

Register
Bits Description Type Reset

31 CLK_SYS_SIO RO 0x0

30 CLK_SYS_SHA256 RO 0x0

29 CLK_SYS_PSM RO 0x0

28 CLK_SYS_ROSC RO 0x0

27 CLK_SYS_ROM RO 0x0

26 CLK_SYS_RESETS RO 0x0

25 CLK_SYS_PWM RO 0x0

24 CLK_SYS_POWMAN RO 0x0

23 CLK_REF_POWMAN RO 0x0

22 CLK_SYS_PLL_USB RO 0x0

21 CLK_SYS_PLL_SYS RO 0x0

20 CLK_SYS_PIO2 RO 0x0

19 CLK_SYS_PIO1 RO 0x0

18 CLK_SYS_PIO0 RO 0x0

17 CLK_SYS_PADS RO 0x0

16 CLK_SYS_OTP RO 0x0

15 CLK_REF_OTP RO 0x0

14 CLK_SYS_JTAG RO 0x0

13 CLK_SYS_IO RO 0x0
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Bits Description Type Reset

12 CLK_SYS_I2C1 RO 0x0

11 CLK_SYS_I2C0 RO 0x0

10 CLK_SYS_HSTX RO 0x0

9 CLK_HSTX RO 0x0

8 CLK_SYS_GLITCH_DETECTOR RO 0x0

7 CLK_SYS_DMA RO 0x0

6 CLK_SYS_BUSFABRIC RO 0x0

5 CLK_SYS_BUSCTRL RO 0x0

4 CLK_SYS_BOOTRAM RO 0x0

3 CLK_SYS_ADC RO 0x0

2 CLK_ADC_ADC RO 0x0

1 CLK_SYS_ACCESSCTRL RO 0x0

0 CLK_SYS_CLOCKS RO 0x0

CLOCKS: ENABLED1 Register

Offset: 0xc0

Description

indicates the state of the clock enable

Table 589. ENABLED1

Register
Bits Description Type Reset

31 Reserved. - -

30 CLK_SYS_XOSC RO 0x0

29 CLK_SYS_XIP RO 0x0

28 CLK_SYS_WATCHDOG RO 0x0

27 CLK_USB RO 0x0

26 CLK_SYS_USBCTRL RO 0x0

25 CLK_SYS_UART1 RO 0x0

24 CLK_PERI_UART1 RO 0x0

23 CLK_SYS_UART0 RO 0x0

22 CLK_PERI_UART0 RO 0x0

21 CLK_SYS_TRNG RO 0x0

20 CLK_SYS_TIMER1 RO 0x0

19 CLK_SYS_TIMER0 RO 0x0

18 CLK_SYS_TICKS RO 0x0

17 CLK_REF_TICKS RO 0x0

16 CLK_SYS_TBMAN RO 0x0

15 CLK_SYS_SYSINFO RO 0x0
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Bits Description Type Reset

14 CLK_SYS_SYSCFG RO 0x0

13 CLK_SYS_SRAM9 RO 0x0

12 CLK_SYS_SRAM8 RO 0x0

11 CLK_SYS_SRAM7 RO 0x0

10 CLK_SYS_SRAM6 RO 0x0

9 CLK_SYS_SRAM5 RO 0x0

8 CLK_SYS_SRAM4 RO 0x0

7 CLK_SYS_SRAM3 RO 0x0

6 CLK_SYS_SRAM2 RO 0x0

5 CLK_SYS_SRAM1 RO 0x0

4 CLK_SYS_SRAM0 RO 0x0

3 CLK_SYS_SPI1 RO 0x0

2 CLK_PERI_SPI1 RO 0x0

1 CLK_SYS_SPI0 RO 0x0

0 CLK_PERI_SPI0 RO 0x0

CLOCKS: INTR Register

Offset: 0xc4

Description

Raw Interrupts

Table 590. INTR

Register
Bits Description Type Reset

31:1 Reserved. - -

0 CLK_SYS_RESUS RO 0x0

CLOCKS: INTE Register

Offset: 0xc8

Description

Interrupt Enable

Table 591. INTE

Register
Bits Description Type Reset

31:1 Reserved. - -

0 CLK_SYS_RESUS RW 0x0

CLOCKS: INTF Register

Offset: 0xcc

Description

Interrupt Force
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Table 592. INTF

Register
Bits Description Type Reset

31:1 Reserved. - -

0 CLK_SYS_RESUS RW 0x0

CLOCKS: INTS Register

Offset: 0xd0

Description

Interrupt status after masking & forcing

Table 593. INTS

Register
Bits Description Type Reset

31:1 Reserved. - -

0 CLK_SYS_RESUS RO 0x0

8.2. Crystal Oscillator (XOSC)

8.2.1. Overview

Figure 37. The XOSC

is an amplifier. When

a piezoelectric crystal

is connected across

XIN and XOUT, the

amplified feedback

drives the crystal into

mechanical

resonance. This

creates a precise

reference for on-chip

clock generation.

External signals can

also be driven directly

into XIN.

The Crystal Oscillator (XOSC) uses an external crystal to produce an accurate reference clock. RP2350 supports 1 MHz

to 50 MHz crystals and the RP2350 reference design (see Hardware design with RP2350, Minimal Design Example)

uses a 12 MHz crystal. The reference clock is distributed to the PLLs, which can be used to multiply the XOSC frequency

to provide accurate high speed clocks. For example, they can generate a 48 MHz clock which meets the frequency

accuracy requirement of the USB interface and a 150 MHz maximum speed system clock. The XOSC clock is also a

clock source for the clock generators and can be used directly if required.

If the user already has an accurate clock source, it is possible to drive an external clock directly into XIN (aka XI), and

disable the oscillator circuit. In this mode XIN can be driven at up to 50 MHz.

To use XOSC clock externally, output it to a GPIO pin using one of the clk_gpclk0-clk_gpclk3 generators. You cannot take

XOSC output directly from the XIN (XI) or XOUT (XO) pins.

 NOTE

A minimum crystal frequency of 5 MHz is needed for the PLL. See Section 8.6, “PLL”.
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8.2.1.1. Recommended Crystals

For the best performance and stability across typical operating temperature ranges, it is recommended to use the

Abracon ABM8-272-T3. You can source the ABM8-272-T3 directly from Abracon or from an authorised reseller. The

Abracon ABM8-272-T3 has the following specifications:

Table 594. Key Crystal

Specifications.
Parameters Minimum Typical Maximum Units Notes

Center Frequency 12.000 12.000 12.000 MHz

Operation Mode Fundamental-AT Fundamental-AT Fundamental-AT

Operating Temperature -40 +85 °C

Storage Temperature -55 +125 °C

Frequency Tolerance (25 °C) -30 +30 ppm

Frequency Stability (25 °C) -30 +30 ppm

Equivalent Series Resistance (R1) 50 Ω

Shunt Capacitance (C0) 3.0 pF

Load Capacitance (CL) 10 10 10 pF

Drive Level 10 200 μW

Aging -5 +5 ppm @25±3 °C, 1st year

Insulation Resistance 500 MΩ @100 Vdc±15 V

Even if you use a crystal with similar specifications, you will need to test the circuit over a range of temperatures to

ensure stability.

The crystal oscillator is powered from the VDDIO voltage. As a result, the Abracon crystal and that particular damping

resistor are tuned for 3.3V operation. If you use a different IO voltage, you will need to re-tune.

Any changes to crystal parameters risk instability across any components connected to the crystal circuit.

If you can’t source the recommended crystal directly from Abracon or a reseller, contact applications@raspberrypi.com.

Raspberry Pi Pico 2 has been specifically tuned for the specifications of the Abracon ABM8-272-T3 crystal. For an

example of how to use a crystal with RP2350, see the Raspberry Pi Pico 2 board schematic in Appendix B of pico/pico-

2-datasheet and the Raspberry Pi Pico 2 design files.

8.2.2. Changes from RP2040

• Maximum crystal frequency increased from 15 MHz to 50 MHz, when appropriate range is selected in

CTRL.FREQ_RANGE

 NOTE

The above change applies when using the XOSC as a crystal oscillator, with a crystal connected between the XIN and

XOUT pins. When using the XOSC XIN pin as a CMOS clock input from an external oscillator, the maximum is always

50 MHz. You do not have to configure CTRL.FREQ_RANGE for the CMOS input case. The CMOS input behaviour is

the same as RP2040.
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 NOTE

The maximum clk_ref frequency is 25 MHz. If you use a >25 MHz crystal as the source of clk_ref, you must divide

the XOSC output using the clk_ref divider.

8.2.3. Usage

The XOSC is disabled on chip startup and RP2350 boots using the Ring Oscillator (ROSC). To start the XOSC, the

programmer must set the CTRL_ENABLE register. The XOSC is not immediately usable because it takes time for the

oscillations to build to sufficient amplitude. This time will be dependent on the chosen crystal but will be of the order of

a few milliseconds. The XOSC incorporates a timer controlled by the STARTUP_DELAY register to automatically manage this,

which sets a flag (STATUS_STABLE) when the XOSC clock is usable.

8.2.4. Startup Delay

The STARTUP_DELAY register specifies how many clock cycles must be seen from the crystal before it can be used. This is

specified in multiples of 256. The SDK xosc_init function sets this value. The 1 ms default is sufficient for the RP2350

reference design (see Hardware design with RP2350, Minimal Design Example) which runs the XOSC at 12 MHz. When

the timer expires, the STATUS_STABLE flag will be set to indicate the XOSC output can be used.

Before starting the XOSC the programmer must ensure the STARTUP_DELAY register is correctly configured. The required

value can be calculated by:

So with a 12 MHz crystal and a 1 ms wait time, the calculation is:

 NOTE

The value is rounded up to the nearest integer, so the wait time will be just over 1 ms.

8.2.5. XOSC Counter

The COUNT register provides a method of managing short software delays. To use this method:

1. Write a value to the COUNT register. The register automatically begins to count down to zero at the XOSC frequency.

2. Poll the register until it reaches zero.

This is preferable to using NOPs in software loops because it is independent of the core clock frequency, the compiler,

and the execution time of the compiled code.

8.2.6. DORMANT mode

In DORMANT mode (see Section 6.5.3, “DORMANT State”), all of the on-chip clocks can be paused to save power. This

is particularly useful in battery-powered applications. RP2350 wakes from DORMANT mode by interrupt: either from an

external event, such as an edge on a GPIO pin, or from the AON Timer. This must be configured before entering

DORMANT mode. To use the AON Timer to trigger a wake from DORMANT mode, it must be clocked from the LPOSC or

from an external source.

To enter DORMANT mode:

1. Switch all internal clocks to be driven from XOSC or ROSC and stop the PLLs.
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2. Choose an oscillator (XOSC or ROSC). Write a specific 32-bit value to the DORMANT register of the chosen oscillator to

stop it.

When exiting DORMANT mode, the chosen oscillator will restart. If you chose XOSC, the frequency will be more precise,

but the restart will take more time due to startup delay (>1 ms on the RP2350 reference design (see Hardware design

with RP2350, Minimal Design Example)). If you chose ROSC, the frequency will be less precise, but the start-up time is

very short (approximately 1μs). See Section 6.5.3.1, “Waking from the DORMANT State” for the events which cause the

system to exit DORMANT mode.

 NOTE

You must stop the PLLs before entering DORMANT mode.

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_xosc/xosc.c Lines 56 - 63

56 void xosc_dormant(void) {
57     // WARNING: This stops the xosc until woken up by an irq
58     xosc_hw->dormant = XOSC_DORMANT_VALUE_DORMANT;
59     // Wait for it to become stable once woken up
60     while(!(xosc_hw->status & XOSC_STATUS_STABLE_BITS)) {
61         tight_loop_contents();
62     }
63 }

 WARNING

If you do not configure IRQ before entering DORMANT mode, neither oscillator will restart.

See Section 6.5.6.2, “DORMANT” for a complete example of DORMANT mode using the XOSC.

8.2.7. Programmer’s Model

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2350/hardware_structs/include/hardware/structs/xosc.h Lines 27 - 57

27 typedef struct {
28     _REG_(XOSC_CTRL_OFFSET) // XOSC_CTRL
29     // Crystal Oscillator Control
30     // 0x00fff000 [23:12] ENABLE       (-) On power-up this field is initialised to DISABLE and
   the...
31     // 0x00000fff [11:0]  FREQ_RANGE   (-) The 12-bit code is intended to give some
   protection...
32     io_rw_32 ctrl;
33 
34     _REG_(XOSC_STATUS_OFFSET) // XOSC_STATUS
35     // Crystal Oscillator Status
36     // 0x80000000 [31]    STABLE       (0) Oscillator is running and stable
37     // 0x01000000 [24]    BADWRITE     (0) An invalid value has been written to CTRL_ENABLE
   or...
38     // 0x00001000 [12]    ENABLED      (-) Oscillator is enabled but not necessarily running
   and...
39     // 0x00000003 [1:0]   FREQ_RANGE   (-) The current frequency range setting
40     io_rw_32 status;
41 
42     _REG_(XOSC_DORMANT_OFFSET) // XOSC_DORMANT
43     // Crystal Oscillator pause control
44     // 0xffffffff [31:0]  DORMANT      (-) This is used to save power by pausing the XOSC +
45     io_rw_32 dormant;
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46 
47     _REG_(XOSC_STARTUP_OFFSET) // XOSC_STARTUP
48     // Controls the startup delay
49     // 0x00100000 [20]    X4           (-) Multiplies the startup_delay by 4, just in case
50     // 0x00003fff [13:0]  DELAY        (-) in multiples of 256*xtal_period
51     io_rw_32 startup;
52 
53     _REG_(XOSC_COUNT_OFFSET) // XOSC_COUNT
54     // A down counter running at the XOSC frequency which counts to zero and stops.
55     // 0x0000ffff [15:0]  COUNT        (0x0000)
56     io_rw_32 count;
57 } xosc_hw_t;

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_xosc/xosc.c Lines 29 - 43

29 void xosc_init(void) {
30     // Assumes 1-15 MHz input, checked above.
31     xosc_hw->ctrl = XOSC_CTRL_FREQ_RANGE_VALUE_1_15MHZ;
32 
33     // Set xosc startup delay
34     xosc_hw->startup = STARTUP_DELAY;
35 
36     // Set the enable bit now that we have set freq range and startup delay
37     hw_set_bits(&xosc_hw->ctrl, XOSC_CTRL_ENABLE_VALUE_ENABLE << XOSC_CTRL_ENABLE_LSB);
38 
39     // Wait for XOSC to be stable
40     while(!(xosc_hw->status & XOSC_STATUS_STABLE_BITS)) {
41         tight_loop_contents();
42     }
43 }

8.2.8. List of Registers

The XOSC registers start at a base address of 0x40048000 (defined as XOSC_BASE in SDK).

Table 595. List of

XOSC registers
Offset Name Info

0x00 CTRL Crystal Oscillator Control

0x04 STATUS Crystal Oscillator Status

0x08 DORMANT Crystal Oscillator pause control

0x0c STARTUP Controls the startup delay

0x10 COUNT A down counter running at the XOSC frequency which counts to

zero and stops.

XOSC: CTRL Register

Offset: 0x00

Description

Crystal Oscillator Control

Table 596. CTRL

Register
Bits Description Type Reset

31:24 Reserved. - -
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Bits Description Type Reset

23:12 ENABLE: On power-up this field is initialised to DISABLE and the chip runs

from the ROSC.

If the chip has subsequently been programmed to run from the XOSC then

setting this field to DISABLE may lock-up the chip. If this is a concern then run

the clk_ref from the ROSC and enable the clk_sys RESUS feature.

The 12-bit code is intended to give some protection against accidental writes.

An invalid setting will retain the previous value. The actual value being used

can be read from STATUS_ENABLED

RW -

Enumerated values:

0xd1e → DISABLE

0xfab → ENABLE

11:0 FREQ_RANGE: The 12-bit code is intended to give some protection against

accidental writes. An invalid setting will retain the previous value. The actual

value being used can be read from STATUS_FREQ_RANGE

RW -

Enumerated values:

0xaa0 → 1_15MHZ

0xaa1 → 10_30MHZ

0xaa2 → 25_60MHZ

0xaa3 → 40_100MHZ

XOSC: STATUS Register

Offset: 0x04

Description

Crystal Oscillator Status

Table 597. STATUS

Register
Bits Description Type Reset

31 STABLE: Oscillator is running and stable RO 0x0

30:25 Reserved. - -

24 BADWRITE: An invalid value has been written to CTRL_ENABLE or

CTRL_FREQ_RANGE or DORMANT

WC 0x0

23:13 Reserved. - -

12 ENABLED: Oscillator is enabled but not necessarily running and stable, resets

to 0

RO -

11:2 Reserved. - -

1:0 FREQ_RANGE: The current frequency range setting RO -

Enumerated values:

0x0 → 1_15MHZ

0x1 → 10_30MHZ

0x2 → 25_60MHZ

0x3 → 40_100MHZ

XOSC: DORMANT Register
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Offset: 0x08

Description

Crystal Oscillator pause control

Table 598. DORMANT

Register
Bits Description Type Reset

31:0 This is used to save power by pausing the XOSC

On power-up this field is initialised to WAKE

An invalid write will also select WAKE

WARNING: stop the PLLs before selecting dormant mode

WARNING: setup the irq before selecting dormant mode

RW -

Enumerated values:

0x636f6d61 → DORMANT

0x77616b65 → WAKE

XOSC: STARTUP Register

Offset: 0x0c

Description

Controls the startup delay

Table 599. STARTUP

Register
Bits Description Type Reset

31:21 Reserved. - -

20 X4: Multiplies the startup_delay by 4, just in case. The reset value is controlled

by a mask-programmable tiecell and is provided in case we are booting from

XOSC and the default startup delay is insufficient

RW 0x0

19:14 Reserved. - -

13:0 DELAY: in multiples of 256*xtal_period. The reset value of 0xc4 corresponds

to approx 50 000 cycles.

RW 0x00c4

XOSC: COUNT Register

Offset: 0x10

Table 600. COUNT

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 A down counter running at the xosc frequency which counts to zero and stops.

Can be used for short software pauses when setting up time sensitive

hardware.

To start the counter, write a non-zero value. Reads will return 1 while the count

is running and 0 when it has finished.

Minimum count value is 4. Count values <4 will be treated as count value =4.

Note that synchronisation to the register clock domain costs 2 register clock

cycles and the counter cannot compensate for that.

RW 0x0000

8.3. Ring Oscillator (ROSC)
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8.3.1. Overview

The Ring Oscillator (ROSC) is an on-chip oscillator built from a ring of inverters. It requires no external components and

is started automatically during RP2350 power up. It provides the clock to the cores during boot. The frequency of the

ROSC is programmable and it can directly provide a high speed clock to the cores, but the frequency varies with

Process, Voltage, and Temperature (PVT) so it cannot provide clocks for components which require an accurate

frequency such as the AON Timer, USB, and ADC. The frequency can be randomised to provide some protection against

attempts to recover the system clock from power traces. Methods for mitigating unwanted frequency variation are

discussed in Section 8.1, “Overview”, but these are only relevant to very low power designs. For most applications

requiring accurate clock frequencies, switch to the XOSC and PLLs. During boot, the ROSC runs at a nominal 11MHz

and is guaranteed to be in the range 4.6MHz to 19.6MHz without randomisation and 4.6MHz to 24.0MHz with

randomisation.

Once the chip has booted, the programmer can choose to continue running from the ROSC and increase its frequency or

start the Crystal Oscillator (XOSC) and PLLs. You can disable the ROSC once you’ve switched the system clocks to the

XOSC. Each oscillator has advantages; switch between them to achieve the best solution for your application.

Figure 38. ROSC

overview.

8.3.2. Changes from RP2040

• Frequency randomisation feature added

8.3.3. ROSC/XOSC trade-offs

The ROSC has several advantages:

• flexibility due to programmable frequency

• low power requirements

• no need for internal or external components

• optional frequency randomisation improves security

Because the ROSC has programmable frequency, it can provide a fast core clock without starting the PLLs and can

generate slower peripheral clocks by dividing by clock generators (Section 8.1, “Overview”). The ROSC starts

immediately and responds immediately to frequency controls. It retains the frequency setting when entering and exiting

the DORMANT state (see Section 6.5.3, “DORMANT State”). However, the user must be aware that the frequency may

have drifted when exiting the DORMANT state due to changes in the supply voltage and the chip temperature.

The disadvantage of the ROSC is its frequency variation with PVT (Process, Voltage, and Temperature) which makes it

unsuitable for generating precise clocks or for applications where software execution timing is important. However, the

PVT frequency variation can be exploited to provide automatic frequency scaling to maximise performance. This is

discussed in Section 8.1, “Overview”.

The only advantage of the XOSC is its accurate frequency, but this is an overriding requirement in many applications.

The XOSC has the following disadvantages:

• the requirement for external components (a crystal, etc.)
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• higher power consumption

• slow startup time (>1ms)

• fixed, low frequency

PLLs are required to produce higher-frequency clocks. They consume more power and take significant time to start up

or change frequency. Exiting DORMANT mode is much slower than for ROSC because the XOSC must restart and the

PLLs must be reconfigured.

8.3.4. Modifying the frequency

The ROSC is arranged as 8 stages, each with programmable drive. The ROSC provides two methods of controlling the

frequency. The frequency range controls the number of stages in the ROSC loop and the FREQA & FREQB registers control

the drive strength of the stages.

To change the frequency range, write to the FREQ_RANGE register, which controls the number of stages in the ROSC loop.

The FREQ_RANGE register supports the following configurations:

Table 601. ROSC

stage ranges
Name Number of stages Range (stages)

LOW 8 0-7

MEDIUM 6 2-7

HIGH 4 4-7

TOOHIGH 2 6-7

Change FREQ_RANGE one step at a time until you reach the desired range. When increasing the frequency range, ROSC

output will not glitch, so the output clock can continue to be used. When decreasing the frequency range, ROSC output

will glitch, so you must select an alternate clock source for the modules clocked by ROSC or hold them in reset during

the transition.

The behaviour has not been fully characterised, but the MEDIUM range will be approximately 1.33 times the LOW range, the

HIGH range will be 2 times the LOW range and the TOOHIGH range will be 4 times the LOW range. The TOOHIGH range is aptly

named. It should not be used because the internal logic of the ROSC will not run at that frequency.

The FREQA and FREQB registers control the drive strength of the stages in the ROSC loop. As the drive strength increases,

the delay through the stage decreases and the oscillation frequency increases. Each stage has 3 drive strength control

bits. Each bit turns on an additional drive, therefore each stage has 4 drive strength settings equal to the number of bits

set, with 0 being the default, 1 being double drive, 2 being triple drive and 3 being quadruple drive. Extra drives do not

have a linear effect on frequency: the second has less impact than the first, the third has less impact than the second,

and so on. To ensure smooth transitions, change one drive strength bit at a time. When FREQ_RANGE shortens the ROSC

loop, the bypassed stages still propagate the signal and therefore their drive strengths must be set to at least the same

level as the lowest drive strength in the stages that are in the loop. This will not affect the oscillation frequency.

8.3.5. Randomising the frequency

Randomisation is enabled by setting the drive strength controls for the first two stages of the ROSC loop to DS0_RANDOM

and DS1_RANDOM. An LFSR then provides the drive strength controls for those two stages which are always included in the

loop regardless of the FREQ_RANGE setting. It is recommended to randomise both stages. When the low FREQ_RANGE is

selected the randomiser will increase the frequency by up to 22% of the default. The increase will be approximately half

of that if only one stage is randomised. The LFSR can be seeded by writing to the RANDOM register. This can be done at

any time but will restart the randomiser.
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8.3.6. ROSC divider

The ROSC frequency is too fast to be used directly, so it is divided in an integer divider controlled by the DIV register. You

can change DIV while the ROSC is running, and the output clock will change frequency without glitching. The default

divisor is 8, which ensures the output clock is in the specified range on chip startup.

The divider has two outputs, rosc_clksrc and rosc_clksrc_ph. rosc_clksrc_ph is a phase shifted version of rosc_clksrc. This

is primarily intended for use during product development; the outputs are identical if the PHASE register is left in its

default state.

8.3.7. Random Number Generator

When the system clocks are running from the XOSC, you can use the ROSC to generate random numbers. Enable the

ROSC and read the RANDOMBIT register to get a 1-bit random number; to get an n-bit value, read it n times. This does not

meet the requirements of randomness for security systems because it can be compromised, but it may be useful in less

critical applications. If the cores are running from the ROSC, the value will not be random because the timing of the

register read will be correlated to the phase of the ROSC.

8.3.8. ROSC Counter

The COUNT register provides a method of managing short software delays. To use this method:

1. Write a value to the COUNT register. The register automatically begins to count down to zero at the ROSC frequency.

2. Poll the register until it reaches zero.

This is preferable to using NOPs in software loops because it is independent of the core clock frequency, the compiler,

and the execution time of the compiled code.

8.3.9. DORMANT mode

In DORMANT mode (see Section 6.5.3, “DORMANT State”), all of the on-chip clocks can be paused to save power. This

is particularly useful in battery-powered applications. RP2350 wakes from DORMANT mode by interrupt: either from an

external event, such as an edge on a GPIO pin, or from the AON Timer. This must be configured before entering

DORMANT mode. To use the AON Timer to trigger a wake from DORMANT mode, it must be clocked from the LPOSC or

from an external source.

To enter DORMANT mode:

1. Switch all internal clocks to be driven from XOSC or ROSC and stop the PLLs.

2. Choose an oscillator (XOSC or ROSC). Write a specific 32-bit value to the DORMANT register of the chosen oscillator to

stop it.

When exiting DORMANT mode, the chosen oscillator will restart. If you chose XOSC, the frequency will be more precise,

but the restart will take more time due to startup delay (>1ms on the RP2350 reference design (see Hardware design

with RP2350, Minimal Design Example)). If you chose ROSC, the frequency will be less precise, but the start-up time is

very short (approximately 1μs). See Section 6.5.3.1, “Waking from the DORMANT State” for the events which cause the

system to exit DORMANT mode.
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 NOTE

You must stop the PLLs before entering DORMANT mode.

Pico Extras: https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/hardware_rosc/rosc.c Lines 56 - 61

56 void rosc_set_dormant(void) {
57     // WARNING: This stops the rosc until woken up by an irq
58     rosc_write(&rosc_hw->dormant, ROSC_DORMANT_VALUE_DORMANT);
59     // Wait for it to become stable once woken up
60     while(!(rosc_hw->status & ROSC_STATUS_STABLE_BITS));
61 }

 WARNING

If you do not configure IRQ before entering DORMANT mode, neither oscillator will restart.

See Section 6.5.6.2, “DORMANT” for a some examples of dormant mode.

8.3.10. List of Registers

The ROSC registers start at a base address of 0x400e8000 (defined as ROSC_BASE in SDK).

Table 602. List of

ROSC registers
Offset Name Info

0x00 CTRL Ring Oscillator control

0x04 FREQA Ring Oscillator frequency control A

0x08 FREQB Ring Oscillator frequency control B

0x0c RANDOM Loads a value to the LFSR randomiser

0x10 DORMANT Ring Oscillator pause control

0x14 DIV Controls the output divider

0x18 PHASE Controls the phase shifted output

0x1c STATUS Ring Oscillator Status

0x20 RANDOMBIT Returns a 1 bit random value

0x24 COUNT A down counter running at the ROSC frequency which counts to

zero and stops.

ROSC: CTRL Register

Offset: 0x00

Description

Ring Oscillator control

Table 603. CTRL

Register
Bits Description Type Reset

31:24 Reserved. - -
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Bits Description Type Reset

23:12 ENABLE: On power-up this field is initialised to ENABLE

The system clock must be switched to another source before setting this field

to DISABLE otherwise the chip will lock up

The 12-bit code is intended to give some protection against accidental writes.

An invalid setting will enable the oscillator.

RW -

Enumerated values:

0xd1e → DISABLE

0xfab → ENABLE

11:0 FREQ_RANGE: Controls the number of delay stages in the ROSC ring

LOW uses stages 0 to 7

MEDIUM uses stages 0 to 5

HIGH uses stages 0 to 3

TOOHIGH uses stages 0 to 1 and should not be used because its frequency

exceeds design specifications

The clock output will not glitch when changing the range up one step at a time

The clock output will glitch when changing the range down

Note: the values here are gray coded which is why HIGH comes before

TOOHIGH

RW 0xaa0

Enumerated values:

0xfa4 → LOW

0xfa5 → MEDIUM

0xfa7 → HIGH

0xfa6 → TOOHIGH

ROSC: FREQA Register

Offset: 0x04

Description

The FREQA & FREQB registers control the frequency by controlling the drive strength of each stage

The drive strength has 4 levels determined by the number of bits set

Increasing the number of bits set increases the drive strength and increases the oscillation frequency

0 bits set is the default drive strength

1 bit set doubles the drive strength

2 bits set triples drive strength

3 bits set quadruples drive strength

For frequency randomisation set both DS0_RANDOM=1 & DS1_RANDOM=1

Table 604. FREQA

Register
Bits Description Type Reset

31:16 PASSWD: Set to 0x9696 to apply the settings

Any other value in this field will set all drive strengths to 0

RW 0x0000

Enumerated values:

0x9696 → PASS

15 Reserved. - -

14:12 DS3: Stage 3 drive strength RW 0x0

11 Reserved. - -
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Bits Description Type Reset

10:8 DS2: Stage 2 drive strength RW 0x0

7 DS1_RANDOM: Randomises the stage 1 drive strength RW 0x0

6:4 DS1: Stage 1 drive strength RW 0x0

3 DS0_RANDOM: Randomises the stage 0 drive strength RW 0x0

2:0 DS0: Stage 0 drive strength RW 0x0

ROSC: FREQB Register

Offset: 0x08

Description

For a detailed description see freqa register

Table 605. FREQB

Register
Bits Description Type Reset

31:16 PASSWD: Set to 0x9696 to apply the settings

Any other value in this field will set all drive strengths to 0

RW 0x0000

Enumerated values:

0x9696 → PASS

15 Reserved. - -

14:12 DS7: Stage 7 drive strength RW 0x0

11 Reserved. - -

10:8 DS6: Stage 6 drive strength RW 0x0

7 Reserved. - -

6:4 DS5: Stage 5 drive strength RW 0x0

3 Reserved. - -

2:0 DS4: Stage 4 drive strength RW 0x0

ROSC: RANDOM Register

Offset: 0x0c

Description

Loads a value to the LFSR randomiser

Table 606. RANDOM

Register
Bits Description Type Reset

31:0 SEED RW 0x3f04b16d

ROSC: DORMANT Register

Offset: 0x10

Description

Ring Oscillator pause control

Table 607. DORMANT

Register
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Bits Description Type Reset

31:0 This is used to save power by pausing the ROSC

On power-up this field is initialised to WAKE

An invalid write will also select WAKE

Warning: setup the irq before selecting dormant mode

RW -

Enumerated values:

0x636f6d61 → DORMANT

0x77616b65 → WAKE

ROSC: DIV Register

Offset: 0x14

Description

Controls the output divider

Table 608. DIV

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 set to 0xaa00 + div where

div = 0 divides by 128

div = 1-127 divides by div

any other value sets div=128

this register resets to div=32

RW -

Enumerated values:

0xaa00 → PASS

ROSC: PHASE Register

Offset: 0x18

Description

Controls the phase shifted output

Table 609. PHASE

Register
Bits Description Type Reset

31:12 Reserved. - -

11:4 PASSWD: set to 0xaa

any other value enables the output with shift=0

RW 0x00

3 ENABLE: enable the phase-shifted output

this can be changed on-the-fly

RW 0x1

2 FLIP: invert the phase-shifted output

this is ignored when div=1

RW 0x0

1:0 SHIFT: phase shift the phase-shifted output by SHIFT input clocks

this can be changed on-the-fly

must be set to 0 before setting div=1

RW 0x0

ROSC: STATUS Register

Offset: 0x1c
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Description

Ring Oscillator Status

Table 610. STATUS

Register
Bits Description Type Reset

31 STABLE: Oscillator is running and stable RO 0x0

30:25 Reserved. - -

24 BADWRITE: An invalid value has been written to CTRL_ENABLE or

CTRL_FREQ_RANGE or FREQA or FREQB or DIV or PHASE or DORMANT

WC 0x0

23:17 Reserved. - -

16 DIV_RUNNING: post-divider is running

this resets to 0 but transitions to 1 during chip startup

RO -

15:13 Reserved. - -

12 ENABLED: Oscillator is enabled but not necessarily running and stable

this resets to 0 but transitions to 1 during chip startup

RO -

11:0 Reserved. - -

ROSC: RANDOMBIT Register

Offset: 0x20

Table 611.

RANDOMBIT Register
Bits Description Type Reset

31:1 Reserved. - -

0 This just reads the state of the oscillator output so randomness is

compromised if the ring oscillator is stopped or run at a harmonic of the bus

frequency

RO 0x1

ROSC: COUNT Register

Offset: 0x24

Table 612. COUNT

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 A down counter running at the ROSC frequency which counts to zero and

stops.

To start the counter write a non-zero value.

Can be used for short software pauses when setting up time sensitive

hardware.

RW 0x0000

8.4. Low Power Oscillator (LPOSC)

The Low Power Oscillator (LPOSC) provides a clock signal to the always-on logic when the main crystal oscillator is

powered down in a low power (P1.x) state. It operates at a nominal 32.768kHz and is an RC oscillator, requiring no

external components. The oscillator’s output clock is used to sequence initial chip start up and transition to and from

low-power states. It can also be used by the AON Timer, see Section 12.10, “Always-On Timer”.

The oscillator starts up as soon as the core power supply is available and power-on reset has been released. If

brownout detection is enabled, the oscillator will be disabled when a core supply brownout is detected, but will restart

as soon as the core supply has recovered and brownout reset has been released. The oscillator’s frequency takes
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around 1ms to stabilise, and the chip will be held in reset during this period.

8.4.1. Frequency Accuracy and Calibration

The low power oscillator has an initial frequency accuracy of ±20%. However, it can be trimmed to ±1.5% using the TRIM

field in the LPOSC register. 63 trim steps are available, each between 1% and 3% of the oscillator’s initial frequency. The

frequency can be trimmed down by 32 steps or up by 31 steps. See Table 613, “low power oscillator output frequency

and trimming” and Section 8.4.3, “List of Registers” for details.

Table 613. low power

oscillator output

frequency and

trimming

Parameter Description Min Typ Max Units

F0.initial initial output

frequency

26.2144 32.768 39.3216 kHz

trimSTEP frequency trim

step

- 1 3 % of initial output

frequency

F0.trimmed trimmed output

frequency

32.27648 32.768 33.25952 kHz

Frequency drift with temperature: ±14%.

Frequency drift with power supply voltage: ±20%.

8.4.2. Using an External Low Power Clock

Instead of using the low power RC oscillator, an external 32.768 kHz low power clock signal can be provided on one of

GPIO 12, 14, 20, or 22. Alternatively, those GPIOs can be used to provide a 1 kHz or 1 Hz tick. See Section 12.10.5.2,

“Using an External Clock in Place of LPOSC” and Section 12.10.7, “Using an external clock or tick from GPIO” for more

details.

8.4.3. List of Registers

The low power oscillator shares register address space with other power management subsystems in the always-on

domain. The address space is referred to as POWMAN elsewhere in this document. A complete list of POWMAN

registers is provided in Section 6.4, “Power Management (POWMAN) Registers”, but information on registers

associated with the low power oscillator is repeated here.

The POWMAN registers start at a base address of 0x40100000 (defined as POWMAN_BASE in SDK).

• LPOSC

• EXT_TIME_REF

• LPOSC_FREQ_KHZ_INT

• LPOSC_FREQ_KHZ_FRAC

8.5. Tick Generators

8.5.1. Overview

The tick generators provide time references for several blocks:
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• System timers: TIMER0 and TIMER1 (Section 12.8, “System Timers”)

• RISC-V platform timer (Section 3.1.8, “RISC-V Platform Timer”)

• Arm Cortex-M33 SysTick timers for core 0 and core 1

• The watchdog timer (Section 12.9, “Watchdog”)

A tick is a periodic signal which provides a timebase for a timer or counter. These signals are similar to clocks, although

they do not drive the clock inputs of any registers on the chip. The use of ticks as opposed to clocks makes it simpler to

distribute timebase information that is independent of any subsystem clocks. For example, the system timers (TIMER0

and TIMER1) should continue to count once per microsecond even as the system clock varies according to processor

demand.

The tick generators use clk_ref as their reference clock (see Section 8.1, “Overview” for an overview of system-level

clocks including clk_ref). Ideally, clk_ref will be configured to use the crystal oscillator (Section 8.2, “Crystal Oscillator

(XOSC)”) to provide an accurate reference. The generators divide clk_ref internally to generate a tick signal for each

destination.

The SDK expects a nominal 1 μs timebase for the system timers and the RISC-V platform timer. Similarly the Cortex-

M33 SysTick timers require a 1 μs timebase to match the hardwired value of 100,000 in the SYST_CALIB register, which

standard Arm software uses to scale SysTick delays. However, you may need to scale these timebases differently if

your software has specific requirements such as a longer maximum delay on the 24-bit SysTick peripherals. The tick

generator can scale each destination’s tick timebase independently of the others.

For a 12 MHz reference clock, set the cycle count to 12 to generate a 1 μs tick. A 1 MHz clock has a period of 1 μs, so

the hardware needs to count for 12 times as many clock cycles to get a 1 μs tick from a reference running at 12 ×

1 MHz.

Before changing the cycle count, always stop the tick generator with the TIMER0_CTRL.ENABLE bit. You can re-enable

once the tick generator is configured.

8.5.2. List of Registers

The tick generator registers start at a base address of 0x40108000 (defined as TICKS_BASE in SDK).

Table 614. List of

TICKS registers
Offset Name Info

0x00 PROC0_CTRL Controls the tick generator

0x04 PROC0_CYCLES

0x08 PROC0_COUNT

0x0c PROC1_CTRL Controls the tick generator

0x10 PROC1_CYCLES

0x14 PROC1_COUNT

0x18 TIMER0_CTRL Controls the tick generator

0x1c TIMER0_CYCLES

0x20 TIMER0_COUNT

0x24 TIMER1_CTRL Controls the tick generator

0x28 TIMER1_CYCLES

0x2c TIMER1_COUNT

0x30 WATCHDOG_CTRL Controls the tick generator

0x34 WATCHDOG_CYCLES
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Offset Name Info

0x38 WATCHDOG_COUNT

0x3c RISCV_CTRL Controls the tick generator

0x40 RISCV_CYCLES

0x44 RISCV_COUNT

TICKS: PROC0_CTRL Register

Offset: 0x00

Description

Controls the tick generator

Table 615.

PROC0_CTRL Register
Bits Description Type Reset

31:2 Reserved. - -

1 RUNNING: Is the tick generator running? RO -

0 ENABLE: start / stop tick generation RW 0x0

TICKS: PROC0_CYCLES Register

Offset: 0x04

Table 616.

PROC0_CYCLES

Register

Bits Description Type Reset

31:9 Reserved. - -

8:0 Total number of clk_tick cycles before the next tick. RW 0x000

TICKS: PROC0_COUNT Register

Offset: 0x08

Table 617.

PROC0_COUNT

Register

Bits Description Type Reset

31:9 Reserved. - -

8:0 Count down timer: the remaining number clk_tick cycles before the next tick is

generated.

RO -

TICKS: PROC1_CTRL Register

Offset: 0x0c

Description

Controls the tick generator

Table 618.

PROC1_CTRL Register
Bits Description Type Reset

31:2 Reserved. - -

1 RUNNING: Is the tick generator running? RO -

0 ENABLE: start / stop tick generation RW 0x0

TICKS: PROC1_CYCLES Register

Offset: 0x10
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Table 619.

PROC1_CYCLES

Register

Bits Description Type Reset

31:9 Reserved. - -

8:0 Total number of clk_tick cycles before the next tick. RW 0x000

TICKS: PROC1_COUNT Register

Offset: 0x14

Table 620.

PROC1_COUNT

Register

Bits Description Type Reset

31:9 Reserved. - -

8:0 Count down timer: the remaining number clk_tick cycles before the next tick is

generated.

RO -

TICKS: TIMER0_CTRL Register

Offset: 0x18

Description

Controls the tick generator

Table 621.

TIMER0_CTRL Register
Bits Description Type Reset

31:2 Reserved. - -

1 RUNNING: Is the tick generator running? RO -

0 ENABLE: start / stop tick generation RW 0x0

TICKS: TIMER0_CYCLES Register

Offset: 0x1c

Table 622.

TIMER0_CYCLES

Register

Bits Description Type Reset

31:9 Reserved. - -

8:0 Total number of clk_tick cycles before the next tick. RW 0x000

TICKS: TIMER0_COUNT Register

Offset: 0x20

Table 623.

TIMER0_COUNT

Register

Bits Description Type Reset

31:9 Reserved. - -

8:0 Count down timer: the remaining number clk_tick cycles before the next tick is

generated.

RO -

TICKS: TIMER1_CTRL Register

Offset: 0x24

Description

Controls the tick generator

Table 624.

TIMER1_CTRL Register
Bits Description Type Reset

31:2 Reserved. - -
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Bits Description Type Reset

1 RUNNING: Is the tick generator running? RO -

0 ENABLE: start / stop tick generation RW 0x0

TICKS: TIMER1_CYCLES Register

Offset: 0x28

Table 625.

TIMER1_CYCLES

Register

Bits Description Type Reset

31:9 Reserved. - -

8:0 Total number of clk_tick cycles before the next tick. RW 0x000

TICKS: TIMER1_COUNT Register

Offset: 0x2c

Table 626.

TIMER1_COUNT

Register

Bits Description Type Reset

31:9 Reserved. - -

8:0 Count down timer: the remaining number clk_tick cycles before the next tick is

generated.

RO -

TICKS: WATCHDOG_CTRL Register

Offset: 0x30

Description

Controls the tick generator

Table 627.

WATCHDOG_CTRL

Register

Bits Description Type Reset

31:2 Reserved. - -

1 RUNNING: Is the tick generator running? RO -

0 ENABLE: start / stop tick generation RW 0x0

TICKS: WATCHDOG_CYCLES Register

Offset: 0x34

Table 628.

WATCHDOG_CYCLES

Register

Bits Description Type Reset

31:9 Reserved. - -

8:0 Total number of clk_tick cycles before the next tick. RW 0x000

TICKS: WATCHDOG_COUNT Register

Offset: 0x38
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Table 629.

WATCHDOG_COUNT

Register

Bits Description Type Reset

31:9 Reserved. - -

8:0 Count down timer: the remaining number clk_tick cycles before the next tick is

generated.

RO -

TICKS: RISCV_CTRL Register

Offset: 0x3c

Description

Controls the tick generator

Table 630.

RISCV_CTRL Register
Bits Description Type Reset

31:2 Reserved. - -

1 RUNNING: Is the tick generator running? RO -

0 ENABLE: start / stop tick generation RW 0x0

TICKS: RISCV_CYCLES Register

Offset: 0x40

Table 631.

RISCV_CYCLES

Register

Bits Description Type Reset

31:9 Reserved. - -

8:0 Total number of clk_tick cycles before the next tick. RW 0x000

TICKS: RISCV_COUNT Register

Offset: 0x44

Table 632.

RISCV_COUNT

Register

Bits Description Type Reset

31:9 Reserved. - -

8:0 Count down timer: the remaining number clk_tick cycles before the next tick is

generated.

RO -

8.6. PLL

8.6.1. Overview

The PLL takes a reference clock and multiplies it using a Voltage Controlled Oscillator (VCO) with a feedback loop. The

VCO runs at high frequencies: between 750 MHz and 1600 MHz. As a result, there are two post dividers that can divide

the VCO frequency before it is distributed to the clock generators on the chip.

There are two PLLs in RP2350. They are:

• pll_sys - used to generate up to a 150 MHz system clock

• pll_usb - used to generate a 48 MHz USB reference clock
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CLKSSCG
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÷16-320
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Figure 39. On both

PLLs, the FREF

(reference) input is

connected to the

crystal oscillator’s XIN

(XI) input. The PLL

contains a VCO, which

is locked to a constant

ratio of the reference

clock via the feedback

loop (phase-frequency

detector and loop

filter). This can

synthesise very high

frequencies, which

may be divided down

by the post-dividers.

The routing between PLLs and system-level clocks is flexible. For example, you could run USB off a division of the

system PLL (e.g. 144 MHz / 3 = 48 MHz), leaving the USB PLL free for other uses such as the HSTX peripheral or a

general-purpose clock output on a GPIO.

8.6.2. Changes from RP2040

• RP2350 added an interrupt that fires if the PLL loses lock. See CS.LOCK_N.

8.6.3. Calculating PLL parameters

To configure the PLL, you must know the frequency of the reference clock, which is routed directly from the crystal

oscillator. This will often be a 12 MHz crystal, for compatibility with RP2350’s USB bootrom. The PLL’s final output

frequency FOUTPOSTDIV can then be calculated as (FREF / REFDIV) × FBDIV / (POSTDIV1 × POSTDIV2). With a desired output

frequency in mind, you must select PLL parameters according to the following constraints of the PLL design:

• minimum reference frequency (FREF / REFDIV) is 5 MHz

• oscillator frequency (FOUTVCO) must be in the range 750 MHz-1600 MHz

• feedback divider (FBDIV) must be in the range 16-320

• the post dividers POSTDIV1 and POSTDIV2 must be in the range 1-7

• maximum input frequency (FREF / REFDIV) is VCO frequency divided by 16, due to minimum feedback divisor

You must also respect the maximum frequencies of the chip’s clock generators (attached to FOUTPOSTDIV). For the

system PLL this is 150 MHz, and for the USB PLL, 48 MHz. If using a crystal oscillator with a frequency of less than

75 MHz, REFDIV should be 1 assuming a VCO of 1200 MHz-1600 MHz. If using a fast crystal with a low VCO frequency,

the reference divisor may need to be increased to keep the PLL input within a suitable range.

 TIP

When two different values are required for POSTDIV1 and POSTDIV2, assign the higher value to POSTDIV1 for lower power

consumption.

In the RP2350 reference design (see Hardware design with RP2350, Minimal Design Example), which attaches a 12 MHz

crystal to the crystal oscillator, the minimum VCO frequency is 12 MHz × 63 = 756 MHz, and the maximum VCO

frequency is 12 MHz × 133 = 1596 MHz. As a result, FBDIV must remain in the range 63 to 133 to avoid leaving the

supported range of VCO frequencies. Setting FBDIV to 100 would synthesise a 1200 MHz VCO frequency. A POSTDIV1

value of 6 and a POSTDIV2 value of 2 would divide this by 12 in total, producing a clean 100 MHz at the PLL’s final output.
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8.6.3.1. Jitter vs Power Consumption

Often, several sets of PLL configuration parameters achieve the desired output frequency (or a close approximation).

You decide whether to prioritise lower power consumption or lower jitter: cycle-to-cycle variation in the PLL’s output

clock period. Jitter decreases as VCO frequency increases, because you can use higher post-divide values. Consider the

following scenarios:

• 1500 MHz VCO / 6 / 2 = 125 MHz

• 750 MHz VCO / 6 / 1 = 125 MHz

The 1500 MHz configuration uses the most power, but produces the least jitter. The 750 MHz configuration uses the

least power, but produces the most jitter.

You can slightly adjust the desired output frequency to allow for a much lower VCO frequency by bringing the output to

a closer rational multiple of the input. Some frequencies are not be achievable at all with a possible VCO frequency and

combination of divisors.

Because RP2350’s digital logic compensates for the worst possible jitter on the system clock, this doesn’t affect

system stability. However, applications often require a highly accurate clock for data transfers that follow the USB

specification, which defines a maximum amount of allowable jitter.

8.6.3.2. Calculating Parameters with vcocalc.py

SDK provides a Python script that searches for the best VCO and post divider options for a desired output frequency:

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/scripts/vcocalc.py

 1 #!/usr/bin/env python3
 2 
 3 import argparse
 4 import sys
 5 
 6 # Fixed hardware parameters
 7 fbdiv_range = range(16, 320 + 1)
 8 postdiv_range = range(1, 7 + 1)
 9 ref_min = 5
10 refdiv_min = 1
11 refdiv_max = 63
12 
13 def validRefdiv(string):
14     if ((int(string) < refdiv_min) or (int(string) > refdiv_max)):
15         raise ValueError("REFDIV must be in the range {} to {}".format(refdiv_min,
   refdiv_max))
16     return int(string)
17 
18 parser = argparse.ArgumentParser(description="PLL parameter calculator")
19 parser.add_argument("--input", "-i", default=12, help="Input (reference) frequency. Default
   12 MHz", type=float)
20 parser.add_argument("--ref-min", default=5, help="Override minimum reference frequency.
   Default 5 MHz", type=float)
21 parser.add_argument("--vco-max", default=1600, help="Override maximum VCO frequency. Default
   1600 MHz", type=float)
22 parser.add_argument("--vco-min", default=750, help="Override minimum VCO frequency. Default
   750 MHz", type=float)
23 parser.add_argument("--cmake", action="store_true", help="Print out a CMake snippet to apply
   the selected PLL parameters to your program")
24 parser.add_argument("--cmake-only", action="store_true", help="Same as --cmake, but do not
   print anything other than the CMake output")
25 parser.add_argument("--cmake-executable-name", default="<program>", help="Set the executable
   name to use in the generated CMake output")
26 parser.add_argument("--lock-refdiv", help="Lock REFDIV to specified number in the range {} to
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   {}".format(refdiv_min, refdiv_max), type=validRefdiv)
27 parser.add_argument("--low-vco", "-l", action="store_true", help="Use a lower VCO frequency
when possible. This reduces power consumption, at the cost of increased jitter")
28 parser.add_argument("output", help="Output frequency in MHz.", type=float)
29 args = parser.parse_args()
30 
31 refdiv_range = range(refdiv_min, max(refdiv_min, min(refdiv_max, int(args.input / args
.ref_min))) + 1)
32 if args.lock_refdiv:
33     print("Locking REFDIV to", args.lock_refdiv)
34     refdiv_range = [args.lock_refdiv]
35 
36 best = (0, 0, 0, 0, 0, 0)
37 best_margin = args.output
38 
39 for refdiv in refdiv_range:
40     for fbdiv in fbdiv_range:
41         vco = args.input / refdiv * fbdiv
42         if vco < args.vco_min or vco > args.vco_max:
43             continue
44         # pd1 is inner loop so that we prefer higher ratios of pd1:pd2
45         for pd2 in postdiv_range:
46             for pd1 in postdiv_range:
47                 out = vco / pd1 / pd2
48                 margin = abs(out - args.output)
49                 vco_is_better = vco < best[5] if args.low_vco else vco > best[5]
50                 if ((vco * 1000) % (pd1 * pd2)):
51                     continue
52                 if margin < best_margin or (abs(margin - best_margin) < 1e-9 and
vco_is_better):
53                     best = (out, fbdiv, pd1, pd2, refdiv, vco)
54                     best_margin = margin
55 
56 best_out, best_fbdiv, best_pd1, best_pd2, best_refdiv, best_vco = best
57 
58 if best[0] > 0:
59     cmake_output = \
60 f"""target_compile_definitions({args.cmake_executable_name} PRIVATE
61     PLL_SYS_REFDIV={best_refdiv}
62     PLL_SYS_VCO_FREQ_HZ={int((args.input * 1_000_000) / best_refdiv * best_fbdiv)}
63     PLL_SYS_POSTDIV1={best_pd1}
64     PLL_SYS_POSTDIV2={best_pd2}
65 )
66 """
67     if not args.cmake_only:
68         print("Requested: {} MHz".format(args.output))
69         print("Achieved:  {} MHz".format(best_out))
70         print("REFDIV:    {}".format(best_refdiv))
71         print("FBDIV:     {} (VCO = {} MHz)".format(best_fbdiv, args.input / best_refdiv *
best_fbdiv))
72         print("PD1:       {}".format(best_pd1))
73         print("PD2:       {}".format(best_pd2))
74         if best_refdiv != 1:
75             print(
76                 "\nThis requires a non-default REFDIV value.\n"
77                 "Add the following to your CMakeLists.txt to apply the REFDIV:\n"
78             )
79         elif args.cmake or args.cmake_only:
80             print("")
81     if args.cmake or args.cmake_only or best_refdiv != 1:
82         print(cmake_output)
83 else:
84     sys.exit("No solution found")
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Given an input and output frequency, this script finds the best possible set of PLL parameters. When the script finds

multiple equally good combinations, it returns the parameters which yield the highest VCO frequency, for the best

output stability. Pass the -l or --low-vco flag to prefer lower frequencies, which reduce power consumption. Pass the

--vco-max flag to limit the maximum VCO frequency. If the script cannot find an exact match given the provided

constraints, it outputs the closest reasonable match instead.

The following example uses the script to request a 48 MHz output with the best output stability:

$ ./vcocalc.py 48
Requested: 48.0 MHz
Achieved: 48.0 MHz
REFDIV: 1
FBDIV: 120 (VCO = 1440.0 MHz)
PD1: 6
PD2: 5

This can also be output as CMake for configuring an SDK application:

$ ./vcocalc.py 48 --cmake
Requested: 48.0 MHz
Achieved:  48.0 MHz
REFDIV:    1
FBDIV:     120 (VCO = 1440.0 MHz)
PD1:       6
PD2:       5

target_compile_definitions(<program> PRIVATE
    PLL_SYS_REFDIV=1
    PLL_SYS_VCO_FREQ_HZ=1440000000
    PLL_SYS_POSTDIV1=6
    PLL_SYS_POSTDIV2=5
)

You can also pass --cmake-only to get just the CMake output, and --cmake-executable-name to replace the <program> with the

name of the target program you are configuring.

The following example uses the script to request a 48 MHz output with the lowest power consumption:

$ ./vcocalc.py -l 48
Requested: 48.0 MHz
Achieved: 48.0 MHz
REFDIV: 1
FBDIV: 64 (VCO = 768.0 MHz)
PD1: 4
PD2: 4

The following example uses the script to request a 125 MHz output with the lowest power consumption, with the

reference divisor REFDIV fixed at a value of 1. Even though we stated a preference for slower VCO frequencies, the

resulting frequency remains quite high:

$ ./vcocalc.py -l 125 --lock-refdiv=1
Requested: 125.0 MHz
Achieved: 125.0 MHz
REFDIV: 1
FBDIV: 125 (VCO = 1500.0 MHz)
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PD1: 6
PD2: 2

This happens when the best match for your requested output requires a high VCO frequency. The script always returns

the best match, preferring lower VCO frequencies only when there are multiple, equally good matches.

You can work around this by restricting the upper VCO frequency. The following example uses the script to request a

125 MHz system clock, restricting the search to VCO frequencies below 800 MHz. There is no exact match, so the script

considers near (but not exact) frequency matches. Relaxing the search to allow nearby non-exact matches significantly

reduces the minimum VCO frequency compared to the previous example:

$ ./vcocalc.py -l 125 --lock-refdiv=1 --vco-max=800
Locking REFDIV to 1
Requested: 125.0 MHz
Achieved:  126.0 MHz
REFDIV:    1
FBDIV:     63 (VCO = 756.0 MHz)
PD1:       6
PD2:       1

A 126 MHz system clock may be a tolerable deviation from the desired 125 MHz, and generating this clock consumes

less power at the PLL.

By default the script also searches reference divisors, which may give a closer match to your requested output, or

enable higher or lower VCO frequencies (depending on preference). The following example allows the script to search

FBDIV values:

$ ./vcocalc.py -l 125
Requested: 125.0 MHz
Achieved:  125.0 MHz
REFDIV:    2
FBDIV:     125 (VCO = 750.0 MHz)
PD1:       6
PD2:       1

This requires a non-default REFDIV value.
Add the following to your CMakeLists.txt to apply the REFDIV:

target_compile_definitions(<program> PRIVATE
    PLL_SYS_REFDIV=2
    PLL_SYS_VCO_FREQ_HZ=750000000
    PLL_SYS_POSTDIV1=6
    PLL_SYS_POSTDIV2=1
)

This finds a solution with exactly the requested output, at exactly the minimum VCO frequency of 750 MHz.

All of the above assume a 12 MHz crystal. RP2350 supports a range of XOSC frequencies documented in Section 8.2,

“Crystal Oscillator (XOSC)”. Suppose we had a 32 MHz crystal, and required a 150 MHz system clock, the maximum

supported on RP2350. You can specify the input frequency with the --input or -i flag, as shown in the following

example:

$./vcocalc.py 150 -i 32
Requested: 150.0 MHz
Achieved:  150.0 MHz
REFDIV:    2
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FBDIV:     75 (VCO = 1200.0 MHz)
PD1:       4
PD2:       2

This requires a non-default REFDIV value.
Add the following to your CMakeLists.txt to apply the REFDIV:

target_compile_definitions(<program> PRIVATE
    PLL_SYS_REFDIV=2
    PLL_SYS_VCO_FREQ_HZ=1200000000
    PLL_SYS_POSTDIV1=4
    PLL_SYS_POSTDIV2=2
)

8.6.4. Configuration

The SDK uses the following PLL settings:

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/include/hardware/clocks.h Lines 143 - 164

143 // There are two PLLs in RP-series microcontrollers:
144 // 1. The 'SYS PLL' generates the system clock, the frequency is defined by `SYS_CLK_KHZ`.
145 // 2. The 'USB PLL' generates the USB clock, the frequency is defined by `USB_CLK_KHZ`.
146 //
147 // The two PLLs use the crystal oscillator output directly as their reference frequency input;
    the PLLs reference
148 // frequency cannot be reduced by the dividers present in the clocks block. The crystal
    frequency is defined by `XOSC_HZ` (or
149 // `XOSC_KHZ` or `XOSC_MHZ`).
150 //
151 // The system's default definitions are correct for the above frequencies with a 12MHz
152 // crystal frequency.  If different frequencies are required, these must be defined in
153 // the board configuration file together with the revised PLL settings
154 // Use `vcocalc.py` to check and calculate new PLL settings if you change any of these
    frequencies.
155 //
156 // Default PLL configuration RP2040:
157 //                   REF     FBDIV VCO            POSTDIV
158 // PLL SYS: 12 / 1 = 12MHz * 125 = 1500MHz / 6 / 2 = 125MHz
159 // PLL USB: 12 / 1 = 12MHz * 100 = 1200MHz / 5 / 5 =  48MHz
160 //
161 // Default PLL configuration RP2350:
162 //                   REF     FBDIV VCO            POSTDIV
163 // PLL SYS: 12 / 1 = 12MHz * 125 = 1500MHz / 5 / 2 = 150MHz
164 // PLL USB: 12 / 1 = 12MHz * 100 = 1200MHz / 5 / 5 =  48MHz

The pll_init function in the SDK (examined below) asserts that all of these conditions are true before attempting to

configure the PLL.

The SDK defines the PLL control registers as a struct. It then maps them into memory for each instance of the PLL.

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2350/hardware_structs/include/hardware/structs/pll.h Lines 27 - 74

27 typedef struct {
28     _REG_(PLL_CS_OFFSET) // PLL_CS
29     // Control and Status
30     // 0x80000000 [31]    LOCK         (0) PLL is locked
31     // 0x40000000 [30]    LOCK_N       (0) PLL is not locked +
32     // 0x00000100 [8]     BYPASS       (0) Passes the reference clock to the output instead of

RP2350 Datasheet

8.6. PLL 570

https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L143-L164
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2350/hardware_structs/include/hardware/structs/pll.h#L27-L74


   the...
33     // 0x0000003f [5:0]   REFDIV       (0x01) Divides the PLL input reference clock
34     io_rw_32 cs;
35 
36     _REG_(PLL_PWR_OFFSET) // PLL_PWR
37     // Controls the PLL power modes
38     // 0x00000020 [5]     VCOPD        (1) PLL VCO powerdown +
39     // 0x00000008 [3]     POSTDIVPD    (1) PLL post divider powerdown +
40     // 0x00000004 [2]     DSMPD        (1) PLL DSM powerdown +
41     // 0x00000001 [0]     PD           (1) PLL powerdown +
42     io_rw_32 pwr;
43 
44     _REG_(PLL_FBDIV_INT_OFFSET) // PLL_FBDIV_INT
45     // Feedback divisor
46     // 0x00000fff [11:0]  FBDIV_INT    (0x000) see ctrl reg description for constraints
47     io_rw_32 fbdiv_int;
48 
49     _REG_(PLL_PRIM_OFFSET) // PLL_PRIM
50     // Controls the PLL post dividers for the primary output
51     // 0x00070000 [18:16] POSTDIV1     (0x7) divide by 1-7
52     // 0x00007000 [14:12] POSTDIV2     (0x7) divide by 1-7
53     io_rw_32 prim;
54 
55     _REG_(PLL_INTR_OFFSET) // PLL_INTR
56     // Raw Interrupts
57     // 0x00000001 [0]     LOCK_N_STICKY (0)
58     io_rw_32 intr;
59 
60     _REG_(PLL_INTE_OFFSET) // PLL_INTE
61     // Interrupt Enable
62     // 0x00000001 [0]     LOCK_N_STICKY (0)
63     io_rw_32 inte;
64 
65     _REG_(PLL_INTF_OFFSET) // PLL_INTF
66     // Interrupt Force
67     // 0x00000001 [0]     LOCK_N_STICKY (0)
68     io_rw_32 intf;
69 
70     _REG_(PLL_INTS_OFFSET) // PLL_INTS
71     // Interrupt status after masking & forcing
72     // 0x00000001 [0]     LOCK_N_STICKY (0)
73     io_ro_32 ints;
74 } pll_hw_t;

The SDK defines pll_init, which is used to configure or reconfigure a PLL. It starts by clearing any previous power state

in the PLL, then calculates the appropriate feedback divider value. There are assertions to check that these values

satisfy the constraints above.

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_pll/pll.c Lines 13 - 21

13 void pll_init(PLL pll, uint refdiv, uint vco_freq, uint post_div1, uint post_div2) {
14     uint32_t ref_freq = XOSC_HZ / refdiv;
15 
16     // Check vco freq is in an acceptable range
17     assert(vco_freq >= PICO_PLL_VCO_MIN_FREQ_HZ && vco_freq <= PICO_PLL_VCO_MAX_FREQ_HZ);
18 
19     // What are we multiplying the reference clock by to get the vco freq
20     // (The regs are called div, because you divide the vco output and compare it to the
   refclk)
21     uint32_t fbdiv = vco_freq / ref_freq;
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The programming sequence for the PLL is as follows:

1. Program the reference clock divider (is a divide by 1 in the RP2350 case).

2. Program the feedback divider.

3. Turn on the main power and VCO.

4. Wait for the VCO to achieve a stable frequency, as indicated by the LOCK status flag.

5. Set up post dividers and turn them on.

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_pll/pll.c Lines 42 - 69

42     if ((pll->cs & PLL_CS_LOCK_BITS) &&
43         (refdiv == (pll->cs & PLL_CS_REFDIV_BITS)) &&
44         (fbdiv  == (pll->fbdiv_int & PLL_FBDIV_INT_BITS)) &&
45         (pdiv   == (pll->prim & (PLL_PRIM_POSTDIV1_BITS | PLL_PRIM_POSTDIV2_BITS)))) {
46         // do not disrupt PLL that is already correctly configured and operating
47         return;
48     }
49 
50     reset_unreset_block_num_wait_blocking(PLL_RESET_NUM(pll));
51 
52     // Load VCO-related dividers before starting VCO
53     pll->cs = refdiv;
54     pll->fbdiv_int = fbdiv;
55 
56     // Turn on PLL
57     uint32_t power = PLL_PWR_PD_BITS | // Main power
58                      PLL_PWR_VCOPD_BITS; // VCO Power
59 
60     hw_clear_bits(&pll->pwr, power);
61 
62     // Wait for PLL to lock
63     while (!(pll->cs & PLL_CS_LOCK_BITS)) tight_loop_contents();
64 
65     // Set up post dividers
66     pll->prim = pdiv;
67 
68     // Turn on post divider
69     hw_clear_bits(&pll->pwr, PLL_PWR_POSTDIVPD_BITS);

The VCO turns on first, followed by the post dividers, so the PLL does not output a dirty clock while waiting for the VCO

to lock.

8.6.5. List of Registers

The PLL_SYS and PLL_USB registers start at base addresses of 0x40050000 and 0x40058000 respectively (defined as

PLL_SYS_BASE and PLL_USB_BASE in SDK).

Table 633. List of PLL

registers
Offset Name Info

0x00 CS Control and Status

0x04 PWR Controls the PLL power modes.

0x08 FBDIV_INT Feedback divisor

0x0c PRIM Controls the PLL post dividers for the primary output

0x10 INTR Raw Interrupts
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Offset Name Info

0x14 INTE Interrupt Enable

0x18 INTF Interrupt Force

0x1c INTS Interrupt status after masking & forcing

PLL: CS Register

Offset: 0x00

Description

Control and Status

GENERAL CONSTRAINTS:

Reference clock frequency min=5MHz, max=800MHz

Feedback divider min=16, max=320

VCO frequency min=400MHz, max=1600MHz

Table 634. CS Register
Bits Description Type Reset

31 LOCK: PLL is locked RO 0x0

30 LOCK_N: PLL is not locked

Ideally this is cleared when PLL lock is seen and this should never normally be

set

WC 0x0

29:9 Reserved. - -

8 BYPASS: Passes the reference clock to the output instead of the divided VCO.

The VCO continues to run so the user can switch between the reference clock

and the divided VCO but the output will glitch when doing so.

RW 0x0

7:6 Reserved. - -

5:0 REFDIV: Divides the PLL input reference clock.

Behaviour is undefined for div=0.

PLL output will be unpredictable during refdiv changes, wait for lock=1 before

using it.

RW 0x01

PLL: PWR Register

Offset: 0x04

Description

Controls the PLL power modes.

Table 635. PWR

Register
Bits Description Type Reset

31:6 Reserved. - -

5 VCOPD: PLL VCO powerdown

To save power set high when PLL output not required or bypass=1.

RW 0x1

4 Reserved. - -

3 POSTDIVPD: PLL post divider powerdown

To save power set high when PLL output not required or bypass=1.

RW 0x1

2 DSMPD: PLL DSM powerdown

Nothing is achieved by setting this low.

RW 0x1

1 Reserved. - -
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Bits Description Type Reset

0 PD: PLL powerdown

To save power set high when PLL output not required.

RW 0x1

PLL: FBDIV_INT Register

Offset: 0x08

Description

Feedback divisor

(note: this PLL does not support fractional division)

Table 636. FBDIV_INT

Register
Bits Description Type Reset

31:12 Reserved. - -

11:0 see ctrl reg description for constraints RW 0x000

PLL: PRIM Register

Offset: 0x0c

Description

Controls the PLL post dividers for the primary output

(note: this PLL does not have a secondary output)

the primary output is driven from VCO divided by postdiv1*postdiv2

Table 637. PRIM

Register
Bits Description Type Reset

31:19 Reserved. - -

18:16 POSTDIV1: divide by 1-7 RW 0x7

15 Reserved. - -

14:12 POSTDIV2: divide by 1-7 RW 0x7

11:0 Reserved. - -

PLL: INTR Register

Offset: 0x10

Description

Raw Interrupts

Table 638. INTR

Register
Bits Description Type Reset

31:1 Reserved. - -

0 LOCK_N_STICKY WC 0x0

PLL: INTE Register

Offset: 0x14

Description

Interrupt Enable
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Table 639. INTE

Register
Bits Description Type Reset

31:1 Reserved. - -

0 LOCK_N_STICKY RW 0x0

PLL: INTF Register

Offset: 0x18

Description

Interrupt Force

Table 640. INTF

Register
Bits Description Type Reset

31:1 Reserved. - -

0 LOCK_N_STICKY RW 0x0

PLL: INTS Register

Offset: 0x1c

Description

Interrupt status after masking & forcing

Table 641. INTS

Register
Bits Description Type Reset

31:1 Reserved. - -

0 LOCK_N_STICKY RO 0x0
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Chapter 9. GPIO

9.1. Overview

RP2350 has up to 54 multi-functional General Purpose Input / Output (GPIO) pins, divided into two banks:

Bank 0

30 user GPIOs in the QFN-60 package (RP2350A), or 48 user GPIOs in the QFN-80 package

Bank 1

six QSPI IOs, and the USB DP/DM pins

You can control each GPIO from software running on the processors, or by a number of other functional blocks. To

meet USB rise and fall specifications, the analogue characteristics of the USB pins differ from the GPIO pads. As a

result, we do not include them in the 54 GPIO total. However, you can still use them for UART, I2C, or processor-

controlled GPIO via the single-cycle IO subsystem (SIO).

In a typical use case, the QSPI IOs are used to execute code from an external flash device, leaving 30 or 48 Bank 0

GPIOs for the programmer to use. The QSPI pins may become available for general purpose use when booting the chip

from internal OTP, or controlling the chip externally via SWD in an IO expander application.

All GPIOs support digital input and output. Several Bank 0 GPIOs can also be used as inputs to the chip’s Analogue to

Digital Converter (ADC):

• GPIOs 26 through 29 inclusive (four total) in the QFN-60 package

• GPIOs 40 through 47 (eight total) in the QFN-80 package

Bank 0 supports the following functions:

• Software control via SIO — Section 3.1.3, “GPIO Control”

• Programmable IO (PIO) — Chapter 11, PIO

• 2 × SPI — Section 12.3, “SPI”

• 2 × UART — Section 12.1, “UART”

• 2 × I2C (two-wire serial interface) — Section 12.2, “I2C”

• 8 × two-channel PWM in the QFN-60 package, or 12 × in QFN-80  — Section 12.5, “PWM”

• 2 × external clock inputs — Section 8.1.1.4, “External Clocks”

• 4 × general purpose clock output — Section 8.1, “Overview”

• 4 × input to ADC in the QFN-60 package, or 8 × in QFN-80 — Section 12.4, “ADC and Temperature Sensor”

• 1 × HSTX high-speed interface — Section 12.11, “HSTX”

• 1 × auxiliary QSPI chip select, for a second XIP device — Section 12.14, “QSPI Memory Interface (QMI)”

• CoreSight execution trace output — Section 3.5.7, “Trace”

• USB VBUS management — Section 12.7.3.10, “VBUS Control”

• External interrupt requests, level or edge-sensitive — Section 9.5, “Interrupts”

Bank 1 contains the QSPI and USB DP/DM pins and supports the following functions:

• Software control via SIO — Section 3.1.3, “GPIO Control”

• Flash execute in place (Section 4.4, “External Flash and PSRAM (XIP)”) via QSPI Memory Interface (QMI) — Section

12.14, “QSPI Memory Interface (QMI)”
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• UART — Section 12.1, “UART”

• I2C (two-wire serial interface) — Section 12.2, “I2C”

The logical structure of an example IO is shown in Figure 40.

Figure 40. Logical

structure of a GPIO.

Each GPIO can be

controlled by one of a

number of peripherals,

or by software control

registers in the SIO.

The function select

(FSEL) selects which

peripheral output is in

control of the GPIO’s

direction and output

level, and which

peripheral input can

see this GPIO’s input

level. These three

signals (output level,

output enable, input

level) can also be

inverted or forced high

or low, using the GPIO

control registers.

9.2. Changes from RP2040

RP2350 GPIO differs from RP2040 in the following ways:

• 18 more GPIOs in the QFN-80 package

• Addition of a third PIO to GPIO functions

• USB DP/DM pins can be used as GPIO

• Addition of isolation register to pad registers (preserves pad state while in a low power state, cleared by software

on power up)

• Changed default reset state of pad controls

• Both Secure and Non-secure access to GPIOs (see Section 10.6)

• Double the number of GPIO interrupts to differentiate between Secure and Non-secure

• Interrupt summary registers added so you can quickly see which GPIOs have pending interrupts

9.3. Reset State

At first power up, Bank 0 IOs (GPIOs 0 through 29 in the QFN-60 package, and GPIOs 0 through 47 in the QFN-80

package) assume the following state:

• Output buffer is high-impedance

• Input buffer is disabled

• Pulled low

• Isolation latches are set to latched (Section 9.7)

The pad output disable bit (GPIO0.OD) for each pad is clear at reset, but the IO muxing is reset to the null function,

which ensures that the output buffer is high-impedance.
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 IMPORTANT

The pad reset state is different from RP2040, which only disables digital inputs on GPIOs 26 through 29 (as of

version B2) and does not have isolation latches. Applications must enable the pad input (GPIO0.IE = 1) and disable

pad isolation latches (GPIO0.ISO = 0) before using the pads for digital I/O. The gpio_set_function() SDK function

performs these tasks automatically.

Bank 1 IOs have the same reset state as Bank 0 GPIOs, except for the input enable (IE) resetting to 1, and different pull-

up/pull-down states: SCK, SD0 and SD1 are pull-down, but SD2, SD3 and CSn are pull-up.

 NOTE

To use a Bank 0 GPIO as a second chip select, you need an external pull-up to ensure the second QSPI device does

not power up with its chip select asserted.

The pads return to the reset state on any of the following:

• A brownout reset

• Asserting the RUN pin low

• Setting SW-DP CDBGRSTREQ via SWD

• Setting RP-AP rescue reset via SWD

If a pad’s isolation latches are in the latched state (Section 9.7) then resetting the PADS and IO registers does not

physically return the pad to its reset state. The isolation latches prevent upstream signals from propagating to the pad.

Clear the ISO bit to allow signals to propagate.

9.4. Function Select

To allocate a function to a GPIO, write to the FUNCSEL field in the CTRL register corresponding to the pin. For a list of GPIOs

and corresponding registers, see Table 642. For an example, see GPIO0_CTRL. The descriptions for the functions listed

in this table can be found in Table 643.

Each GPIO can only select one function at a time. Each peripheral input (e.g. UART0 RX) should only be selected by one

GPIO at a time. If you connect the same peripheral input to multiple GPIOs, the peripheral sees the logical OR of these

GPIO inputs.
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Table 642. General

Purpose Input/Output

(GPIO) Bank 0

Functions

GPIO F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

0 SPI0 RX UART0 TX I2C0 SDA PWM0 A SIO PIO0 PIO1 PIO2 QMI CS1n USB OVCUR DET

1 SPI0 CSn UART0 RX I2C0 SCL PWM0 B SIO PIO0 PIO1 PIO2 TRACECLK USB VBUS DET

2 SPI0 SCK UART0 CTS I2C1 SDA PWM1 A SIO PIO0 PIO1 PIO2 TRACEDATA0 USB VBUS EN UART0 TX

3 SPI0 TX UART0 RTS I2C1 SCL PWM1 B SIO PIO0 PIO1 PIO2 TRACEDATA1 USB OVCUR DET UART0 RX

4 SPI0 RX UART1 TX I2C0 SDA PWM2 A SIO PIO0 PIO1 PIO2 TRACEDATA2 USB VBUS DET

5 SPI0 CSn UART1 RX I2C0 SCL PWM2 B SIO PIO0 PIO1 PIO2 TRACEDATA3 USB VBUS EN

6 SPI0 SCK UART1 CTS I2C1 SDA PWM3 A SIO PIO0 PIO1 PIO2 USB OVCUR DET UART1 TX

7 SPI0 TX UART1 RTS I2C1 SCL PWM3 B SIO PIO0 PIO1 PIO2 USB VBUS DET UART1 RX

8 SPI1 RX UART1 TX I2C0 SDA PWM4 A SIO PIO0 PIO1 PIO2 QMI CS1n USB VBUS EN

9 SPI1 CSn UART1 RX I2C0 SCL PWM4 B SIO PIO0 PIO1 PIO2 USB OVCUR DET

10 SPI1 SCK UART1 CTS I2C1 SDA PWM5 A SIO PIO0 PIO1 PIO2 USB VBUS DET UART1 TX

11 SPI1 TX UART1 RTS I2C1 SCL PWM5 B SIO PIO0 PIO1 PIO2 USB VBUS EN UART1 RX

12 HSTX SPI1 RX UART0 TX I2C0 SDA PWM6 A SIO PIO0 PIO1 PIO2 CLOCK GPIN0 USB OVCUR DET

13 HSTX SPI1 CSn UART0 RX I2C0 SCL PWM6 B SIO PIO0 PIO1 PIO2 CLOCK GPOUT0 USB VBUS DET

14 HSTX SPI1 SCK UART0 CTS I2C1 SDA PWM7 A SIO PIO0 PIO1 PIO2 CLOCK GPIN1 USB VBUS EN UART0 TX

15 HSTX SPI1 TX UART0 RTS I2C1 SCL PWM7 B SIO PIO0 PIO1 PIO2 CLOCK GPOUT1 USB OVCUR DET UART0 RX

16 HSTX SPI0 RX UART0 TX I2C0 SDA PWM0 A SIO PIO0 PIO1 PIO2 USB VBUS DET

17 HSTX SPI0 CSn UART0 RX I2C0 SCL PWM0 B SIO PIO0 PIO1 PIO2 USB VBUS EN

18 HSTX SPI0 SCK UART0 CTS I2C1 SDA PWM1 A SIO PIO0 PIO1 PIO2 USB OVCUR DET UART0 TX

19 HSTX SPI0 TX UART0 RTS I2C1 SCL PWM1 B SIO PIO0 PIO1 PIO2 QMI CS1n USB VBUS DET UART0 RX

20 SPI0 RX UART1 TX I2C0 SDA PWM2 A SIO PIO0 PIO1 PIO2 CLOCK GPIN0 USB VBUS EN

21 SPI0 CSn UART1 RX I2C0 SCL PWM2 B SIO PIO0 PIO1 PIO2 CLOCK GPOUT0 USB OVCUR DET

22 SPI0 SCK UART1 CTS I2C1 SDA PWM3 A SIO PIO0 PIO1 PIO2 CLOCK GPIN1 USB VBUS DET UART1 TX
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GPIO F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

23 SPI0 TX UART1 RTS I2C1 SCL PWM3 B SIO PIO0 PIO1 PIO2 CLOCK GPOUT1 USB VBUS EN UART1 RX

24 SPI1 RX UART1 TX I2C0 SDA PWM4 A SIO PIO0 PIO1 PIO2 CLOCK GPOUT2 USB OVCUR DET

25 SPI1 CSn UART1 RX I2C0 SCL PWM4 B SIO PIO0 PIO1 PIO2 CLOCK GPOUT3 USB VBUS DET

26 SPI1 SCK UART1 CTS I2C1 SDA PWM5 A SIO PIO0 PIO1 PIO2 USB VBUS EN UART1 TX

27 SPI1 TX UART1 RTS I2C1 SCL PWM5 B SIO PIO0 PIO1 PIO2 USB OVCUR DET UART1 RX

28 SPI1 RX UART0 TX I2C0 SDA PWM6 A SIO PIO0 PIO1 PIO2 USB VBUS DET

29 SPI1 CSn UART0 RX I2C0 SCL PWM6 B SIO PIO0 PIO1 PIO2 USB VBUS EN

GPIOs 30 through 47 are QFN-80 only:

30 SPI1 SCK UART0 CTS I2C1 SDA PWM7 A SIO PIO0 PIO1 PIO2 USB OVCUR DET UART0 TX

31 SPI1 TX UART0 RTS I2C1 SCL PWM7 B SIO PIO0 PIO1 PIO2 USB VBUS DET UART0 RX

32 SPI0 RX UART0 TX I2C0 SDA PWM8 A SIO PIO0 PIO1 PIO2 USB VBUS EN

33 SPI0 CSn UART0 RX I2C0 SCL PWM8 B SIO PIO0 PIO1 PIO2 USB OVCUR DET

34 SPI0 SCK UART0 CTS I2C1 SDA PWM9 A SIO PIO0 PIO1 PIO2 USB VBUS DET UART0 TX

35 SPI0 TX UART0 RTS I2C1 SCL PWM9 B SIO PIO0 PIO1 PIO2 USB VBUS EN UART0 RX

36 SPI0 RX UART1 TX I2C0 SDA PWM10 A SIO PIO0 PIO1 PIO2 USB OVCUR DET

37 SPI0 CSn UART1 RX I2C0 SCL PWM10 B SIO PIO0 PIO1 PIO2 USB VBUS DET

38 SPI0 SCK UART1 CTS I2C1 SDA PWM11 A SIO PIO0 PIO1 PIO2 USB VBUS EN UART1 TX

39 SPI0 TX UART1 RTS I2C1 SCL PWM11 B SIO PIO0 PIO1 PIO2 USB OVCUR DET UART1 RX

40 SPI1 RX UART1 TX I2C0 SDA PWM8 A SIO PIO0 PIO1 PIO2 USB VBUS DET

41 SPI1 CSn UART1 RX I2C0 SCL PWM8 B SIO PIO0 PIO1 PIO2 USB VBUS EN

42 SPI1 SCK UART1 CTS I2C1 SDA PWM9 A SIO PIO0 PIO1 PIO2 USB OVCUR DET UART1 TX

43 SPI1 TX UART1 RTS I2C1 SCL PWM9 B SIO PIO0 PIO1 PIO2 USB VBUS DET UART1 RX

44 SPI1 RX UART0 TX I2C0 SDA PWM10 A SIO PIO0 PIO1 PIO2 USB VBUS EN
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GPIO F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

45 SPI1 CSn UART0 RX I2C0 SCL PWM10 B SIO PIO0 PIO1 PIO2 USB OVCUR DET

46 SPI1 SCK UART0 CTS I2C1 SDA PWM11 A SIO PIO0 PIO1 PIO2 USB VBUS DET UART0 TX

47 SPI1 TX UART0 RTS I2C1 SCL PWM11 B SIO PIO0 PIO1 PIO2 QMI CS1n USB VBUS EN UART0 RX
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Table 643. GPIO User

Bank function

descriptions

Function Name Description

SPIx Connect one of the internal PL022 SPI peripherals to GPIO.

UARTx Connect one of the internal PL011 UART peripherals to GPIO.

I2Cx Connect one of the internal DW I2C peripherals to GPIO.

PWMx A/B Connect a PWM slice to GPIO. There are twelve PWM slices, each with two output

channels (A/B). The B pin can also be used as an input, for frequency and duty cycle

measurement.

SIO Software control of GPIO from the Single-cycle IO (SIO) block. The SIO function (F5)

must be selected for the processors to drive a GPIO, but the input is always connected,

so software can check the state of GPIOs at any time.

PIOx Connect one of the programmable IO blocks (PIO) to GPIO. PIO can implement a wide

variety of interfaces, and has its own internal pin mapping hardware, allowing flexible

placement of digital interfaces on Bank 0 GPIOs. The PIO function (F6, F7, F8) must be

selected for PIO to drive a GPIO, but the input is always connected, so the PIOs can

always see the state of all pins.

HSTX Connect the high-speed transmit peripheral (HSTX) to GPIO.

CLOCK GPINx General purpose clock inputs. Can be routed to a number of internal clock domains on

RP2350, e.g. to provide a 1Hz clock for the AON Timer, or can be connected to an

internal frequency counter.

CLOCK GPOUTx General purpose clock outputs. Can drive a number of internal clocks (including PLL

outputs) onto GPIOs, with optional integer divide.

TRACECLK, TRACEDATAx CoreSight execution trace output from Cortex-M33 processors (Arm-only).

USB OVCUR DET/VBUS

DET/VBUS EN

USB power control signals to/from the internal USB controller.

QMI CS1n Auxiliary chip select for QSPI bus, to allow execute-in-place from an additional flash or

PSRAM device.

Bank 1 function select operates identically to Bank 0, but its registers are in a different register block, starting with

USBPHY_DP_CTRL.

Table 644. GPIO Bank

1 Functions
Pin F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

USB DP UART1 TX I2C0 SDA SIO

USB DM UART1 RX I2C0 SCL SIO

QSPI SCK QMI SCK UART1 CTS I2C1 SDA SIO UART1 TX

QSPI CSn QMI CS0n UART1 RTS I2C1 SCL SIO UART1 RX

QSPI SD0 QMI SD0 UART0 TX I2C0 SDA SIO

QSPI SD1 QMI SD1 UART0 RX I2C0 SCL SIO

QSPI SD2 QMI SD2 UART0 CTS I2C1 SDA SIO UART0 TX

QSPI SD3 QMI SD3 UART0 RTS I2C1 SCL SIO UART0 RX

Table 645. GPIO bank

1 function

descriptions

Function Name Description

UARTx Connect one of the internal PL011 UART peripherals to GPIO.

I2Cx Connect one of the internal DW I2C peripherals to GPIO.
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Function Name Description

SIO Software control of GPIO, from the single-cycle IO (SIO) block. The SIO function (F5) must be selected

for the processors to drive a GPIO, but the input is always connected, so software can check the state

of GPIOs at any time.

QMI QSPI memory interface peripheral, used for execute-in-place from external QSPI flash or PSRAM

memory devices.

The six QSPI Bank GPIO pins are typically used by the XIP peripheral to communicate with an external flash device.

However, there are two scenarios where the pins can be used as software-controlled GPIOs:

• If a SPI or Dual-SPI flash device is used for execute-in-place, then the SD2 and SD3 pins are not used for flash

access, and can be used for other GPIO functions on the circuit board.

• If RP2350 is used in a flashless configuration (USB and OTP boot only), then all six pins can be used for software-

controlled GPIO functions.

9.5. Interrupts

An interrupt can be generated for every GPIO pin in four scenarios:

• Level High: the GPIO pin is a logical 1

• Level Low: the GPIO pin is a logical 0

• Edge High: the GPIO has transitioned from a logical 0 to a logical 1

• Edge Low: the GPIO has transitioned from a logical 1 to a logical 0

The level interrupts are not latched. This means that if the pin is a logical 1 and the level high interrupt is active, it will

become inactive as soon as the pin changes to a logical 0. The edge interrupts are stored in the INTR register and can be

cleared by writing to the INTR register.

There are enable, status, and force registers for three interrupt destinations: proc 0, proc 1, and dormant_wake. For proc

0 the registers are enable (PROC0_INTE0), status (PROC0_INTS0), and force (PROC0_INTF0). Dormant wake is used to

wake the ROSC or XOSC up from dormant mode. See Section 6.5.6.2 for more information on dormant mode.

There is an interrupt output for each combination of IO bank, IRQ destination, and security domain. In total there are

twelve such outputs:

• IO Bank 0 to dormant wake (Secure and Non-secure)

• IO Bank 0 to proc 0 (Secure and Non-secure)

• IO Bank 0 to proc 1 (Secure and Non-secure)

• IO QSPI to dormant wake (Secure and Non-secure)

• IO QSPI to proc 0 (Secure and Non-secure)

• IO QSPI to proc 1 (Secure and Non-secure)

Each interrupt output has its own array of enable registers (INTE) which configures which GPIO events cause the

interrupt to assert. The interrupt asserts when at least one enabled event occurs, and de-asserts when all enabled

events have been acknowledged via the relevant INTR register.

This means the user can watch for several GPIO events at once.

Summary registers can be used to quickly check for pending GPIO interrupts. See IRQSUMMARY_PROC0_NONSECURE0

for an example.
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9.6. Pads

Each GPIO is connected off-chip via a pad. Pads are the electrical interface between the chip’s internal logic and

external circuitry. They translate signal voltage levels, support higher currents and offer some protection against

electrostatic discharge (ESD) events. You can adjust pad electrical behaviour to meet the requirements of external

circuitry in the following ways:

• Output drive strength can be set to 2mA, 4mA, 8mA or 12mA.

• Output slew rate can be set to slow or fast.

• Input hysteresis (Schmitt trigger mode) can be enabled.

• A pull-up or pull-down can be enabled, to set the output signal level when the output driver is disabled.

• The input buffer can be disabled, to reduce current consumption when the pad is unused, unconnected or

connected to an analogue signal.

An example pad is shown in Figure 41.

PAD

GPIO

Muxing

Slew Rate

Output Enable

Output Data

Drive Strength

Input Enable

Input Data

Schmitt Trigger

Pull Up / Pull Down 

2

2

Figure 41. Diagram of

a single IO pad.

The pad’s Output Enable, Output Data and Input Data ports connect, via the IO mux, to the function controlling the pad.

All other ports are controlled from the pad control register. You can use this register to disable the pad’s output driver by

overriding the Output Enable signal from the function controlling the pad. See GPIO0 for an example of a pad control

register.

Both the output signal level and acceptable input signal level at the pad are determined by the digital IO supply (IOVDD).

IOVDD can be any nominal voltage between 1.8V and 3.3V, but to meet specification when powered at 1.8V, the pad

input thresholds must be adjusted by writing a 1 to the pad VOLTAGE_SELECT registers. By default, the pad input thresholds

are valid for an IOVDD voltage between 2.5V and 3.3V. Using a voltage of 1.8V with the default input thresholds is a safe

operating mode, but it will result in input thresholds that don’t meet specification.

 WARNING

Using IOVDD voltages greater than 1.8V, with the input thresholds set for 1.8V may result in damage to the chip.

Pad input threshold are adjusted on a per bank basis, with separate VOLTAGE_SELECT registers for the pads associated with

the User IO bank (IO Bank 0) and the QSPI IO bank. However, both banks share the same digital IO supply (IOVDD), so

both register should always be set to the same value.

Pad register details are available in Section 9.11.3, “Pad Control - User Bank” and Section 9.11.4, “Pad Control - QSPI

Bank”.
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9.7. Pad Isolation Latches

RP2350 features extended low-power states which allow all internal logic, with the exception of POWMAN and some

CoreSight debug logic, to fully power down under software control. This includes powering down all peripherals, the IO

muxing, and the pad control registers, which brings with it the risk that pad signals may experience unwanted

transitions when entering and exiting low-power states.

To ensure that pad states are well-defined at all times, all signals passing from the switched core power domain to the

pads pass through isolation latches. In normal operation, the latches are transparent, so the pads are controlled fully by

logic inside the switched core power domain, such as UARTs or the processors. However, when the ISO bit for each pad

is set (e.g. GPIO0.ISO) or the switched core domain is powered down, the control signals currently presented to that pad

are latched until the isolation is disabled. This includes the output enable state, output high/low level, and pull-up/pull-

down resistor enable. The input signal from the pad back into the switched core domain is not isolated.

Consequently, when switched core logic is powered down, all Bank 0 and Bank 1 pads maintain the output state they

held immediately before the power down, unless overridden by always-on logic in POWMAN. When the switched core

power domain powers back up, all the GPIO ISO bits reset to 1, so the pre-power down state continues to be maintained

until user software starts up and clears the ISO bit to indicate it is ready to use the pad again. Pads whose IO muxing

has not yet been set up can be left isolated indefinitely, and will maintain their pre-power down state.

Once software has finished setting up the IO muxing for a given pad, and the peripheral which is to be muxed in, the ISO

bit should be cleared. At this point the isolation latches will become transparent again: output signals passing through

the IO muxing block are now reflected in the pad output state, so peripherals can communicate with the outside world.

This process allows the switched core domain to be power cycled without causing any transitions on the pad outputs

that may interfere with the operation of external hardware connected to the pads.

 NOTE

Non-SDK applications ported from RP2040 must clear the ISO bit before using a GPIO, as this feature was not

present on RP2040. The SDK automatically clears the ISO bit when gpio_set_function() is called.

The isolation latches themselves are reset by the always-on power domain reset, namely any one of:

• Power-on reset

• Brownout reset

• RUN pin being asserted low

• SW-DP CDBGRSTREQ

• RP-AP rescue reset

The latches reset to the reset value of the signal being isolated. For example, on Bank 0 GPIOs, the input enable control

(GPIO0.IE) resets to 0 (input-disabled), so the isolation latches for these signals also take a reset value of 0. Resetting

the isolation latch forces the pad to assume its reset state even if it is currently isolated.

The ISO control bits (e.g. GPIO0.ISO) are reset by the top-level switched core domain isolation signal, which is asserted

by POWMAN before powering down the switched core domain and de-asserted after it is powered up. This means that

entering and exiting a sleep state where the switched core domain is unpowered leaves all GPIOs isolated after power

up; you can then re-engage them individually. The ISO control bits are not reset by the PADS register block reset driven

by the RESETS control registers: resetting the PADS register block returns non-isolated pads to their reset state, but has

no effect on isolated pads.

9.8. Processor GPIO Controls (SIO)

The single-cycle IO subsystem (Section 3.1) contains memory-mapped GPIO registers. The processors can use these to

perform input/output operations on GPIOs:
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• The GPIO_OUT and GPIO_HI_OUT registers set the output level: 1 = high, 0 = low

• The GPIO_OE and GPIO_HI_OE registers set the output enable: 1 = output, 0 = input

• The GPIO_IN and GPIO_HI_IN registers read the GPIO inputs

These registers are all 32 bits in size. The low registers (e.g. GPIO_OUT) connect to GPIOs 0 through 31, and the high

registers (e.g. GPIO_HI_OUT) connect to GPIOs 32 through 47, the QSPI pads, and the USB DM/DP pads.

For the output and output enable registers to take effect, the SIO function must be selected on each GPIO (function 5).

However, the GPIO input registers read back the GPIO input values even when the SIO function is not selected, so the

processor can always check the input state of any pin.

The SIO GPIO registers are shared between the two processors and between the Secure and Non-secure security

domains. This avoids programming errors introduced by selecting multiple GPIO functions for access from different

contexts.

Non-secure code’s view of the SIO registers is restricted by the Non-secure GPIO mask defined in GPIO_NSMASK0 and

GPIO_NSMASK1. Non-secure writes to Secure GPIOs are ignored. Non-secure reads of Secure GPIOs return 0.

These registers are documented in more detail in the SIO GPIO register section (Section 3.1.3).

The DMA cannot access registers in the SIO subsystem. The recommended method to DMA to GPIOs is a PIO program

which continuously transfers TX FIFO data to the GPIO outputs, which provides more consistent timing than DMA

directly into GPIO registers.

9.9. GPIO Coprocessor Port

Coprocessor port 0 on each Cortex-M33 processor connects to a GPIO coprocessor interface. These coprocessor

instructions provide fast access to the SIO GPIO registers from Arm software:

• The equivalent of any SIO GPIO register access is a single instruction, without having to materialise a 32-bit

register address beforehand

• An indexed write operation on any single GPIO is a single instruction

• 64 bits can be read/written in a single instruction

This reduces the timing impact of GPIO accesses on surrounding software, for example when GPIO tracing has been

added to interrupt handlers diagnose complex timing issues.

Both Secure and Non-secure code may access the coprocessor. Non-secure code sees a restricted view of the GPIO

registers, defined by ACCESSCTRL GPIO_NSMASK0/1.

The GPIO coprocessor instruction set is documented in Section 3.6.1.

9.10. Software Examples

9.10.1. Select an IO function

An IO pin can perform many different functions and must be configured before use. For example, you may want it to be

a UART_TX pin, or a PWM output. The SDK provides gpio_set_function for this purpose. Many SDK examples call

gpio_set_function early on to enable printing to a UART.

The SDK starts by defining a structure to represent the registers of IO Bank 0, the User IO bank. Each IO has a status

register, followed by a control register. For N IOs, the SDK instantiates the structure containing a status and control

register as io[N] to repeat it N times.
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SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2350/hardware_structs/include/hardware/structs/io_bank0.h Lines 179 - 445

179 typedef struct {
180     io_bank0_status_ctrl_hw_t io[48];
181 
182     uint32_t _pad0[32];
183 
184     // (Description copied from array index 0 register IO_BANK0_IRQSUMMARY_PROC0_SECURE0
    applies similarly to other array indexes)
185     _REG_(IO_BANK0_IRQSUMMARY_PROC0_SECURE0_OFFSET) // IO_BANK0_IRQSUMMARY_PROC0_SECURE0
186     // 0x80000000 [31]    GPIO31       (0)
187     // 0x40000000 [30]    GPIO30       (0)
188     // 0x20000000 [29]    GPIO29       (0)
189     // 0x10000000 [28]    GPIO28       (0)
190     // 0x08000000 [27]    GPIO27       (0)
191     // 0x04000000 [26]    GPIO26       (0)
192     // 0x02000000 [25]    GPIO25       (0)
193     // 0x01000000 [24]    GPIO24       (0)
194     // 0x00800000 [23]    GPIO23       (0)
195     // 0x00400000 [22]    GPIO22       (0)
196     // 0x00200000 [21]    GPIO21       (0)
197     // 0x00100000 [20]    GPIO20       (0)
198     // 0x00080000 [19]    GPIO19       (0)
199     // 0x00040000 [18]    GPIO18       (0)
200     // 0x00020000 [17]    GPIO17       (0)
201     // 0x00010000 [16]    GPIO16       (0)
202     // 0x00008000 [15]    GPIO15       (0)
203     // 0x00004000 [14]    GPIO14       (0)
204     // 0x00002000 [13]    GPIO13       (0)
205     // 0x00001000 [12]    GPIO12       (0)
206     // 0x00000800 [11]    GPIO11       (0)
207     // 0x00000400 [10]    GPIO10       (0)
208     // 0x00000200 [9]     GPIO9        (0)
209     // 0x00000100 [8]     GPIO8        (0)
210     // 0x00000080 [7]     GPIO7        (0)
211     // 0x00000040 [6]     GPIO6        (0)
212     // 0x00000020 [5]     GPIO5        (0)
213     // 0x00000010 [4]     GPIO4        (0)
214     // 0x00000008 [3]     GPIO3        (0)
215     // 0x00000004 [2]     GPIO2        (0)
216     // 0x00000002 [1]     GPIO1        (0)
217     // 0x00000001 [0]     GPIO0        (0)
218     io_ro_32 irqsummary_proc0_secure[2];
219 
220     // (Description copied from array index 0 register IO_BANK0_IRQSUMMARY_PROC0_NONSECURE0
    applies similarly to other array indexes)
221     _REG_(IO_BANK0_IRQSUMMARY_PROC0_NONSECURE0_OFFSET) //
    IO_BANK0_IRQSUMMARY_PROC0_NONSECURE0
222     // 0x80000000 [31]    GPIO31       (0)
223     // 0x40000000 [30]    GPIO30       (0)
224     // 0x20000000 [29]    GPIO29       (0)
225     // 0x10000000 [28]    GPIO28       (0)
226     // 0x08000000 [27]    GPIO27       (0)
227     // 0x04000000 [26]    GPIO26       (0)
228     // 0x02000000 [25]    GPIO25       (0)
229     // 0x01000000 [24]    GPIO24       (0)
230     // 0x00800000 [23]    GPIO23       (0)
231     // 0x00400000 [22]    GPIO22       (0)
232     // 0x00200000 [21]    GPIO21       (0)
233     // 0x00100000 [20]    GPIO20       (0)
234     // 0x00080000 [19]    GPIO19       (0)
235     // 0x00040000 [18]    GPIO18       (0)
236     // 0x00020000 [17]    GPIO17       (0)
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237     // 0x00010000 [16]    GPIO16       (0)
238     // 0x00008000 [15]    GPIO15       (0)
239     // 0x00004000 [14]    GPIO14       (0)
240     // 0x00002000 [13]    GPIO13       (0)
241     // 0x00001000 [12]    GPIO12       (0)
242     // 0x00000800 [11]    GPIO11       (0)
243     // 0x00000400 [10]    GPIO10       (0)
244     // 0x00000200 [9]     GPIO9        (0)
245     // 0x00000100 [8]     GPIO8        (0)
246     // 0x00000080 [7]     GPIO7        (0)
247     // 0x00000040 [6]     GPIO6        (0)
248     // 0x00000020 [5]     GPIO5        (0)
249     // 0x00000010 [4]     GPIO4        (0)
250     // 0x00000008 [3]     GPIO3        (0)
251     // 0x00000004 [2]     GPIO2        (0)
252     // 0x00000002 [1]     GPIO1        (0)
253     // 0x00000001 [0]     GPIO0        (0)
254     io_ro_32 irqsummary_proc0_nonsecure[2];
255 
256     // (Description copied from array index 0 register IO_BANK0_IRQSUMMARY_PROC1_SECURE0
    applies similarly to other array indexes)
257     _REG_(IO_BANK0_IRQSUMMARY_PROC1_SECURE0_OFFSET) // IO_BANK0_IRQSUMMARY_PROC1_SECURE0
258     // 0x80000000 [31]    GPIO31       (0)
259     // 0x40000000 [30]    GPIO30       (0)
260     // 0x20000000 [29]    GPIO29       (0)
261     // 0x10000000 [28]    GPIO28       (0)
262     // 0x08000000 [27]    GPIO27       (0)
263     // 0x04000000 [26]    GPIO26       (0)
264     // 0x02000000 [25]    GPIO25       (0)
265     // 0x01000000 [24]    GPIO24       (0)
266     // 0x00800000 [23]    GPIO23       (0)
267     // 0x00400000 [22]    GPIO22       (0)
268     // 0x00200000 [21]    GPIO21       (0)
269     // 0x00100000 [20]    GPIO20       (0)
270     // 0x00080000 [19]    GPIO19       (0)
271     // 0x00040000 [18]    GPIO18       (0)
272     // 0x00020000 [17]    GPIO17       (0)
273     // 0x00010000 [16]    GPIO16       (0)
274     // 0x00008000 [15]    GPIO15       (0)
275     // 0x00004000 [14]    GPIO14       (0)
276     // 0x00002000 [13]    GPIO13       (0)
277     // 0x00001000 [12]    GPIO12       (0)
278     // 0x00000800 [11]    GPIO11       (0)
279     // 0x00000400 [10]    GPIO10       (0)
280     // 0x00000200 [9]     GPIO9        (0)
281     // 0x00000100 [8]     GPIO8        (0)
282     // 0x00000080 [7]     GPIO7        (0)
283     // 0x00000040 [6]     GPIO6        (0)
284     // 0x00000020 [5]     GPIO5        (0)
285     // 0x00000010 [4]     GPIO4        (0)
286     // 0x00000008 [3]     GPIO3        (0)
287     // 0x00000004 [2]     GPIO2        (0)
288     // 0x00000002 [1]     GPIO1        (0)
289     // 0x00000001 [0]     GPIO0        (0)
290     io_ro_32 irqsummary_proc1_secure[2];
291 
292     // (Description copied from array index 0 register IO_BANK0_IRQSUMMARY_PROC1_NONSECURE0
    applies similarly to other array indexes)
293     _REG_(IO_BANK0_IRQSUMMARY_PROC1_NONSECURE0_OFFSET) //
    IO_BANK0_IRQSUMMARY_PROC1_NONSECURE0
294     // 0x80000000 [31]    GPIO31       (0)
295     // 0x40000000 [30]    GPIO30       (0)
296     // 0x20000000 [29]    GPIO29       (0)
297     // 0x10000000 [28]    GPIO28       (0)
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298     // 0x08000000 [27]    GPIO27       (0)
299     // 0x04000000 [26]    GPIO26       (0)
300     // 0x02000000 [25]    GPIO25       (0)
301     // 0x01000000 [24]    GPIO24       (0)
302     // 0x00800000 [23]    GPIO23       (0)
303     // 0x00400000 [22]    GPIO22       (0)
304     // 0x00200000 [21]    GPIO21       (0)
305     // 0x00100000 [20]    GPIO20       (0)
306     // 0x00080000 [19]    GPIO19       (0)
307     // 0x00040000 [18]    GPIO18       (0)
308     // 0x00020000 [17]    GPIO17       (0)
309     // 0x00010000 [16]    GPIO16       (0)
310     // 0x00008000 [15]    GPIO15       (0)
311     // 0x00004000 [14]    GPIO14       (0)
312     // 0x00002000 [13]    GPIO13       (0)
313     // 0x00001000 [12]    GPIO12       (0)
314     // 0x00000800 [11]    GPIO11       (0)
315     // 0x00000400 [10]    GPIO10       (0)
316     // 0x00000200 [9]     GPIO9        (0)
317     // 0x00000100 [8]     GPIO8        (0)
318     // 0x00000080 [7]     GPIO7        (0)
319     // 0x00000040 [6]     GPIO6        (0)
320     // 0x00000020 [5]     GPIO5        (0)
321     // 0x00000010 [4]     GPIO4        (0)
322     // 0x00000008 [3]     GPIO3        (0)
323     // 0x00000004 [2]     GPIO2        (0)
324     // 0x00000002 [1]     GPIO1        (0)
325     // 0x00000001 [0]     GPIO0        (0)
326     io_ro_32 irqsummary_proc1_nonsecure[2];
327 
328     // (Description copied from array index 0 register
    IO_BANK0_IRQSUMMARY_DORMANT_WAKE_SECURE0 applies similarly to other array indexes)
329     _REG_(IO_BANK0_IRQSUMMARY_DORMANT_WAKE_SECURE0_OFFSET) //
    IO_BANK0_IRQSUMMARY_DORMANT_WAKE_SECURE0
330     // 0x80000000 [31]    GPIO31       (0)
331     // 0x40000000 [30]    GPIO30       (0)
332     // 0x20000000 [29]    GPIO29       (0)
333     // 0x10000000 [28]    GPIO28       (0)
334     // 0x08000000 [27]    GPIO27       (0)
335     // 0x04000000 [26]    GPIO26       (0)
336     // 0x02000000 [25]    GPIO25       (0)
337     // 0x01000000 [24]    GPIO24       (0)
338     // 0x00800000 [23]    GPIO23       (0)
339     // 0x00400000 [22]    GPIO22       (0)
340     // 0x00200000 [21]    GPIO21       (0)
341     // 0x00100000 [20]    GPIO20       (0)
342     // 0x00080000 [19]    GPIO19       (0)
343     // 0x00040000 [18]    GPIO18       (0)
344     // 0x00020000 [17]    GPIO17       (0)
345     // 0x00010000 [16]    GPIO16       (0)
346     // 0x00008000 [15]    GPIO15       (0)
347     // 0x00004000 [14]    GPIO14       (0)
348     // 0x00002000 [13]    GPIO13       (0)
349     // 0x00001000 [12]    GPIO12       (0)
350     // 0x00000800 [11]    GPIO11       (0)
351     // 0x00000400 [10]    GPIO10       (0)
352     // 0x00000200 [9]     GPIO9        (0)
353     // 0x00000100 [8]     GPIO8        (0)
354     // 0x00000080 [7]     GPIO7        (0)
355     // 0x00000040 [6]     GPIO6        (0)
356     // 0x00000020 [5]     GPIO5        (0)
357     // 0x00000010 [4]     GPIO4        (0)
358     // 0x00000008 [3]     GPIO3        (0)
359     // 0x00000004 [2]     GPIO2        (0)
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360     // 0x00000002 [1]     GPIO1        (0)
361     // 0x00000001 [0]     GPIO0        (0)
362     io_ro_32 irqsummary_dormant_wake_secure[2];
363 
364     // (Description copied from array index 0 register
    IO_BANK0_IRQSUMMARY_DORMANT_WAKE_NONSECURE0 applies similarly to other array indexes)
365     _REG_(IO_BANK0_IRQSUMMARY_DORMANT_WAKE_NONSECURE0_OFFSET) //
    IO_BANK0_IRQSUMMARY_DORMANT_WAKE_NONSECURE0
366     // 0x80000000 [31]    GPIO31       (0)
367     // 0x40000000 [30]    GPIO30       (0)
368     // 0x20000000 [29]    GPIO29       (0)
369     // 0x10000000 [28]    GPIO28       (0)
370     // 0x08000000 [27]    GPIO27       (0)
371     // 0x04000000 [26]    GPIO26       (0)
372     // 0x02000000 [25]    GPIO25       (0)
373     // 0x01000000 [24]    GPIO24       (0)
374     // 0x00800000 [23]    GPIO23       (0)
375     // 0x00400000 [22]    GPIO22       (0)
376     // 0x00200000 [21]    GPIO21       (0)
377     // 0x00100000 [20]    GPIO20       (0)
378     // 0x00080000 [19]    GPIO19       (0)
379     // 0x00040000 [18]    GPIO18       (0)
380     // 0x00020000 [17]    GPIO17       (0)
381     // 0x00010000 [16]    GPIO16       (0)
382     // 0x00008000 [15]    GPIO15       (0)
383     // 0x00004000 [14]    GPIO14       (0)
384     // 0x00002000 [13]    GPIO13       (0)
385     // 0x00001000 [12]    GPIO12       (0)
386     // 0x00000800 [11]    GPIO11       (0)
387     // 0x00000400 [10]    GPIO10       (0)
388     // 0x00000200 [9]     GPIO9        (0)
389     // 0x00000100 [8]     GPIO8        (0)
390     // 0x00000080 [7]     GPIO7        (0)
391     // 0x00000040 [6]     GPIO6        (0)
392     // 0x00000020 [5]     GPIO5        (0)
393     // 0x00000010 [4]     GPIO4        (0)
394     // 0x00000008 [3]     GPIO3        (0)
395     // 0x00000004 [2]     GPIO2        (0)
396     // 0x00000002 [1]     GPIO1        (0)
397     // 0x00000001 [0]     GPIO0        (0)
398     io_ro_32 irqsummary_dormant_wake_nonsecure[2];
399 
400     // (Description copied from array index 0 register IO_BANK0_INTR0 applies similarly to
    other array indexes)
401     _REG_(IO_BANK0_INTR0_OFFSET) // IO_BANK0_INTR0
402     // Raw Interrupts
403     // 0x80000000 [31]    GPIO7_EDGE_HIGH (0)
404     // 0x40000000 [30]    GPIO7_EDGE_LOW (0)
405     // 0x20000000 [29]    GPIO7_LEVEL_HIGH (0)
406     // 0x10000000 [28]    GPIO7_LEVEL_LOW (0)
407     // 0x08000000 [27]    GPIO6_EDGE_HIGH (0)
408     // 0x04000000 [26]    GPIO6_EDGE_LOW (0)
409     // 0x02000000 [25]    GPIO6_LEVEL_HIGH (0)
410     // 0x01000000 [24]    GPIO6_LEVEL_LOW (0)
411     // 0x00800000 [23]    GPIO5_EDGE_HIGH (0)
412     // 0x00400000 [22]    GPIO5_EDGE_LOW (0)
413     // 0x00200000 [21]    GPIO5_LEVEL_HIGH (0)
414     // 0x00100000 [20]    GPIO5_LEVEL_LOW (0)
415     // 0x00080000 [19]    GPIO4_EDGE_HIGH (0)
416     // 0x00040000 [18]    GPIO4_EDGE_LOW (0)
417     // 0x00020000 [17]    GPIO4_LEVEL_HIGH (0)
418     // 0x00010000 [16]    GPIO4_LEVEL_LOW (0)
419     // 0x00008000 [15]    GPIO3_EDGE_HIGH (0)
420     // 0x00004000 [14]    GPIO3_EDGE_LOW (0)
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421     // 0x00002000 [13]    GPIO3_LEVEL_HIGH (0)
422     // 0x00001000 [12]    GPIO3_LEVEL_LOW (0)
423     // 0x00000800 [11]    GPIO2_EDGE_HIGH (0)
424     // 0x00000400 [10]    GPIO2_EDGE_LOW (0)
425     // 0x00000200 [9]     GPIO2_LEVEL_HIGH (0)
426     // 0x00000100 [8]     GPIO2_LEVEL_LOW (0)
427     // 0x00000080 [7]     GPIO1_EDGE_HIGH (0)
428     // 0x00000040 [6]     GPIO1_EDGE_LOW (0)
429     // 0x00000020 [5]     GPIO1_LEVEL_HIGH (0)
430     // 0x00000010 [4]     GPIO1_LEVEL_LOW (0)
431     // 0x00000008 [3]     GPIO0_EDGE_HIGH (0)
432     // 0x00000004 [2]     GPIO0_EDGE_LOW (0)
433     // 0x00000002 [1]     GPIO0_LEVEL_HIGH (0)
434     // 0x00000001 [0]     GPIO0_LEVEL_LOW (0)
435     io_rw_32 intr[6];
436 
437     union {
438         struct {
439             io_bank0_irq_ctrl_hw_t proc0_irq_ctrl;
440             io_bank0_irq_ctrl_hw_t proc1_irq_ctrl;
441             io_bank0_irq_ctrl_hw_t dormant_wake_irq_ctrl;
442         };
443         io_bank0_irq_ctrl_hw_t irq_ctrl[3];
444     };
445 } io_bank0_hw_t;

A similar structure is defined for the pad control registers for IO bank 1. By default, all pads come out of reset ready to

use, with input enabled and output disable set to 0. Regardless, gpio_set_function in the SDK sets the input enable and

clears the output disable to engage the pad’s IO buffers and connect internal signals to the outside world. Finally, the

desired function select is written to the IO control register (see GPIO0_CTRL for an example of an IO control register).

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_gpio/gpio.c Lines 36 - 53

36 // Select function for this GPIO, and ensure input/output are enabled at the pad.
37 // This also clears the input/output/irq override bits.
38 void gpio_set_function(uint gpio, gpio_function_t fn) {
39     check_gpio_param(gpio);
40     invalid_params_if(HARDWARE_GPIO, ((uint32_t)fn << IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB) &
   ~IO_BANK0_GPIO0_CTRL_FUNCSEL_BITS);
41     // Set input enable on, output disable off
42     hw_write_masked(&pads_bank0_hw->io[gpio],
43                    PADS_BANK0_GPIO0_IE_BITS,
44                    PADS_BANK0_GPIO0_IE_BITS | PADS_BANK0_GPIO0_OD_BITS
45     );
46     // Zero all fields apart from fsel; we want this IO to do what the peripheral tells it.
47     // This doesn't affect e.g. pullup/pulldown, as these are in pad controls.
48     io_bank0_hw->io[gpio].ctrl = fn << IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB;
49     // Remove pad isolation now that the correct peripheral is in control of the pad
50     hw_clear_bits(&pads_bank0_hw->io[gpio], PADS_BANK0_GPIO0_ISO_BITS);
51 }

9.10.2. Enable a GPIO interrupt

The SDK provides a method of being interrupted when a GPIO pin changes state:
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SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_gpio/gpio.c Lines 186 - 199

186 void gpio_set_irq_enabled(uint gpio, uint32_t events, bool enabled) {
187     // either this call disables the interrupt
188     // or callback should already be set (raw or using gpio_set_irq_callback)
189     // this protects against enabling the interrupt without callback set
190     assert(!enabled
191                 || (raw_irq_mask[get_core_num()] & (1u<<gpio))
192                 || callbacks[get_core_num()]);
193 
194     // Separate mask/force/status per-core, so check which core called, and
195     // set the relevant IRQ controls.
196     io_bank0_irq_ctrl_hw_t *irq_ctrl_base = get_core_num() ?
197                                       &io_bank0_hw->proc1_irq_ctrl : &io_bank0_hw-
    >proc0_irq_ctrl;
198     _gpio_set_irq_enabled(gpio, events, enabled, irq_ctrl_base);
199 }

gpio_set_irq_enabled uses a lower level function _gpio_set_irq_enabled:

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_gpio/gpio.c Lines 173 - 184

173 static void _gpio_set_irq_enabled(uint gpio, uint32_t events, bool enabled,
    io_bank0_irq_ctrl_hw_t *irq_ctrl_base) {
174     // Clear stale events which might cause immediate spurious handler entry
175     gpio_acknowledge_irq(gpio, events);
176 
177     io_rw_32 *en_reg = &irq_ctrl_base->inte[gpio / 8];
178     events <<= 4 * (gpio % 8);
179 
180     if (enabled)
181         hw_set_bits(en_reg, events);
182     else
183         hw_clear_bits(en_reg, events);
184 }

The user provides a pointer to a callback function that is called when the GPIO event happens. An example application

that uses this system is hello_gpio_irq:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/gpio/hello_gpio_irq/hello_gpio_irq.c

 1 /**
 2  * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3  *
 4  * SPDX-License-Identifier: BSD-3-Clause
 5  */
 6 
 7 #include <stdio.h>
 8 #include "pico/stdlib.h"
 9 #include "hardware/gpio.h"
10 
11 static char event_str[128];
12 
13 void gpio_event_string(char *buf, uint32_t events);
14 
15 void gpio_callback(uint gpio, uint32_t events) {
16     // Put the GPIO event(s) that just happened into event_str
17     // so we can print it
18     gpio_event_string(event_str, events);
19     printf("GPIO %d %s\n", gpio, event_str);
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20 }
21 
22 int main() {
23     stdio_init_all();
24 
25     printf("Hello GPIO IRQ\n");
26     gpio_set_irq_enabled_with_callback(2, GPIO_IRQ_EDGE_RISE | GPIO_IRQ_EDGE_FALL, true,
   &gpio_callback);
27 
28     // Wait forever
29     while (1);
30 }
31 
32 
33 static const char *gpio_irq_str[] = {
34         "LEVEL_LOW",  // 0x1
35         "LEVEL_HIGH", // 0x2
36         "EDGE_FALL",  // 0x4
37         "EDGE_RISE"   // 0x8
38 };
39 
40 void gpio_event_string(char *buf, uint32_t events) {
41     for (uint i = 0; i < 4; i++) {
42         uint mask = (1 << i);
43         if (events & mask) {
44             // Copy this event string into the user string
45             const char *event_str = gpio_irq_str[i];
46             while (*event_str != '\0') {
47                 *buf++ = *event_str++;
48             }
49             events &= ~mask;
50 
51             // If more events add ", "
52             if (events) {
53                 *buf++ = ',';
54                 *buf++ = ' ';
55             }
56         }
57     }
58     *buf++ = '\0';
59 }

9.11. List of Registers

9.11.1. IO - User Bank

The User Bank IO registers start at a base address of 0x40028000 (defined as IO_BANK0_BASE in SDK).

Table 646. List of

IO_BANK0 registers
Offset Name Info

0x000 GPIO0_STATUS

0x004 GPIO0_CTRL

0x008 GPIO1_STATUS

0x00c GPIO1_CTRL

0x010 GPIO2_STATUS
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Offset Name Info

0x014 GPIO2_CTRL

0x018 GPIO3_STATUS

0x01c GPIO3_CTRL

0x020 GPIO4_STATUS

0x024 GPIO4_CTRL

0x028 GPIO5_STATUS

0x02c GPIO5_CTRL

0x030 GPIO6_STATUS

0x034 GPIO6_CTRL

0x038 GPIO7_STATUS

0x03c GPIO7_CTRL

0x040 GPIO8_STATUS

0x044 GPIO8_CTRL

0x048 GPIO9_STATUS

0x04c GPIO9_CTRL

0x050 GPIO10_STATUS

0x054 GPIO10_CTRL

0x058 GPIO11_STATUS

0x05c GPIO11_CTRL

0x060 GPIO12_STATUS

0x064 GPIO12_CTRL

0x068 GPIO13_STATUS

0x06c GPIO13_CTRL

0x070 GPIO14_STATUS

0x074 GPIO14_CTRL

0x078 GPIO15_STATUS

0x07c GPIO15_CTRL

0x080 GPIO16_STATUS

0x084 GPIO16_CTRL

0x088 GPIO17_STATUS

0x08c GPIO17_CTRL

0x090 GPIO18_STATUS

0x094 GPIO18_CTRL

0x098 GPIO19_STATUS

0x09c GPIO19_CTRL

0x0a0 GPIO20_STATUS
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Offset Name Info

0x0a4 GPIO20_CTRL

0x0a8 GPIO21_STATUS

0x0ac GPIO21_CTRL

0x0b0 GPIO22_STATUS

0x0b4 GPIO22_CTRL

0x0b8 GPIO23_STATUS

0x0bc GPIO23_CTRL

0x0c0 GPIO24_STATUS

0x0c4 GPIO24_CTRL

0x0c8 GPIO25_STATUS

0x0cc GPIO25_CTRL

0x0d0 GPIO26_STATUS

0x0d4 GPIO26_CTRL

0x0d8 GPIO27_STATUS

0x0dc GPIO27_CTRL

0x0e0 GPIO28_STATUS

0x0e4 GPIO28_CTRL

0x0e8 GPIO29_STATUS

0x0ec GPIO29_CTRL

0x0f0 GPIO30_STATUS

0x0f4 GPIO30_CTRL

0x0f8 GPIO31_STATUS

0x0fc GPIO31_CTRL

0x100 GPIO32_STATUS

0x104 GPIO32_CTRL

0x108 GPIO33_STATUS

0x10c GPIO33_CTRL

0x110 GPIO34_STATUS

0x114 GPIO34_CTRL

0x118 GPIO35_STATUS

0x11c GPIO35_CTRL

0x120 GPIO36_STATUS

0x124 GPIO36_CTRL

0x128 GPIO37_STATUS

0x12c GPIO37_CTRL

0x130 GPIO38_STATUS
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Offset Name Info

0x134 GPIO38_CTRL

0x138 GPIO39_STATUS

0x13c GPIO39_CTRL

0x140 GPIO40_STATUS

0x144 GPIO40_CTRL

0x148 GPIO41_STATUS

0x14c GPIO41_CTRL

0x150 GPIO42_STATUS

0x154 GPIO42_CTRL

0x158 GPIO43_STATUS

0x15c GPIO43_CTRL

0x160 GPIO44_STATUS

0x164 GPIO44_CTRL

0x168 GPIO45_STATUS

0x16c GPIO45_CTRL

0x170 GPIO46_STATUS

0x174 GPIO46_CTRL

0x178 GPIO47_STATUS

0x17c GPIO47_CTRL

0x200 IRQSUMMARY_PROC0_SECURE0

0x204 IRQSUMMARY_PROC0_SECURE1

0x208 IRQSUMMARY_PROC0_NONSECURE0

0x20c IRQSUMMARY_PROC0_NONSECURE1

0x210 IRQSUMMARY_PROC1_SECURE0

0x214 IRQSUMMARY_PROC1_SECURE1

0x218 IRQSUMMARY_PROC1_NONSECURE0

0x21c IRQSUMMARY_PROC1_NONSECURE1

0x220 IRQSUMMARY_COMA_WAKE_SECURE

0

0x224 IRQSUMMARY_COMA_WAKE_SECURE

1

0x228 IRQSUMMARY_COMA_WAKE_NONSE

CURE0

0x22c IRQSUMMARY_COMA_WAKE_NONSE

CURE1

0x230 INTR0 Raw Interrupts

0x234 INTR1 Raw Interrupts

RP2350 Datasheet

9.11. List of Registers 596



Offset Name Info

0x238 INTR2 Raw Interrupts

0x23c INTR3 Raw Interrupts

0x240 INTR4 Raw Interrupts

0x244 INTR5 Raw Interrupts

0x248 PROC0_INTE0 Interrupt Enable for proc0

0x24c PROC0_INTE1 Interrupt Enable for proc0

0x250 PROC0_INTE2 Interrupt Enable for proc0

0x254 PROC0_INTE3 Interrupt Enable for proc0

0x258 PROC0_INTE4 Interrupt Enable for proc0

0x25c PROC0_INTE5 Interrupt Enable for proc0

0x260 PROC0_INTF0 Interrupt Force for proc0

0x264 PROC0_INTF1 Interrupt Force for proc0

0x268 PROC0_INTF2 Interrupt Force for proc0

0x26c PROC0_INTF3 Interrupt Force for proc0

0x270 PROC0_INTF4 Interrupt Force for proc0

0x274 PROC0_INTF5 Interrupt Force for proc0

0x278 PROC0_INTS0 Interrupt status after masking & forcing for proc0

0x27c PROC0_INTS1 Interrupt status after masking & forcing for proc0

0x280 PROC0_INTS2 Interrupt status after masking & forcing for proc0

0x284 PROC0_INTS3 Interrupt status after masking & forcing for proc0

0x288 PROC0_INTS4 Interrupt status after masking & forcing for proc0

0x28c PROC0_INTS5 Interrupt status after masking & forcing for proc0

0x290 PROC1_INTE0 Interrupt Enable for proc1

0x294 PROC1_INTE1 Interrupt Enable for proc1

0x298 PROC1_INTE2 Interrupt Enable for proc1

0x29c PROC1_INTE3 Interrupt Enable for proc1

0x2a0 PROC1_INTE4 Interrupt Enable for proc1

0x2a4 PROC1_INTE5 Interrupt Enable for proc1

0x2a8 PROC1_INTF0 Interrupt Force for proc1

0x2ac PROC1_INTF1 Interrupt Force for proc1

0x2b0 PROC1_INTF2 Interrupt Force for proc1

0x2b4 PROC1_INTF3 Interrupt Force for proc1

0x2b8 PROC1_INTF4 Interrupt Force for proc1

0x2bc PROC1_INTF5 Interrupt Force for proc1

0x2c0 PROC1_INTS0 Interrupt status after masking & forcing for proc1

0x2c4 PROC1_INTS1 Interrupt status after masking & forcing for proc1
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Offset Name Info

0x2c8 PROC1_INTS2 Interrupt status after masking & forcing for proc1

0x2cc PROC1_INTS3 Interrupt status after masking & forcing for proc1

0x2d0 PROC1_INTS4 Interrupt status after masking & forcing for proc1

0x2d4 PROC1_INTS5 Interrupt status after masking & forcing for proc1

0x2d8 DORMANT_WAKE_INTE0 Interrupt Enable for dormant_wake

0x2dc DORMANT_WAKE_INTE1 Interrupt Enable for dormant_wake

0x2e0 DORMANT_WAKE_INTE2 Interrupt Enable for dormant_wake

0x2e4 DORMANT_WAKE_INTE3 Interrupt Enable for dormant_wake

0x2e8 DORMANT_WAKE_INTE4 Interrupt Enable for dormant_wake

0x2ec DORMANT_WAKE_INTE5 Interrupt Enable for dormant_wake

0x2f0 DORMANT_WAKE_INTF0 Interrupt Force for dormant_wake

0x2f4 DORMANT_WAKE_INTF1 Interrupt Force for dormant_wake

0x2f8 DORMANT_WAKE_INTF2 Interrupt Force for dormant_wake

0x2fc DORMANT_WAKE_INTF3 Interrupt Force for dormant_wake

0x300 DORMANT_WAKE_INTF4 Interrupt Force for dormant_wake

0x304 DORMANT_WAKE_INTF5 Interrupt Force for dormant_wake

0x308 DORMANT_WAKE_INTS0 Interrupt status after masking & forcing for dormant_wake

0x30c DORMANT_WAKE_INTS1 Interrupt status after masking & forcing for dormant_wake

0x310 DORMANT_WAKE_INTS2 Interrupt status after masking & forcing for dormant_wake

0x314 DORMANT_WAKE_INTS3 Interrupt status after masking & forcing for dormant_wake

0x318 DORMANT_WAKE_INTS4 Interrupt status after masking & forcing for dormant_wake

0x31c DORMANT_WAKE_INTS5 Interrupt status after masking & forcing for dormant_wake

IO_BANK0: GPIO0_STATUS Register

Offset: 0x000

Table 647.

GPIO0_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -
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IO_BANK0: GPIO0_CTRL Register

Offset: 0x004

Table 648.

GPIO0_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → jtag_tck

0x01 → spi0_rx

0x02 → uart0_tx
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Bits Description Type Reset

0x03 → i2c0_sda

0x04 → pwm_a_0

0x05 → sio_0

0x06 → pio0_0

0x07 → pio1_0

0x08 → pio2_0

0x09 → xip_ss_n_1

0x0a → usb_muxing_overcurr_detect

0x1f → null

IO_BANK0: GPIO1_STATUS Register

Offset: 0x008

Table 649.

GPIO1_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO1_CTRL Register

Offset: 0x00c

Table 650.

GPIO1_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:
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Bits Description Type Reset

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → jtag_tms

0x01 → spi0_ss_n

0x02 → uart0_rx

0x03 → i2c0_scl

0x04 → pwm_b_0

0x05 → sio_1

0x06 → pio0_1

0x07 → pio1_1

0x08 → pio2_1

0x09 → coresight_traceclk

0x0a → usb_muxing_vbus_detect

0x1f → null

IO_BANK0: GPIO2_STATUS Register

Offset: 0x010
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Table 651.

GPIO2_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO2_CTRL Register

Offset: 0x014

Table 652.

GPIO2_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:
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Bits Description Type Reset

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → jtag_tdi

0x01 → spi0_sclk

0x02 → uart0_cts

0x03 → i2c1_sda

0x04 → pwm_a_1

0x05 → sio_2

0x06 → pio0_2

0x07 → pio1_2

0x08 → pio2_2

0x09 → coresight_tracedata_0

0x0a → usb_muxing_vbus_en

0x0b → uart0_tx

0x1f → null

IO_BANK0: GPIO3_STATUS Register

Offset: 0x018

Table 653.

GPIO3_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO3_CTRL Register
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Offset: 0x01c

Table 654.

GPIO3_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → jtag_tdo

0x01 → spi0_tx

0x02 → uart0_rts

0x03 → i2c1_scl
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Bits Description Type Reset

0x04 → pwm_b_1

0x05 → sio_3

0x06 → pio0_3

0x07 → pio1_3

0x08 → pio2_3

0x09 → coresight_tracedata_1

0x0a → usb_muxing_overcurr_detect

0x0b → uart0_rx

0x1f → null

IO_BANK0: GPIO4_STATUS Register

Offset: 0x020

Table 655.

GPIO4_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO4_CTRL Register

Offset: 0x024

Table 656.

GPIO4_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:
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Bits Description Type Reset

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_rx

0x02 → uart1_tx

0x03 → i2c0_sda

0x04 → pwm_a_2

0x05 → sio_4

0x06 → pio0_4

0x07 → pio1_4

0x08 → pio2_4

0x09 → coresight_tracedata_2

0x0a → usb_muxing_vbus_detect

0x1f → null

IO_BANK0: GPIO5_STATUS Register

Offset: 0x028
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Table 657.

GPIO5_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO5_CTRL Register

Offset: 0x02c

Table 658.

GPIO5_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:
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Bits Description Type Reset

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_ss_n

0x02 → uart1_rx

0x03 → i2c0_scl

0x04 → pwm_b_2

0x05 → sio_5

0x06 → pio0_5

0x07 → pio1_5

0x08 → pio2_5

0x09 → coresight_tracedata_3

0x0a → usb_muxing_vbus_en

0x1f → null

IO_BANK0: GPIO6_STATUS Register

Offset: 0x030

Table 659.

GPIO6_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO6_CTRL Register

Offset: 0x034
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Table 660.

GPIO6_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_sclk

0x02 → uart1_cts

0x03 → i2c1_sda

0x04 → pwm_a_3

0x05 → sio_6

RP2350 Datasheet

9.11. List of Registers 609



Bits Description Type Reset

0x06 → pio0_6

0x07 → pio1_6

0x08 → pio2_6

0x0a → usb_muxing_overcurr_detect

0x0b → uart1_tx

0x1f → null

IO_BANK0: GPIO7_STATUS Register

Offset: 0x038

Table 661.

GPIO7_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO7_CTRL Register

Offset: 0x03c

Table 662.

GPIO7_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low
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Bits Description Type Reset

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_tx

0x02 → uart1_rts

0x03 → i2c1_scl

0x04 → pwm_b_3

0x05 → sio_7

0x06 → pio0_7

0x07 → pio1_7

0x08 → pio2_7

0x0a → usb_muxing_vbus_detect

0x0b → uart1_rx

0x1f → null

IO_BANK0: GPIO8_STATUS Register

Offset: 0x040

Table 663.

GPIO8_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0
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Bits Description Type Reset

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO8_CTRL Register

Offset: 0x044

Table 664.

GPIO8_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

RP2350 Datasheet

9.11. List of Registers 612



Bits Description Type Reset

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_rx

0x02 → uart1_tx

0x03 → i2c0_sda

0x04 → pwm_a_4

0x05 → sio_8

0x06 → pio0_8

0x07 → pio1_8

0x08 → pio2_8

0x09 → xip_ss_n_1

0x0a → usb_muxing_vbus_en

0x1f → null

IO_BANK0: GPIO9_STATUS Register

Offset: 0x048

Table 665.

GPIO9_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO9_CTRL Register

Offset: 0x04c

Table 666.

GPIO9_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt
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Bits Description Type Reset

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_ss_n

0x02 → uart1_rx

0x03 → i2c0_scl

0x04 → pwm_b_4

0x05 → sio_9

0x06 → pio0_9

0x07 → pio1_9

0x08 → pio2_9

0x0a → usb_muxing_overcurr_detect
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Bits Description Type Reset

0x1f → null

IO_BANK0: GPIO10_STATUS Register

Offset: 0x050

Table 667.

GPIO10_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO10_CTRL Register

Offset: 0x054

Table 668.

GPIO10_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel
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Bits Description Type Reset

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_sclk

0x02 → uart1_cts

0x03 → i2c1_sda

0x04 → pwm_a_5

0x05 → sio_10

0x06 → pio0_10

0x07 → pio1_10

0x08 → pio2_10

0x0a → usb_muxing_vbus_detect

0x0b → uart1_tx

0x1f → null

IO_BANK0: GPIO11_STATUS Register

Offset: 0x058

Table 669.

GPIO11_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0
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Bits Description Type Reset

8:0 Reserved. - -

IO_BANK0: GPIO11_CTRL Register

Offset: 0x05c

Table 670.

GPIO11_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:
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Bits Description Type Reset

0x01 → spi1_tx

0x02 → uart1_rts

0x03 → i2c1_scl

0x04 → pwm_b_5

0x05 → sio_11

0x06 → pio0_11

0x07 → pio1_11

0x08 → pio2_11

0x0a → usb_muxing_vbus_en

0x0b → uart1_rx

0x1f → null

IO_BANK0: GPIO12_STATUS Register

Offset: 0x060

Table 671.

GPIO12_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO12_CTRL Register

Offset: 0x064

Table 672.

GPIO12_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -
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Bits Description Type Reset

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → hstx_0

0x01 → spi1_rx

0x02 → uart0_tx

0x03 → i2c0_sda

0x04 → pwm_a_6

0x05 → sio_12

0x06 → pio0_12

0x07 → pio1_12

0x08 → pio2_12

0x09 → clocks_gpin_0

0x0a → usb_muxing_overcurr_detect

0x1f → null

IO_BANK0: GPIO13_STATUS Register
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Offset: 0x068

Table 673.

GPIO13_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO13_CTRL Register

Offset: 0x06c

Table 674.

GPIO13_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0
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Bits Description Type Reset

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → hstx_1

0x01 → spi1_ss_n

0x02 → uart0_rx

0x03 → i2c0_scl

0x04 → pwm_b_6

0x05 → sio_13

0x06 → pio0_13

0x07 → pio1_13

0x08 → pio2_13

0x09 → clocks_gpout_0

0x0a → usb_muxing_vbus_detect

0x1f → null

IO_BANK0: GPIO14_STATUS Register

Offset: 0x070

Table 675.

GPIO14_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO14_CTRL Register
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Offset: 0x074

Table 676.

GPIO14_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → hstx_2

0x01 → spi1_sclk

0x02 → uart0_cts

0x03 → i2c1_sda
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Bits Description Type Reset

0x04 → pwm_a_7

0x05 → sio_14

0x06 → pio0_14

0x07 → pio1_14

0x08 → pio2_14

0x09 → clocks_gpin_1

0x0a → usb_muxing_vbus_en

0x0b → uart0_tx

0x1f → null

IO_BANK0: GPIO15_STATUS Register

Offset: 0x078

Table 677.

GPIO15_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO15_CTRL Register

Offset: 0x07c

Table 678.

GPIO15_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:
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Bits Description Type Reset

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → hstx_3

0x01 → spi1_tx

0x02 → uart0_rts

0x03 → i2c1_scl

0x04 → pwm_b_7

0x05 → sio_15

0x06 → pio0_15

0x07 → pio1_15

0x08 → pio2_15

0x09 → clocks_gpout_1

0x0a → usb_muxing_overcurr_detect

0x0b → uart0_rx

0x1f → null

IO_BANK0: GPIO16_STATUS Register

Offset: 0x080
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Table 679.

GPIO16_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO16_CTRL Register

Offset: 0x084

Table 680.

GPIO16_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:
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Bits Description Type Reset

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → hstx_4

0x01 → spi0_rx

0x02 → uart0_tx

0x03 → i2c0_sda

0x04 → pwm_a_0

0x05 → sio_16

0x06 → pio0_16

0x07 → pio1_16

0x08 → pio2_16

0x0a → usb_muxing_vbus_detect

0x1f → null

IO_BANK0: GPIO17_STATUS Register

Offset: 0x088

Table 681.

GPIO17_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO17_CTRL Register

Offset: 0x08c
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Table 682.

GPIO17_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → hstx_5

0x01 → spi0_ss_n

0x02 → uart0_rx

0x03 → i2c0_scl

0x04 → pwm_b_0
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Bits Description Type Reset

0x05 → sio_17

0x06 → pio0_17

0x07 → pio1_17

0x08 → pio2_17

0x0a → usb_muxing_vbus_en

0x1f → null

IO_BANK0: GPIO18_STATUS Register

Offset: 0x090

Table 683.

GPIO18_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO18_CTRL Register

Offset: 0x094

Table 684.

GPIO18_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low
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Bits Description Type Reset

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → hstx_6

0x01 → spi0_sclk

0x02 → uart0_cts

0x03 → i2c1_sda

0x04 → pwm_a_1

0x05 → sio_18

0x06 → pio0_18

0x07 → pio1_18

0x08 → pio2_18

0x0a → usb_muxing_overcurr_detect

0x0b → uart0_tx

0x1f → null

IO_BANK0: GPIO19_STATUS Register

Offset: 0x098

Table 685.

GPIO19_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -
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Bits Description Type Reset

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO19_CTRL Register

Offset: 0x09c

Table 686.

GPIO19_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low
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Bits Description Type Reset

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → hstx_7

0x01 → spi0_tx

0x02 → uart0_rts

0x03 → i2c1_scl

0x04 → pwm_b_1

0x05 → sio_19

0x06 → pio0_19

0x07 → pio1_19

0x08 → pio2_19

0x09 → xip_ss_n_1

0x0a → usb_muxing_vbus_detect

0x0b → uart0_rx

0x1f → null

IO_BANK0: GPIO20_STATUS Register

Offset: 0x0a0

Table 687.

GPIO20_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO20_CTRL Register

Offset: 0x0a4

Table 688.

GPIO20_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -
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Bits Description Type Reset

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_rx

0x02 → uart1_tx

0x03 → i2c0_sda

0x04 → pwm_a_2

0x05 → sio_20

0x06 → pio0_20
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Bits Description Type Reset

0x07 → pio1_20

0x08 → pio2_20

0x09 → clocks_gpin_0

0x0a → usb_muxing_vbus_en

0x1f → null

IO_BANK0: GPIO21_STATUS Register

Offset: 0x0a8

Table 689.

GPIO21_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO21_CTRL Register

Offset: 0x0ac

Table 690.

GPIO21_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high
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Bits Description Type Reset

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_ss_n

0x02 → uart1_rx

0x03 → i2c0_scl

0x04 → pwm_b_2

0x05 → sio_21

0x06 → pio0_21

0x07 → pio1_21

0x08 → pio2_21

0x09 → clocks_gpout_0

0x0a → usb_muxing_overcurr_detect

0x1f → null

IO_BANK0: GPIO22_STATUS Register

Offset: 0x0b0

Table 691.

GPIO22_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -
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Bits Description Type Reset

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO22_CTRL Register

Offset: 0x0b4

Table 692.

GPIO22_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -
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Bits Description Type Reset

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_sclk

0x02 → uart1_cts

0x03 → i2c1_sda

0x04 → pwm_a_3

0x05 → sio_22

0x06 → pio0_22

0x07 → pio1_22

0x08 → pio2_22

0x09 → clocks_gpin_1

0x0a → usb_muxing_vbus_detect

0x0b → uart1_tx

0x1f → null

IO_BANK0: GPIO23_STATUS Register

Offset: 0x0b8

Table 693.

GPIO23_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO23_CTRL Register

Offset: 0x0bc

Table 694.

GPIO23_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt
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Bits Description Type Reset

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_tx

0x02 → uart1_rts

0x03 → i2c1_scl

0x04 → pwm_b_3

0x05 → sio_23

0x06 → pio0_23

0x07 → pio1_23

0x08 → pio2_23

0x09 → clocks_gpout_1
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Bits Description Type Reset

0x0a → usb_muxing_vbus_en

0x0b → uart1_rx

0x1f → null

IO_BANK0: GPIO24_STATUS Register

Offset: 0x0c0

Table 695.

GPIO24_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO24_CTRL Register

Offset: 0x0c4

Table 696.

GPIO24_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:
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Bits Description Type Reset

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_rx

0x02 → uart1_tx

0x03 → i2c0_sda

0x04 → pwm_a_4

0x05 → sio_24

0x06 → pio0_24

0x07 → pio1_24

0x08 → pio2_24

0x09 → clocks_gpout_2

0x0a → usb_muxing_overcurr_detect

0x1f → null

IO_BANK0: GPIO25_STATUS Register

Offset: 0x0c8

Table 697.

GPIO25_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -
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Bits Description Type Reset

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO25_CTRL Register

Offset: 0x0cc

Table 698.

GPIO25_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f
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Bits Description Type Reset

Enumerated values:

0x01 → spi1_ss_n

0x02 → uart1_rx

0x03 → i2c0_scl

0x04 → pwm_b_4

0x05 → sio_25

0x06 → pio0_25

0x07 → pio1_25

0x08 → pio2_25

0x09 → clocks_gpout_3

0x0a → usb_muxing_vbus_detect

0x1f → null

IO_BANK0: GPIO26_STATUS Register

Offset: 0x0d0

Table 699.

GPIO26_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO26_CTRL Register

Offset: 0x0d4

Table 700.

GPIO26_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high
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Bits Description Type Reset

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_sclk

0x02 → uart1_cts

0x03 → i2c1_sda

0x04 → pwm_a_5

0x05 → sio_26

0x06 → pio0_26

0x07 → pio1_26

0x08 → pio2_26

0x0a → usb_muxing_vbus_en

0x0b → uart1_tx

0x1f → null

IO_BANK0: GPIO27_STATUS Register
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Offset: 0x0d8

Table 701.

GPIO27_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO27_CTRL Register

Offset: 0x0dc

Table 702.

GPIO27_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0
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Bits Description Type Reset

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_tx

0x02 → uart1_rts

0x03 → i2c1_scl

0x04 → pwm_b_5

0x05 → sio_27

0x06 → pio0_27

0x07 → pio1_27

0x08 → pio2_27

0x0a → usb_muxing_overcurr_detect

0x0b → uart1_rx

0x1f → null

IO_BANK0: GPIO28_STATUS Register

Offset: 0x0e0

Table 703.

GPIO28_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO28_CTRL Register

Offset: 0x0e4
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Table 704.

GPIO28_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_rx

0x02 → uart0_tx

0x03 → i2c0_sda

0x04 → pwm_a_6

0x05 → sio_28
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Bits Description Type Reset

0x06 → pio0_28

0x07 → pio1_28

0x08 → pio2_28

0x0a → usb_muxing_vbus_detect

0x1f → null

IO_BANK0: GPIO29_STATUS Register

Offset: 0x0e8

Table 705.

GPIO29_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO29_CTRL Register

Offset: 0x0ec

Table 706.

GPIO29_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high
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Bits Description Type Reset

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_ss_n

0x02 → uart0_rx

0x03 → i2c0_scl

0x04 → pwm_b_6

0x05 → sio_29

0x06 → pio0_29

0x07 → pio1_29

0x08 → pio2_29

0x0a → usb_muxing_vbus_en

0x1f → null

IO_BANK0: GPIO30_STATUS Register

Offset: 0x0f0

Table 707.

GPIO30_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0
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Bits Description Type Reset

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO30_CTRL Register

Offset: 0x0f4

Table 708.

GPIO30_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -
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Bits Description Type Reset

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_sclk

0x02 → uart0_cts

0x03 → i2c1_sda

0x04 → pwm_a_7

0x05 → sio_30

0x06 → pio0_30

0x07 → pio1_30

0x08 → pio2_30

0x0a → usb_muxing_overcurr_detect

0x0b → uart0_tx

0x1f → null

IO_BANK0: GPIO31_STATUS Register

Offset: 0x0f8

Table 709.

GPIO31_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO31_CTRL Register

Offset: 0x0fc

Table 710.

GPIO31_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt
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Bits Description Type Reset

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_tx

0x02 → uart0_rts

0x03 → i2c1_scl

0x04 → pwm_b_7

0x05 → sio_31

0x06 → pio0_31

0x07 → pio1_31

0x08 → pio2_31

0x0a → usb_muxing_vbus_detect

0x0b → uart0_rx
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Bits Description Type Reset

0x1f → null

IO_BANK0: GPIO32_STATUS Register

Offset: 0x100

Table 711.

GPIO32_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO32_CTRL Register

Offset: 0x104

Table 712.

GPIO32_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel
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Bits Description Type Reset

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_rx

0x02 → uart0_tx

0x03 → i2c0_sda

0x04 → pwm_a_8

0x05 → sio_32

0x06 → pio0_32

0x07 → pio1_32

0x08 → pio2_32

0x0a → usb_muxing_vbus_en

0x1f → null

IO_BANK0: GPIO33_STATUS Register

Offset: 0x108

Table 713.

GPIO33_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -
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IO_BANK0: GPIO33_CTRL Register

Offset: 0x10c

Table 714.

GPIO33_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_ss_n

0x02 → uart0_rx

0x03 → i2c0_scl
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Bits Description Type Reset

0x04 → pwm_b_8

0x05 → sio_33

0x06 → pio0_33

0x07 → pio1_33

0x08 → pio2_33

0x0a → usb_muxing_overcurr_detect

0x1f → null

IO_BANK0: GPIO34_STATUS Register

Offset: 0x110

Table 715.

GPIO34_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO34_CTRL Register

Offset: 0x114

Table 716.

GPIO34_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input
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Bits Description Type Reset

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_sclk

0x02 → uart0_cts

0x03 → i2c1_sda

0x04 → pwm_a_9

0x05 → sio_34

0x06 → pio0_34

0x07 → pio1_34

0x08 → pio2_34

0x0a → usb_muxing_vbus_detect

0x0b → uart0_tx

0x1f → null

IO_BANK0: GPIO35_STATUS Register

Offset: 0x118

Table 717.

GPIO35_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -
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Bits Description Type Reset

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO35_CTRL Register

Offset: 0x11c

Table 718.

GPIO35_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low
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Bits Description Type Reset

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_tx

0x02 → uart0_rts

0x03 → i2c1_scl

0x04 → pwm_b_9

0x05 → sio_35

0x06 → pio0_35

0x07 → pio1_35

0x08 → pio2_35

0x0a → usb_muxing_vbus_en

0x0b → uart0_rx

0x1f → null

IO_BANK0: GPIO36_STATUS Register

Offset: 0x120

Table 719.

GPIO36_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO36_CTRL Register

Offset: 0x124

Table 720.

GPIO36_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

RP2350 Datasheet

9.11. List of Registers 657



Bits Description Type Reset

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_rx

0x02 → uart1_tx

0x03 → i2c0_sda

0x04 → pwm_a_10

0x05 → sio_36

0x06 → pio0_36

0x07 → pio1_36

0x08 → pio2_36
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Bits Description Type Reset

0x0a → usb_muxing_overcurr_detect

0x1f → null

IO_BANK0: GPIO37_STATUS Register

Offset: 0x128

Table 721.

GPIO37_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO37_CTRL Register

Offset: 0x12c

Table 722.

GPIO37_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel
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Bits Description Type Reset

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_ss_n

0x02 → uart1_rx

0x03 → i2c0_scl

0x04 → pwm_b_10

0x05 → sio_37

0x06 → pio0_37

0x07 → pio1_37

0x08 → pio2_37

0x0a → usb_muxing_vbus_detect

0x1f → null

IO_BANK0: GPIO38_STATUS Register

Offset: 0x130

Table 723.

GPIO38_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -
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IO_BANK0: GPIO38_CTRL Register

Offset: 0x134

Table 724.

GPIO38_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_sclk

0x02 → uart1_cts

0x03 → i2c1_sda
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Bits Description Type Reset

0x04 → pwm_a_11

0x05 → sio_38

0x06 → pio0_38

0x07 → pio1_38

0x08 → pio2_38

0x0a → usb_muxing_vbus_en

0x0b → uart1_tx

0x1f → null

IO_BANK0: GPIO39_STATUS Register

Offset: 0x138

Table 725.

GPIO39_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO39_CTRL Register

Offset: 0x13c

Table 726.

GPIO39_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input
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Bits Description Type Reset

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi0_tx

0x02 → uart1_rts

0x03 → i2c1_scl

0x04 → pwm_b_11

0x05 → sio_39

0x06 → pio0_39

0x07 → pio1_39

0x08 → pio2_39

0x0a → usb_muxing_overcurr_detect

0x0b → uart1_rx

0x1f → null

IO_BANK0: GPIO40_STATUS Register

Offset: 0x140

Table 727.

GPIO40_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0
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Bits Description Type Reset

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO40_CTRL Register

Offset: 0x144

Table 728.

GPIO40_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel
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Bits Description Type Reset

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_rx

0x02 → uart1_tx

0x03 → i2c0_sda

0x04 → pwm_a_8

0x05 → sio_40

0x06 → pio0_40

0x07 → pio1_40

0x08 → pio2_40

0x0a → usb_muxing_vbus_detect

0x1f → null

IO_BANK0: GPIO41_STATUS Register

Offset: 0x148

Table 729.

GPIO41_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO41_CTRL Register

Offset: 0x14c

Table 730.

GPIO41_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:
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Bits Description Type Reset

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_ss_n

0x02 → uart1_rx

0x03 → i2c0_scl

0x04 → pwm_b_8

0x05 → sio_41

0x06 → pio0_41

0x07 → pio1_41

0x08 → pio2_41
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Bits Description Type Reset

0x0a → usb_muxing_vbus_en

0x1f → null

IO_BANK0: GPIO42_STATUS Register

Offset: 0x150

Table 731.

GPIO42_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO42_CTRL Register

Offset: 0x154

Table 732.

GPIO42_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

RP2350 Datasheet

9.11. List of Registers 667



Bits Description Type Reset

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_sclk

0x02 → uart1_cts

0x03 → i2c1_sda

0x04 → pwm_a_9

0x05 → sio_42

0x06 → pio0_42

0x07 → pio1_42

0x08 → pio2_42

0x0a → usb_muxing_overcurr_detect

0x0b → uart1_tx

0x1f → null

IO_BANK0: GPIO43_STATUS Register

Offset: 0x158

Table 733.

GPIO43_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0
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Bits Description Type Reset

8:0 Reserved. - -

IO_BANK0: GPIO43_CTRL Register

Offset: 0x15c

Table 734.

GPIO43_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:
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Bits Description Type Reset

0x01 → spi1_tx

0x02 → uart1_rts

0x03 → i2c1_scl

0x04 → pwm_b_9

0x05 → sio_43

0x06 → pio0_43

0x07 → pio1_43

0x08 → pio2_43

0x0a → usb_muxing_vbus_detect

0x0b → uart1_rx

0x1f → null

IO_BANK0: GPIO44_STATUS Register

Offset: 0x160

Table 735.

GPIO44_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO44_CTRL Register

Offset: 0x164

Table 736.

GPIO44_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -
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Bits Description Type Reset

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_rx

0x02 → uart0_tx

0x03 → i2c0_sda

0x04 → pwm_a_10

0x05 → sio_44

0x06 → pio0_44

0x07 → pio1_44

0x08 → pio2_44

0x0a → usb_muxing_vbus_en

0x1f → null

IO_BANK0: GPIO45_STATUS Register

Offset: 0x168
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Table 737.

GPIO45_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO45_CTRL Register

Offset: 0x16c

Table 738.

GPIO45_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:
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Bits Description Type Reset

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_ss_n

0x02 → uart0_rx

0x03 → i2c0_scl

0x04 → pwm_b_10

0x05 → sio_45

0x06 → pio0_45

0x07 → pio1_45

0x08 → pio2_45

0x0a → usb_muxing_overcurr_detect

0x1f → null

IO_BANK0: GPIO46_STATUS Register

Offset: 0x170

Table 739.

GPIO46_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO46_CTRL Register

Offset: 0x174

Table 740.

GPIO46_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -
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Bits Description Type Reset

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_sclk

0x02 → uart0_cts

0x03 → i2c1_sda

0x04 → pwm_a_11

0x05 → sio_46

0x06 → pio0_46
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Bits Description Type Reset

0x07 → pio1_46

0x08 → pio2_46

0x0a → usb_muxing_vbus_detect

0x0b → uart0_tx

0x1f → null

IO_BANK0: GPIO47_STATUS Register

Offset: 0x178

Table 741.

GPIO47_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_BANK0: GPIO47_CTRL Register

Offset: 0x17c

Table 742.

GPIO47_CTRL Register
Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high
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Bits Description Type Reset

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x01 → spi1_tx

0x02 → uart0_rts

0x03 → i2c1_scl

0x04 → pwm_b_11

0x05 → sio_47

0x06 → pio0_47

0x07 → pio1_47

0x08 → pio2_47

0x09 → xip_ss_n_1

0x0a → usb_muxing_vbus_en

0x0b → uart0_rx

0x1f → null

IO_BANK0: IRQSUMMARY_PROC0_SECURE0 Register

Offset: 0x200

Table 743.

IRQSUMMARY_PROC0

_SECURE0 Register

Bits Description Type Reset

31 GPIO31 RO 0x0

30 GPIO30 RO 0x0

29 GPIO29 RO 0x0

28 GPIO28 RO 0x0
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Bits Description Type Reset

27 GPIO27 RO 0x0

26 GPIO26 RO 0x0

25 GPIO25 RO 0x0

24 GPIO24 RO 0x0

23 GPIO23 RO 0x0

22 GPIO22 RO 0x0

21 GPIO21 RO 0x0

20 GPIO20 RO 0x0

19 GPIO19 RO 0x0

18 GPIO18 RO 0x0

17 GPIO17 RO 0x0

16 GPIO16 RO 0x0

15 GPIO15 RO 0x0

14 GPIO14 RO 0x0

13 GPIO13 RO 0x0

12 GPIO12 RO 0x0

11 GPIO11 RO 0x0

10 GPIO10 RO 0x0

9 GPIO9 RO 0x0

8 GPIO8 RO 0x0

7 GPIO7 RO 0x0

6 GPIO6 RO 0x0

5 GPIO5 RO 0x0

4 GPIO4 RO 0x0

3 GPIO3 RO 0x0

2 GPIO2 RO 0x0

1 GPIO1 RO 0x0

0 GPIO0 RO 0x0

IO_BANK0: IRQSUMMARY_PROC0_SECURE1 Register

Offset: 0x204

Table 744.

IRQSUMMARY_PROC0

_SECURE1 Register

Bits Description Type Reset

31:16 Reserved. - -

15 GPIO47 RO 0x0

14 GPIO46 RO 0x0

13 GPIO45 RO 0x0
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Bits Description Type Reset

12 GPIO44 RO 0x0

11 GPIO43 RO 0x0

10 GPIO42 RO 0x0

9 GPIO41 RO 0x0

8 GPIO40 RO 0x0

7 GPIO39 RO 0x0

6 GPIO38 RO 0x0

5 GPIO37 RO 0x0

4 GPIO36 RO 0x0

3 GPIO35 RO 0x0

2 GPIO34 RO 0x0

1 GPIO33 RO 0x0

0 GPIO32 RO 0x0

IO_BANK0: IRQSUMMARY_PROC0_NONSECURE0 Register

Offset: 0x208

Table 745.

IRQSUMMARY_PROC0

_NONSECURE0

Register

Bits Description Type Reset

31 GPIO31 RO 0x0

30 GPIO30 RO 0x0

29 GPIO29 RO 0x0

28 GPIO28 RO 0x0

27 GPIO27 RO 0x0

26 GPIO26 RO 0x0

25 GPIO25 RO 0x0

24 GPIO24 RO 0x0

23 GPIO23 RO 0x0

22 GPIO22 RO 0x0

21 GPIO21 RO 0x0

20 GPIO20 RO 0x0

19 GPIO19 RO 0x0

18 GPIO18 RO 0x0

17 GPIO17 RO 0x0

16 GPIO16 RO 0x0

15 GPIO15 RO 0x0

14 GPIO14 RO 0x0

13 GPIO13 RO 0x0
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Bits Description Type Reset

12 GPIO12 RO 0x0

11 GPIO11 RO 0x0

10 GPIO10 RO 0x0

9 GPIO9 RO 0x0

8 GPIO8 RO 0x0

7 GPIO7 RO 0x0

6 GPIO6 RO 0x0

5 GPIO5 RO 0x0

4 GPIO4 RO 0x0

3 GPIO3 RO 0x0

2 GPIO2 RO 0x0

1 GPIO1 RO 0x0

0 GPIO0 RO 0x0

IO_BANK0: IRQSUMMARY_PROC0_NONSECURE1 Register

Offset: 0x20c

Table 746.

IRQSUMMARY_PROC0

_NONSECURE1

Register

Bits Description Type Reset

31:16 Reserved. - -

15 GPIO47 RO 0x0

14 GPIO46 RO 0x0

13 GPIO45 RO 0x0

12 GPIO44 RO 0x0

11 GPIO43 RO 0x0

10 GPIO42 RO 0x0

9 GPIO41 RO 0x0

8 GPIO40 RO 0x0

7 GPIO39 RO 0x0

6 GPIO38 RO 0x0

5 GPIO37 RO 0x0

4 GPIO36 RO 0x0

3 GPIO35 RO 0x0

2 GPIO34 RO 0x0

1 GPIO33 RO 0x0

0 GPIO32 RO 0x0

IO_BANK0: IRQSUMMARY_PROC1_SECURE0 Register

Offset: 0x210
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Table 747.

IRQSUMMARY_PROC1

_SECURE0 Register

Bits Description Type Reset

31 GPIO31 RO 0x0

30 GPIO30 RO 0x0

29 GPIO29 RO 0x0

28 GPIO28 RO 0x0

27 GPIO27 RO 0x0

26 GPIO26 RO 0x0

25 GPIO25 RO 0x0

24 GPIO24 RO 0x0

23 GPIO23 RO 0x0

22 GPIO22 RO 0x0

21 GPIO21 RO 0x0

20 GPIO20 RO 0x0

19 GPIO19 RO 0x0

18 GPIO18 RO 0x0

17 GPIO17 RO 0x0

16 GPIO16 RO 0x0

15 GPIO15 RO 0x0

14 GPIO14 RO 0x0

13 GPIO13 RO 0x0

12 GPIO12 RO 0x0

11 GPIO11 RO 0x0

10 GPIO10 RO 0x0

9 GPIO9 RO 0x0

8 GPIO8 RO 0x0

7 GPIO7 RO 0x0

6 GPIO6 RO 0x0

5 GPIO5 RO 0x0

4 GPIO4 RO 0x0

3 GPIO3 RO 0x0

2 GPIO2 RO 0x0

1 GPIO1 RO 0x0

0 GPIO0 RO 0x0

IO_BANK0: IRQSUMMARY_PROC1_SECURE1 Register

Offset: 0x214
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Table 748.

IRQSUMMARY_PROC1

_SECURE1 Register

Bits Description Type Reset

31:16 Reserved. - -

15 GPIO47 RO 0x0

14 GPIO46 RO 0x0

13 GPIO45 RO 0x0

12 GPIO44 RO 0x0

11 GPIO43 RO 0x0

10 GPIO42 RO 0x0

9 GPIO41 RO 0x0

8 GPIO40 RO 0x0

7 GPIO39 RO 0x0

6 GPIO38 RO 0x0

5 GPIO37 RO 0x0

4 GPIO36 RO 0x0

3 GPIO35 RO 0x0

2 GPIO34 RO 0x0

1 GPIO33 RO 0x0

0 GPIO32 RO 0x0

IO_BANK0: IRQSUMMARY_PROC1_NONSECURE0 Register

Offset: 0x218

Table 749.

IRQSUMMARY_PROC1

_NONSECURE0

Register

Bits Description Type Reset

31 GPIO31 RO 0x0

30 GPIO30 RO 0x0

29 GPIO29 RO 0x0

28 GPIO28 RO 0x0

27 GPIO27 RO 0x0

26 GPIO26 RO 0x0

25 GPIO25 RO 0x0

24 GPIO24 RO 0x0

23 GPIO23 RO 0x0

22 GPIO22 RO 0x0

21 GPIO21 RO 0x0

20 GPIO20 RO 0x0

19 GPIO19 RO 0x0

18 GPIO18 RO 0x0

17 GPIO17 RO 0x0
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Bits Description Type Reset

16 GPIO16 RO 0x0

15 GPIO15 RO 0x0

14 GPIO14 RO 0x0

13 GPIO13 RO 0x0

12 GPIO12 RO 0x0

11 GPIO11 RO 0x0

10 GPIO10 RO 0x0

9 GPIO9 RO 0x0

8 GPIO8 RO 0x0

7 GPIO7 RO 0x0

6 GPIO6 RO 0x0

5 GPIO5 RO 0x0

4 GPIO4 RO 0x0

3 GPIO3 RO 0x0

2 GPIO2 RO 0x0

1 GPIO1 RO 0x0

0 GPIO0 RO 0x0

IO_BANK0: IRQSUMMARY_PROC1_NONSECURE1 Register

Offset: 0x21c

Table 750.

IRQSUMMARY_PROC1

_NONSECURE1

Register

Bits Description Type Reset

31:16 Reserved. - -

15 GPIO47 RO 0x0

14 GPIO46 RO 0x0

13 GPIO45 RO 0x0

12 GPIO44 RO 0x0

11 GPIO43 RO 0x0

10 GPIO42 RO 0x0

9 GPIO41 RO 0x0

8 GPIO40 RO 0x0

7 GPIO39 RO 0x0

6 GPIO38 RO 0x0

5 GPIO37 RO 0x0

4 GPIO36 RO 0x0

3 GPIO35 RO 0x0

2 GPIO34 RO 0x0
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Bits Description Type Reset

1 GPIO33 RO 0x0

0 GPIO32 RO 0x0

IO_BANK0: IRQSUMMARY_COMA_WAKE_SECURE0 Register

Offset: 0x220

Table 751.

IRQSUMMARY_COMA_

WAKE_SECURE0

Register

Bits Description Type Reset

31 GPIO31 RO 0x0

30 GPIO30 RO 0x0

29 GPIO29 RO 0x0

28 GPIO28 RO 0x0

27 GPIO27 RO 0x0

26 GPIO26 RO 0x0

25 GPIO25 RO 0x0

24 GPIO24 RO 0x0

23 GPIO23 RO 0x0

22 GPIO22 RO 0x0

21 GPIO21 RO 0x0

20 GPIO20 RO 0x0

19 GPIO19 RO 0x0

18 GPIO18 RO 0x0

17 GPIO17 RO 0x0

16 GPIO16 RO 0x0

15 GPIO15 RO 0x0

14 GPIO14 RO 0x0

13 GPIO13 RO 0x0

12 GPIO12 RO 0x0

11 GPIO11 RO 0x0

10 GPIO10 RO 0x0

9 GPIO9 RO 0x0

8 GPIO8 RO 0x0

7 GPIO7 RO 0x0

6 GPIO6 RO 0x0

5 GPIO5 RO 0x0

4 GPIO4 RO 0x0

3 GPIO3 RO 0x0

2 GPIO2 RO 0x0
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Bits Description Type Reset

1 GPIO1 RO 0x0

0 GPIO0 RO 0x0

IO_BANK0: IRQSUMMARY_COMA_WAKE_SECURE1 Register

Offset: 0x224

Table 752.

IRQSUMMARY_COMA_

WAKE_SECURE1

Register

Bits Description Type Reset

31:16 Reserved. - -

15 GPIO47 RO 0x0

14 GPIO46 RO 0x0

13 GPIO45 RO 0x0

12 GPIO44 RO 0x0

11 GPIO43 RO 0x0

10 GPIO42 RO 0x0

9 GPIO41 RO 0x0

8 GPIO40 RO 0x0

7 GPIO39 RO 0x0

6 GPIO38 RO 0x0

5 GPIO37 RO 0x0

4 GPIO36 RO 0x0

3 GPIO35 RO 0x0

2 GPIO34 RO 0x0

1 GPIO33 RO 0x0

0 GPIO32 RO 0x0

IO_BANK0: IRQSUMMARY_COMA_WAKE_NONSECURE0 Register

Offset: 0x228

Table 753.

IRQSUMMARY_COMA_

WAKE_NONSECURE0

Register

Bits Description Type Reset

31 GPIO31 RO 0x0

30 GPIO30 RO 0x0

29 GPIO29 RO 0x0

28 GPIO28 RO 0x0

27 GPIO27 RO 0x0

26 GPIO26 RO 0x0

25 GPIO25 RO 0x0

24 GPIO24 RO 0x0

23 GPIO23 RO 0x0
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Bits Description Type Reset

22 GPIO22 RO 0x0

21 GPIO21 RO 0x0

20 GPIO20 RO 0x0

19 GPIO19 RO 0x0

18 GPIO18 RO 0x0

17 GPIO17 RO 0x0

16 GPIO16 RO 0x0

15 GPIO15 RO 0x0

14 GPIO14 RO 0x0

13 GPIO13 RO 0x0

12 GPIO12 RO 0x0

11 GPIO11 RO 0x0

10 GPIO10 RO 0x0

9 GPIO9 RO 0x0

8 GPIO8 RO 0x0

7 GPIO7 RO 0x0

6 GPIO6 RO 0x0

5 GPIO5 RO 0x0

4 GPIO4 RO 0x0

3 GPIO3 RO 0x0

2 GPIO2 RO 0x0

1 GPIO1 RO 0x0

0 GPIO0 RO 0x0

IO_BANK0: IRQSUMMARY_COMA_WAKE_NONSECURE1 Register

Offset: 0x22c

Table 754.

IRQSUMMARY_COMA_

WAKE_NONSECURE1

Register

Bits Description Type Reset

31:16 Reserved. - -

15 GPIO47 RO 0x0

14 GPIO46 RO 0x0

13 GPIO45 RO 0x0

12 GPIO44 RO 0x0

11 GPIO43 RO 0x0

10 GPIO42 RO 0x0

9 GPIO41 RO 0x0

8 GPIO40 RO 0x0

RP2350 Datasheet

9.11. List of Registers 685



Bits Description Type Reset

7 GPIO39 RO 0x0

6 GPIO38 RO 0x0

5 GPIO37 RO 0x0

4 GPIO36 RO 0x0

3 GPIO35 RO 0x0

2 GPIO34 RO 0x0

1 GPIO33 RO 0x0

0 GPIO32 RO 0x0

IO_BANK0: INTR0 Register

Offset: 0x230

Description

Raw Interrupts

Table 755. INTR0

Register
Bits Description Type Reset

31 GPIO7_EDGE_HIGH WC 0x0

30 GPIO7_EDGE_LOW WC 0x0

29 GPIO7_LEVEL_HIGH RO 0x0

28 GPIO7_LEVEL_LOW RO 0x0

27 GPIO6_EDGE_HIGH WC 0x0

26 GPIO6_EDGE_LOW WC 0x0

25 GPIO6_LEVEL_HIGH RO 0x0

24 GPIO6_LEVEL_LOW RO 0x0

23 GPIO5_EDGE_HIGH WC 0x0

22 GPIO5_EDGE_LOW WC 0x0

21 GPIO5_LEVEL_HIGH RO 0x0

20 GPIO5_LEVEL_LOW RO 0x0

19 GPIO4_EDGE_HIGH WC 0x0

18 GPIO4_EDGE_LOW WC 0x0

17 GPIO4_LEVEL_HIGH RO 0x0

16 GPIO4_LEVEL_LOW RO 0x0

15 GPIO3_EDGE_HIGH WC 0x0

14 GPIO3_EDGE_LOW WC 0x0

13 GPIO3_LEVEL_HIGH RO 0x0

12 GPIO3_LEVEL_LOW RO 0x0

11 GPIO2_EDGE_HIGH WC 0x0

10 GPIO2_EDGE_LOW WC 0x0
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Bits Description Type Reset

9 GPIO2_LEVEL_HIGH RO 0x0

8 GPIO2_LEVEL_LOW RO 0x0

7 GPIO1_EDGE_HIGH WC 0x0

6 GPIO1_EDGE_LOW WC 0x0

5 GPIO1_LEVEL_HIGH RO 0x0

4 GPIO1_LEVEL_LOW RO 0x0

3 GPIO0_EDGE_HIGH WC 0x0

2 GPIO0_EDGE_LOW WC 0x0

1 GPIO0_LEVEL_HIGH RO 0x0

0 GPIO0_LEVEL_LOW RO 0x0

IO_BANK0: INTR1 Register

Offset: 0x234

Description

Raw Interrupts

Table 756. INTR1

Register
Bits Description Type Reset

31 GPIO15_EDGE_HIGH WC 0x0

30 GPIO15_EDGE_LOW WC 0x0

29 GPIO15_LEVEL_HIGH RO 0x0

28 GPIO15_LEVEL_LOW RO 0x0

27 GPIO14_EDGE_HIGH WC 0x0

26 GPIO14_EDGE_LOW WC 0x0

25 GPIO14_LEVEL_HIGH RO 0x0

24 GPIO14_LEVEL_LOW RO 0x0

23 GPIO13_EDGE_HIGH WC 0x0

22 GPIO13_EDGE_LOW WC 0x0

21 GPIO13_LEVEL_HIGH RO 0x0

20 GPIO13_LEVEL_LOW RO 0x0

19 GPIO12_EDGE_HIGH WC 0x0

18 GPIO12_EDGE_LOW WC 0x0

17 GPIO12_LEVEL_HIGH RO 0x0

16 GPIO12_LEVEL_LOW RO 0x0

15 GPIO11_EDGE_HIGH WC 0x0

14 GPIO11_EDGE_LOW WC 0x0

13 GPIO11_LEVEL_HIGH RO 0x0

12 GPIO11_LEVEL_LOW RO 0x0
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Bits Description Type Reset

11 GPIO10_EDGE_HIGH WC 0x0

10 GPIO10_EDGE_LOW WC 0x0

9 GPIO10_LEVEL_HIGH RO 0x0

8 GPIO10_LEVEL_LOW RO 0x0

7 GPIO9_EDGE_HIGH WC 0x0

6 GPIO9_EDGE_LOW WC 0x0

5 GPIO9_LEVEL_HIGH RO 0x0

4 GPIO9_LEVEL_LOW RO 0x0

3 GPIO8_EDGE_HIGH WC 0x0

2 GPIO8_EDGE_LOW WC 0x0

1 GPIO8_LEVEL_HIGH RO 0x0

0 GPIO8_LEVEL_LOW RO 0x0

IO_BANK0: INTR2 Register

Offset: 0x238

Description

Raw Interrupts

Table 757. INTR2

Register
Bits Description Type Reset

31 GPIO23_EDGE_HIGH WC 0x0

30 GPIO23_EDGE_LOW WC 0x0

29 GPIO23_LEVEL_HIGH RO 0x0

28 GPIO23_LEVEL_LOW RO 0x0

27 GPIO22_EDGE_HIGH WC 0x0

26 GPIO22_EDGE_LOW WC 0x0

25 GPIO22_LEVEL_HIGH RO 0x0

24 GPIO22_LEVEL_LOW RO 0x0

23 GPIO21_EDGE_HIGH WC 0x0

22 GPIO21_EDGE_LOW WC 0x0

21 GPIO21_LEVEL_HIGH RO 0x0

20 GPIO21_LEVEL_LOW RO 0x0

19 GPIO20_EDGE_HIGH WC 0x0

18 GPIO20_EDGE_LOW WC 0x0

17 GPIO20_LEVEL_HIGH RO 0x0

16 GPIO20_LEVEL_LOW RO 0x0

15 GPIO19_EDGE_HIGH WC 0x0

14 GPIO19_EDGE_LOW WC 0x0
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Bits Description Type Reset

13 GPIO19_LEVEL_HIGH RO 0x0

12 GPIO19_LEVEL_LOW RO 0x0

11 GPIO18_EDGE_HIGH WC 0x0

10 GPIO18_EDGE_LOW WC 0x0

9 GPIO18_LEVEL_HIGH RO 0x0

8 GPIO18_LEVEL_LOW RO 0x0

7 GPIO17_EDGE_HIGH WC 0x0

6 GPIO17_EDGE_LOW WC 0x0

5 GPIO17_LEVEL_HIGH RO 0x0

4 GPIO17_LEVEL_LOW RO 0x0

3 GPIO16_EDGE_HIGH WC 0x0

2 GPIO16_EDGE_LOW WC 0x0

1 GPIO16_LEVEL_HIGH RO 0x0

0 GPIO16_LEVEL_LOW RO 0x0

IO_BANK0: INTR3 Register

Offset: 0x23c

Description

Raw Interrupts

Table 758. INTR3

Register
Bits Description Type Reset

31 GPIO31_EDGE_HIGH WC 0x0

30 GPIO31_EDGE_LOW WC 0x0

29 GPIO31_LEVEL_HIGH RO 0x0

28 GPIO31_LEVEL_LOW RO 0x0

27 GPIO30_EDGE_HIGH WC 0x0

26 GPIO30_EDGE_LOW WC 0x0

25 GPIO30_LEVEL_HIGH RO 0x0

24 GPIO30_LEVEL_LOW RO 0x0

23 GPIO29_EDGE_HIGH WC 0x0

22 GPIO29_EDGE_LOW WC 0x0

21 GPIO29_LEVEL_HIGH RO 0x0

20 GPIO29_LEVEL_LOW RO 0x0

19 GPIO28_EDGE_HIGH WC 0x0

18 GPIO28_EDGE_LOW WC 0x0

17 GPIO28_LEVEL_HIGH RO 0x0

16 GPIO28_LEVEL_LOW RO 0x0
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Bits Description Type Reset

15 GPIO27_EDGE_HIGH WC 0x0

14 GPIO27_EDGE_LOW WC 0x0

13 GPIO27_LEVEL_HIGH RO 0x0

12 GPIO27_LEVEL_LOW RO 0x0

11 GPIO26_EDGE_HIGH WC 0x0

10 GPIO26_EDGE_LOW WC 0x0

9 GPIO26_LEVEL_HIGH RO 0x0

8 GPIO26_LEVEL_LOW RO 0x0

7 GPIO25_EDGE_HIGH WC 0x0

6 GPIO25_EDGE_LOW WC 0x0

5 GPIO25_LEVEL_HIGH RO 0x0

4 GPIO25_LEVEL_LOW RO 0x0

3 GPIO24_EDGE_HIGH WC 0x0

2 GPIO24_EDGE_LOW WC 0x0

1 GPIO24_LEVEL_HIGH RO 0x0

0 GPIO24_LEVEL_LOW RO 0x0

IO_BANK0: INTR4 Register

Offset: 0x240

Description

Raw Interrupts

Table 759. INTR4

Register
Bits Description Type Reset

31 GPIO39_EDGE_HIGH WC 0x0

30 GPIO39_EDGE_LOW WC 0x0

29 GPIO39_LEVEL_HIGH RO 0x0

28 GPIO39_LEVEL_LOW RO 0x0

27 GPIO38_EDGE_HIGH WC 0x0

26 GPIO38_EDGE_LOW WC 0x0

25 GPIO38_LEVEL_HIGH RO 0x0

24 GPIO38_LEVEL_LOW RO 0x0

23 GPIO37_EDGE_HIGH WC 0x0

22 GPIO37_EDGE_LOW WC 0x0

21 GPIO37_LEVEL_HIGH RO 0x0

20 GPIO37_LEVEL_LOW RO 0x0

19 GPIO36_EDGE_HIGH WC 0x0

18 GPIO36_EDGE_LOW WC 0x0
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Bits Description Type Reset

17 GPIO36_LEVEL_HIGH RO 0x0

16 GPIO36_LEVEL_LOW RO 0x0

15 GPIO35_EDGE_HIGH WC 0x0

14 GPIO35_EDGE_LOW WC 0x0

13 GPIO35_LEVEL_HIGH RO 0x0

12 GPIO35_LEVEL_LOW RO 0x0

11 GPIO34_EDGE_HIGH WC 0x0

10 GPIO34_EDGE_LOW WC 0x0

9 GPIO34_LEVEL_HIGH RO 0x0

8 GPIO34_LEVEL_LOW RO 0x0

7 GPIO33_EDGE_HIGH WC 0x0

6 GPIO33_EDGE_LOW WC 0x0

5 GPIO33_LEVEL_HIGH RO 0x0

4 GPIO33_LEVEL_LOW RO 0x0

3 GPIO32_EDGE_HIGH WC 0x0

2 GPIO32_EDGE_LOW WC 0x0

1 GPIO32_LEVEL_HIGH RO 0x0

0 GPIO32_LEVEL_LOW RO 0x0

IO_BANK0: INTR5 Register

Offset: 0x244

Description

Raw Interrupts

Table 760. INTR5

Register
Bits Description Type Reset

31 GPIO47_EDGE_HIGH WC 0x0

30 GPIO47_EDGE_LOW WC 0x0

29 GPIO47_LEVEL_HIGH RO 0x0

28 GPIO47_LEVEL_LOW RO 0x0

27 GPIO46_EDGE_HIGH WC 0x0

26 GPIO46_EDGE_LOW WC 0x0

25 GPIO46_LEVEL_HIGH RO 0x0

24 GPIO46_LEVEL_LOW RO 0x0

23 GPIO45_EDGE_HIGH WC 0x0

22 GPIO45_EDGE_LOW WC 0x0

21 GPIO45_LEVEL_HIGH RO 0x0

20 GPIO45_LEVEL_LOW RO 0x0
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Bits Description Type Reset

19 GPIO44_EDGE_HIGH WC 0x0

18 GPIO44_EDGE_LOW WC 0x0

17 GPIO44_LEVEL_HIGH RO 0x0

16 GPIO44_LEVEL_LOW RO 0x0

15 GPIO43_EDGE_HIGH WC 0x0

14 GPIO43_EDGE_LOW WC 0x0

13 GPIO43_LEVEL_HIGH RO 0x0

12 GPIO43_LEVEL_LOW RO 0x0

11 GPIO42_EDGE_HIGH WC 0x0

10 GPIO42_EDGE_LOW WC 0x0

9 GPIO42_LEVEL_HIGH RO 0x0

8 GPIO42_LEVEL_LOW RO 0x0

7 GPIO41_EDGE_HIGH WC 0x0

6 GPIO41_EDGE_LOW WC 0x0

5 GPIO41_LEVEL_HIGH RO 0x0

4 GPIO41_LEVEL_LOW RO 0x0

3 GPIO40_EDGE_HIGH WC 0x0

2 GPIO40_EDGE_LOW WC 0x0

1 GPIO40_LEVEL_HIGH RO 0x0

0 GPIO40_LEVEL_LOW RO 0x0

IO_BANK0: PROC0_INTE0 Register

Offset: 0x248

Description

Interrupt Enable for proc0

Table 761.

PROC0_INTE0 Register
Bits Description Type Reset

31 GPIO7_EDGE_HIGH RW 0x0

30 GPIO7_EDGE_LOW RW 0x0

29 GPIO7_LEVEL_HIGH RW 0x0

28 GPIO7_LEVEL_LOW RW 0x0

27 GPIO6_EDGE_HIGH RW 0x0

26 GPIO6_EDGE_LOW RW 0x0

25 GPIO6_LEVEL_HIGH RW 0x0

24 GPIO6_LEVEL_LOW RW 0x0

23 GPIO5_EDGE_HIGH RW 0x0

22 GPIO5_EDGE_LOW RW 0x0
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Bits Description Type Reset

21 GPIO5_LEVEL_HIGH RW 0x0

20 GPIO5_LEVEL_LOW RW 0x0

19 GPIO4_EDGE_HIGH RW 0x0

18 GPIO4_EDGE_LOW RW 0x0

17 GPIO4_LEVEL_HIGH RW 0x0

16 GPIO4_LEVEL_LOW RW 0x0

15 GPIO3_EDGE_HIGH RW 0x0

14 GPIO3_EDGE_LOW RW 0x0

13 GPIO3_LEVEL_HIGH RW 0x0

12 GPIO3_LEVEL_LOW RW 0x0

11 GPIO2_EDGE_HIGH RW 0x0

10 GPIO2_EDGE_LOW RW 0x0

9 GPIO2_LEVEL_HIGH RW 0x0

8 GPIO2_LEVEL_LOW RW 0x0

7 GPIO1_EDGE_HIGH RW 0x0

6 GPIO1_EDGE_LOW RW 0x0

5 GPIO1_LEVEL_HIGH RW 0x0

4 GPIO1_LEVEL_LOW RW 0x0

3 GPIO0_EDGE_HIGH RW 0x0

2 GPIO0_EDGE_LOW RW 0x0

1 GPIO0_LEVEL_HIGH RW 0x0

0 GPIO0_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTE1 Register

Offset: 0x24c

Description

Interrupt Enable for proc0

Table 762.

PROC0_INTE1 Register
Bits Description Type Reset

31 GPIO15_EDGE_HIGH RW 0x0

30 GPIO15_EDGE_LOW RW 0x0

29 GPIO15_LEVEL_HIGH RW 0x0

28 GPIO15_LEVEL_LOW RW 0x0

27 GPIO14_EDGE_HIGH RW 0x0

26 GPIO14_EDGE_LOW RW 0x0

25 GPIO14_LEVEL_HIGH RW 0x0

24 GPIO14_LEVEL_LOW RW 0x0
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Bits Description Type Reset

23 GPIO13_EDGE_HIGH RW 0x0

22 GPIO13_EDGE_LOW RW 0x0

21 GPIO13_LEVEL_HIGH RW 0x0

20 GPIO13_LEVEL_LOW RW 0x0

19 GPIO12_EDGE_HIGH RW 0x0

18 GPIO12_EDGE_LOW RW 0x0

17 GPIO12_LEVEL_HIGH RW 0x0

16 GPIO12_LEVEL_LOW RW 0x0

15 GPIO11_EDGE_HIGH RW 0x0

14 GPIO11_EDGE_LOW RW 0x0

13 GPIO11_LEVEL_HIGH RW 0x0

12 GPIO11_LEVEL_LOW RW 0x0

11 GPIO10_EDGE_HIGH RW 0x0

10 GPIO10_EDGE_LOW RW 0x0

9 GPIO10_LEVEL_HIGH RW 0x0

8 GPIO10_LEVEL_LOW RW 0x0

7 GPIO9_EDGE_HIGH RW 0x0

6 GPIO9_EDGE_LOW RW 0x0

5 GPIO9_LEVEL_HIGH RW 0x0

4 GPIO9_LEVEL_LOW RW 0x0

3 GPIO8_EDGE_HIGH RW 0x0

2 GPIO8_EDGE_LOW RW 0x0

1 GPIO8_LEVEL_HIGH RW 0x0

0 GPIO8_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTE2 Register

Offset: 0x250

Description

Interrupt Enable for proc0

Table 763.

PROC0_INTE2 Register
Bits Description Type Reset

31 GPIO23_EDGE_HIGH RW 0x0

30 GPIO23_EDGE_LOW RW 0x0

29 GPIO23_LEVEL_HIGH RW 0x0

28 GPIO23_LEVEL_LOW RW 0x0

27 GPIO22_EDGE_HIGH RW 0x0

26 GPIO22_EDGE_LOW RW 0x0
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Bits Description Type Reset

25 GPIO22_LEVEL_HIGH RW 0x0

24 GPIO22_LEVEL_LOW RW 0x0

23 GPIO21_EDGE_HIGH RW 0x0

22 GPIO21_EDGE_LOW RW 0x0

21 GPIO21_LEVEL_HIGH RW 0x0

20 GPIO21_LEVEL_LOW RW 0x0

19 GPIO20_EDGE_HIGH RW 0x0

18 GPIO20_EDGE_LOW RW 0x0

17 GPIO20_LEVEL_HIGH RW 0x0

16 GPIO20_LEVEL_LOW RW 0x0

15 GPIO19_EDGE_HIGH RW 0x0

14 GPIO19_EDGE_LOW RW 0x0

13 GPIO19_LEVEL_HIGH RW 0x0

12 GPIO19_LEVEL_LOW RW 0x0

11 GPIO18_EDGE_HIGH RW 0x0

10 GPIO18_EDGE_LOW RW 0x0

9 GPIO18_LEVEL_HIGH RW 0x0

8 GPIO18_LEVEL_LOW RW 0x0

7 GPIO17_EDGE_HIGH RW 0x0

6 GPIO17_EDGE_LOW RW 0x0

5 GPIO17_LEVEL_HIGH RW 0x0

4 GPIO17_LEVEL_LOW RW 0x0

3 GPIO16_EDGE_HIGH RW 0x0

2 GPIO16_EDGE_LOW RW 0x0

1 GPIO16_LEVEL_HIGH RW 0x0

0 GPIO16_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTE3 Register

Offset: 0x254

Description

Interrupt Enable for proc0

Table 764.

PROC0_INTE3 Register
Bits Description Type Reset

31 GPIO31_EDGE_HIGH RW 0x0

30 GPIO31_EDGE_LOW RW 0x0

29 GPIO31_LEVEL_HIGH RW 0x0

28 GPIO31_LEVEL_LOW RW 0x0
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Bits Description Type Reset

27 GPIO30_EDGE_HIGH RW 0x0

26 GPIO30_EDGE_LOW RW 0x0

25 GPIO30_LEVEL_HIGH RW 0x0

24 GPIO30_LEVEL_LOW RW 0x0

23 GPIO29_EDGE_HIGH RW 0x0

22 GPIO29_EDGE_LOW RW 0x0

21 GPIO29_LEVEL_HIGH RW 0x0

20 GPIO29_LEVEL_LOW RW 0x0

19 GPIO28_EDGE_HIGH RW 0x0

18 GPIO28_EDGE_LOW RW 0x0

17 GPIO28_LEVEL_HIGH RW 0x0

16 GPIO28_LEVEL_LOW RW 0x0

15 GPIO27_EDGE_HIGH RW 0x0

14 GPIO27_EDGE_LOW RW 0x0

13 GPIO27_LEVEL_HIGH RW 0x0

12 GPIO27_LEVEL_LOW RW 0x0

11 GPIO26_EDGE_HIGH RW 0x0

10 GPIO26_EDGE_LOW RW 0x0

9 GPIO26_LEVEL_HIGH RW 0x0

8 GPIO26_LEVEL_LOW RW 0x0

7 GPIO25_EDGE_HIGH RW 0x0

6 GPIO25_EDGE_LOW RW 0x0

5 GPIO25_LEVEL_HIGH RW 0x0

4 GPIO25_LEVEL_LOW RW 0x0

3 GPIO24_EDGE_HIGH RW 0x0

2 GPIO24_EDGE_LOW RW 0x0

1 GPIO24_LEVEL_HIGH RW 0x0

0 GPIO24_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTE4 Register

Offset: 0x258

Description

Interrupt Enable for proc0

Table 765.

PROC0_INTE4 Register
Bits Description Type Reset

31 GPIO39_EDGE_HIGH RW 0x0

30 GPIO39_EDGE_LOW RW 0x0
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Bits Description Type Reset

29 GPIO39_LEVEL_HIGH RW 0x0

28 GPIO39_LEVEL_LOW RW 0x0

27 GPIO38_EDGE_HIGH RW 0x0

26 GPIO38_EDGE_LOW RW 0x0

25 GPIO38_LEVEL_HIGH RW 0x0

24 GPIO38_LEVEL_LOW RW 0x0

23 GPIO37_EDGE_HIGH RW 0x0

22 GPIO37_EDGE_LOW RW 0x0

21 GPIO37_LEVEL_HIGH RW 0x0

20 GPIO37_LEVEL_LOW RW 0x0

19 GPIO36_EDGE_HIGH RW 0x0

18 GPIO36_EDGE_LOW RW 0x0

17 GPIO36_LEVEL_HIGH RW 0x0

16 GPIO36_LEVEL_LOW RW 0x0

15 GPIO35_EDGE_HIGH RW 0x0

14 GPIO35_EDGE_LOW RW 0x0

13 GPIO35_LEVEL_HIGH RW 0x0

12 GPIO35_LEVEL_LOW RW 0x0

11 GPIO34_EDGE_HIGH RW 0x0

10 GPIO34_EDGE_LOW RW 0x0

9 GPIO34_LEVEL_HIGH RW 0x0

8 GPIO34_LEVEL_LOW RW 0x0

7 GPIO33_EDGE_HIGH RW 0x0

6 GPIO33_EDGE_LOW RW 0x0

5 GPIO33_LEVEL_HIGH RW 0x0

4 GPIO33_LEVEL_LOW RW 0x0

3 GPIO32_EDGE_HIGH RW 0x0

2 GPIO32_EDGE_LOW RW 0x0

1 GPIO32_LEVEL_HIGH RW 0x0

0 GPIO32_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTE5 Register

Offset: 0x25c

Description

Interrupt Enable for proc0
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Table 766.

PROC0_INTE5 Register
Bits Description Type Reset

31 GPIO47_EDGE_HIGH RW 0x0

30 GPIO47_EDGE_LOW RW 0x0

29 GPIO47_LEVEL_HIGH RW 0x0

28 GPIO47_LEVEL_LOW RW 0x0

27 GPIO46_EDGE_HIGH RW 0x0

26 GPIO46_EDGE_LOW RW 0x0

25 GPIO46_LEVEL_HIGH RW 0x0

24 GPIO46_LEVEL_LOW RW 0x0

23 GPIO45_EDGE_HIGH RW 0x0

22 GPIO45_EDGE_LOW RW 0x0

21 GPIO45_LEVEL_HIGH RW 0x0

20 GPIO45_LEVEL_LOW RW 0x0

19 GPIO44_EDGE_HIGH RW 0x0

18 GPIO44_EDGE_LOW RW 0x0

17 GPIO44_LEVEL_HIGH RW 0x0

16 GPIO44_LEVEL_LOW RW 0x0

15 GPIO43_EDGE_HIGH RW 0x0

14 GPIO43_EDGE_LOW RW 0x0

13 GPIO43_LEVEL_HIGH RW 0x0

12 GPIO43_LEVEL_LOW RW 0x0

11 GPIO42_EDGE_HIGH RW 0x0

10 GPIO42_EDGE_LOW RW 0x0

9 GPIO42_LEVEL_HIGH RW 0x0

8 GPIO42_LEVEL_LOW RW 0x0

7 GPIO41_EDGE_HIGH RW 0x0

6 GPIO41_EDGE_LOW RW 0x0

5 GPIO41_LEVEL_HIGH RW 0x0

4 GPIO41_LEVEL_LOW RW 0x0

3 GPIO40_EDGE_HIGH RW 0x0

2 GPIO40_EDGE_LOW RW 0x0

1 GPIO40_LEVEL_HIGH RW 0x0

0 GPIO40_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTF0 Register

Offset: 0x260
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Description

Interrupt Force for proc0

Table 767.

PROC0_INTF0 Register
Bits Description Type Reset

31 GPIO7_EDGE_HIGH RW 0x0

30 GPIO7_EDGE_LOW RW 0x0

29 GPIO7_LEVEL_HIGH RW 0x0

28 GPIO7_LEVEL_LOW RW 0x0

27 GPIO6_EDGE_HIGH RW 0x0

26 GPIO6_EDGE_LOW RW 0x0

25 GPIO6_LEVEL_HIGH RW 0x0

24 GPIO6_LEVEL_LOW RW 0x0

23 GPIO5_EDGE_HIGH RW 0x0

22 GPIO5_EDGE_LOW RW 0x0

21 GPIO5_LEVEL_HIGH RW 0x0

20 GPIO5_LEVEL_LOW RW 0x0

19 GPIO4_EDGE_HIGH RW 0x0

18 GPIO4_EDGE_LOW RW 0x0

17 GPIO4_LEVEL_HIGH RW 0x0

16 GPIO4_LEVEL_LOW RW 0x0

15 GPIO3_EDGE_HIGH RW 0x0

14 GPIO3_EDGE_LOW RW 0x0

13 GPIO3_LEVEL_HIGH RW 0x0

12 GPIO3_LEVEL_LOW RW 0x0

11 GPIO2_EDGE_HIGH RW 0x0

10 GPIO2_EDGE_LOW RW 0x0

9 GPIO2_LEVEL_HIGH RW 0x0

8 GPIO2_LEVEL_LOW RW 0x0

7 GPIO1_EDGE_HIGH RW 0x0

6 GPIO1_EDGE_LOW RW 0x0

5 GPIO1_LEVEL_HIGH RW 0x0

4 GPIO1_LEVEL_LOW RW 0x0

3 GPIO0_EDGE_HIGH RW 0x0

2 GPIO0_EDGE_LOW RW 0x0

1 GPIO0_LEVEL_HIGH RW 0x0

0 GPIO0_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTF1 Register

Offset: 0x264
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Description

Interrupt Force for proc0

Table 768.

PROC0_INTF1 Register
Bits Description Type Reset

31 GPIO15_EDGE_HIGH RW 0x0

30 GPIO15_EDGE_LOW RW 0x0

29 GPIO15_LEVEL_HIGH RW 0x0

28 GPIO15_LEVEL_LOW RW 0x0

27 GPIO14_EDGE_HIGH RW 0x0

26 GPIO14_EDGE_LOW RW 0x0

25 GPIO14_LEVEL_HIGH RW 0x0

24 GPIO14_LEVEL_LOW RW 0x0

23 GPIO13_EDGE_HIGH RW 0x0

22 GPIO13_EDGE_LOW RW 0x0

21 GPIO13_LEVEL_HIGH RW 0x0

20 GPIO13_LEVEL_LOW RW 0x0

19 GPIO12_EDGE_HIGH RW 0x0

18 GPIO12_EDGE_LOW RW 0x0

17 GPIO12_LEVEL_HIGH RW 0x0

16 GPIO12_LEVEL_LOW RW 0x0

15 GPIO11_EDGE_HIGH RW 0x0

14 GPIO11_EDGE_LOW RW 0x0

13 GPIO11_LEVEL_HIGH RW 0x0

12 GPIO11_LEVEL_LOW RW 0x0

11 GPIO10_EDGE_HIGH RW 0x0

10 GPIO10_EDGE_LOW RW 0x0

9 GPIO10_LEVEL_HIGH RW 0x0

8 GPIO10_LEVEL_LOW RW 0x0

7 GPIO9_EDGE_HIGH RW 0x0

6 GPIO9_EDGE_LOW RW 0x0

5 GPIO9_LEVEL_HIGH RW 0x0

4 GPIO9_LEVEL_LOW RW 0x0

3 GPIO8_EDGE_HIGH RW 0x0

2 GPIO8_EDGE_LOW RW 0x0

1 GPIO8_LEVEL_HIGH RW 0x0

0 GPIO8_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTF2 Register

Offset: 0x268
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Description

Interrupt Force for proc0

Table 769.

PROC0_INTF2 Register
Bits Description Type Reset

31 GPIO23_EDGE_HIGH RW 0x0

30 GPIO23_EDGE_LOW RW 0x0

29 GPIO23_LEVEL_HIGH RW 0x0

28 GPIO23_LEVEL_LOW RW 0x0

27 GPIO22_EDGE_HIGH RW 0x0

26 GPIO22_EDGE_LOW RW 0x0

25 GPIO22_LEVEL_HIGH RW 0x0

24 GPIO22_LEVEL_LOW RW 0x0

23 GPIO21_EDGE_HIGH RW 0x0

22 GPIO21_EDGE_LOW RW 0x0

21 GPIO21_LEVEL_HIGH RW 0x0

20 GPIO21_LEVEL_LOW RW 0x0

19 GPIO20_EDGE_HIGH RW 0x0

18 GPIO20_EDGE_LOW RW 0x0

17 GPIO20_LEVEL_HIGH RW 0x0

16 GPIO20_LEVEL_LOW RW 0x0

15 GPIO19_EDGE_HIGH RW 0x0

14 GPIO19_EDGE_LOW RW 0x0

13 GPIO19_LEVEL_HIGH RW 0x0

12 GPIO19_LEVEL_LOW RW 0x0

11 GPIO18_EDGE_HIGH RW 0x0

10 GPIO18_EDGE_LOW RW 0x0

9 GPIO18_LEVEL_HIGH RW 0x0

8 GPIO18_LEVEL_LOW RW 0x0

7 GPIO17_EDGE_HIGH RW 0x0

6 GPIO17_EDGE_LOW RW 0x0

5 GPIO17_LEVEL_HIGH RW 0x0

4 GPIO17_LEVEL_LOW RW 0x0

3 GPIO16_EDGE_HIGH RW 0x0

2 GPIO16_EDGE_LOW RW 0x0

1 GPIO16_LEVEL_HIGH RW 0x0

0 GPIO16_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTF3 Register

Offset: 0x26c
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Description

Interrupt Force for proc0

Table 770.

PROC0_INTF3 Register
Bits Description Type Reset

31 GPIO31_EDGE_HIGH RW 0x0

30 GPIO31_EDGE_LOW RW 0x0

29 GPIO31_LEVEL_HIGH RW 0x0

28 GPIO31_LEVEL_LOW RW 0x0

27 GPIO30_EDGE_HIGH RW 0x0

26 GPIO30_EDGE_LOW RW 0x0

25 GPIO30_LEVEL_HIGH RW 0x0

24 GPIO30_LEVEL_LOW RW 0x0

23 GPIO29_EDGE_HIGH RW 0x0

22 GPIO29_EDGE_LOW RW 0x0

21 GPIO29_LEVEL_HIGH RW 0x0

20 GPIO29_LEVEL_LOW RW 0x0

19 GPIO28_EDGE_HIGH RW 0x0

18 GPIO28_EDGE_LOW RW 0x0

17 GPIO28_LEVEL_HIGH RW 0x0

16 GPIO28_LEVEL_LOW RW 0x0

15 GPIO27_EDGE_HIGH RW 0x0

14 GPIO27_EDGE_LOW RW 0x0

13 GPIO27_LEVEL_HIGH RW 0x0

12 GPIO27_LEVEL_LOW RW 0x0

11 GPIO26_EDGE_HIGH RW 0x0

10 GPIO26_EDGE_LOW RW 0x0

9 GPIO26_LEVEL_HIGH RW 0x0

8 GPIO26_LEVEL_LOW RW 0x0

7 GPIO25_EDGE_HIGH RW 0x0

6 GPIO25_EDGE_LOW RW 0x0

5 GPIO25_LEVEL_HIGH RW 0x0

4 GPIO25_LEVEL_LOW RW 0x0

3 GPIO24_EDGE_HIGH RW 0x0

2 GPIO24_EDGE_LOW RW 0x0

1 GPIO24_LEVEL_HIGH RW 0x0

0 GPIO24_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTF4 Register

Offset: 0x270
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Description

Interrupt Force for proc0

Table 771.

PROC0_INTF4 Register
Bits Description Type Reset

31 GPIO39_EDGE_HIGH RW 0x0

30 GPIO39_EDGE_LOW RW 0x0

29 GPIO39_LEVEL_HIGH RW 0x0

28 GPIO39_LEVEL_LOW RW 0x0

27 GPIO38_EDGE_HIGH RW 0x0

26 GPIO38_EDGE_LOW RW 0x0

25 GPIO38_LEVEL_HIGH RW 0x0

24 GPIO38_LEVEL_LOW RW 0x0

23 GPIO37_EDGE_HIGH RW 0x0

22 GPIO37_EDGE_LOW RW 0x0

21 GPIO37_LEVEL_HIGH RW 0x0

20 GPIO37_LEVEL_LOW RW 0x0

19 GPIO36_EDGE_HIGH RW 0x0

18 GPIO36_EDGE_LOW RW 0x0

17 GPIO36_LEVEL_HIGH RW 0x0

16 GPIO36_LEVEL_LOW RW 0x0

15 GPIO35_EDGE_HIGH RW 0x0

14 GPIO35_EDGE_LOW RW 0x0

13 GPIO35_LEVEL_HIGH RW 0x0

12 GPIO35_LEVEL_LOW RW 0x0

11 GPIO34_EDGE_HIGH RW 0x0

10 GPIO34_EDGE_LOW RW 0x0

9 GPIO34_LEVEL_HIGH RW 0x0

8 GPIO34_LEVEL_LOW RW 0x0

7 GPIO33_EDGE_HIGH RW 0x0

6 GPIO33_EDGE_LOW RW 0x0

5 GPIO33_LEVEL_HIGH RW 0x0

4 GPIO33_LEVEL_LOW RW 0x0

3 GPIO32_EDGE_HIGH RW 0x0

2 GPIO32_EDGE_LOW RW 0x0

1 GPIO32_LEVEL_HIGH RW 0x0

0 GPIO32_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTF5 Register

Offset: 0x274
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Description

Interrupt Force for proc0

Table 772.

PROC0_INTF5 Register
Bits Description Type Reset

31 GPIO47_EDGE_HIGH RW 0x0

30 GPIO47_EDGE_LOW RW 0x0

29 GPIO47_LEVEL_HIGH RW 0x0

28 GPIO47_LEVEL_LOW RW 0x0

27 GPIO46_EDGE_HIGH RW 0x0

26 GPIO46_EDGE_LOW RW 0x0

25 GPIO46_LEVEL_HIGH RW 0x0

24 GPIO46_LEVEL_LOW RW 0x0

23 GPIO45_EDGE_HIGH RW 0x0

22 GPIO45_EDGE_LOW RW 0x0

21 GPIO45_LEVEL_HIGH RW 0x0

20 GPIO45_LEVEL_LOW RW 0x0

19 GPIO44_EDGE_HIGH RW 0x0

18 GPIO44_EDGE_LOW RW 0x0

17 GPIO44_LEVEL_HIGH RW 0x0

16 GPIO44_LEVEL_LOW RW 0x0

15 GPIO43_EDGE_HIGH RW 0x0

14 GPIO43_EDGE_LOW RW 0x0

13 GPIO43_LEVEL_HIGH RW 0x0

12 GPIO43_LEVEL_LOW RW 0x0

11 GPIO42_EDGE_HIGH RW 0x0

10 GPIO42_EDGE_LOW RW 0x0

9 GPIO42_LEVEL_HIGH RW 0x0

8 GPIO42_LEVEL_LOW RW 0x0

7 GPIO41_EDGE_HIGH RW 0x0

6 GPIO41_EDGE_LOW RW 0x0

5 GPIO41_LEVEL_HIGH RW 0x0

4 GPIO41_LEVEL_LOW RW 0x0

3 GPIO40_EDGE_HIGH RW 0x0

2 GPIO40_EDGE_LOW RW 0x0

1 GPIO40_LEVEL_HIGH RW 0x0

0 GPIO40_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTS0 Register

Offset: 0x278
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Description

Interrupt status after masking & forcing for proc0

Table 773.

PROC0_INTS0

Register

Bits Description Type Reset

31 GPIO7_EDGE_HIGH RO 0x0

30 GPIO7_EDGE_LOW RO 0x0

29 GPIO7_LEVEL_HIGH RO 0x0

28 GPIO7_LEVEL_LOW RO 0x0

27 GPIO6_EDGE_HIGH RO 0x0

26 GPIO6_EDGE_LOW RO 0x0

25 GPIO6_LEVEL_HIGH RO 0x0

24 GPIO6_LEVEL_LOW RO 0x0

23 GPIO5_EDGE_HIGH RO 0x0

22 GPIO5_EDGE_LOW RO 0x0

21 GPIO5_LEVEL_HIGH RO 0x0

20 GPIO5_LEVEL_LOW RO 0x0

19 GPIO4_EDGE_HIGH RO 0x0

18 GPIO4_EDGE_LOW RO 0x0

17 GPIO4_LEVEL_HIGH RO 0x0

16 GPIO4_LEVEL_LOW RO 0x0

15 GPIO3_EDGE_HIGH RO 0x0

14 GPIO3_EDGE_LOW RO 0x0

13 GPIO3_LEVEL_HIGH RO 0x0

12 GPIO3_LEVEL_LOW RO 0x0

11 GPIO2_EDGE_HIGH RO 0x0

10 GPIO2_EDGE_LOW RO 0x0

9 GPIO2_LEVEL_HIGH RO 0x0

8 GPIO2_LEVEL_LOW RO 0x0

7 GPIO1_EDGE_HIGH RO 0x0

6 GPIO1_EDGE_LOW RO 0x0

5 GPIO1_LEVEL_HIGH RO 0x0

4 GPIO1_LEVEL_LOW RO 0x0

3 GPIO0_EDGE_HIGH RO 0x0

2 GPIO0_EDGE_LOW RO 0x0

1 GPIO0_LEVEL_HIGH RO 0x0

0 GPIO0_LEVEL_LOW RO 0x0

IO_BANK0: PROC0_INTS1 Register

Offset: 0x27c
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Description

Interrupt status after masking & forcing for proc0

Table 774.

PROC0_INTS1

Register

Bits Description Type Reset

31 GPIO15_EDGE_HIGH RO 0x0

30 GPIO15_EDGE_LOW RO 0x0

29 GPIO15_LEVEL_HIGH RO 0x0

28 GPIO15_LEVEL_LOW RO 0x0

27 GPIO14_EDGE_HIGH RO 0x0

26 GPIO14_EDGE_LOW RO 0x0

25 GPIO14_LEVEL_HIGH RO 0x0

24 GPIO14_LEVEL_LOW RO 0x0

23 GPIO13_EDGE_HIGH RO 0x0

22 GPIO13_EDGE_LOW RO 0x0

21 GPIO13_LEVEL_HIGH RO 0x0

20 GPIO13_LEVEL_LOW RO 0x0

19 GPIO12_EDGE_HIGH RO 0x0

18 GPIO12_EDGE_LOW RO 0x0

17 GPIO12_LEVEL_HIGH RO 0x0

16 GPIO12_LEVEL_LOW RO 0x0

15 GPIO11_EDGE_HIGH RO 0x0

14 GPIO11_EDGE_LOW RO 0x0

13 GPIO11_LEVEL_HIGH RO 0x0

12 GPIO11_LEVEL_LOW RO 0x0

11 GPIO10_EDGE_HIGH RO 0x0

10 GPIO10_EDGE_LOW RO 0x0

9 GPIO10_LEVEL_HIGH RO 0x0

8 GPIO10_LEVEL_LOW RO 0x0

7 GPIO9_EDGE_HIGH RO 0x0

6 GPIO9_EDGE_LOW RO 0x0

5 GPIO9_LEVEL_HIGH RO 0x0

4 GPIO9_LEVEL_LOW RO 0x0

3 GPIO8_EDGE_HIGH RO 0x0

2 GPIO8_EDGE_LOW RO 0x0

1 GPIO8_LEVEL_HIGH RO 0x0

0 GPIO8_LEVEL_LOW RO 0x0

IO_BANK0: PROC0_INTS2 Register

Offset: 0x280
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Description

Interrupt status after masking & forcing for proc0

Table 775.

PROC0_INTS2

Register

Bits Description Type Reset

31 GPIO23_EDGE_HIGH RO 0x0

30 GPIO23_EDGE_LOW RO 0x0

29 GPIO23_LEVEL_HIGH RO 0x0

28 GPIO23_LEVEL_LOW RO 0x0

27 GPIO22_EDGE_HIGH RO 0x0

26 GPIO22_EDGE_LOW RO 0x0

25 GPIO22_LEVEL_HIGH RO 0x0

24 GPIO22_LEVEL_LOW RO 0x0

23 GPIO21_EDGE_HIGH RO 0x0

22 GPIO21_EDGE_LOW RO 0x0

21 GPIO21_LEVEL_HIGH RO 0x0

20 GPIO21_LEVEL_LOW RO 0x0

19 GPIO20_EDGE_HIGH RO 0x0

18 GPIO20_EDGE_LOW RO 0x0

17 GPIO20_LEVEL_HIGH RO 0x0

16 GPIO20_LEVEL_LOW RO 0x0

15 GPIO19_EDGE_HIGH RO 0x0

14 GPIO19_EDGE_LOW RO 0x0

13 GPIO19_LEVEL_HIGH RO 0x0

12 GPIO19_LEVEL_LOW RO 0x0

11 GPIO18_EDGE_HIGH RO 0x0

10 GPIO18_EDGE_LOW RO 0x0

9 GPIO18_LEVEL_HIGH RO 0x0

8 GPIO18_LEVEL_LOW RO 0x0

7 GPIO17_EDGE_HIGH RO 0x0

6 GPIO17_EDGE_LOW RO 0x0

5 GPIO17_LEVEL_HIGH RO 0x0

4 GPIO17_LEVEL_LOW RO 0x0

3 GPIO16_EDGE_HIGH RO 0x0

2 GPIO16_EDGE_LOW RO 0x0

1 GPIO16_LEVEL_HIGH RO 0x0

0 GPIO16_LEVEL_LOW RO 0x0

IO_BANK0: PROC0_INTS3 Register

Offset: 0x284
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Description

Interrupt status after masking & forcing for proc0

Table 776.

PROC0_INTS3

Register

Bits Description Type Reset

31 GPIO31_EDGE_HIGH RO 0x0

30 GPIO31_EDGE_LOW RO 0x0

29 GPIO31_LEVEL_HIGH RO 0x0

28 GPIO31_LEVEL_LOW RO 0x0

27 GPIO30_EDGE_HIGH RO 0x0

26 GPIO30_EDGE_LOW RO 0x0

25 GPIO30_LEVEL_HIGH RO 0x0

24 GPIO30_LEVEL_LOW RO 0x0

23 GPIO29_EDGE_HIGH RO 0x0

22 GPIO29_EDGE_LOW RO 0x0

21 GPIO29_LEVEL_HIGH RO 0x0

20 GPIO29_LEVEL_LOW RO 0x0

19 GPIO28_EDGE_HIGH RO 0x0

18 GPIO28_EDGE_LOW RO 0x0

17 GPIO28_LEVEL_HIGH RO 0x0

16 GPIO28_LEVEL_LOW RO 0x0

15 GPIO27_EDGE_HIGH RO 0x0

14 GPIO27_EDGE_LOW RO 0x0

13 GPIO27_LEVEL_HIGH RO 0x0

12 GPIO27_LEVEL_LOW RO 0x0

11 GPIO26_EDGE_HIGH RO 0x0

10 GPIO26_EDGE_LOW RO 0x0

9 GPIO26_LEVEL_HIGH RO 0x0

8 GPIO26_LEVEL_LOW RO 0x0

7 GPIO25_EDGE_HIGH RO 0x0

6 GPIO25_EDGE_LOW RO 0x0

5 GPIO25_LEVEL_HIGH RO 0x0

4 GPIO25_LEVEL_LOW RO 0x0

3 GPIO24_EDGE_HIGH RO 0x0

2 GPIO24_EDGE_LOW RO 0x0

1 GPIO24_LEVEL_HIGH RO 0x0

0 GPIO24_LEVEL_LOW RO 0x0

IO_BANK0: PROC0_INTS4 Register

Offset: 0x288
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Description

Interrupt status after masking & forcing for proc0

Table 777.

PROC0_INTS4

Register

Bits Description Type Reset

31 GPIO39_EDGE_HIGH RO 0x0

30 GPIO39_EDGE_LOW RO 0x0

29 GPIO39_LEVEL_HIGH RO 0x0

28 GPIO39_LEVEL_LOW RO 0x0

27 GPIO38_EDGE_HIGH RO 0x0

26 GPIO38_EDGE_LOW RO 0x0

25 GPIO38_LEVEL_HIGH RO 0x0

24 GPIO38_LEVEL_LOW RO 0x0

23 GPIO37_EDGE_HIGH RO 0x0

22 GPIO37_EDGE_LOW RO 0x0

21 GPIO37_LEVEL_HIGH RO 0x0

20 GPIO37_LEVEL_LOW RO 0x0

19 GPIO36_EDGE_HIGH RO 0x0

18 GPIO36_EDGE_LOW RO 0x0

17 GPIO36_LEVEL_HIGH RO 0x0

16 GPIO36_LEVEL_LOW RO 0x0

15 GPIO35_EDGE_HIGH RO 0x0

14 GPIO35_EDGE_LOW RO 0x0

13 GPIO35_LEVEL_HIGH RO 0x0

12 GPIO35_LEVEL_LOW RO 0x0

11 GPIO34_EDGE_HIGH RO 0x0

10 GPIO34_EDGE_LOW RO 0x0

9 GPIO34_LEVEL_HIGH RO 0x0

8 GPIO34_LEVEL_LOW RO 0x0

7 GPIO33_EDGE_HIGH RO 0x0

6 GPIO33_EDGE_LOW RO 0x0

5 GPIO33_LEVEL_HIGH RO 0x0

4 GPIO33_LEVEL_LOW RO 0x0

3 GPIO32_EDGE_HIGH RO 0x0

2 GPIO32_EDGE_LOW RO 0x0

1 GPIO32_LEVEL_HIGH RO 0x0

0 GPIO32_LEVEL_LOW RO 0x0

IO_BANK0: PROC0_INTS5 Register

Offset: 0x28c

RP2350 Datasheet
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Description

Interrupt status after masking & forcing for proc0

Table 778.

PROC0_INTS5

Register

Bits Description Type Reset

31 GPIO47_EDGE_HIGH RO 0x0

30 GPIO47_EDGE_LOW RO 0x0

29 GPIO47_LEVEL_HIGH RO 0x0

28 GPIO47_LEVEL_LOW RO 0x0

27 GPIO46_EDGE_HIGH RO 0x0

26 GPIO46_EDGE_LOW RO 0x0

25 GPIO46_LEVEL_HIGH RO 0x0

24 GPIO46_LEVEL_LOW RO 0x0

23 GPIO45_EDGE_HIGH RO 0x0

22 GPIO45_EDGE_LOW RO 0x0

21 GPIO45_LEVEL_HIGH RO 0x0

20 GPIO45_LEVEL_LOW RO 0x0

19 GPIO44_EDGE_HIGH RO 0x0

18 GPIO44_EDGE_LOW RO 0x0

17 GPIO44_LEVEL_HIGH RO 0x0

16 GPIO44_LEVEL_LOW RO 0x0

15 GPIO43_EDGE_HIGH RO 0x0

14 GPIO43_EDGE_LOW RO 0x0

13 GPIO43_LEVEL_HIGH RO 0x0

12 GPIO43_LEVEL_LOW RO 0x0

11 GPIO42_EDGE_HIGH RO 0x0

10 GPIO42_EDGE_LOW RO 0x0

9 GPIO42_LEVEL_HIGH RO 0x0

8 GPIO42_LEVEL_LOW RO 0x0

7 GPIO41_EDGE_HIGH RO 0x0

6 GPIO41_EDGE_LOW RO 0x0

5 GPIO41_LEVEL_HIGH RO 0x0

4 GPIO41_LEVEL_LOW RO 0x0

3 GPIO40_EDGE_HIGH RO 0x0

2 GPIO40_EDGE_LOW RO 0x0

1 GPIO40_LEVEL_HIGH RO 0x0

0 GPIO40_LEVEL_LOW RO 0x0

IO_BANK0: PROC1_INTE0 Register

Offset: 0x290

RP2350 Datasheet
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Description

Interrupt Enable for proc1

Table 779.

PROC1_INTE0 Register
Bits Description Type Reset

31 GPIO7_EDGE_HIGH RW 0x0

30 GPIO7_EDGE_LOW RW 0x0

29 GPIO7_LEVEL_HIGH RW 0x0

28 GPIO7_LEVEL_LOW RW 0x0

27 GPIO6_EDGE_HIGH RW 0x0

26 GPIO6_EDGE_LOW RW 0x0

25 GPIO6_LEVEL_HIGH RW 0x0

24 GPIO6_LEVEL_LOW RW 0x0

23 GPIO5_EDGE_HIGH RW 0x0

22 GPIO5_EDGE_LOW RW 0x0

21 GPIO5_LEVEL_HIGH RW 0x0

20 GPIO5_LEVEL_LOW RW 0x0

19 GPIO4_EDGE_HIGH RW 0x0

18 GPIO4_EDGE_LOW RW 0x0

17 GPIO4_LEVEL_HIGH RW 0x0

16 GPIO4_LEVEL_LOW RW 0x0

15 GPIO3_EDGE_HIGH RW 0x0

14 GPIO3_EDGE_LOW RW 0x0

13 GPIO3_LEVEL_HIGH RW 0x0

12 GPIO3_LEVEL_LOW RW 0x0

11 GPIO2_EDGE_HIGH RW 0x0

10 GPIO2_EDGE_LOW RW 0x0

9 GPIO2_LEVEL_HIGH RW 0x0

8 GPIO2_LEVEL_LOW RW 0x0

7 GPIO1_EDGE_HIGH RW 0x0

6 GPIO1_EDGE_LOW RW 0x0

5 GPIO1_LEVEL_HIGH RW 0x0

4 GPIO1_LEVEL_LOW RW 0x0

3 GPIO0_EDGE_HIGH RW 0x0

2 GPIO0_EDGE_LOW RW 0x0

1 GPIO0_LEVEL_HIGH RW 0x0

0 GPIO0_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTE1 Register

Offset: 0x294

RP2350 Datasheet
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Description

Interrupt Enable for proc1

Table 780.

PROC1_INTE1 Register
Bits Description Type Reset

31 GPIO15_EDGE_HIGH RW 0x0

30 GPIO15_EDGE_LOW RW 0x0

29 GPIO15_LEVEL_HIGH RW 0x0

28 GPIO15_LEVEL_LOW RW 0x0

27 GPIO14_EDGE_HIGH RW 0x0

26 GPIO14_EDGE_LOW RW 0x0

25 GPIO14_LEVEL_HIGH RW 0x0

24 GPIO14_LEVEL_LOW RW 0x0

23 GPIO13_EDGE_HIGH RW 0x0

22 GPIO13_EDGE_LOW RW 0x0

21 GPIO13_LEVEL_HIGH RW 0x0

20 GPIO13_LEVEL_LOW RW 0x0

19 GPIO12_EDGE_HIGH RW 0x0

18 GPIO12_EDGE_LOW RW 0x0

17 GPIO12_LEVEL_HIGH RW 0x0

16 GPIO12_LEVEL_LOW RW 0x0

15 GPIO11_EDGE_HIGH RW 0x0

14 GPIO11_EDGE_LOW RW 0x0

13 GPIO11_LEVEL_HIGH RW 0x0

12 GPIO11_LEVEL_LOW RW 0x0

11 GPIO10_EDGE_HIGH RW 0x0

10 GPIO10_EDGE_LOW RW 0x0

9 GPIO10_LEVEL_HIGH RW 0x0

8 GPIO10_LEVEL_LOW RW 0x0

7 GPIO9_EDGE_HIGH RW 0x0

6 GPIO9_EDGE_LOW RW 0x0

5 GPIO9_LEVEL_HIGH RW 0x0

4 GPIO9_LEVEL_LOW RW 0x0

3 GPIO8_EDGE_HIGH RW 0x0

2 GPIO8_EDGE_LOW RW 0x0

1 GPIO8_LEVEL_HIGH RW 0x0

0 GPIO8_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTE2 Register

Offset: 0x298

RP2350 Datasheet
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Description

Interrupt Enable for proc1

Table 781.

PROC1_INTE2 Register
Bits Description Type Reset

31 GPIO23_EDGE_HIGH RW 0x0

30 GPIO23_EDGE_LOW RW 0x0

29 GPIO23_LEVEL_HIGH RW 0x0

28 GPIO23_LEVEL_LOW RW 0x0

27 GPIO22_EDGE_HIGH RW 0x0

26 GPIO22_EDGE_LOW RW 0x0

25 GPIO22_LEVEL_HIGH RW 0x0

24 GPIO22_LEVEL_LOW RW 0x0

23 GPIO21_EDGE_HIGH RW 0x0

22 GPIO21_EDGE_LOW RW 0x0

21 GPIO21_LEVEL_HIGH RW 0x0

20 GPIO21_LEVEL_LOW RW 0x0

19 GPIO20_EDGE_HIGH RW 0x0

18 GPIO20_EDGE_LOW RW 0x0

17 GPIO20_LEVEL_HIGH RW 0x0

16 GPIO20_LEVEL_LOW RW 0x0

15 GPIO19_EDGE_HIGH RW 0x0

14 GPIO19_EDGE_LOW RW 0x0

13 GPIO19_LEVEL_HIGH RW 0x0

12 GPIO19_LEVEL_LOW RW 0x0

11 GPIO18_EDGE_HIGH RW 0x0

10 GPIO18_EDGE_LOW RW 0x0

9 GPIO18_LEVEL_HIGH RW 0x0

8 GPIO18_LEVEL_LOW RW 0x0

7 GPIO17_EDGE_HIGH RW 0x0

6 GPIO17_EDGE_LOW RW 0x0

5 GPIO17_LEVEL_HIGH RW 0x0

4 GPIO17_LEVEL_LOW RW 0x0

3 GPIO16_EDGE_HIGH RW 0x0

2 GPIO16_EDGE_LOW RW 0x0

1 GPIO16_LEVEL_HIGH RW 0x0

0 GPIO16_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTE3 Register

Offset: 0x29c

RP2350 Datasheet
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Description

Interrupt Enable for proc1

Table 782.

PROC1_INTE3 Register
Bits Description Type Reset

31 GPIO31_EDGE_HIGH RW 0x0

30 GPIO31_EDGE_LOW RW 0x0

29 GPIO31_LEVEL_HIGH RW 0x0

28 GPIO31_LEVEL_LOW RW 0x0

27 GPIO30_EDGE_HIGH RW 0x0

26 GPIO30_EDGE_LOW RW 0x0

25 GPIO30_LEVEL_HIGH RW 0x0

24 GPIO30_LEVEL_LOW RW 0x0

23 GPIO29_EDGE_HIGH RW 0x0

22 GPIO29_EDGE_LOW RW 0x0

21 GPIO29_LEVEL_HIGH RW 0x0

20 GPIO29_LEVEL_LOW RW 0x0

19 GPIO28_EDGE_HIGH RW 0x0

18 GPIO28_EDGE_LOW RW 0x0

17 GPIO28_LEVEL_HIGH RW 0x0

16 GPIO28_LEVEL_LOW RW 0x0

15 GPIO27_EDGE_HIGH RW 0x0

14 GPIO27_EDGE_LOW RW 0x0

13 GPIO27_LEVEL_HIGH RW 0x0

12 GPIO27_LEVEL_LOW RW 0x0

11 GPIO26_EDGE_HIGH RW 0x0

10 GPIO26_EDGE_LOW RW 0x0

9 GPIO26_LEVEL_HIGH RW 0x0

8 GPIO26_LEVEL_LOW RW 0x0

7 GPIO25_EDGE_HIGH RW 0x0

6 GPIO25_EDGE_LOW RW 0x0

5 GPIO25_LEVEL_HIGH RW 0x0

4 GPIO25_LEVEL_LOW RW 0x0

3 GPIO24_EDGE_HIGH RW 0x0

2 GPIO24_EDGE_LOW RW 0x0

1 GPIO24_LEVEL_HIGH RW 0x0

0 GPIO24_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTE4 Register

Offset: 0x2a0

RP2350 Datasheet
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Description

Interrupt Enable for proc1

Table 783.

PROC1_INTE4 Register
Bits Description Type Reset

31 GPIO39_EDGE_HIGH RW 0x0

30 GPIO39_EDGE_LOW RW 0x0

29 GPIO39_LEVEL_HIGH RW 0x0

28 GPIO39_LEVEL_LOW RW 0x0

27 GPIO38_EDGE_HIGH RW 0x0

26 GPIO38_EDGE_LOW RW 0x0

25 GPIO38_LEVEL_HIGH RW 0x0

24 GPIO38_LEVEL_LOW RW 0x0

23 GPIO37_EDGE_HIGH RW 0x0

22 GPIO37_EDGE_LOW RW 0x0

21 GPIO37_LEVEL_HIGH RW 0x0

20 GPIO37_LEVEL_LOW RW 0x0

19 GPIO36_EDGE_HIGH RW 0x0

18 GPIO36_EDGE_LOW RW 0x0

17 GPIO36_LEVEL_HIGH RW 0x0

16 GPIO36_LEVEL_LOW RW 0x0

15 GPIO35_EDGE_HIGH RW 0x0

14 GPIO35_EDGE_LOW RW 0x0

13 GPIO35_LEVEL_HIGH RW 0x0

12 GPIO35_LEVEL_LOW RW 0x0

11 GPIO34_EDGE_HIGH RW 0x0

10 GPIO34_EDGE_LOW RW 0x0

9 GPIO34_LEVEL_HIGH RW 0x0

8 GPIO34_LEVEL_LOW RW 0x0

7 GPIO33_EDGE_HIGH RW 0x0

6 GPIO33_EDGE_LOW RW 0x0

5 GPIO33_LEVEL_HIGH RW 0x0

4 GPIO33_LEVEL_LOW RW 0x0

3 GPIO32_EDGE_HIGH RW 0x0

2 GPIO32_EDGE_LOW RW 0x0

1 GPIO32_LEVEL_HIGH RW 0x0

0 GPIO32_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTE5 Register

Offset: 0x2a4

RP2350 Datasheet
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Description

Interrupt Enable for proc1

Table 784.

PROC1_INTE5 Register
Bits Description Type Reset

31 GPIO47_EDGE_HIGH RW 0x0

30 GPIO47_EDGE_LOW RW 0x0

29 GPIO47_LEVEL_HIGH RW 0x0

28 GPIO47_LEVEL_LOW RW 0x0

27 GPIO46_EDGE_HIGH RW 0x0

26 GPIO46_EDGE_LOW RW 0x0

25 GPIO46_LEVEL_HIGH RW 0x0

24 GPIO46_LEVEL_LOW RW 0x0

23 GPIO45_EDGE_HIGH RW 0x0

22 GPIO45_EDGE_LOW RW 0x0

21 GPIO45_LEVEL_HIGH RW 0x0

20 GPIO45_LEVEL_LOW RW 0x0

19 GPIO44_EDGE_HIGH RW 0x0

18 GPIO44_EDGE_LOW RW 0x0

17 GPIO44_LEVEL_HIGH RW 0x0

16 GPIO44_LEVEL_LOW RW 0x0

15 GPIO43_EDGE_HIGH RW 0x0

14 GPIO43_EDGE_LOW RW 0x0

13 GPIO43_LEVEL_HIGH RW 0x0

12 GPIO43_LEVEL_LOW RW 0x0

11 GPIO42_EDGE_HIGH RW 0x0

10 GPIO42_EDGE_LOW RW 0x0

9 GPIO42_LEVEL_HIGH RW 0x0

8 GPIO42_LEVEL_LOW RW 0x0

7 GPIO41_EDGE_HIGH RW 0x0

6 GPIO41_EDGE_LOW RW 0x0

5 GPIO41_LEVEL_HIGH RW 0x0

4 GPIO41_LEVEL_LOW RW 0x0

3 GPIO40_EDGE_HIGH RW 0x0

2 GPIO40_EDGE_LOW RW 0x0

1 GPIO40_LEVEL_HIGH RW 0x0

0 GPIO40_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTF0 Register

Offset: 0x2a8

RP2350 Datasheet
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Description

Interrupt Force for proc1

Table 785.

PROC1_INTF0 Register
Bits Description Type Reset

31 GPIO7_EDGE_HIGH RW 0x0

30 GPIO7_EDGE_LOW RW 0x0

29 GPIO7_LEVEL_HIGH RW 0x0

28 GPIO7_LEVEL_LOW RW 0x0

27 GPIO6_EDGE_HIGH RW 0x0

26 GPIO6_EDGE_LOW RW 0x0

25 GPIO6_LEVEL_HIGH RW 0x0

24 GPIO6_LEVEL_LOW RW 0x0

23 GPIO5_EDGE_HIGH RW 0x0

22 GPIO5_EDGE_LOW RW 0x0

21 GPIO5_LEVEL_HIGH RW 0x0

20 GPIO5_LEVEL_LOW RW 0x0

19 GPIO4_EDGE_HIGH RW 0x0

18 GPIO4_EDGE_LOW RW 0x0

17 GPIO4_LEVEL_HIGH RW 0x0

16 GPIO4_LEVEL_LOW RW 0x0

15 GPIO3_EDGE_HIGH RW 0x0

14 GPIO3_EDGE_LOW RW 0x0

13 GPIO3_LEVEL_HIGH RW 0x0

12 GPIO3_LEVEL_LOW RW 0x0

11 GPIO2_EDGE_HIGH RW 0x0

10 GPIO2_EDGE_LOW RW 0x0

9 GPIO2_LEVEL_HIGH RW 0x0

8 GPIO2_LEVEL_LOW RW 0x0

7 GPIO1_EDGE_HIGH RW 0x0

6 GPIO1_EDGE_LOW RW 0x0

5 GPIO1_LEVEL_HIGH RW 0x0

4 GPIO1_LEVEL_LOW RW 0x0

3 GPIO0_EDGE_HIGH RW 0x0

2 GPIO0_EDGE_LOW RW 0x0

1 GPIO0_LEVEL_HIGH RW 0x0

0 GPIO0_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTF1 Register

Offset: 0x2ac

RP2350 Datasheet
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Description

Interrupt Force for proc1

Table 786.

PROC1_INTF1 Register
Bits Description Type Reset

31 GPIO15_EDGE_HIGH RW 0x0

30 GPIO15_EDGE_LOW RW 0x0

29 GPIO15_LEVEL_HIGH RW 0x0

28 GPIO15_LEVEL_LOW RW 0x0

27 GPIO14_EDGE_HIGH RW 0x0

26 GPIO14_EDGE_LOW RW 0x0

25 GPIO14_LEVEL_HIGH RW 0x0

24 GPIO14_LEVEL_LOW RW 0x0

23 GPIO13_EDGE_HIGH RW 0x0

22 GPIO13_EDGE_LOW RW 0x0

21 GPIO13_LEVEL_HIGH RW 0x0

20 GPIO13_LEVEL_LOW RW 0x0

19 GPIO12_EDGE_HIGH RW 0x0

18 GPIO12_EDGE_LOW RW 0x0

17 GPIO12_LEVEL_HIGH RW 0x0

16 GPIO12_LEVEL_LOW RW 0x0

15 GPIO11_EDGE_HIGH RW 0x0

14 GPIO11_EDGE_LOW RW 0x0

13 GPIO11_LEVEL_HIGH RW 0x0

12 GPIO11_LEVEL_LOW RW 0x0

11 GPIO10_EDGE_HIGH RW 0x0

10 GPIO10_EDGE_LOW RW 0x0

9 GPIO10_LEVEL_HIGH RW 0x0

8 GPIO10_LEVEL_LOW RW 0x0

7 GPIO9_EDGE_HIGH RW 0x0

6 GPIO9_EDGE_LOW RW 0x0

5 GPIO9_LEVEL_HIGH RW 0x0

4 GPIO9_LEVEL_LOW RW 0x0

3 GPIO8_EDGE_HIGH RW 0x0

2 GPIO8_EDGE_LOW RW 0x0

1 GPIO8_LEVEL_HIGH RW 0x0

0 GPIO8_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTF2 Register

Offset: 0x2b0

RP2350 Datasheet
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Description

Interrupt Force for proc1

Table 787.

PROC1_INTF2 Register
Bits Description Type Reset

31 GPIO23_EDGE_HIGH RW 0x0

30 GPIO23_EDGE_LOW RW 0x0

29 GPIO23_LEVEL_HIGH RW 0x0

28 GPIO23_LEVEL_LOW RW 0x0

27 GPIO22_EDGE_HIGH RW 0x0

26 GPIO22_EDGE_LOW RW 0x0

25 GPIO22_LEVEL_HIGH RW 0x0

24 GPIO22_LEVEL_LOW RW 0x0

23 GPIO21_EDGE_HIGH RW 0x0

22 GPIO21_EDGE_LOW RW 0x0

21 GPIO21_LEVEL_HIGH RW 0x0

20 GPIO21_LEVEL_LOW RW 0x0

19 GPIO20_EDGE_HIGH RW 0x0

18 GPIO20_EDGE_LOW RW 0x0

17 GPIO20_LEVEL_HIGH RW 0x0

16 GPIO20_LEVEL_LOW RW 0x0

15 GPIO19_EDGE_HIGH RW 0x0

14 GPIO19_EDGE_LOW RW 0x0

13 GPIO19_LEVEL_HIGH RW 0x0

12 GPIO19_LEVEL_LOW RW 0x0

11 GPIO18_EDGE_HIGH RW 0x0

10 GPIO18_EDGE_LOW RW 0x0

9 GPIO18_LEVEL_HIGH RW 0x0

8 GPIO18_LEVEL_LOW RW 0x0

7 GPIO17_EDGE_HIGH RW 0x0

6 GPIO17_EDGE_LOW RW 0x0

5 GPIO17_LEVEL_HIGH RW 0x0

4 GPIO17_LEVEL_LOW RW 0x0

3 GPIO16_EDGE_HIGH RW 0x0

2 GPIO16_EDGE_LOW RW 0x0

1 GPIO16_LEVEL_HIGH RW 0x0

0 GPIO16_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTF3 Register

Offset: 0x2b4

RP2350 Datasheet
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Description

Interrupt Force for proc1

Table 788.

PROC1_INTF3 Register
Bits Description Type Reset

31 GPIO31_EDGE_HIGH RW 0x0

30 GPIO31_EDGE_LOW RW 0x0

29 GPIO31_LEVEL_HIGH RW 0x0

28 GPIO31_LEVEL_LOW RW 0x0

27 GPIO30_EDGE_HIGH RW 0x0

26 GPIO30_EDGE_LOW RW 0x0

25 GPIO30_LEVEL_HIGH RW 0x0

24 GPIO30_LEVEL_LOW RW 0x0

23 GPIO29_EDGE_HIGH RW 0x0

22 GPIO29_EDGE_LOW RW 0x0

21 GPIO29_LEVEL_HIGH RW 0x0

20 GPIO29_LEVEL_LOW RW 0x0

19 GPIO28_EDGE_HIGH RW 0x0

18 GPIO28_EDGE_LOW RW 0x0

17 GPIO28_LEVEL_HIGH RW 0x0

16 GPIO28_LEVEL_LOW RW 0x0

15 GPIO27_EDGE_HIGH RW 0x0

14 GPIO27_EDGE_LOW RW 0x0

13 GPIO27_LEVEL_HIGH RW 0x0

12 GPIO27_LEVEL_LOW RW 0x0

11 GPIO26_EDGE_HIGH RW 0x0

10 GPIO26_EDGE_LOW RW 0x0

9 GPIO26_LEVEL_HIGH RW 0x0

8 GPIO26_LEVEL_LOW RW 0x0

7 GPIO25_EDGE_HIGH RW 0x0

6 GPIO25_EDGE_LOW RW 0x0

5 GPIO25_LEVEL_HIGH RW 0x0

4 GPIO25_LEVEL_LOW RW 0x0

3 GPIO24_EDGE_HIGH RW 0x0

2 GPIO24_EDGE_LOW RW 0x0

1 GPIO24_LEVEL_HIGH RW 0x0

0 GPIO24_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTF4 Register

Offset: 0x2b8

RP2350 Datasheet
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Description

Interrupt Force for proc1

Table 789.

PROC1_INTF4 Register
Bits Description Type Reset

31 GPIO39_EDGE_HIGH RW 0x0

30 GPIO39_EDGE_LOW RW 0x0

29 GPIO39_LEVEL_HIGH RW 0x0

28 GPIO39_LEVEL_LOW RW 0x0

27 GPIO38_EDGE_HIGH RW 0x0

26 GPIO38_EDGE_LOW RW 0x0

25 GPIO38_LEVEL_HIGH RW 0x0

24 GPIO38_LEVEL_LOW RW 0x0

23 GPIO37_EDGE_HIGH RW 0x0

22 GPIO37_EDGE_LOW RW 0x0

21 GPIO37_LEVEL_HIGH RW 0x0

20 GPIO37_LEVEL_LOW RW 0x0

19 GPIO36_EDGE_HIGH RW 0x0

18 GPIO36_EDGE_LOW RW 0x0

17 GPIO36_LEVEL_HIGH RW 0x0

16 GPIO36_LEVEL_LOW RW 0x0

15 GPIO35_EDGE_HIGH RW 0x0

14 GPIO35_EDGE_LOW RW 0x0

13 GPIO35_LEVEL_HIGH RW 0x0

12 GPIO35_LEVEL_LOW RW 0x0

11 GPIO34_EDGE_HIGH RW 0x0

10 GPIO34_EDGE_LOW RW 0x0

9 GPIO34_LEVEL_HIGH RW 0x0

8 GPIO34_LEVEL_LOW RW 0x0

7 GPIO33_EDGE_HIGH RW 0x0

6 GPIO33_EDGE_LOW RW 0x0

5 GPIO33_LEVEL_HIGH RW 0x0

4 GPIO33_LEVEL_LOW RW 0x0

3 GPIO32_EDGE_HIGH RW 0x0

2 GPIO32_EDGE_LOW RW 0x0

1 GPIO32_LEVEL_HIGH RW 0x0

0 GPIO32_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTF5 Register

Offset: 0x2bc

RP2350 Datasheet
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Description

Interrupt Force for proc1

Table 790.

PROC1_INTF5 Register
Bits Description Type Reset

31 GPIO47_EDGE_HIGH RW 0x0

30 GPIO47_EDGE_LOW RW 0x0

29 GPIO47_LEVEL_HIGH RW 0x0

28 GPIO47_LEVEL_LOW RW 0x0

27 GPIO46_EDGE_HIGH RW 0x0

26 GPIO46_EDGE_LOW RW 0x0

25 GPIO46_LEVEL_HIGH RW 0x0

24 GPIO46_LEVEL_LOW RW 0x0

23 GPIO45_EDGE_HIGH RW 0x0

22 GPIO45_EDGE_LOW RW 0x0

21 GPIO45_LEVEL_HIGH RW 0x0

20 GPIO45_LEVEL_LOW RW 0x0

19 GPIO44_EDGE_HIGH RW 0x0

18 GPIO44_EDGE_LOW RW 0x0

17 GPIO44_LEVEL_HIGH RW 0x0

16 GPIO44_LEVEL_LOW RW 0x0

15 GPIO43_EDGE_HIGH RW 0x0

14 GPIO43_EDGE_LOW RW 0x0

13 GPIO43_LEVEL_HIGH RW 0x0

12 GPIO43_LEVEL_LOW RW 0x0

11 GPIO42_EDGE_HIGH RW 0x0

10 GPIO42_EDGE_LOW RW 0x0

9 GPIO42_LEVEL_HIGH RW 0x0

8 GPIO42_LEVEL_LOW RW 0x0

7 GPIO41_EDGE_HIGH RW 0x0

6 GPIO41_EDGE_LOW RW 0x0

5 GPIO41_LEVEL_HIGH RW 0x0

4 GPIO41_LEVEL_LOW RW 0x0

3 GPIO40_EDGE_HIGH RW 0x0

2 GPIO40_EDGE_LOW RW 0x0

1 GPIO40_LEVEL_HIGH RW 0x0

0 GPIO40_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTS0 Register

Offset: 0x2c0

RP2350 Datasheet
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Description

Interrupt status after masking & forcing for proc1

Table 791.

PROC1_INTS0

Register

Bits Description Type Reset

31 GPIO7_EDGE_HIGH RO 0x0

30 GPIO7_EDGE_LOW RO 0x0

29 GPIO7_LEVEL_HIGH RO 0x0

28 GPIO7_LEVEL_LOW RO 0x0

27 GPIO6_EDGE_HIGH RO 0x0

26 GPIO6_EDGE_LOW RO 0x0

25 GPIO6_LEVEL_HIGH RO 0x0

24 GPIO6_LEVEL_LOW RO 0x0

23 GPIO5_EDGE_HIGH RO 0x0

22 GPIO5_EDGE_LOW RO 0x0

21 GPIO5_LEVEL_HIGH RO 0x0

20 GPIO5_LEVEL_LOW RO 0x0

19 GPIO4_EDGE_HIGH RO 0x0

18 GPIO4_EDGE_LOW RO 0x0

17 GPIO4_LEVEL_HIGH RO 0x0

16 GPIO4_LEVEL_LOW RO 0x0

15 GPIO3_EDGE_HIGH RO 0x0

14 GPIO3_EDGE_LOW RO 0x0

13 GPIO3_LEVEL_HIGH RO 0x0

12 GPIO3_LEVEL_LOW RO 0x0

11 GPIO2_EDGE_HIGH RO 0x0

10 GPIO2_EDGE_LOW RO 0x0

9 GPIO2_LEVEL_HIGH RO 0x0

8 GPIO2_LEVEL_LOW RO 0x0

7 GPIO1_EDGE_HIGH RO 0x0

6 GPIO1_EDGE_LOW RO 0x0

5 GPIO1_LEVEL_HIGH RO 0x0

4 GPIO1_LEVEL_LOW RO 0x0

3 GPIO0_EDGE_HIGH RO 0x0

2 GPIO0_EDGE_LOW RO 0x0

1 GPIO0_LEVEL_HIGH RO 0x0

0 GPIO0_LEVEL_LOW RO 0x0

IO_BANK0: PROC1_INTS1 Register

Offset: 0x2c4

RP2350 Datasheet
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Description

Interrupt status after masking & forcing for proc1

Table 792.

PROC1_INTS1

Register

Bits Description Type Reset

31 GPIO15_EDGE_HIGH RO 0x0

30 GPIO15_EDGE_LOW RO 0x0

29 GPIO15_LEVEL_HIGH RO 0x0

28 GPIO15_LEVEL_LOW RO 0x0

27 GPIO14_EDGE_HIGH RO 0x0

26 GPIO14_EDGE_LOW RO 0x0

25 GPIO14_LEVEL_HIGH RO 0x0

24 GPIO14_LEVEL_LOW RO 0x0

23 GPIO13_EDGE_HIGH RO 0x0

22 GPIO13_EDGE_LOW RO 0x0

21 GPIO13_LEVEL_HIGH RO 0x0

20 GPIO13_LEVEL_LOW RO 0x0

19 GPIO12_EDGE_HIGH RO 0x0

18 GPIO12_EDGE_LOW RO 0x0

17 GPIO12_LEVEL_HIGH RO 0x0

16 GPIO12_LEVEL_LOW RO 0x0

15 GPIO11_EDGE_HIGH RO 0x0

14 GPIO11_EDGE_LOW RO 0x0

13 GPIO11_LEVEL_HIGH RO 0x0

12 GPIO11_LEVEL_LOW RO 0x0

11 GPIO10_EDGE_HIGH RO 0x0

10 GPIO10_EDGE_LOW RO 0x0

9 GPIO10_LEVEL_HIGH RO 0x0

8 GPIO10_LEVEL_LOW RO 0x0

7 GPIO9_EDGE_HIGH RO 0x0

6 GPIO9_EDGE_LOW RO 0x0

5 GPIO9_LEVEL_HIGH RO 0x0

4 GPIO9_LEVEL_LOW RO 0x0

3 GPIO8_EDGE_HIGH RO 0x0

2 GPIO8_EDGE_LOW RO 0x0

1 GPIO8_LEVEL_HIGH RO 0x0

0 GPIO8_LEVEL_LOW RO 0x0

IO_BANK0: PROC1_INTS2 Register

Offset: 0x2c8

RP2350 Datasheet
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Description

Interrupt status after masking & forcing for proc1

Table 793.

PROC1_INTS2

Register

Bits Description Type Reset

31 GPIO23_EDGE_HIGH RO 0x0

30 GPIO23_EDGE_LOW RO 0x0

29 GPIO23_LEVEL_HIGH RO 0x0

28 GPIO23_LEVEL_LOW RO 0x0

27 GPIO22_EDGE_HIGH RO 0x0

26 GPIO22_EDGE_LOW RO 0x0

25 GPIO22_LEVEL_HIGH RO 0x0

24 GPIO22_LEVEL_LOW RO 0x0

23 GPIO21_EDGE_HIGH RO 0x0

22 GPIO21_EDGE_LOW RO 0x0

21 GPIO21_LEVEL_HIGH RO 0x0

20 GPIO21_LEVEL_LOW RO 0x0

19 GPIO20_EDGE_HIGH RO 0x0

18 GPIO20_EDGE_LOW RO 0x0

17 GPIO20_LEVEL_HIGH RO 0x0

16 GPIO20_LEVEL_LOW RO 0x0

15 GPIO19_EDGE_HIGH RO 0x0

14 GPIO19_EDGE_LOW RO 0x0

13 GPIO19_LEVEL_HIGH RO 0x0

12 GPIO19_LEVEL_LOW RO 0x0

11 GPIO18_EDGE_HIGH RO 0x0

10 GPIO18_EDGE_LOW RO 0x0

9 GPIO18_LEVEL_HIGH RO 0x0

8 GPIO18_LEVEL_LOW RO 0x0

7 GPIO17_EDGE_HIGH RO 0x0

6 GPIO17_EDGE_LOW RO 0x0

5 GPIO17_LEVEL_HIGH RO 0x0

4 GPIO17_LEVEL_LOW RO 0x0

3 GPIO16_EDGE_HIGH RO 0x0

2 GPIO16_EDGE_LOW RO 0x0

1 GPIO16_LEVEL_HIGH RO 0x0

0 GPIO16_LEVEL_LOW RO 0x0

IO_BANK0: PROC1_INTS3 Register

Offset: 0x2cc

RP2350 Datasheet
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Description

Interrupt status after masking & forcing for proc1

Table 794.

PROC1_INTS3

Register

Bits Description Type Reset

31 GPIO31_EDGE_HIGH RO 0x0

30 GPIO31_EDGE_LOW RO 0x0

29 GPIO31_LEVEL_HIGH RO 0x0

28 GPIO31_LEVEL_LOW RO 0x0

27 GPIO30_EDGE_HIGH RO 0x0

26 GPIO30_EDGE_LOW RO 0x0

25 GPIO30_LEVEL_HIGH RO 0x0

24 GPIO30_LEVEL_LOW RO 0x0

23 GPIO29_EDGE_HIGH RO 0x0

22 GPIO29_EDGE_LOW RO 0x0

21 GPIO29_LEVEL_HIGH RO 0x0

20 GPIO29_LEVEL_LOW RO 0x0

19 GPIO28_EDGE_HIGH RO 0x0

18 GPIO28_EDGE_LOW RO 0x0

17 GPIO28_LEVEL_HIGH RO 0x0

16 GPIO28_LEVEL_LOW RO 0x0

15 GPIO27_EDGE_HIGH RO 0x0

14 GPIO27_EDGE_LOW RO 0x0

13 GPIO27_LEVEL_HIGH RO 0x0

12 GPIO27_LEVEL_LOW RO 0x0

11 GPIO26_EDGE_HIGH RO 0x0

10 GPIO26_EDGE_LOW RO 0x0

9 GPIO26_LEVEL_HIGH RO 0x0

8 GPIO26_LEVEL_LOW RO 0x0

7 GPIO25_EDGE_HIGH RO 0x0

6 GPIO25_EDGE_LOW RO 0x0

5 GPIO25_LEVEL_HIGH RO 0x0

4 GPIO25_LEVEL_LOW RO 0x0

3 GPIO24_EDGE_HIGH RO 0x0

2 GPIO24_EDGE_LOW RO 0x0

1 GPIO24_LEVEL_HIGH RO 0x0

0 GPIO24_LEVEL_LOW RO 0x0

IO_BANK0: PROC1_INTS4 Register

Offset: 0x2d0

RP2350 Datasheet
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Description

Interrupt status after masking & forcing for proc1

Table 795.

PROC1_INTS4

Register

Bits Description Type Reset

31 GPIO39_EDGE_HIGH RO 0x0

30 GPIO39_EDGE_LOW RO 0x0

29 GPIO39_LEVEL_HIGH RO 0x0

28 GPIO39_LEVEL_LOW RO 0x0

27 GPIO38_EDGE_HIGH RO 0x0

26 GPIO38_EDGE_LOW RO 0x0

25 GPIO38_LEVEL_HIGH RO 0x0

24 GPIO38_LEVEL_LOW RO 0x0

23 GPIO37_EDGE_HIGH RO 0x0

22 GPIO37_EDGE_LOW RO 0x0

21 GPIO37_LEVEL_HIGH RO 0x0

20 GPIO37_LEVEL_LOW RO 0x0

19 GPIO36_EDGE_HIGH RO 0x0

18 GPIO36_EDGE_LOW RO 0x0

17 GPIO36_LEVEL_HIGH RO 0x0

16 GPIO36_LEVEL_LOW RO 0x0

15 GPIO35_EDGE_HIGH RO 0x0

14 GPIO35_EDGE_LOW RO 0x0

13 GPIO35_LEVEL_HIGH RO 0x0

12 GPIO35_LEVEL_LOW RO 0x0

11 GPIO34_EDGE_HIGH RO 0x0

10 GPIO34_EDGE_LOW RO 0x0

9 GPIO34_LEVEL_HIGH RO 0x0

8 GPIO34_LEVEL_LOW RO 0x0

7 GPIO33_EDGE_HIGH RO 0x0

6 GPIO33_EDGE_LOW RO 0x0

5 GPIO33_LEVEL_HIGH RO 0x0

4 GPIO33_LEVEL_LOW RO 0x0

3 GPIO32_EDGE_HIGH RO 0x0

2 GPIO32_EDGE_LOW RO 0x0

1 GPIO32_LEVEL_HIGH RO 0x0

0 GPIO32_LEVEL_LOW RO 0x0

IO_BANK0: PROC1_INTS5 Register

Offset: 0x2d4

RP2350 Datasheet
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Description

Interrupt status after masking & forcing for proc1

Table 796.

PROC1_INTS5

Register

Bits Description Type Reset

31 GPIO47_EDGE_HIGH RO 0x0

30 GPIO47_EDGE_LOW RO 0x0

29 GPIO47_LEVEL_HIGH RO 0x0

28 GPIO47_LEVEL_LOW RO 0x0

27 GPIO46_EDGE_HIGH RO 0x0

26 GPIO46_EDGE_LOW RO 0x0

25 GPIO46_LEVEL_HIGH RO 0x0

24 GPIO46_LEVEL_LOW RO 0x0

23 GPIO45_EDGE_HIGH RO 0x0

22 GPIO45_EDGE_LOW RO 0x0

21 GPIO45_LEVEL_HIGH RO 0x0

20 GPIO45_LEVEL_LOW RO 0x0

19 GPIO44_EDGE_HIGH RO 0x0

18 GPIO44_EDGE_LOW RO 0x0

17 GPIO44_LEVEL_HIGH RO 0x0

16 GPIO44_LEVEL_LOW RO 0x0

15 GPIO43_EDGE_HIGH RO 0x0

14 GPIO43_EDGE_LOW RO 0x0

13 GPIO43_LEVEL_HIGH RO 0x0

12 GPIO43_LEVEL_LOW RO 0x0

11 GPIO42_EDGE_HIGH RO 0x0

10 GPIO42_EDGE_LOW RO 0x0

9 GPIO42_LEVEL_HIGH RO 0x0

8 GPIO42_LEVEL_LOW RO 0x0

7 GPIO41_EDGE_HIGH RO 0x0

6 GPIO41_EDGE_LOW RO 0x0

5 GPIO41_LEVEL_HIGH RO 0x0

4 GPIO41_LEVEL_LOW RO 0x0

3 GPIO40_EDGE_HIGH RO 0x0

2 GPIO40_EDGE_LOW RO 0x0

1 GPIO40_LEVEL_HIGH RO 0x0

0 GPIO40_LEVEL_LOW RO 0x0

IO_BANK0: DORMANT_WAKE_INTE0 Register

Offset: 0x2d8

RP2350 Datasheet
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Description

Interrupt Enable for dormant_wake

Table 797.

DORMANT_WAKE_INT

E0 Register

Bits Description Type Reset

31 GPIO7_EDGE_HIGH RW 0x0

30 GPIO7_EDGE_LOW RW 0x0

29 GPIO7_LEVEL_HIGH RW 0x0

28 GPIO7_LEVEL_LOW RW 0x0

27 GPIO6_EDGE_HIGH RW 0x0

26 GPIO6_EDGE_LOW RW 0x0

25 GPIO6_LEVEL_HIGH RW 0x0

24 GPIO6_LEVEL_LOW RW 0x0

23 GPIO5_EDGE_HIGH RW 0x0

22 GPIO5_EDGE_LOW RW 0x0

21 GPIO5_LEVEL_HIGH RW 0x0

20 GPIO5_LEVEL_LOW RW 0x0

19 GPIO4_EDGE_HIGH RW 0x0

18 GPIO4_EDGE_LOW RW 0x0

17 GPIO4_LEVEL_HIGH RW 0x0

16 GPIO4_LEVEL_LOW RW 0x0

15 GPIO3_EDGE_HIGH RW 0x0

14 GPIO3_EDGE_LOW RW 0x0

13 GPIO3_LEVEL_HIGH RW 0x0

12 GPIO3_LEVEL_LOW RW 0x0

11 GPIO2_EDGE_HIGH RW 0x0

10 GPIO2_EDGE_LOW RW 0x0

9 GPIO2_LEVEL_HIGH RW 0x0

8 GPIO2_LEVEL_LOW RW 0x0

7 GPIO1_EDGE_HIGH RW 0x0

6 GPIO1_EDGE_LOW RW 0x0

5 GPIO1_LEVEL_HIGH RW 0x0

4 GPIO1_LEVEL_LOW RW 0x0

3 GPIO0_EDGE_HIGH RW 0x0

2 GPIO0_EDGE_LOW RW 0x0

1 GPIO0_LEVEL_HIGH RW 0x0

0 GPIO0_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTE1 Register

Offset: 0x2dc

RP2350 Datasheet
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Description

Interrupt Enable for dormant_wake

Table 798.

DORMANT_WAKE_INT

E1 Register

Bits Description Type Reset

31 GPIO15_EDGE_HIGH RW 0x0

30 GPIO15_EDGE_LOW RW 0x0

29 GPIO15_LEVEL_HIGH RW 0x0

28 GPIO15_LEVEL_LOW RW 0x0

27 GPIO14_EDGE_HIGH RW 0x0

26 GPIO14_EDGE_LOW RW 0x0

25 GPIO14_LEVEL_HIGH RW 0x0

24 GPIO14_LEVEL_LOW RW 0x0

23 GPIO13_EDGE_HIGH RW 0x0

22 GPIO13_EDGE_LOW RW 0x0

21 GPIO13_LEVEL_HIGH RW 0x0

20 GPIO13_LEVEL_LOW RW 0x0

19 GPIO12_EDGE_HIGH RW 0x0

18 GPIO12_EDGE_LOW RW 0x0

17 GPIO12_LEVEL_HIGH RW 0x0

16 GPIO12_LEVEL_LOW RW 0x0

15 GPIO11_EDGE_HIGH RW 0x0

14 GPIO11_EDGE_LOW RW 0x0

13 GPIO11_LEVEL_HIGH RW 0x0

12 GPIO11_LEVEL_LOW RW 0x0

11 GPIO10_EDGE_HIGH RW 0x0

10 GPIO10_EDGE_LOW RW 0x0

9 GPIO10_LEVEL_HIGH RW 0x0

8 GPIO10_LEVEL_LOW RW 0x0

7 GPIO9_EDGE_HIGH RW 0x0

6 GPIO9_EDGE_LOW RW 0x0

5 GPIO9_LEVEL_HIGH RW 0x0

4 GPIO9_LEVEL_LOW RW 0x0

3 GPIO8_EDGE_HIGH RW 0x0

2 GPIO8_EDGE_LOW RW 0x0

1 GPIO8_LEVEL_HIGH RW 0x0

0 GPIO8_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTE2 Register

Offset: 0x2e0

RP2350 Datasheet
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Description

Interrupt Enable for dormant_wake

Table 799.

DORMANT_WAKE_INT

E2 Register

Bits Description Type Reset

31 GPIO23_EDGE_HIGH RW 0x0

30 GPIO23_EDGE_LOW RW 0x0

29 GPIO23_LEVEL_HIGH RW 0x0

28 GPIO23_LEVEL_LOW RW 0x0

27 GPIO22_EDGE_HIGH RW 0x0

26 GPIO22_EDGE_LOW RW 0x0

25 GPIO22_LEVEL_HIGH RW 0x0

24 GPIO22_LEVEL_LOW RW 0x0

23 GPIO21_EDGE_HIGH RW 0x0

22 GPIO21_EDGE_LOW RW 0x0

21 GPIO21_LEVEL_HIGH RW 0x0

20 GPIO21_LEVEL_LOW RW 0x0

19 GPIO20_EDGE_HIGH RW 0x0

18 GPIO20_EDGE_LOW RW 0x0

17 GPIO20_LEVEL_HIGH RW 0x0

16 GPIO20_LEVEL_LOW RW 0x0

15 GPIO19_EDGE_HIGH RW 0x0

14 GPIO19_EDGE_LOW RW 0x0

13 GPIO19_LEVEL_HIGH RW 0x0

12 GPIO19_LEVEL_LOW RW 0x0

11 GPIO18_EDGE_HIGH RW 0x0

10 GPIO18_EDGE_LOW RW 0x0

9 GPIO18_LEVEL_HIGH RW 0x0

8 GPIO18_LEVEL_LOW RW 0x0

7 GPIO17_EDGE_HIGH RW 0x0

6 GPIO17_EDGE_LOW RW 0x0

5 GPIO17_LEVEL_HIGH RW 0x0

4 GPIO17_LEVEL_LOW RW 0x0

3 GPIO16_EDGE_HIGH RW 0x0

2 GPIO16_EDGE_LOW RW 0x0

1 GPIO16_LEVEL_HIGH RW 0x0

0 GPIO16_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTE3 Register

Offset: 0x2e4

RP2350 Datasheet
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Description

Interrupt Enable for dormant_wake

Table 800.

DORMANT_WAKE_INT

E3 Register

Bits Description Type Reset

31 GPIO31_EDGE_HIGH RW 0x0

30 GPIO31_EDGE_LOW RW 0x0

29 GPIO31_LEVEL_HIGH RW 0x0

28 GPIO31_LEVEL_LOW RW 0x0

27 GPIO30_EDGE_HIGH RW 0x0

26 GPIO30_EDGE_LOW RW 0x0

25 GPIO30_LEVEL_HIGH RW 0x0

24 GPIO30_LEVEL_LOW RW 0x0

23 GPIO29_EDGE_HIGH RW 0x0

22 GPIO29_EDGE_LOW RW 0x0

21 GPIO29_LEVEL_HIGH RW 0x0

20 GPIO29_LEVEL_LOW RW 0x0

19 GPIO28_EDGE_HIGH RW 0x0

18 GPIO28_EDGE_LOW RW 0x0

17 GPIO28_LEVEL_HIGH RW 0x0

16 GPIO28_LEVEL_LOW RW 0x0

15 GPIO27_EDGE_HIGH RW 0x0

14 GPIO27_EDGE_LOW RW 0x0

13 GPIO27_LEVEL_HIGH RW 0x0

12 GPIO27_LEVEL_LOW RW 0x0

11 GPIO26_EDGE_HIGH RW 0x0

10 GPIO26_EDGE_LOW RW 0x0

9 GPIO26_LEVEL_HIGH RW 0x0

8 GPIO26_LEVEL_LOW RW 0x0

7 GPIO25_EDGE_HIGH RW 0x0

6 GPIO25_EDGE_LOW RW 0x0

5 GPIO25_LEVEL_HIGH RW 0x0

4 GPIO25_LEVEL_LOW RW 0x0

3 GPIO24_EDGE_HIGH RW 0x0

2 GPIO24_EDGE_LOW RW 0x0

1 GPIO24_LEVEL_HIGH RW 0x0

0 GPIO24_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTE4 Register

Offset: 0x2e8

RP2350 Datasheet
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Description

Interrupt Enable for dormant_wake

Table 801.

DORMANT_WAKE_INT

E4 Register

Bits Description Type Reset

31 GPIO39_EDGE_HIGH RW 0x0

30 GPIO39_EDGE_LOW RW 0x0

29 GPIO39_LEVEL_HIGH RW 0x0

28 GPIO39_LEVEL_LOW RW 0x0

27 GPIO38_EDGE_HIGH RW 0x0

26 GPIO38_EDGE_LOW RW 0x0

25 GPIO38_LEVEL_HIGH RW 0x0

24 GPIO38_LEVEL_LOW RW 0x0

23 GPIO37_EDGE_HIGH RW 0x0

22 GPIO37_EDGE_LOW RW 0x0

21 GPIO37_LEVEL_HIGH RW 0x0

20 GPIO37_LEVEL_LOW RW 0x0

19 GPIO36_EDGE_HIGH RW 0x0

18 GPIO36_EDGE_LOW RW 0x0

17 GPIO36_LEVEL_HIGH RW 0x0

16 GPIO36_LEVEL_LOW RW 0x0

15 GPIO35_EDGE_HIGH RW 0x0

14 GPIO35_EDGE_LOW RW 0x0

13 GPIO35_LEVEL_HIGH RW 0x0

12 GPIO35_LEVEL_LOW RW 0x0

11 GPIO34_EDGE_HIGH RW 0x0

10 GPIO34_EDGE_LOW RW 0x0

9 GPIO34_LEVEL_HIGH RW 0x0

8 GPIO34_LEVEL_LOW RW 0x0

7 GPIO33_EDGE_HIGH RW 0x0

6 GPIO33_EDGE_LOW RW 0x0

5 GPIO33_LEVEL_HIGH RW 0x0

4 GPIO33_LEVEL_LOW RW 0x0

3 GPIO32_EDGE_HIGH RW 0x0

2 GPIO32_EDGE_LOW RW 0x0

1 GPIO32_LEVEL_HIGH RW 0x0

0 GPIO32_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTE5 Register

Offset: 0x2ec

RP2350 Datasheet
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Description

Interrupt Enable for dormant_wake

Table 802.

DORMANT_WAKE_INT

E5 Register

Bits Description Type Reset

31 GPIO47_EDGE_HIGH RW 0x0

30 GPIO47_EDGE_LOW RW 0x0

29 GPIO47_LEVEL_HIGH RW 0x0

28 GPIO47_LEVEL_LOW RW 0x0

27 GPIO46_EDGE_HIGH RW 0x0

26 GPIO46_EDGE_LOW RW 0x0

25 GPIO46_LEVEL_HIGH RW 0x0

24 GPIO46_LEVEL_LOW RW 0x0

23 GPIO45_EDGE_HIGH RW 0x0

22 GPIO45_EDGE_LOW RW 0x0

21 GPIO45_LEVEL_HIGH RW 0x0

20 GPIO45_LEVEL_LOW RW 0x0

19 GPIO44_EDGE_HIGH RW 0x0

18 GPIO44_EDGE_LOW RW 0x0

17 GPIO44_LEVEL_HIGH RW 0x0

16 GPIO44_LEVEL_LOW RW 0x0

15 GPIO43_EDGE_HIGH RW 0x0

14 GPIO43_EDGE_LOW RW 0x0

13 GPIO43_LEVEL_HIGH RW 0x0

12 GPIO43_LEVEL_LOW RW 0x0

11 GPIO42_EDGE_HIGH RW 0x0

10 GPIO42_EDGE_LOW RW 0x0

9 GPIO42_LEVEL_HIGH RW 0x0

8 GPIO42_LEVEL_LOW RW 0x0

7 GPIO41_EDGE_HIGH RW 0x0

6 GPIO41_EDGE_LOW RW 0x0

5 GPIO41_LEVEL_HIGH RW 0x0

4 GPIO41_LEVEL_LOW RW 0x0

3 GPIO40_EDGE_HIGH RW 0x0

2 GPIO40_EDGE_LOW RW 0x0

1 GPIO40_LEVEL_HIGH RW 0x0

0 GPIO40_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTF0 Register

Offset: 0x2f0

RP2350 Datasheet
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Description

Interrupt Force for dormant_wake

Table 803.

DORMANT_WAKE_INT

F0 Register

Bits Description Type Reset

31 GPIO7_EDGE_HIGH RW 0x0

30 GPIO7_EDGE_LOW RW 0x0

29 GPIO7_LEVEL_HIGH RW 0x0

28 GPIO7_LEVEL_LOW RW 0x0

27 GPIO6_EDGE_HIGH RW 0x0

26 GPIO6_EDGE_LOW RW 0x0

25 GPIO6_LEVEL_HIGH RW 0x0

24 GPIO6_LEVEL_LOW RW 0x0

23 GPIO5_EDGE_HIGH RW 0x0

22 GPIO5_EDGE_LOW RW 0x0

21 GPIO5_LEVEL_HIGH RW 0x0

20 GPIO5_LEVEL_LOW RW 0x0

19 GPIO4_EDGE_HIGH RW 0x0

18 GPIO4_EDGE_LOW RW 0x0

17 GPIO4_LEVEL_HIGH RW 0x0

16 GPIO4_LEVEL_LOW RW 0x0

15 GPIO3_EDGE_HIGH RW 0x0

14 GPIO3_EDGE_LOW RW 0x0

13 GPIO3_LEVEL_HIGH RW 0x0

12 GPIO3_LEVEL_LOW RW 0x0

11 GPIO2_EDGE_HIGH RW 0x0

10 GPIO2_EDGE_LOW RW 0x0

9 GPIO2_LEVEL_HIGH RW 0x0

8 GPIO2_LEVEL_LOW RW 0x0

7 GPIO1_EDGE_HIGH RW 0x0

6 GPIO1_EDGE_LOW RW 0x0

5 GPIO1_LEVEL_HIGH RW 0x0

4 GPIO1_LEVEL_LOW RW 0x0

3 GPIO0_EDGE_HIGH RW 0x0

2 GPIO0_EDGE_LOW RW 0x0

1 GPIO0_LEVEL_HIGH RW 0x0

0 GPIO0_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTF1 Register

Offset: 0x2f4

RP2350 Datasheet
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Description

Interrupt Force for dormant_wake

Table 804.

DORMANT_WAKE_INT

F1 Register

Bits Description Type Reset

31 GPIO15_EDGE_HIGH RW 0x0

30 GPIO15_EDGE_LOW RW 0x0

29 GPIO15_LEVEL_HIGH RW 0x0

28 GPIO15_LEVEL_LOW RW 0x0

27 GPIO14_EDGE_HIGH RW 0x0

26 GPIO14_EDGE_LOW RW 0x0

25 GPIO14_LEVEL_HIGH RW 0x0

24 GPIO14_LEVEL_LOW RW 0x0

23 GPIO13_EDGE_HIGH RW 0x0

22 GPIO13_EDGE_LOW RW 0x0

21 GPIO13_LEVEL_HIGH RW 0x0

20 GPIO13_LEVEL_LOW RW 0x0

19 GPIO12_EDGE_HIGH RW 0x0

18 GPIO12_EDGE_LOW RW 0x0

17 GPIO12_LEVEL_HIGH RW 0x0

16 GPIO12_LEVEL_LOW RW 0x0

15 GPIO11_EDGE_HIGH RW 0x0

14 GPIO11_EDGE_LOW RW 0x0

13 GPIO11_LEVEL_HIGH RW 0x0

12 GPIO11_LEVEL_LOW RW 0x0

11 GPIO10_EDGE_HIGH RW 0x0

10 GPIO10_EDGE_LOW RW 0x0

9 GPIO10_LEVEL_HIGH RW 0x0

8 GPIO10_LEVEL_LOW RW 0x0

7 GPIO9_EDGE_HIGH RW 0x0

6 GPIO9_EDGE_LOW RW 0x0

5 GPIO9_LEVEL_HIGH RW 0x0

4 GPIO9_LEVEL_LOW RW 0x0

3 GPIO8_EDGE_HIGH RW 0x0

2 GPIO8_EDGE_LOW RW 0x0

1 GPIO8_LEVEL_HIGH RW 0x0

0 GPIO8_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTF2 Register

Offset: 0x2f8

RP2350 Datasheet
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Description

Interrupt Force for dormant_wake

Table 805.

DORMANT_WAKE_INT

F2 Register

Bits Description Type Reset

31 GPIO23_EDGE_HIGH RW 0x0

30 GPIO23_EDGE_LOW RW 0x0

29 GPIO23_LEVEL_HIGH RW 0x0

28 GPIO23_LEVEL_LOW RW 0x0

27 GPIO22_EDGE_HIGH RW 0x0

26 GPIO22_EDGE_LOW RW 0x0

25 GPIO22_LEVEL_HIGH RW 0x0

24 GPIO22_LEVEL_LOW RW 0x0

23 GPIO21_EDGE_HIGH RW 0x0

22 GPIO21_EDGE_LOW RW 0x0

21 GPIO21_LEVEL_HIGH RW 0x0

20 GPIO21_LEVEL_LOW RW 0x0

19 GPIO20_EDGE_HIGH RW 0x0

18 GPIO20_EDGE_LOW RW 0x0

17 GPIO20_LEVEL_HIGH RW 0x0

16 GPIO20_LEVEL_LOW RW 0x0

15 GPIO19_EDGE_HIGH RW 0x0

14 GPIO19_EDGE_LOW RW 0x0

13 GPIO19_LEVEL_HIGH RW 0x0

12 GPIO19_LEVEL_LOW RW 0x0

11 GPIO18_EDGE_HIGH RW 0x0

10 GPIO18_EDGE_LOW RW 0x0

9 GPIO18_LEVEL_HIGH RW 0x0

8 GPIO18_LEVEL_LOW RW 0x0

7 GPIO17_EDGE_HIGH RW 0x0

6 GPIO17_EDGE_LOW RW 0x0

5 GPIO17_LEVEL_HIGH RW 0x0

4 GPIO17_LEVEL_LOW RW 0x0

3 GPIO16_EDGE_HIGH RW 0x0

2 GPIO16_EDGE_LOW RW 0x0

1 GPIO16_LEVEL_HIGH RW 0x0

0 GPIO16_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTF3 Register

Offset: 0x2fc

RP2350 Datasheet
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Description

Interrupt Force for dormant_wake

Table 806.

DORMANT_WAKE_INT

F3 Register

Bits Description Type Reset

31 GPIO31_EDGE_HIGH RW 0x0

30 GPIO31_EDGE_LOW RW 0x0

29 GPIO31_LEVEL_HIGH RW 0x0

28 GPIO31_LEVEL_LOW RW 0x0

27 GPIO30_EDGE_HIGH RW 0x0

26 GPIO30_EDGE_LOW RW 0x0

25 GPIO30_LEVEL_HIGH RW 0x0

24 GPIO30_LEVEL_LOW RW 0x0

23 GPIO29_EDGE_HIGH RW 0x0

22 GPIO29_EDGE_LOW RW 0x0

21 GPIO29_LEVEL_HIGH RW 0x0

20 GPIO29_LEVEL_LOW RW 0x0

19 GPIO28_EDGE_HIGH RW 0x0

18 GPIO28_EDGE_LOW RW 0x0

17 GPIO28_LEVEL_HIGH RW 0x0

16 GPIO28_LEVEL_LOW RW 0x0

15 GPIO27_EDGE_HIGH RW 0x0

14 GPIO27_EDGE_LOW RW 0x0

13 GPIO27_LEVEL_HIGH RW 0x0

12 GPIO27_LEVEL_LOW RW 0x0

11 GPIO26_EDGE_HIGH RW 0x0

10 GPIO26_EDGE_LOW RW 0x0

9 GPIO26_LEVEL_HIGH RW 0x0

8 GPIO26_LEVEL_LOW RW 0x0

7 GPIO25_EDGE_HIGH RW 0x0

6 GPIO25_EDGE_LOW RW 0x0

5 GPIO25_LEVEL_HIGH RW 0x0

4 GPIO25_LEVEL_LOW RW 0x0

3 GPIO24_EDGE_HIGH RW 0x0

2 GPIO24_EDGE_LOW RW 0x0

1 GPIO24_LEVEL_HIGH RW 0x0

0 GPIO24_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTF4 Register

Offset: 0x300
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Description

Interrupt Force for dormant_wake

Table 807.

DORMANT_WAKE_INT

F4 Register

Bits Description Type Reset

31 GPIO39_EDGE_HIGH RW 0x0

30 GPIO39_EDGE_LOW RW 0x0

29 GPIO39_LEVEL_HIGH RW 0x0

28 GPIO39_LEVEL_LOW RW 0x0

27 GPIO38_EDGE_HIGH RW 0x0

26 GPIO38_EDGE_LOW RW 0x0

25 GPIO38_LEVEL_HIGH RW 0x0

24 GPIO38_LEVEL_LOW RW 0x0

23 GPIO37_EDGE_HIGH RW 0x0

22 GPIO37_EDGE_LOW RW 0x0

21 GPIO37_LEVEL_HIGH RW 0x0

20 GPIO37_LEVEL_LOW RW 0x0

19 GPIO36_EDGE_HIGH RW 0x0

18 GPIO36_EDGE_LOW RW 0x0

17 GPIO36_LEVEL_HIGH RW 0x0

16 GPIO36_LEVEL_LOW RW 0x0

15 GPIO35_EDGE_HIGH RW 0x0

14 GPIO35_EDGE_LOW RW 0x0

13 GPIO35_LEVEL_HIGH RW 0x0

12 GPIO35_LEVEL_LOW RW 0x0

11 GPIO34_EDGE_HIGH RW 0x0

10 GPIO34_EDGE_LOW RW 0x0

9 GPIO34_LEVEL_HIGH RW 0x0

8 GPIO34_LEVEL_LOW RW 0x0

7 GPIO33_EDGE_HIGH RW 0x0

6 GPIO33_EDGE_LOW RW 0x0

5 GPIO33_LEVEL_HIGH RW 0x0

4 GPIO33_LEVEL_LOW RW 0x0

3 GPIO32_EDGE_HIGH RW 0x0

2 GPIO32_EDGE_LOW RW 0x0

1 GPIO32_LEVEL_HIGH RW 0x0

0 GPIO32_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTF5 Register

Offset: 0x304
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Description

Interrupt Force for dormant_wake

Table 808.

DORMANT_WAKE_INT

F5 Register

Bits Description Type Reset

31 GPIO47_EDGE_HIGH RW 0x0

30 GPIO47_EDGE_LOW RW 0x0

29 GPIO47_LEVEL_HIGH RW 0x0

28 GPIO47_LEVEL_LOW RW 0x0

27 GPIO46_EDGE_HIGH RW 0x0

26 GPIO46_EDGE_LOW RW 0x0

25 GPIO46_LEVEL_HIGH RW 0x0

24 GPIO46_LEVEL_LOW RW 0x0

23 GPIO45_EDGE_HIGH RW 0x0

22 GPIO45_EDGE_LOW RW 0x0

21 GPIO45_LEVEL_HIGH RW 0x0

20 GPIO45_LEVEL_LOW RW 0x0

19 GPIO44_EDGE_HIGH RW 0x0

18 GPIO44_EDGE_LOW RW 0x0

17 GPIO44_LEVEL_HIGH RW 0x0

16 GPIO44_LEVEL_LOW RW 0x0

15 GPIO43_EDGE_HIGH RW 0x0

14 GPIO43_EDGE_LOW RW 0x0

13 GPIO43_LEVEL_HIGH RW 0x0

12 GPIO43_LEVEL_LOW RW 0x0

11 GPIO42_EDGE_HIGH RW 0x0

10 GPIO42_EDGE_LOW RW 0x0

9 GPIO42_LEVEL_HIGH RW 0x0

8 GPIO42_LEVEL_LOW RW 0x0

7 GPIO41_EDGE_HIGH RW 0x0

6 GPIO41_EDGE_LOW RW 0x0

5 GPIO41_LEVEL_HIGH RW 0x0

4 GPIO41_LEVEL_LOW RW 0x0

3 GPIO40_EDGE_HIGH RW 0x0

2 GPIO40_EDGE_LOW RW 0x0

1 GPIO40_LEVEL_HIGH RW 0x0

0 GPIO40_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTS0 Register

Offset: 0x308
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Description

Interrupt status after masking & forcing for dormant_wake

Table 809.

DORMANT_WAKE_INT

S0 Register

Bits Description Type Reset

31 GPIO7_EDGE_HIGH RO 0x0

30 GPIO7_EDGE_LOW RO 0x0

29 GPIO7_LEVEL_HIGH RO 0x0

28 GPIO7_LEVEL_LOW RO 0x0

27 GPIO6_EDGE_HIGH RO 0x0

26 GPIO6_EDGE_LOW RO 0x0

25 GPIO6_LEVEL_HIGH RO 0x0

24 GPIO6_LEVEL_LOW RO 0x0

23 GPIO5_EDGE_HIGH RO 0x0

22 GPIO5_EDGE_LOW RO 0x0

21 GPIO5_LEVEL_HIGH RO 0x0

20 GPIO5_LEVEL_LOW RO 0x0

19 GPIO4_EDGE_HIGH RO 0x0

18 GPIO4_EDGE_LOW RO 0x0

17 GPIO4_LEVEL_HIGH RO 0x0

16 GPIO4_LEVEL_LOW RO 0x0

15 GPIO3_EDGE_HIGH RO 0x0

14 GPIO3_EDGE_LOW RO 0x0

13 GPIO3_LEVEL_HIGH RO 0x0

12 GPIO3_LEVEL_LOW RO 0x0

11 GPIO2_EDGE_HIGH RO 0x0

10 GPIO2_EDGE_LOW RO 0x0

9 GPIO2_LEVEL_HIGH RO 0x0

8 GPIO2_LEVEL_LOW RO 0x0

7 GPIO1_EDGE_HIGH RO 0x0

6 GPIO1_EDGE_LOW RO 0x0

5 GPIO1_LEVEL_HIGH RO 0x0

4 GPIO1_LEVEL_LOW RO 0x0

3 GPIO0_EDGE_HIGH RO 0x0

2 GPIO0_EDGE_LOW RO 0x0

1 GPIO0_LEVEL_HIGH RO 0x0

0 GPIO0_LEVEL_LOW RO 0x0

IO_BANK0: DORMANT_WAKE_INTS1 Register

Offset: 0x30c
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Description

Interrupt status after masking & forcing for dormant_wake

Table 810.

DORMANT_WAKE_INT

S1 Register

Bits Description Type Reset

31 GPIO15_EDGE_HIGH RO 0x0

30 GPIO15_EDGE_LOW RO 0x0

29 GPIO15_LEVEL_HIGH RO 0x0

28 GPIO15_LEVEL_LOW RO 0x0

27 GPIO14_EDGE_HIGH RO 0x0

26 GPIO14_EDGE_LOW RO 0x0

25 GPIO14_LEVEL_HIGH RO 0x0

24 GPIO14_LEVEL_LOW RO 0x0

23 GPIO13_EDGE_HIGH RO 0x0

22 GPIO13_EDGE_LOW RO 0x0

21 GPIO13_LEVEL_HIGH RO 0x0

20 GPIO13_LEVEL_LOW RO 0x0

19 GPIO12_EDGE_HIGH RO 0x0

18 GPIO12_EDGE_LOW RO 0x0

17 GPIO12_LEVEL_HIGH RO 0x0

16 GPIO12_LEVEL_LOW RO 0x0

15 GPIO11_EDGE_HIGH RO 0x0

14 GPIO11_EDGE_LOW RO 0x0

13 GPIO11_LEVEL_HIGH RO 0x0

12 GPIO11_LEVEL_LOW RO 0x0

11 GPIO10_EDGE_HIGH RO 0x0

10 GPIO10_EDGE_LOW RO 0x0

9 GPIO10_LEVEL_HIGH RO 0x0

8 GPIO10_LEVEL_LOW RO 0x0

7 GPIO9_EDGE_HIGH RO 0x0

6 GPIO9_EDGE_LOW RO 0x0

5 GPIO9_LEVEL_HIGH RO 0x0

4 GPIO9_LEVEL_LOW RO 0x0

3 GPIO8_EDGE_HIGH RO 0x0

2 GPIO8_EDGE_LOW RO 0x0

1 GPIO8_LEVEL_HIGH RO 0x0

0 GPIO8_LEVEL_LOW RO 0x0

IO_BANK0: DORMANT_WAKE_INTS2 Register

Offset: 0x310
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Description

Interrupt status after masking & forcing for dormant_wake

Table 811.

DORMANT_WAKE_INT

S2 Register

Bits Description Type Reset

31 GPIO23_EDGE_HIGH RO 0x0

30 GPIO23_EDGE_LOW RO 0x0

29 GPIO23_LEVEL_HIGH RO 0x0

28 GPIO23_LEVEL_LOW RO 0x0

27 GPIO22_EDGE_HIGH RO 0x0

26 GPIO22_EDGE_LOW RO 0x0

25 GPIO22_LEVEL_HIGH RO 0x0

24 GPIO22_LEVEL_LOW RO 0x0

23 GPIO21_EDGE_HIGH RO 0x0

22 GPIO21_EDGE_LOW RO 0x0

21 GPIO21_LEVEL_HIGH RO 0x0

20 GPIO21_LEVEL_LOW RO 0x0

19 GPIO20_EDGE_HIGH RO 0x0

18 GPIO20_EDGE_LOW RO 0x0

17 GPIO20_LEVEL_HIGH RO 0x0

16 GPIO20_LEVEL_LOW RO 0x0

15 GPIO19_EDGE_HIGH RO 0x0

14 GPIO19_EDGE_LOW RO 0x0

13 GPIO19_LEVEL_HIGH RO 0x0

12 GPIO19_LEVEL_LOW RO 0x0

11 GPIO18_EDGE_HIGH RO 0x0

10 GPIO18_EDGE_LOW RO 0x0

9 GPIO18_LEVEL_HIGH RO 0x0

8 GPIO18_LEVEL_LOW RO 0x0

7 GPIO17_EDGE_HIGH RO 0x0

6 GPIO17_EDGE_LOW RO 0x0

5 GPIO17_LEVEL_HIGH RO 0x0

4 GPIO17_LEVEL_LOW RO 0x0

3 GPIO16_EDGE_HIGH RO 0x0

2 GPIO16_EDGE_LOW RO 0x0

1 GPIO16_LEVEL_HIGH RO 0x0

0 GPIO16_LEVEL_LOW RO 0x0

IO_BANK0: DORMANT_WAKE_INTS3 Register

Offset: 0x314
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Description

Interrupt status after masking & forcing for dormant_wake

Table 812.

DORMANT_WAKE_INT

S3 Register

Bits Description Type Reset

31 GPIO31_EDGE_HIGH RO 0x0

30 GPIO31_EDGE_LOW RO 0x0

29 GPIO31_LEVEL_HIGH RO 0x0

28 GPIO31_LEVEL_LOW RO 0x0

27 GPIO30_EDGE_HIGH RO 0x0

26 GPIO30_EDGE_LOW RO 0x0

25 GPIO30_LEVEL_HIGH RO 0x0

24 GPIO30_LEVEL_LOW RO 0x0

23 GPIO29_EDGE_HIGH RO 0x0

22 GPIO29_EDGE_LOW RO 0x0

21 GPIO29_LEVEL_HIGH RO 0x0

20 GPIO29_LEVEL_LOW RO 0x0

19 GPIO28_EDGE_HIGH RO 0x0

18 GPIO28_EDGE_LOW RO 0x0

17 GPIO28_LEVEL_HIGH RO 0x0

16 GPIO28_LEVEL_LOW RO 0x0

15 GPIO27_EDGE_HIGH RO 0x0

14 GPIO27_EDGE_LOW RO 0x0

13 GPIO27_LEVEL_HIGH RO 0x0

12 GPIO27_LEVEL_LOW RO 0x0

11 GPIO26_EDGE_HIGH RO 0x0

10 GPIO26_EDGE_LOW RO 0x0

9 GPIO26_LEVEL_HIGH RO 0x0

8 GPIO26_LEVEL_LOW RO 0x0

7 GPIO25_EDGE_HIGH RO 0x0

6 GPIO25_EDGE_LOW RO 0x0

5 GPIO25_LEVEL_HIGH RO 0x0

4 GPIO25_LEVEL_LOW RO 0x0

3 GPIO24_EDGE_HIGH RO 0x0

2 GPIO24_EDGE_LOW RO 0x0

1 GPIO24_LEVEL_HIGH RO 0x0

0 GPIO24_LEVEL_LOW RO 0x0

IO_BANK0: DORMANT_WAKE_INTS4 Register

Offset: 0x318
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Description

Interrupt status after masking & forcing for dormant_wake

Table 813.

DORMANT_WAKE_INT

S4 Register

Bits Description Type Reset

31 GPIO39_EDGE_HIGH RO 0x0

30 GPIO39_EDGE_LOW RO 0x0

29 GPIO39_LEVEL_HIGH RO 0x0

28 GPIO39_LEVEL_LOW RO 0x0

27 GPIO38_EDGE_HIGH RO 0x0

26 GPIO38_EDGE_LOW RO 0x0

25 GPIO38_LEVEL_HIGH RO 0x0

24 GPIO38_LEVEL_LOW RO 0x0

23 GPIO37_EDGE_HIGH RO 0x0

22 GPIO37_EDGE_LOW RO 0x0

21 GPIO37_LEVEL_HIGH RO 0x0

20 GPIO37_LEVEL_LOW RO 0x0

19 GPIO36_EDGE_HIGH RO 0x0

18 GPIO36_EDGE_LOW RO 0x0

17 GPIO36_LEVEL_HIGH RO 0x0

16 GPIO36_LEVEL_LOW RO 0x0

15 GPIO35_EDGE_HIGH RO 0x0

14 GPIO35_EDGE_LOW RO 0x0

13 GPIO35_LEVEL_HIGH RO 0x0

12 GPIO35_LEVEL_LOW RO 0x0

11 GPIO34_EDGE_HIGH RO 0x0

10 GPIO34_EDGE_LOW RO 0x0

9 GPIO34_LEVEL_HIGH RO 0x0

8 GPIO34_LEVEL_LOW RO 0x0

7 GPIO33_EDGE_HIGH RO 0x0

6 GPIO33_EDGE_LOW RO 0x0

5 GPIO33_LEVEL_HIGH RO 0x0

4 GPIO33_LEVEL_LOW RO 0x0

3 GPIO32_EDGE_HIGH RO 0x0

2 GPIO32_EDGE_LOW RO 0x0

1 GPIO32_LEVEL_HIGH RO 0x0

0 GPIO32_LEVEL_LOW RO 0x0

IO_BANK0: DORMANT_WAKE_INTS5 Register

Offset: 0x31c
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Description

Interrupt status after masking & forcing for dormant_wake

Table 814.

DORMANT_WAKE_INT

S5 Register

Bits Description Type Reset

31 GPIO47_EDGE_HIGH RO 0x0

30 GPIO47_EDGE_LOW RO 0x0

29 GPIO47_LEVEL_HIGH RO 0x0

28 GPIO47_LEVEL_LOW RO 0x0

27 GPIO46_EDGE_HIGH RO 0x0

26 GPIO46_EDGE_LOW RO 0x0

25 GPIO46_LEVEL_HIGH RO 0x0

24 GPIO46_LEVEL_LOW RO 0x0

23 GPIO45_EDGE_HIGH RO 0x0

22 GPIO45_EDGE_LOW RO 0x0

21 GPIO45_LEVEL_HIGH RO 0x0

20 GPIO45_LEVEL_LOW RO 0x0

19 GPIO44_EDGE_HIGH RO 0x0

18 GPIO44_EDGE_LOW RO 0x0

17 GPIO44_LEVEL_HIGH RO 0x0

16 GPIO44_LEVEL_LOW RO 0x0

15 GPIO43_EDGE_HIGH RO 0x0

14 GPIO43_EDGE_LOW RO 0x0

13 GPIO43_LEVEL_HIGH RO 0x0

12 GPIO43_LEVEL_LOW RO 0x0

11 GPIO42_EDGE_HIGH RO 0x0

10 GPIO42_EDGE_LOW RO 0x0

9 GPIO42_LEVEL_HIGH RO 0x0

8 GPIO42_LEVEL_LOW RO 0x0

7 GPIO41_EDGE_HIGH RO 0x0

6 GPIO41_EDGE_LOW RO 0x0

5 GPIO41_LEVEL_HIGH RO 0x0

4 GPIO41_LEVEL_LOW RO 0x0

3 GPIO40_EDGE_HIGH RO 0x0

2 GPIO40_EDGE_LOW RO 0x0

1 GPIO40_LEVEL_HIGH RO 0x0

0 GPIO40_LEVEL_LOW RO 0x0
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9.11.2. IO - QSPI Bank

The QSPI Bank IO registers start at a base address of 0x40030000 (defined as IO_QSPI_BASE in SDK).

Table 815. List of

IO_QSPI registers
Offset Name Info

0x000 USBPHY_DP_STATUS

0x004 USBPHY_DP_CTRL

0x008 USBPHY_DM_STATUS

0x00c USBPHY_DM_CTRL

0x010 GPIO_QSPI_SCLK_STATUS

0x014 GPIO_QSPI_SCLK_CTRL

0x018 GPIO_QSPI_SS_STATUS

0x01c GPIO_QSPI_SS_CTRL

0x020 GPIO_QSPI_SD0_STATUS

0x024 GPIO_QSPI_SD0_CTRL

0x028 GPIO_QSPI_SD1_STATUS

0x02c GPIO_QSPI_SD1_CTRL

0x030 GPIO_QSPI_SD2_STATUS

0x034 GPIO_QSPI_SD2_CTRL

0x038 GPIO_QSPI_SD3_STATUS

0x03c GPIO_QSPI_SD3_CTRL

0x200 IRQSUMMARY_PROC0_SECURE

0x204 IRQSUMMARY_PROC0_NONSECURE

0x208 IRQSUMMARY_PROC1_SECURE

0x20c IRQSUMMARY_PROC1_NONSECURE

0x210 IRQSUMMARY_COMA_WAKE_SECURE

0x214 IRQSUMMARY_COMA_WAKE_NONSE

CURE

0x218 INTR Raw Interrupts

0x21c PROC0_INTE Interrupt Enable for proc0

0x220 PROC0_INTF Interrupt Force for proc0

0x224 PROC0_INTS Interrupt status after masking & forcing for proc0

0x228 PROC1_INTE Interrupt Enable for proc1

0x22c PROC1_INTF Interrupt Force for proc1

0x230 PROC1_INTS Interrupt status after masking & forcing for proc1

0x234 DORMANT_WAKE_INTE Interrupt Enable for dormant_wake

0x238 DORMANT_WAKE_INTF Interrupt Force for dormant_wake

0x23c DORMANT_WAKE_INTS Interrupt status after masking & forcing for dormant_wake
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IO_QSPI: USBPHY_DP_STATUS Register

Offset: 0x000

Table 816.

USBPHY_DP_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_QSPI: USBPHY_DP_CTRL Register

Offset: 0x004

Table 817.

USBPHY_DP_CTRL

Register

Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output
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Bits Description Type Reset

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x02 → uart1_tx

0x03 → i2c0_sda

0x05 → sio_56

0x1f → null

IO_QSPI: USBPHY_DM_STATUS Register

Offset: 0x008

Table 818.

USBPHY_DM_STATUS

Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_QSPI: USBPHY_DM_CTRL Register

Offset: 0x00c

Table 819.

USBPHY_DM_CTRL

Register

Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt
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Bits Description Type Reset

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x02 → uart1_rx

0x03 → i2c0_scl

0x05 → sio_57

0x1f → null

IO_QSPI: GPIO_QSPI_SCLK_STATUS Register

Offset: 0x010

Table 820.

GPIO_QSPI_SCLK_STA

TUS Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -
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Bits Description Type Reset

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_QSPI: GPIO_QSPI_SCLK_CTRL Register

Offset: 0x014

Table 821.

GPIO_QSPI_SCLK_CTR

L Register

Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low
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Bits Description Type Reset

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → xip_sclk

0x02 → uart1_cts

0x03 → i2c1_sda

0x05 → sio_58

0x0b → uart1_tx

0x1f → null

IO_QSPI: GPIO_QSPI_SS_STATUS Register

Offset: 0x018

Table 822.

GPIO_QSPI_SS_STATU

S Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_QSPI: GPIO_QSPI_SS_CTRL Register

Offset: 0x01c

Table 823.

GPIO_QSPI_SS_CTRL

Register

Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -
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Bits Description Type Reset

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → xip_ss_n_0

0x02 → uart1_rts

0x03 → i2c1_scl

0x05 → sio_59

0x0b → uart1_rx

0x1f → null

IO_QSPI: GPIO_QSPI_SD0_STATUS Register

Offset: 0x020

Table 824.

GPIO_QSPI_SD0_STAT

US Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0
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Bits Description Type Reset

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_QSPI: GPIO_QSPI_SD0_CTRL Register

Offset: 0x024

Table 825.

GPIO_QSPI_SD0_CTRL

Register

Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high
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Bits Description Type Reset

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → xip_sd0

0x02 → uart0_tx

0x03 → i2c0_sda

0x05 → sio_60

0x1f → null

IO_QSPI: GPIO_QSPI_SD1_STATUS Register

Offset: 0x028

Table 826.

GPIO_QSPI_SD1_STAT

US Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_QSPI: GPIO_QSPI_SD1_CTRL Register

Offset: 0x02c

Table 827.

GPIO_QSPI_SD1_CTRL

Register

Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:
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Bits Description Type Reset

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → xip_sd1

0x02 → uart0_rx

0x03 → i2c0_scl

0x05 → sio_61

0x1f → null

IO_QSPI: GPIO_QSPI_SD2_STATUS Register

Offset: 0x030

Table 828.

GPIO_QSPI_SD2_STAT

US Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -
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Bits Description Type Reset

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_QSPI: GPIO_QSPI_SD2_CTRL Register

Offset: 0x034

Table 829.

GPIO_QSPI_SD2_CTRL

Register

Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f
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Bits Description Type Reset

Enumerated values:

0x00 → xip_sd2

0x02 → uart0_cts

0x03 → i2c1_sda

0x05 → sio_62

0x0b → uart0_tx

0x1f → null

IO_QSPI: GPIO_QSPI_SD3_STATUS Register

Offset: 0x038

Table 830.

GPIO_QSPI_SD3_STAT

US Register

Bits Description Type Reset

31:27 Reserved. - -

26 IRQTOPROC: interrupt to processors, after override is applied RO 0x0

25:18 Reserved. - -

17 INFROMPAD: input signal from pad, before filtering and override are applied RO 0x0

16:14 Reserved. - -

13 OETOPAD: output enable to pad after register override is applied RO 0x0

12:10 Reserved. - -

9 OUTTOPAD: output signal to pad after register override is applied RO 0x0

8:0 Reserved. - -

IO_QSPI: GPIO_QSPI_SD3_CTRL Register

Offset: 0x03c

Table 831.

GPIO_QSPI_SD3_CTRL

Register

Bits Description Type Reset

31:30 Reserved. - -

29:28 IRQOVER RW 0x0

Enumerated values:

0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

27:18 Reserved. - -

17:16 INOVER RW 0x0

Enumerated values:

0x0 → don’t invert the peri input

0x1 → invert the peri input
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Bits Description Type Reset

0x2 → drive peri input low

0x3 → drive peri input high

15:14 OEOVER RW 0x0

Enumerated values:

0x0 → drive output enable from peripheral signal selected by funcsel

0x1 → drive output enable from inverse of peripheral signal selected by

funcsel

0x2 → disable output

0x3 → enable output

13:12 OUTOVER RW 0x0

Enumerated values:

0x0 → drive output from peripheral signal selected by funcsel

0x1 → drive output from inverse of peripheral signal selected by funcsel

0x2 → drive output low

0x3 → drive output high

11:5 Reserved. - -

4:0 FUNCSEL: 0-31 → selects pin function according to the gpio table

31 == NULL

RW 0x1f

Enumerated values:

0x00 → xip_sd3

0x02 → uart0_rts

0x03 → i2c1_scl

0x05 → sio_63

0x0b → uart0_rx

0x1f → null

IO_QSPI: IRQSUMMARY_PROC0_SECURE Register

Offset: 0x200

Table 832.

IRQSUMMARY_PROC0

_SECURE Register

Bits Description Type Reset

31:8 Reserved. - -

7 GPIO_QSPI_SD3 RO 0x0

6 GPIO_QSPI_SD2 RO 0x0

5 GPIO_QSPI_SD1 RO 0x0

4 GPIO_QSPI_SD0 RO 0x0

3 GPIO_QSPI_SS RO 0x0

2 GPIO_QSPI_SCLK RO 0x0

1 USBPHY_DM RO 0x0
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Bits Description Type Reset

0 USBPHY_DP RO 0x0

IO_QSPI: IRQSUMMARY_PROC0_NONSECURE Register

Offset: 0x204

Table 833.

IRQSUMMARY_PROC0

_NONSECURE Register

Bits Description Type Reset

31:8 Reserved. - -

7 GPIO_QSPI_SD3 RO 0x0

6 GPIO_QSPI_SD2 RO 0x0

5 GPIO_QSPI_SD1 RO 0x0

4 GPIO_QSPI_SD0 RO 0x0

3 GPIO_QSPI_SS RO 0x0

2 GPIO_QSPI_SCLK RO 0x0

1 USBPHY_DM RO 0x0

0 USBPHY_DP RO 0x0

IO_QSPI: IRQSUMMARY_PROC1_SECURE Register

Offset: 0x208

Table 834.

IRQSUMMARY_PROC1

_SECURE Register

Bits Description Type Reset

31:8 Reserved. - -

7 GPIO_QSPI_SD3 RO 0x0

6 GPIO_QSPI_SD2 RO 0x0

5 GPIO_QSPI_SD1 RO 0x0

4 GPIO_QSPI_SD0 RO 0x0

3 GPIO_QSPI_SS RO 0x0

2 GPIO_QSPI_SCLK RO 0x0

1 USBPHY_DM RO 0x0

0 USBPHY_DP RO 0x0

IO_QSPI: IRQSUMMARY_PROC1_NONSECURE Register

Offset: 0x20c

Table 835.

IRQSUMMARY_PROC1

_NONSECURE Register

Bits Description Type Reset

31:8 Reserved. - -

7 GPIO_QSPI_SD3 RO 0x0

6 GPIO_QSPI_SD2 RO 0x0

5 GPIO_QSPI_SD1 RO 0x0

4 GPIO_QSPI_SD0 RO 0x0

3 GPIO_QSPI_SS RO 0x0
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Bits Description Type Reset

2 GPIO_QSPI_SCLK RO 0x0

1 USBPHY_DM RO 0x0

0 USBPHY_DP RO 0x0

IO_QSPI: IRQSUMMARY_COMA_WAKE_SECURE Register

Offset: 0x210

Table 836.

IRQSUMMARY_COMA_

WAKE_SECURE

Register

Bits Description Type Reset

31:8 Reserved. - -

7 GPIO_QSPI_SD3 RO 0x0

6 GPIO_QSPI_SD2 RO 0x0

5 GPIO_QSPI_SD1 RO 0x0

4 GPIO_QSPI_SD0 RO 0x0

3 GPIO_QSPI_SS RO 0x0

2 GPIO_QSPI_SCLK RO 0x0

1 USBPHY_DM RO 0x0

0 USBPHY_DP RO 0x0

IO_QSPI: IRQSUMMARY_COMA_WAKE_NONSECURE Register

Offset: 0x214

Table 837.

IRQSUMMARY_COMA_

WAKE_NONSECURE

Register

Bits Description Type Reset

31:8 Reserved. - -

7 GPIO_QSPI_SD3 RO 0x0

6 GPIO_QSPI_SD2 RO 0x0

5 GPIO_QSPI_SD1 RO 0x0

4 GPIO_QSPI_SD0 RO 0x0

3 GPIO_QSPI_SS RO 0x0

2 GPIO_QSPI_SCLK RO 0x0

1 USBPHY_DM RO 0x0

0 USBPHY_DP RO 0x0

IO_QSPI: INTR Register

Offset: 0x218

Description

Raw Interrupts

Table 838. INTR

Register
Bits Description Type Reset

31 GPIO_QSPI_SD3_EDGE_HIGH WC 0x0

30 GPIO_QSPI_SD3_EDGE_LOW WC 0x0
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Bits Description Type Reset

29 GPIO_QSPI_SD3_LEVEL_HIGH RO 0x0

28 GPIO_QSPI_SD3_LEVEL_LOW RO 0x0

27 GPIO_QSPI_SD2_EDGE_HIGH WC 0x0

26 GPIO_QSPI_SD2_EDGE_LOW WC 0x0

25 GPIO_QSPI_SD2_LEVEL_HIGH RO 0x0

24 GPIO_QSPI_SD2_LEVEL_LOW RO 0x0

23 GPIO_QSPI_SD1_EDGE_HIGH WC 0x0

22 GPIO_QSPI_SD1_EDGE_LOW WC 0x0

21 GPIO_QSPI_SD1_LEVEL_HIGH RO 0x0

20 GPIO_QSPI_SD1_LEVEL_LOW RO 0x0

19 GPIO_QSPI_SD0_EDGE_HIGH WC 0x0

18 GPIO_QSPI_SD0_EDGE_LOW WC 0x0

17 GPIO_QSPI_SD0_LEVEL_HIGH RO 0x0

16 GPIO_QSPI_SD0_LEVEL_LOW RO 0x0

15 GPIO_QSPI_SS_EDGE_HIGH WC 0x0

14 GPIO_QSPI_SS_EDGE_LOW WC 0x0

13 GPIO_QSPI_SS_LEVEL_HIGH RO 0x0

12 GPIO_QSPI_SS_LEVEL_LOW RO 0x0

11 GPIO_QSPI_SCLK_EDGE_HIGH WC 0x0

10 GPIO_QSPI_SCLK_EDGE_LOW WC 0x0

9 GPIO_QSPI_SCLK_LEVEL_HIGH RO 0x0

8 GPIO_QSPI_SCLK_LEVEL_LOW RO 0x0

7 USBPHY_DM_EDGE_HIGH WC 0x0

6 USBPHY_DM_EDGE_LOW WC 0x0

5 USBPHY_DM_LEVEL_HIGH RO 0x0

4 USBPHY_DM_LEVEL_LOW RO 0x0

3 USBPHY_DP_EDGE_HIGH WC 0x0

2 USBPHY_DP_EDGE_LOW WC 0x0

1 USBPHY_DP_LEVEL_HIGH RO 0x0

0 USBPHY_DP_LEVEL_LOW RO 0x0

IO_QSPI: PROC0_INTE Register

Offset: 0x21c

Description

Interrupt Enable for proc0
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Table 839.

PROC0_INTE Register
Bits Description Type Reset

31 GPIO_QSPI_SD3_EDGE_HIGH RW 0x0

30 GPIO_QSPI_SD3_EDGE_LOW RW 0x0

29 GPIO_QSPI_SD3_LEVEL_HIGH RW 0x0

28 GPIO_QSPI_SD3_LEVEL_LOW RW 0x0

27 GPIO_QSPI_SD2_EDGE_HIGH RW 0x0

26 GPIO_QSPI_SD2_EDGE_LOW RW 0x0

25 GPIO_QSPI_SD2_LEVEL_HIGH RW 0x0

24 GPIO_QSPI_SD2_LEVEL_LOW RW 0x0

23 GPIO_QSPI_SD1_EDGE_HIGH RW 0x0

22 GPIO_QSPI_SD1_EDGE_LOW RW 0x0

21 GPIO_QSPI_SD1_LEVEL_HIGH RW 0x0

20 GPIO_QSPI_SD1_LEVEL_LOW RW 0x0

19 GPIO_QSPI_SD0_EDGE_HIGH RW 0x0

18 GPIO_QSPI_SD0_EDGE_LOW RW 0x0

17 GPIO_QSPI_SD0_LEVEL_HIGH RW 0x0

16 GPIO_QSPI_SD0_LEVEL_LOW RW 0x0

15 GPIO_QSPI_SS_EDGE_HIGH RW 0x0

14 GPIO_QSPI_SS_EDGE_LOW RW 0x0

13 GPIO_QSPI_SS_LEVEL_HIGH RW 0x0

12 GPIO_QSPI_SS_LEVEL_LOW RW 0x0

11 GPIO_QSPI_SCLK_EDGE_HIGH RW 0x0

10 GPIO_QSPI_SCLK_EDGE_LOW RW 0x0

9 GPIO_QSPI_SCLK_LEVEL_HIGH RW 0x0

8 GPIO_QSPI_SCLK_LEVEL_LOW RW 0x0

7 USBPHY_DM_EDGE_HIGH RW 0x0

6 USBPHY_DM_EDGE_LOW RW 0x0

5 USBPHY_DM_LEVEL_HIGH RW 0x0

4 USBPHY_DM_LEVEL_LOW RW 0x0

3 USBPHY_DP_EDGE_HIGH RW 0x0

2 USBPHY_DP_EDGE_LOW RW 0x0

1 USBPHY_DP_LEVEL_HIGH RW 0x0

0 USBPHY_DP_LEVEL_LOW RW 0x0

IO_QSPI: PROC0_INTF Register

Offset: 0x220
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Description

Interrupt Force for proc0

Table 840.

PROC0_INTF Register
Bits Description Type Reset

31 GPIO_QSPI_SD3_EDGE_HIGH RW 0x0

30 GPIO_QSPI_SD3_EDGE_LOW RW 0x0

29 GPIO_QSPI_SD3_LEVEL_HIGH RW 0x0

28 GPIO_QSPI_SD3_LEVEL_LOW RW 0x0

27 GPIO_QSPI_SD2_EDGE_HIGH RW 0x0

26 GPIO_QSPI_SD2_EDGE_LOW RW 0x0

25 GPIO_QSPI_SD2_LEVEL_HIGH RW 0x0

24 GPIO_QSPI_SD2_LEVEL_LOW RW 0x0

23 GPIO_QSPI_SD1_EDGE_HIGH RW 0x0

22 GPIO_QSPI_SD1_EDGE_LOW RW 0x0

21 GPIO_QSPI_SD1_LEVEL_HIGH RW 0x0

20 GPIO_QSPI_SD1_LEVEL_LOW RW 0x0

19 GPIO_QSPI_SD0_EDGE_HIGH RW 0x0

18 GPIO_QSPI_SD0_EDGE_LOW RW 0x0

17 GPIO_QSPI_SD0_LEVEL_HIGH RW 0x0

16 GPIO_QSPI_SD0_LEVEL_LOW RW 0x0

15 GPIO_QSPI_SS_EDGE_HIGH RW 0x0

14 GPIO_QSPI_SS_EDGE_LOW RW 0x0

13 GPIO_QSPI_SS_LEVEL_HIGH RW 0x0

12 GPIO_QSPI_SS_LEVEL_LOW RW 0x0

11 GPIO_QSPI_SCLK_EDGE_HIGH RW 0x0

10 GPIO_QSPI_SCLK_EDGE_LOW RW 0x0

9 GPIO_QSPI_SCLK_LEVEL_HIGH RW 0x0

8 GPIO_QSPI_SCLK_LEVEL_LOW RW 0x0

7 USBPHY_DM_EDGE_HIGH RW 0x0

6 USBPHY_DM_EDGE_LOW RW 0x0

5 USBPHY_DM_LEVEL_HIGH RW 0x0

4 USBPHY_DM_LEVEL_LOW RW 0x0

3 USBPHY_DP_EDGE_HIGH RW 0x0

2 USBPHY_DP_EDGE_LOW RW 0x0

1 USBPHY_DP_LEVEL_HIGH RW 0x0

0 USBPHY_DP_LEVEL_LOW RW 0x0

IO_QSPI: PROC0_INTS Register

Offset: 0x224
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Description

Interrupt status after masking & forcing for proc0

Table 841.

PROC0_INTS Register
Bits Description Type Reset

31 GPIO_QSPI_SD3_EDGE_HIGH RO 0x0

30 GPIO_QSPI_SD3_EDGE_LOW RO 0x0

29 GPIO_QSPI_SD3_LEVEL_HIGH RO 0x0

28 GPIO_QSPI_SD3_LEVEL_LOW RO 0x0

27 GPIO_QSPI_SD2_EDGE_HIGH RO 0x0

26 GPIO_QSPI_SD2_EDGE_LOW RO 0x0

25 GPIO_QSPI_SD2_LEVEL_HIGH RO 0x0

24 GPIO_QSPI_SD2_LEVEL_LOW RO 0x0

23 GPIO_QSPI_SD1_EDGE_HIGH RO 0x0

22 GPIO_QSPI_SD1_EDGE_LOW RO 0x0

21 GPIO_QSPI_SD1_LEVEL_HIGH RO 0x0

20 GPIO_QSPI_SD1_LEVEL_LOW RO 0x0

19 GPIO_QSPI_SD0_EDGE_HIGH RO 0x0

18 GPIO_QSPI_SD0_EDGE_LOW RO 0x0

17 GPIO_QSPI_SD0_LEVEL_HIGH RO 0x0

16 GPIO_QSPI_SD0_LEVEL_LOW RO 0x0

15 GPIO_QSPI_SS_EDGE_HIGH RO 0x0

14 GPIO_QSPI_SS_EDGE_LOW RO 0x0

13 GPIO_QSPI_SS_LEVEL_HIGH RO 0x0

12 GPIO_QSPI_SS_LEVEL_LOW RO 0x0

11 GPIO_QSPI_SCLK_EDGE_HIGH RO 0x0

10 GPIO_QSPI_SCLK_EDGE_LOW RO 0x0

9 GPIO_QSPI_SCLK_LEVEL_HIGH RO 0x0

8 GPIO_QSPI_SCLK_LEVEL_LOW RO 0x0

7 USBPHY_DM_EDGE_HIGH RO 0x0

6 USBPHY_DM_EDGE_LOW RO 0x0

5 USBPHY_DM_LEVEL_HIGH RO 0x0

4 USBPHY_DM_LEVEL_LOW RO 0x0

3 USBPHY_DP_EDGE_HIGH RO 0x0

2 USBPHY_DP_EDGE_LOW RO 0x0

1 USBPHY_DP_LEVEL_HIGH RO 0x0

0 USBPHY_DP_LEVEL_LOW RO 0x0

IO_QSPI: PROC1_INTE Register

Offset: 0x228
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Description

Interrupt Enable for proc1

Table 842.

PROC1_INTE Register
Bits Description Type Reset

31 GPIO_QSPI_SD3_EDGE_HIGH RW 0x0

30 GPIO_QSPI_SD3_EDGE_LOW RW 0x0

29 GPIO_QSPI_SD3_LEVEL_HIGH RW 0x0

28 GPIO_QSPI_SD3_LEVEL_LOW RW 0x0

27 GPIO_QSPI_SD2_EDGE_HIGH RW 0x0

26 GPIO_QSPI_SD2_EDGE_LOW RW 0x0

25 GPIO_QSPI_SD2_LEVEL_HIGH RW 0x0

24 GPIO_QSPI_SD2_LEVEL_LOW RW 0x0

23 GPIO_QSPI_SD1_EDGE_HIGH RW 0x0

22 GPIO_QSPI_SD1_EDGE_LOW RW 0x0

21 GPIO_QSPI_SD1_LEVEL_HIGH RW 0x0

20 GPIO_QSPI_SD1_LEVEL_LOW RW 0x0

19 GPIO_QSPI_SD0_EDGE_HIGH RW 0x0

18 GPIO_QSPI_SD0_EDGE_LOW RW 0x0

17 GPIO_QSPI_SD0_LEVEL_HIGH RW 0x0

16 GPIO_QSPI_SD0_LEVEL_LOW RW 0x0

15 GPIO_QSPI_SS_EDGE_HIGH RW 0x0

14 GPIO_QSPI_SS_EDGE_LOW RW 0x0

13 GPIO_QSPI_SS_LEVEL_HIGH RW 0x0

12 GPIO_QSPI_SS_LEVEL_LOW RW 0x0

11 GPIO_QSPI_SCLK_EDGE_HIGH RW 0x0

10 GPIO_QSPI_SCLK_EDGE_LOW RW 0x0

9 GPIO_QSPI_SCLK_LEVEL_HIGH RW 0x0

8 GPIO_QSPI_SCLK_LEVEL_LOW RW 0x0

7 USBPHY_DM_EDGE_HIGH RW 0x0

6 USBPHY_DM_EDGE_LOW RW 0x0

5 USBPHY_DM_LEVEL_HIGH RW 0x0

4 USBPHY_DM_LEVEL_LOW RW 0x0

3 USBPHY_DP_EDGE_HIGH RW 0x0

2 USBPHY_DP_EDGE_LOW RW 0x0

1 USBPHY_DP_LEVEL_HIGH RW 0x0

0 USBPHY_DP_LEVEL_LOW RW 0x0

IO_QSPI: PROC1_INTF Register

Offset: 0x22c
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Description

Interrupt Force for proc1

Table 843.

PROC1_INTF Register
Bits Description Type Reset

31 GPIO_QSPI_SD3_EDGE_HIGH RW 0x0

30 GPIO_QSPI_SD3_EDGE_LOW RW 0x0

29 GPIO_QSPI_SD3_LEVEL_HIGH RW 0x0

28 GPIO_QSPI_SD3_LEVEL_LOW RW 0x0

27 GPIO_QSPI_SD2_EDGE_HIGH RW 0x0

26 GPIO_QSPI_SD2_EDGE_LOW RW 0x0

25 GPIO_QSPI_SD2_LEVEL_HIGH RW 0x0

24 GPIO_QSPI_SD2_LEVEL_LOW RW 0x0

23 GPIO_QSPI_SD1_EDGE_HIGH RW 0x0

22 GPIO_QSPI_SD1_EDGE_LOW RW 0x0

21 GPIO_QSPI_SD1_LEVEL_HIGH RW 0x0

20 GPIO_QSPI_SD1_LEVEL_LOW RW 0x0

19 GPIO_QSPI_SD0_EDGE_HIGH RW 0x0

18 GPIO_QSPI_SD0_EDGE_LOW RW 0x0

17 GPIO_QSPI_SD0_LEVEL_HIGH RW 0x0

16 GPIO_QSPI_SD0_LEVEL_LOW RW 0x0

15 GPIO_QSPI_SS_EDGE_HIGH RW 0x0

14 GPIO_QSPI_SS_EDGE_LOW RW 0x0

13 GPIO_QSPI_SS_LEVEL_HIGH RW 0x0

12 GPIO_QSPI_SS_LEVEL_LOW RW 0x0

11 GPIO_QSPI_SCLK_EDGE_HIGH RW 0x0

10 GPIO_QSPI_SCLK_EDGE_LOW RW 0x0

9 GPIO_QSPI_SCLK_LEVEL_HIGH RW 0x0

8 GPIO_QSPI_SCLK_LEVEL_LOW RW 0x0

7 USBPHY_DM_EDGE_HIGH RW 0x0

6 USBPHY_DM_EDGE_LOW RW 0x0

5 USBPHY_DM_LEVEL_HIGH RW 0x0

4 USBPHY_DM_LEVEL_LOW RW 0x0

3 USBPHY_DP_EDGE_HIGH RW 0x0

2 USBPHY_DP_EDGE_LOW RW 0x0

1 USBPHY_DP_LEVEL_HIGH RW 0x0

0 USBPHY_DP_LEVEL_LOW RW 0x0

IO_QSPI: PROC1_INTS Register

Offset: 0x230
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Description

Interrupt status after masking & forcing for proc1

Table 844.

PROC1_INTS Register
Bits Description Type Reset

31 GPIO_QSPI_SD3_EDGE_HIGH RO 0x0

30 GPIO_QSPI_SD3_EDGE_LOW RO 0x0

29 GPIO_QSPI_SD3_LEVEL_HIGH RO 0x0

28 GPIO_QSPI_SD3_LEVEL_LOW RO 0x0

27 GPIO_QSPI_SD2_EDGE_HIGH RO 0x0

26 GPIO_QSPI_SD2_EDGE_LOW RO 0x0

25 GPIO_QSPI_SD2_LEVEL_HIGH RO 0x0

24 GPIO_QSPI_SD2_LEVEL_LOW RO 0x0

23 GPIO_QSPI_SD1_EDGE_HIGH RO 0x0

22 GPIO_QSPI_SD1_EDGE_LOW RO 0x0

21 GPIO_QSPI_SD1_LEVEL_HIGH RO 0x0

20 GPIO_QSPI_SD1_LEVEL_LOW RO 0x0

19 GPIO_QSPI_SD0_EDGE_HIGH RO 0x0

18 GPIO_QSPI_SD0_EDGE_LOW RO 0x0

17 GPIO_QSPI_SD0_LEVEL_HIGH RO 0x0

16 GPIO_QSPI_SD0_LEVEL_LOW RO 0x0

15 GPIO_QSPI_SS_EDGE_HIGH RO 0x0

14 GPIO_QSPI_SS_EDGE_LOW RO 0x0

13 GPIO_QSPI_SS_LEVEL_HIGH RO 0x0

12 GPIO_QSPI_SS_LEVEL_LOW RO 0x0

11 GPIO_QSPI_SCLK_EDGE_HIGH RO 0x0

10 GPIO_QSPI_SCLK_EDGE_LOW RO 0x0

9 GPIO_QSPI_SCLK_LEVEL_HIGH RO 0x0

8 GPIO_QSPI_SCLK_LEVEL_LOW RO 0x0

7 USBPHY_DM_EDGE_HIGH RO 0x0

6 USBPHY_DM_EDGE_LOW RO 0x0

5 USBPHY_DM_LEVEL_HIGH RO 0x0

4 USBPHY_DM_LEVEL_LOW RO 0x0

3 USBPHY_DP_EDGE_HIGH RO 0x0

2 USBPHY_DP_EDGE_LOW RO 0x0

1 USBPHY_DP_LEVEL_HIGH RO 0x0

0 USBPHY_DP_LEVEL_LOW RO 0x0

IO_QSPI: DORMANT_WAKE_INTE Register

Offset: 0x234
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Description

Interrupt Enable for dormant_wake

Table 845.

DORMANT_WAKE_INT

E Register

Bits Description Type Reset

31 GPIO_QSPI_SD3_EDGE_HIGH RW 0x0

30 GPIO_QSPI_SD3_EDGE_LOW RW 0x0

29 GPIO_QSPI_SD3_LEVEL_HIGH RW 0x0

28 GPIO_QSPI_SD3_LEVEL_LOW RW 0x0

27 GPIO_QSPI_SD2_EDGE_HIGH RW 0x0

26 GPIO_QSPI_SD2_EDGE_LOW RW 0x0

25 GPIO_QSPI_SD2_LEVEL_HIGH RW 0x0

24 GPIO_QSPI_SD2_LEVEL_LOW RW 0x0

23 GPIO_QSPI_SD1_EDGE_HIGH RW 0x0

22 GPIO_QSPI_SD1_EDGE_LOW RW 0x0

21 GPIO_QSPI_SD1_LEVEL_HIGH RW 0x0

20 GPIO_QSPI_SD1_LEVEL_LOW RW 0x0

19 GPIO_QSPI_SD0_EDGE_HIGH RW 0x0

18 GPIO_QSPI_SD0_EDGE_LOW RW 0x0

17 GPIO_QSPI_SD0_LEVEL_HIGH RW 0x0

16 GPIO_QSPI_SD0_LEVEL_LOW RW 0x0

15 GPIO_QSPI_SS_EDGE_HIGH RW 0x0

14 GPIO_QSPI_SS_EDGE_LOW RW 0x0

13 GPIO_QSPI_SS_LEVEL_HIGH RW 0x0

12 GPIO_QSPI_SS_LEVEL_LOW RW 0x0

11 GPIO_QSPI_SCLK_EDGE_HIGH RW 0x0

10 GPIO_QSPI_SCLK_EDGE_LOW RW 0x0

9 GPIO_QSPI_SCLK_LEVEL_HIGH RW 0x0

8 GPIO_QSPI_SCLK_LEVEL_LOW RW 0x0

7 USBPHY_DM_EDGE_HIGH RW 0x0

6 USBPHY_DM_EDGE_LOW RW 0x0

5 USBPHY_DM_LEVEL_HIGH RW 0x0

4 USBPHY_DM_LEVEL_LOW RW 0x0

3 USBPHY_DP_EDGE_HIGH RW 0x0

2 USBPHY_DP_EDGE_LOW RW 0x0

1 USBPHY_DP_LEVEL_HIGH RW 0x0

0 USBPHY_DP_LEVEL_LOW RW 0x0

IO_QSPI: DORMANT_WAKE_INTF Register

Offset: 0x238
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Description

Interrupt Force for dormant_wake

Table 846.

DORMANT_WAKE_INT

F Register

Bits Description Type Reset

31 GPIO_QSPI_SD3_EDGE_HIGH RW 0x0

30 GPIO_QSPI_SD3_EDGE_LOW RW 0x0

29 GPIO_QSPI_SD3_LEVEL_HIGH RW 0x0

28 GPIO_QSPI_SD3_LEVEL_LOW RW 0x0

27 GPIO_QSPI_SD2_EDGE_HIGH RW 0x0

26 GPIO_QSPI_SD2_EDGE_LOW RW 0x0

25 GPIO_QSPI_SD2_LEVEL_HIGH RW 0x0

24 GPIO_QSPI_SD2_LEVEL_LOW RW 0x0

23 GPIO_QSPI_SD1_EDGE_HIGH RW 0x0

22 GPIO_QSPI_SD1_EDGE_LOW RW 0x0

21 GPIO_QSPI_SD1_LEVEL_HIGH RW 0x0

20 GPIO_QSPI_SD1_LEVEL_LOW RW 0x0

19 GPIO_QSPI_SD0_EDGE_HIGH RW 0x0

18 GPIO_QSPI_SD0_EDGE_LOW RW 0x0

17 GPIO_QSPI_SD0_LEVEL_HIGH RW 0x0

16 GPIO_QSPI_SD0_LEVEL_LOW RW 0x0

15 GPIO_QSPI_SS_EDGE_HIGH RW 0x0

14 GPIO_QSPI_SS_EDGE_LOW RW 0x0

13 GPIO_QSPI_SS_LEVEL_HIGH RW 0x0

12 GPIO_QSPI_SS_LEVEL_LOW RW 0x0

11 GPIO_QSPI_SCLK_EDGE_HIGH RW 0x0

10 GPIO_QSPI_SCLK_EDGE_LOW RW 0x0

9 GPIO_QSPI_SCLK_LEVEL_HIGH RW 0x0

8 GPIO_QSPI_SCLK_LEVEL_LOW RW 0x0

7 USBPHY_DM_EDGE_HIGH RW 0x0

6 USBPHY_DM_EDGE_LOW RW 0x0

5 USBPHY_DM_LEVEL_HIGH RW 0x0

4 USBPHY_DM_LEVEL_LOW RW 0x0

3 USBPHY_DP_EDGE_HIGH RW 0x0

2 USBPHY_DP_EDGE_LOW RW 0x0

1 USBPHY_DP_LEVEL_HIGH RW 0x0

0 USBPHY_DP_LEVEL_LOW RW 0x0

IO_QSPI: DORMANT_WAKE_INTS Register

Offset: 0x23c
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Description

Interrupt status after masking & forcing for dormant_wake

Table 847.

DORMANT_WAKE_INT

S Register

Bits Description Type Reset

31 GPIO_QSPI_SD3_EDGE_HIGH RO 0x0

30 GPIO_QSPI_SD3_EDGE_LOW RO 0x0

29 GPIO_QSPI_SD3_LEVEL_HIGH RO 0x0

28 GPIO_QSPI_SD3_LEVEL_LOW RO 0x0

27 GPIO_QSPI_SD2_EDGE_HIGH RO 0x0

26 GPIO_QSPI_SD2_EDGE_LOW RO 0x0

25 GPIO_QSPI_SD2_LEVEL_HIGH RO 0x0

24 GPIO_QSPI_SD2_LEVEL_LOW RO 0x0

23 GPIO_QSPI_SD1_EDGE_HIGH RO 0x0

22 GPIO_QSPI_SD1_EDGE_LOW RO 0x0

21 GPIO_QSPI_SD1_LEVEL_HIGH RO 0x0

20 GPIO_QSPI_SD1_LEVEL_LOW RO 0x0

19 GPIO_QSPI_SD0_EDGE_HIGH RO 0x0

18 GPIO_QSPI_SD0_EDGE_LOW RO 0x0

17 GPIO_QSPI_SD0_LEVEL_HIGH RO 0x0

16 GPIO_QSPI_SD0_LEVEL_LOW RO 0x0

15 GPIO_QSPI_SS_EDGE_HIGH RO 0x0

14 GPIO_QSPI_SS_EDGE_LOW RO 0x0

13 GPIO_QSPI_SS_LEVEL_HIGH RO 0x0

12 GPIO_QSPI_SS_LEVEL_LOW RO 0x0

11 GPIO_QSPI_SCLK_EDGE_HIGH RO 0x0

10 GPIO_QSPI_SCLK_EDGE_LOW RO 0x0

9 GPIO_QSPI_SCLK_LEVEL_HIGH RO 0x0

8 GPIO_QSPI_SCLK_LEVEL_LOW RO 0x0

7 USBPHY_DM_EDGE_HIGH RO 0x0

6 USBPHY_DM_EDGE_LOW RO 0x0

5 USBPHY_DM_LEVEL_HIGH RO 0x0

4 USBPHY_DM_LEVEL_LOW RO 0x0

3 USBPHY_DP_EDGE_HIGH RO 0x0

2 USBPHY_DP_EDGE_LOW RO 0x0

1 USBPHY_DP_LEVEL_HIGH RO 0x0

0 USBPHY_DP_LEVEL_LOW RO 0x0
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9.11.3. Pad Control - User Bank

The User Bank Pad Control registers start at a base address of 0x40038000 (defined as PADS_BANK0_BASE in SDK).

Table 848. List of

PADS_BANK0

registers

Offset Name Info

0x00 VOLTAGE_SELECT Voltage select. Per bank control

0x04 GPIO0

0x08 GPIO1

0x0c GPIO2

0x10 GPIO3

0x14 GPIO4

0x18 GPIO5

0x1c GPIO6

0x20 GPIO7

0x24 GPIO8

0x28 GPIO9

0x2c GPIO10

0x30 GPIO11

0x34 GPIO12

0x38 GPIO13

0x3c GPIO14

0x40 GPIO15

0x44 GPIO16

0x48 GPIO17

0x4c GPIO18

0x50 GPIO19

0x54 GPIO20

0x58 GPIO21

0x5c GPIO22

0x60 GPIO23

0x64 GPIO24

0x68 GPIO25

0x6c GPIO26

0x70 GPIO27

0x74 GPIO28

0x78 GPIO29

0x7c GPIO30

0x80 GPIO31
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Offset Name Info

0x84 GPIO32

0x88 GPIO33

0x8c GPIO34

0x90 GPIO35

0x94 GPIO36

0x98 GPIO37

0x9c GPIO38

0xa0 GPIO39

0xa4 GPIO40

0xa8 GPIO41

0xac GPIO42

0xb0 GPIO43

0xb4 GPIO44

0xb8 GPIO45

0xbc GPIO46

0xc0 GPIO47

0xc4 SWCLK

0xc8 SWD

PADS_BANK0: VOLTAGE_SELECT Register

Offset: 0x00

Table 849.

VOLTAGE_SELECT

Register

Bits Description Type Reset

31:1 Reserved. - -

0 Voltage select. Per bank control RW 0x0

Enumerated values:

0x0 → Set voltage to 3.3V (DVDD >= 2V5)

0x1 → Set voltage to 1.8V (DVDD ⇐ 1V8)

PADS_BANK0: GPIO0 Register

Offset: 0x04

Table 850. GPIO0

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1
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Bits Description Type Reset

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO1 Register

Offset: 0x08

Table 851. GPIO1

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO2 Register

Offset: 0x0c

Table 852. GPIO2

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0
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Bits Description Type Reset

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO3 Register

Offset: 0x10

Table 853. GPIO3

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO4 Register

Offset: 0x14

Table 854. GPIO4

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0
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Bits Description Type Reset

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO5 Register

Offset: 0x18

Table 855. GPIO5

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO6 Register

Offset: 0x1c

Table 856. GPIO6

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1
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Bits Description Type Reset

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO7 Register

Offset: 0x20

Table 857. GPIO7

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO8 Register

Offset: 0x24

Table 858. GPIO8

Register
Bits Description Type Reset

31:9 Reserved. - -
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Bits Description Type Reset

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO9 Register

Offset: 0x28

Table 859. GPIO9

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO10 Register

Offset: 0x2c
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Table 860. GPIO10

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO11 Register

Offset: 0x30

Table 861. GPIO11

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO12 Register

Offset: 0x34
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Table 862. GPIO12

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO13 Register

Offset: 0x38

Table 863. GPIO13

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO14 Register

Offset: 0x3c
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Table 864. GPIO14

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO15 Register

Offset: 0x40

Table 865. GPIO15

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO16 Register

Offset: 0x44
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Table 866. GPIO16

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO17 Register

Offset: 0x48

Table 867. GPIO17

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO18 Register

Offset: 0x4c
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Table 868. GPIO18

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO19 Register

Offset: 0x50

Table 869. GPIO19

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO20 Register

Offset: 0x54
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Table 870. GPIO20

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO21 Register

Offset: 0x58

Table 871. GPIO21

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO22 Register

Offset: 0x5c
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Table 872. GPIO22

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO23 Register

Offset: 0x60

Table 873. GPIO23

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO24 Register

Offset: 0x64
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Table 874. GPIO24

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO25 Register

Offset: 0x68

Table 875. GPIO25

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO26 Register

Offset: 0x6c
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Table 876. GPIO26

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO27 Register

Offset: 0x70

Table 877. GPIO27

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO28 Register

Offset: 0x74
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Table 878. GPIO28

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO29 Register

Offset: 0x78

Table 879. GPIO29

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO30 Register

Offset: 0x7c
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Table 880. GPIO30

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO31 Register

Offset: 0x80

Table 881. GPIO31

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO32 Register

Offset: 0x84
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Table 882. GPIO32

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO33 Register

Offset: 0x88

Table 883. GPIO33

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO34 Register

Offset: 0x8c
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Table 884. GPIO34

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO35 Register

Offset: 0x90

Table 885. GPIO35

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO36 Register

Offset: 0x94
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Table 886. GPIO36

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO37 Register

Offset: 0x98

Table 887. GPIO37

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO38 Register

Offset: 0x9c
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Table 888. GPIO38

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO39 Register

Offset: 0xa0

Table 889. GPIO39

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO40 Register

Offset: 0xa4
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Table 890. GPIO40

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO41 Register

Offset: 0xa8

Table 891. GPIO41

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO42 Register

Offset: 0xac
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Table 892. GPIO42

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO43 Register

Offset: 0xb0

Table 893. GPIO43

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO44 Register

Offset: 0xb4
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Table 894. GPIO44

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO45 Register

Offset: 0xb8

Table 895. GPIO45

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO46 Register

Offset: 0xbc

RP2350 Datasheet

9.11. List of Registers 796



Table 896. GPIO46

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: GPIO47 Register

Offset: 0xc0

Table 897. GPIO47

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x0

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: SWCLK Register

Offset: 0xc4
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Table 898. SWCLK

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x0

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x1

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x1

2 PDE: Pull down enable RW 0x0

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: SWD Register

Offset: 0xc8

Table 899. SWD

Register
Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x0

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x1

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x1

2 PDE: Pull down enable RW 0x0

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0
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9.11.4. Pad Control - QSPI Bank

The QSPI Bank Pad Control registers start at a base address of 0x40040000 (defined as PADS_QSPI_BASE in SDK).

Table 900. List of

PADS_QSPI registers
Offset Name Info

0x00 VOLTAGE_SELECT Voltage select. Per bank control

0x04 GPIO_QSPI_SCLK

0x08 GPIO_QSPI_SD0

0x0c GPIO_QSPI_SD1

0x10 GPIO_QSPI_SD2

0x14 GPIO_QSPI_SD3

0x18 GPIO_QSPI_SS

PADS_QSPI: VOLTAGE_SELECT Register

Offset: 0x00

Table 901.

VOLTAGE_SELECT

Register

Bits Description Type Reset

31:1 Reserved. - -

0 Voltage select. Per bank control RW 0x0

Enumerated values:

0x0 → Set voltage to 3.3V (DVDD >= 2V5)

0x1 → Set voltage to 1.8V (DVDD ⇐ 1V8)

PADS_QSPI: GPIO_QSPI_SCLK Register

Offset: 0x04

Table 902.

GPIO_QSPI_SCLK

Register

Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x1

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1
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Bits Description Type Reset

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_QSPI: GPIO_QSPI_SD0 Register

Offset: 0x08

Table 903.

GPIO_QSPI_SD0

Register

Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x1

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_QSPI: GPIO_QSPI_SD1 Register

Offset: 0x0c

Table 904.

GPIO_QSPI_SD1

Register

Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x1

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x0

2 PDE: Pull down enable RW 0x1
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Bits Description Type Reset

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_QSPI: GPIO_QSPI_SD2 Register

Offset: 0x10

Table 905.

GPIO_QSPI_SD2

Register

Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x1

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x1

2 PDE: Pull down enable RW 0x0

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_QSPI: GPIO_QSPI_SD3 Register

Offset: 0x14

Table 906.

GPIO_QSPI_SD3

Register

Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x1

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x1
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Bits Description Type Reset

2 PDE: Pull down enable RW 0x0

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_QSPI: GPIO_QSPI_SS Register

Offset: 0x18

Table 907.

GPIO_QSPI_SS

Register

Bits Description Type Reset

31:9 Reserved. - -

8 ISO: Pad isolation control. Remove this once the pad is configured by

software.

RW 0x1

7 OD: Output disable. Has priority over output enable from peripherals RW 0x0

6 IE: Input enable RW 0x1

5:4 DRIVE: Drive strength. RW 0x1

Enumerated values:

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

3 PUE: Pull up enable RW 0x1

2 PDE: Pull down enable RW 0x0

1 SCHMITT: Enable schmitt trigger RW 0x1

0 SLEWFAST: Slew rate control. 1 = Fast, 0 = Slow RW 0x0
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Chapter 10. Security
This chapter describes the RP2350 security model and the hardware that implements it. This chapter contains two

separate overviews: one for Arm, and one for RISC-V. The architectures have distinct security features and levels of

bootrom support.

10.1. Overview (Arm)

RP2350 provides hardware and bootrom security features for three purposes:

1. Prevent unauthorised code from running on the device

2. Prevent unauthorised reading of user code and data

3. Isolate trusted and untrusted software, running concurrently on the device, from one another

Point 1 is referred to in this datasheet as secure boot. Secure boot is a prerequisite to points two and three, since

running unauthorised code on the device allows that code to access device internals. The bootrom secure boot

implementation and related hardware security features implement the root of trust for secure RP2350 applications;

bootrom contents are fixed at design time and immutable.

Point 2 is referred to in this datasheet as encrypted boot. Encrypted boot is an additional layer of protection which

makes it more difficult to clone devices, or dump and reverse-engineer device firmware. Encrypted boot is implemented

using a signed decryption stage prepended to a binary as a post-build step. Encrypted boot stores decryption keys in on-

device OTP memory, which can be locked down after use.

Point 3 allows applications to enforce internal security boundaries such that one part of an application being

compromised does not allow access to critical hardware, such as the voltage regulator or protected OTP storage used

for cryptographic keys.

Hardware features such as the glitch detector and redundancy coprocessor mitigate common classes of fault injection

attacks and help maintain boot integrity, even when an attacker has physical access.

10.1.1. Secure Boot

You can permanently alter blank RP2350 devices to restrict code execution to only your own code. With further

alteration, you can revoke the ability to run older software versions.

The RP2350 bootrom uses a cryptographic signature to distinguish authentic from inauthentic binaries. A signature is a

hash encrypted with the user’s private key. You can include signatures in binary images compiled for RP2350 devices.

Signatures use the SHA-256 hash algorithm and secp256k1 ECDSA elliptic curve cipher to authenticate binaries. The

bootrom authenticates binaries using the following steps:

1. Calculate a SHA-256 hash using image code and data when loading the binary.

2. Decrypt the image’s signature using the user’s public key, which is also stored in the image.

3. Check the included, decrypted signature against the calculated SHA-256 hash value for the binary.

4. Check the image’s public key against a SHA-256 key fingerprint stored in OTP.

If both checks succeed, the bootrom assumes someone in possession of the private key registered by an OTP public

key fingerprint calculated the same SHA-256 hash. Based on the properties of hash functions, the bootrom assumes

that the binary contents has not been altered since the signature was generated. This proves that this is an authentic

binary signed by the owner of the private key, so the bootrom will entertain the idea of running the binary.

The image may also have an anti-rollback version number (rollback.major.minor) that the bootrom checks against a

counter stored in OTP. The bootrom refuses to boot images with rollback versions lower than the OTP counter number,
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and automatically increments the OTP counter upon booting a higher version. This is useful if older binaries have known

vulnerabilities, as installing a newer version automatically revokes the ability to downgrade to older versions.

Incrementing the major and minor versions allows you to express a preference for newer, higher binary versions without

blocking execution of older, lower-versioned binaries. For more discussion of bootrom anti-rollback support, see Section

5.1.11.

RP2350 can boot from any of the following sources:

• Directly on external flash via execute-in-place (XIP)

• Loading into SRAM from external flash

• Loading into SRAM from user-specified OTP contents

• Loading into SRAM via USB or other serial bootloader

• Loading into SRAM via debugger

RP2350 enforces signatures on all of these boot media, with the exception of the debugger, when an external host has

control of RP2350’s processors and can completely skip execution of the bootrom. Disabling debug is part of the

secure boot enable procedure outlined in Section 10.5.

Although signatures can be enforced on a flash execute-in-place binary, we do not recommend it. With this boot media,

flash contents can change between checks and execution. For example, an attacker could emulate a QSPI device using

an FPGA or another microcontroller. Instead, load your complete application into SRAM and verify it in-place before

execution. RP2350 has sufficient SRAM capacity to do this with most applications.

Pure-software secure boot implementations are susceptible to fault injection attacks when an attacker has physical

access to the device, as is often the case for embedded hardware. Our very own Pico is a popular tool for voltage fault

injection. Instead of potentially booting an unauthorised binary, the RP2350 glitch detectors (Section 10.9) and

redundancy coprocessor (Section 3.6.3) mitigate fault injection attacks by detecting out-of-envelope operation and

bringing the system to a safe halt. To enable the glitch detectors, set the CRIT1.GLITCH_DETECTOR_ENABLE OTP flag.

The redundancy coprocessor is always used by the bootrom.

To learn more about how to enable secure boot on a blank RP2350 device, see Section 10.5.

10.1.2. Encrypted Boot

RP2350 contains 8 kB of OTP, which can be protected at 128-byte page granularity. This protection comes in the

following forms:

• hard locks, which permanently revoke read or write access by Secure or Non-secure code

• soft locks, which revoke permissions only until the next reset of the OTP block.

Encrypted boot stores decryption keys in OTP, and protects the keys from later boot stages using soft locks.

RP2350 supports loading encrypted binaries from external flash into SRAM, which can then decrypt their own contents

in-place. Many implementations are possible, but as a concrete example, this section describes the flash-resident binary

encryption support provided by the SDK and picotool.

1. First, the developer should process a plain SRAM binary into an encrypted binary. To encrypt your binary, the SDK

completes the following steps after a build:

a. Sign the payload binary using the boot private key, if you didn’t already do this during the build.

b. Encrypt the payload binary using the encryption key (not the private key).

c. Append a small decryption stage to the binary that contains a modified copy of the payload’s IMAGE_DEF (the

original is unreadable, as it is encrypted).

d. Sign the decryption stage together with the encrypted contents, using the boot private key.

Encrypted binaries boot as packaged RAM binaries (Section 5.1.10), decrypting themselves in-place. To boot an

encrypted binary, the bootrom completes the following steps:
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1. Loads the entire encrypted binary into SRAM.

2. Verifies the signature of the decryption stage, then jumps into the decryption stage, comprised of the following

steps:

a. Reads the decryption key stored in OTP (this stage may soft-lock that OTP page until next boot).

b. Decrypts the encrypted binary payload using the decryption key.

c. Calls the chain_image() bootrom API (Section 5.4.8.2) on the decrypted region of SRAM.

3. Verifies the decrypted binary payload in the same manner as it verified the decryption stage, then jumps into the

binary.

The decryption stage is not itself encrypted, but it is signed. Storing the decryption stage in the clear does not present

additional risk because the source code for the decryption stage is open source and highly scrutinised. Without the

decryption key, the encrypted payload cannot be read. Because the key only exists on-device, static analysis of the

encrypted binary cannot recover it.

Resetting the OTP to reopen soft locks also resets the processors. Upon reset, the processors re-run the decryption

stage and re-lock the page with the decryption key. The BOOTDIS register allows the bootrom to detect OTP resets and

disable the watchdog and POWMAN boot vectors. This ensures that the decryption stage is not skipped and the key

remains protected.

 NOTE

The decryption stage is deliberately not included in the bootrom, so that it can be updated. The bootrom handles

only public key cryptography, so there is no concern of power analysis attacks, but this reasoning does not apply to

the decryption stage. Power analysis mitigations require iteration as techniques improve.

This scheme supports designs where the decryption key is accessible only to the decryption stage. When the decryption

key is also required at runtime to read additional encrypted flash contents on-demand, processor security features and

OTP page locks can restrict key access to a small subset of trusted code, such as a TF-M Secure Storage service.

In addition to software mitigations provided by the decryption stage, RP2350 supports randomising the frequency

controls of its internal ring oscillator (Section 8.3) to make it more difficult to recover the system clock from power

traces.

Encrypted execute-in-place is not supported in hardware, but the spare 32 MB cached XIP window (Section 4.4.1) can

provide software-defined execute-in-place by trapping cache misses and pinning at the miss address. This may be used

to transparently decrypt data on-demand from external flash.

10.1.3. Isolating Trusted and Untrusted Software

In security- or safety-critical applications, access must be limited to those who need it. For example, a JPEG decode

library should not be able to access the core voltage regulator and increase DVDD to 3.3 V (unless you are

decompressing a very large JPEG). The Cortex-M33 processors contain hardware that separates two execution

contexts, known as Secure and Non-secure, and enforces a number of invariants between them, such as:

• Non-secure code cannot access Secure memory

• The Secure context cannot execute Non-secure memory

• Non-secure code cannot directly access peripherals managed by Secure code

• Non-secure code cannot prevent Secure interrupts from being serviced

By making less of your code able to access your most critical hardware and data, you reduce the chance of accidentally

exposing this critical hardware and data to the outside world. For a high-level explanation of how the Cortex-M33

implements this, see Section 10.2. For full details, see Armv8-M Architecture Reference Manual.

To make the programming model of Secure and Non-secure software consistent, and to avoid overhead in Non-secure

code, RP2350 extends Secure/Non-secure separation throughout the system. For example, DMA channels can be
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assigned for Secure or Non-secure use. Using this extended separation, Non-secure code can use DMA transfers to

accelerate peripheral accesses without endangering security model invariants (such as Non-secure code using the DMA

to read Secure memory).

The key hardware features that enable Secure/Non-secure separation throughout the system are:

• The Cortex-M33’s implementation of the Secure and Non-secure states (Section 10.2)

• The DMA’s implementation of matching per-channel security states (Section 10.7)

• The system-level bus access filtering implemented by ACCESSCTRL (Section 10.6)

• Peripheral-level filtering, such as the per-GPIO access filtering of the SIO GPIO registers (Section 3.1.1)

10.2. Processor Security Features (Arm)

The Cortex-M33 processors on RP2350 are configured with the following standard Arm security features:

• Support for the Armv8-M Security extension

• 8× security attribution unit (SAU) regions

• 8× Secure and 8× Non-secure memory protection unit (MPU) regions

These features are covered exhaustively in the Armv8-M Architecture Reference Manual, the Cortex-M33 Technical

Reference Manual, and the Cortex-M33 section of this datasheet (Section 3.7). This section gives a high-level overview

of these features, as well as a description of the implementation-defined attribution unit included in RP2350.

10.2.1. Background

The Cortex-M33 processors on RP2350 support the Armv8-M Security Extension. Hardware in the processor maintains

two separate execution contexts, called the Secure and Non-secure domains. Access to important data, such as

cryptographic keys, or hardware, such as the system voltage regulator, can be limited to the Secure domain. Separating

execution into these domains prevents Non-secure execution from interfering with Secure execution. When this

datasheet uses the (capitalised) terms Secure and Non-secure, we refer to these two Arm security domains and the

associated bus attributes.

Code running in the Non-secure domain is not necessarily malicious. Consider complex protocols and stacks like USB,

whose implementation is expected to be easily-exploited and prone to fatal crashes. Restricting such software to the

Non-secure domain helps isolate critical software from the consequences of those design decisions. The RP2350

bootrom, for example, runs all of its USB code in the Non-secure domain so the USB code does not have to be

considered in the design of critical parts of the bootrom, such as boot signature enforcement.

At any given moment, an Armv8-M processor implementing the Security Extension is in either the Secure execution

state or the Non-secure execution state. Based on the current state, the processor limits the executable memory

regions and the memory regions accessible via load/store instructions. All of the processor’s AHB accesses are tagged

according to the state that originated them, so that peripherals and the system bus fabric itself can filter transfers

based on security domain, for example, using the access control lists described in Section 10.6.

An internal processor peripheral called the Security Attribution Unit (SAU) defines, from the processor’s point of view,

which address ranges are accessible to the Secure and Non-secure domains. The number of distinct address ranges

which can be decoded by the SAU is limited, which is why system-level bus filters are provided for assigning peripherals

to security domains.

The processor changes security state synchronously using special function calls between states. When an interrupt

routed to the Secure domain occurs, the processor can also change security state asynchronously if in the Non-secure

state, or vice versa (if enabled).

Both Cortex-M33 processors on RP2350 implement the security extension, so each processor maintains its own Secure

and Non-secure context. The Secure and Non-secure contexts on each core can communicate, for example using

shared memory or the Secure/Non-secure SIO mailbox FIFOs. If the cores are used symmetrically (i.e. a shared dual-
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core Secure context, and a shared dual-core Non-secure context), software must synchronise the processor SAUs so

that memory writable from a Non-secure context on one core is not executable in a Secure context on the other core.

The DMA MPU, which supports the same region shape and count as the SAU, must also be kept synchronised with the

processor SAUs.

It may be simpler to use the cores asymmetrically, implementing all Secure services on one core only. The

FORCE_CORE_NS register can make all core 1 accesses appear Non-secure on the system bus, for the purpose of

security filtering implemented in the fabric and peripherals, as well as for SIO registers banked over Secure/Non-secure.

However, this does not affect PPB accesses. This does not affect core 1 internally, so it can still maintain its own

Secure/Non-secure context. However, system hardware will consider all core 1 accesses Non-secure.

10.2.2. IDAU Address Map

The Cortex-M33 provides an implementation-defined attribution unit (IDAU) interface, which allows system

implementers such as Raspberry Pi Ltd to augment the security attribution map defined by the SAU. The RP2350 IDAU

is a hardwired address decode network, with no user configuration. Its address map is as follows:

Start (hex) End (hex) Contents IDAU Attribute

00000000 000042ff Arm boot Exempt

00004300 00007dff USB/RISC-V boot Non-secure (instruction fetch), Exempt (load/store)

00007e00 00007fff BootROM SGs Secure and Non-secure-Callable

10000000 1fffffff XIP Non-secure

20000000 20081fff SRAM Non-secure

40000000 4fffffff APB Exempt

50000000 5fffffff AHB Exempt

d0000000 dfffffff SIO Exempt

Exempt regions are not checked by the processor against its current security state. Effectively, the processor considers

these regions Secure when the processor is in the Secure state, and Non-secure when the processor is in the Non-

secure state.

Peripherals are marked Exempt because you are expected to assign them to security domains using the controls in

ACCESSCTRL (Section 10.6), since there are not enough SAU regions to perform meaningful peripheral assignment, and

since having separate Secure and Non-secure mirrors of the peripherals is an unnecessary source of programming

errors.

The SIO is marked Exempt because it is internally banked over Secure and Non-secure based on the bus access’s

security attribute, which generally matches the processor’s current security state.

As peripherals are Exempt, RP2350 forbids processor instruction fetch from peripherals, by physically disconnecting the

bus. Processors fail to fetch instructions from peripherals even if the default MPU permissions are overridden to allow

execute permission. Exempt regions permit both Secure and Non-secure access, and TrustZone-M forbids the

combination of Non-secure-writable and Secure-executable, so this is a necessary restriction. The same consideration

does not apply to the bootrom as the ROM is physically immutable.

The first part of the bootrom is Exempt, because it contains routines expected to be called by both Secure and Non-

secure software in cases where it may not be desirable for Non-secure code to elevate through a Secure Gateway. An

example of this is the bootrom memcpy() implementation. Code in the Exempt ROM region is hardened against return-

oriented programming (ROP) attacks using the redundancy coprocessor’s stack canary instructions.

After a certain watermark, which may vary depending on ROM revision, the ROM becomes IDAU-Non-secure for the

purpose of instruction fetch. If an Non-secure SAU region is placed over the bootrom (which is expected to be the case

in general, to get the correct NSC attribute on the Secure Gateway region), this part of the ROM becomes non-

executable to Secure code. Consequently, this part of the bootrom is not ROP-hardened. This part of the ROM contains
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the NSBOOT (including USB boot) implementation, as well as a RISC-V Armv6-M emulator which can be used to emulate

most of the bootrom on RISC-V processors. This region is only implemented on the instruction-side IDAU query: this is

an implementation detail which improves timing on the load/store IDAU query, and does not have security implications

(given the mask ROM is inherently unwritable) other than that the tt instruction will not be aware of this region.

The final 512 bytes of the bootrom has the Secure, Non-secure-Callable (NSC) attribute. This means it contains entry

points for Non-secure calls into Secure code. Note that for this IDAU-defined attribute to take effect, the SAU-defined

attribute for this range must also be NSC or lower. The recommended configuration is a single Non-secure SAU region

covering the entirety of the bootrom. The bootrom exits into user code with the SAU enabled, and SAU region 7 active

and covering the entirety of the bootrom.

XIP and SRAM are Non-secure in the IDAU, as they are expected to be divided using the SAU. When the SAU and IDAU

differ, if the IDAU attribute is not Exempt, the processor takes whichever is greater out of the SAU and IDAU attribute, in

the order Secure > Non-secure-Callable > Non-secure.

Addresses not listed in this table are not decoded by the system AHB crossbar, and will return bus faults if accessed. In

these ranges, the ROM’s IDAU map is mirrored every 32 kB up to 0x0fffffff. The remaining addresses in the IDAU are

Non-secure.

10.3. Overview (RISC-V)

The RP2350 bootrom does not implement secure boot for RISC-V processors. Secure flash boot can still be

implemented on RISC-V by storing secure boot code in OTP and disabling other boot media via the BOOT_FLAGS0 row

in OTP. However, this is not supported natively by the RP2350 bootrom.

The RISC-V processors on RP2350 implement Machine and User execution modes, and the standard Physical Memory

Protection unit (PMP), which can be used to enforce internal security or safety boundaries. See Section 10.4.

Non-processor-specific hardware security features, such as debug disable OTP flags and the glitch detectors, are

functionally identically between Arm and RISC-V. However, the redundancy coprocessor (RCP) is not accessible from

the RISC-V processors, as it uses a Cortex-M33-specific coprocessor interface.

10.4. Processor Security Features (RISC-V)

The Hazard3 processors on RP2350 implement the following standard RISC-V security features:

• Machine and User execution modes (M-mode and U-mode)

• The Physical Memory Protection unit (PMP)

M-mode has full access to the processor’s internal status registers, but U-mode does not. The processor’s bus

accesses are tagged with its current execution mode and filtered by ACCESSCTRL bus filters, as described in Section

10.6.2.

The processor starts in M-mode, and enters M-mode upon taking any trap (exception or interrupt). It enters U-mode only

by executing a return-from-M-mode instruction, mret, with previous privilege set to U-mode. This means all interrupts

initially target M-mode, but can be de-privileged to U-mode via software routing. Because stacks are software-managed

on RISC-V, software cooperation is required to fully separate the two execution contexts, though there are enough

hardware hooks to make this possible. For more details about interrupts and exceptions on RISC-V, and how they relate

to the core’s privilege levels, see Section 3.8.4.

The PMP is a memory protection unit built into each RISC-V processor that filters every instruction execution address

and every load/store address against a list of permission regions. The Hazard3 instances on RP2350 are configured

with 8 PMP regions each, with a 32-byte granule and naturally-aligned power-of-2 region support only.

Additionally, there are 3 PMP-hardwired regions, which set a default User-mode RW permission on peripherals and a

User-mode RWX permission on the ROM. These are assigned region numbers 8 through 10. Because lower-numbered

regions always take precedence, any dynamically-configured region can override these hardwired regions.
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There are many more peripherals than PMP regions. In typical use-cases, the programmer assigns these peripherals

blanket U-mode RW permissions. Because hardwired regions are much cheaper than dynamically-configured regions, it

was more efficient to use hardwired regions. These regions are included because the peripherals are expected to be

assigned using ACCESSCTRL, rather than PMP. The hardwired regions play a similar role to the Exempt regions in the

RP2350 Cortex-M IDAU.

Together with the ACCESSCTRL filters, these PMP regions are an effective mechanism for partitioning between

addresses accessible from U-mode and addresses not accessible from U-mode. Hazard3 includes one custom PMP

feature, the PMPCFGM0 register, which allows the PMP to set M-mode permissions as well as U-mode without locking.

This is useful for preventing accidental (but not deliberate) access to a memory region.

10.5. Secure Boot Enable Procedure

To enable secure boot:

1. Program at least one public key fingerprint into OTP, starting at BOOTKEY0_0.

2. Mark programmed keys as valid by programming BOOT_FLAGS1.KEY_VALID.

3. Optionally, mark unused keys as invalid by programming BOOT_FLAGS1.KEY_INVALID — this is recommended to

prevent a malicious actor installing their own boot keys at a later date.

◦ KEY_INVALID takes precedence over KEY_VALID, which prevents more keys from being added later.

◦ Program KEY_INVALID with additional bits to revoke keys at a later time.

4. Disable debugging by programming CRIT1.DEBUG_DISABLE, CRIT1.SECURE_DEBUG_DISABLE, or installing a

debug key (Section 3.5.9.2).

5. Optionally, enable the glitch detector (Section 10.9) by programming CRIT1.GLITCH_DETECTOR_ENABLE and

setting the desired sensitivity in CRIT1.GLITCH_DETECTOR_SENS.

6. Disable unused boot options such as USB and UART boot in BOOT_FLAGS0.

7. Enable secure boot, by programming CRIT1.SECURE_BOOT_ENABLE.

 WARNING

This procedure is irreversible. Before programming, ensure that you are using the correct public key, correctly

hashed. picotool supports programming keys into OTP from standard PEM files, performing the fingerprint hashing

automatically. Programming the wrong key will make it impossible to run code on your device.

10.6. Access Control

The access control registers (ACCESSCTRL) define permissions required to access GPIOs and bus endpoints such as

peripherals and memory devices.

For each bus endpoint (e.g. PIO0), a bus access control register such as PIO0 controls which AHB5 managers can

access it, and at which bus security levels. This register has further implications, such as access to the RESETS controls

for that block. For a full explanation of the bus access control registers, see Section 10.6.2.

For each GPIO, including the QSPI and USB DP/DM pins, a bit in the GPIO_NSMASK0 and GPIO_NSMASK1 register can

be set to make that GPIO accessible to both the Secure and Non-secure domains, or clear to make it Secure-only. This

has system-wide implications, controlling:

• GPIO visibility to the Non-secure SIO

• Non-secure code access to that GPIO’s IO muxing and pad control registers
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• GPIO selection access to peripherals accessible only via Secure bus access

ACCESSCTRL registers are always fully readable by the processors in any security or privilege state, so that Non-secure

software can enumerate the hardware it is allowed to access. However, writes to ACCESSCTRL are strictly controlled.

Unprivileged writes, and writes from the DMA, return a bus fault. Writes from a Non-secure, Privileged (NSP) context are

generally ignored, with the sole exception of the Non-secure, Unprivileged (NSU) bits in bus access control registers. The

NSU bits are Non-secure-writable if and only if the NSP bit is set.

Writes can be further locked down using the LOCK register. This causes writes from specific managers to be ignored.

For a full list of effects, see Section 10.6.1.

To reduce the risk of accidental writes, all ACCESSCTRL registers, except GPIO_NSMASK0 and GPIO_NSMASK1, require

the 16-bit value 0xacce to be present in the most-significant 16 bits of the write data. To achieve this, OR the value

0xacce0000 with your write data. Atomic SET/CLR/XOR alias writes must also include this value. DMA writes are also

forbidden, to avoid accidentally wiping permissions with a misconfigured DMA channel.

 IMPORTANT

Writes with the upper 16 bits not equal to 0xacce both fail and return a bus fault (instead of silently leaving the

permissions unchanged).

Finally, the FORCE_CORE_NS register makes core 1’s bus accesses appear to be Non-secure at system level. This

supports schemes where all Secure services run on core 0, and therefore core 1 should not be able to access Secure

hardware.

10.6.1. GPIO Access Control

The GPIO Non-secure access mask registers, GPIO_NSMASK0 and GPIO_NSMASK1, contain one bit per GPIO. The

layout of these two registers matches the layout of the SIO GPIO registers (Section 3.1.3), including the positions of the

QSPI and USB DM/DP bits. Each GPIO is accessible to Non-secure software if and only if the relevant GPIO_NSMASK bit is

set. This prevents Non-secure software from interfering with or observing GPIOs used by Secure software.

All system-level GPIO controls, such as the IO and pad control registers, are shared by Secure and Non-secure code.

However, access to these registers is filtered on a GPIO-by-GPIO basis according to the GPIO_NSMASK registers. This

means that the same code can run unmodified in either a Secure or Non-secure context, and Secure software does not

have to implement any interfaces for Non-secure GPIO access, provided that the appropriate GPIO security mask has

been configured.

Setting a GPIO_NSMASK bit has the following effects on the corresponding GPIO:

• The relevant SIO GPIO register bit (Section 3.1.3) becomes accessible through bus access to the Non-secure SIO.

◦ Otherwise the bit is read-only zero.

• The relevant SIO GPIO register bit becomes accessible to Non-secure code using GPIO coprocessor instructions

(Section 3.6.1).

◦ Otherwise the bit is read-only zero.

◦ Non-secure code may execute GPIO coprocessor instructions if and only if coprocessor 0 is granted to Non-

secure in NSACR, and enabled in the Non-secure PPB instance of the CPACR register.

• The relevant IO control register (Section 9.11.1 or Section 9.11.2) becomes accessible to Non-secure code.

◦ Otherwise it is read-only zero.

• GPIO functions for Secure-only peripherals can not be selected on this GPIO

◦ Attempting to select such a peripheral will select the null function (0x1f) instead

◦ If a Secure-only peripheral is selected at the time that this GPIO is made Non-secure-accessible, then the

selection will be changed to the null function.
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• The relevant pad control register (Section 9.11.3 or Section 9.11.4) becomes accessible to Non-secure code.

◦ Otherwise it is read-only zero.

• Interrupts for this GPIO are routed to the Non-secure GPIO interrupts, IO_IRQ_BANK0_NS and IO_IRQ_QSPI_NS, rather than

the default Secure interrupts, IO_IRQ_BANK0 and IO_IRQ_QSPI. (See Section 3.2 for the system IRQ listing.)

• The relevant GPIO interrupt control and status bits, e.g. PROC0_INTS0, become accessible to Non-secure code.

◦ Otherwise they are read-only zero.

• The GPIO can be read by PIO instances which are Non-secure-accessible.

◦ Otherwise it reads as zero.

◦ Like the SIO, PIO can observe GPIOs even when not function-selected, so additional logic masks Secure-only

GPIOs from Non-secure-accessible PIO instances

 NOTE

Due to RP2350-E3, on RP2350A (QFN-60), access to the PADS_BANK0 registers is controlled by the wrong bits of

GPIO_NSMASK. On QFN-60 you must disable Non-secure access to the pads registers, and implement a software

interface for Non-secure code to manipulate its assigned PADS registers.

10.6.2. Bus Access Control

The bus access control registers define which combinations of Secure/Non-secure and Privileged/Unprivileged are

permitted to access each downstream bus port. This mechanism also assigns peripherals to security domains.

Additionally, the bus access control registers define which upstream sources (processor 0/1, DMA or debugger) are

permitted.

Hardware filters on the system bus (Section 2.1) check each access against the permission list for its destination. The

filter shoots down accesses which do not meet the criteria specified in ACCESSCTRL register for that destination; the

access does not reach its destination, and instead a bus error is returned directly from the bus fabric. There is no effect

on the destination register, and no data is returned. Bus errors result in an exception on the offending processor, or an

error flag raised on the offending DMA channel.

There are 8 bits in each register (for example the ADC register). The SP, SU, NSP and NSU bits correspond to the processor

security state from which a bus transfer originated, or the security level of the originating DMA channel:

• The SP bit allows access from:

◦ Privileged software running in the Secure domain on an Arm processor

◦ Machine-mode software on a RISC-V processor

◦ A DMA channel with a security level of SP (3)

• The SU bit must be set, in addition to the SP bit, to allow access from:

◦ User (unprivileged) software running in the Secure domain on an Arm processor

◦ A DMA channel with a security level of SU (2)

• The NSP bit allow access from:

◦ Privileged software running in the Non-secure domain on an Arm processor

◦ Privileged Arm software running in the Secure domain on core 1, when FORCE_CORE_NS.CORE1 is set

◦ Machine-mode RISC-V software running on core 1, when FORCE_CORE_NS.CORE1 is set

◦ A DMA channel with a security level of NSP (1)

• The NSU bit must be set, in addition to the NSP bit, to allow access from:
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◦ User (unprivileged) software running in the Non-secure domain on an Arm processor

◦ User (unprivileged) Arm software running on core 1 when FORCE_CORE_NS.CORE1 is set

◦ User-mode software on a RISC-V processor

◦ A DMA channel with a security level of NSU (0)

 NOTE

The security/privilege of AHB Mem-AP accesses are configurable, and have the same bus security/privilege level as

load/stores from the corresponding security/privilege context on that processor. There is one AHB Mem-AP for each

Arm processor.

 NOTE

RISC-V Debug-mode memory accesses have the same bus security/privilege level as Machine-mode software

running on that processor, and RISC-V System Bus Access through the Debug Module has the same bus

security/privilege level as Machine-mode software running on core 1.

The DBG, DMA, CORE1 and CORE0 bits must be set in addition to the relevant security/privilege bits, in order to allow access

from a particular bus manager. The DBG bit corresponds to any of:

• Accesses from either Arm processor’s AHB Mem-AP

• Accesses from either RISC-V core in Debug mode

• Accesses from RISC-V System Bus Access

Separating debug access controls from software-driven processor access means that, even with software locked out of

a register block, the developer may still be able to access that block from the debugger.

Most bus access permission bits are Secure, Privileged-writable only. The sole exception is the NSU bit, which is also

writable from a Non-secure, Privileged context if and only if the NSP bit in the same register is set. The intention is that

once the Secure domain has granted Non-secure access, it is then up to Non-secure software to decide whether to

grant Unprivileged access within the Non-secure domain.

10.6.2.1. Default Permissions

Most bus endpoints default to Secure access only, from any master, but there are exceptions. The following default to

fully open access (any combination of security/privilege) from any master (for example, because they are expected to

be divided up by the processors' internal memory protection hardware):

• Boot ROM (Section 4.1)

• XIP (Section 4.4)

• SRAM (Section 4.2)

• SYSINFO (Section 12.15.1)

The following default to Secure, Privileged access (SP) only, from any manager:

• XIP_AUX (DMA FIFOs) (Section 4.4.3)

• SHA-256 (Section 12.13)

The following default to Secure, Privileged access (SP) only, with DMA access forbidden by default:

• POWMAN (Chapter 6), which includes power management and voltage regulator control registers

• True random number generator (Section 12.12)

• Clock control registers (Section 8.1)
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• XOSC (Section 8.2)

• ROSC (Section 8.3)

• SYSCFG (Section 12.15.2)

• PLLs (Section 8.6)

• Tick generators (Section 8.5)

• Watchdog (Section 12.9)

• PSM (Section 7.4)

• XIP control registers (Section 4.4.5)

• QMI (Section 12.14)

• CoreSight trace DMA FIFO

• CoreSight self-hosted debug window

Any bus endpoint not in any of the above lists defaults to Secure access only, from any manager,

10.6.2.2. Other Effects of Bus Permissions

To avoid contradictory configurations such as a Secure-only peripheral being selected on a Non-secure-accessible

GPIO, and to improve portability between Secure and Non-secure software, the bus access permission lists propagate

to certain other system-level hardware:

• The reset controls for a given peripheral in the RESETS block (Section 7.5) are Non-secure-accessible if and only if

the peripheral itself is Non-secure-accessible.

◦ Non-secure access to the RESETS block itself must also be granted via the RESETS bus access register.

• Non-secure-inaccessible peripherals cannot be function-selected on Non-secure-accessible GPIOs. Attempting to

do so selects the null GPIO function (0x1f).

• PIO blocks which are accessible to Non-secure, and those which are not, can not perform cross-PIO operations

such as observing each other’s interrupt flags.

• PIO blocks which are accessible to Non-secure can not read Secure-only GPIOs.

• DMA channels below the least-set effective permission bit (ignoring SU when SP is clear, and ignoring NSU when NSP

is clear) are disconnected from that peripheral’s DREQ signals.

10.6.2.3. Blocks Without Bus Access Control

There are four memory-mapped blocks which do not have bus access control registers in ACCESSCTRL:

• The Cortex-M PPB is internal to the processors, and is banked internally over Secure/Non-secure.

• The SIO is also banked internally over Secure/Non-secure access.

• ACCESSCTRL itself is always world-readable and has its own internal filtering for writes.

• Boot RAM is hardwired for Secure access only.

10.6.3. List of Registers

The ACCESSCTRL registers start at a base address of 0x40060000 (defined as ACCESSCTRL_BASE in the SDK).

RP2350 Datasheet

10.6. Access Control 813



Table 908. List of

ACCESSCTRL

registers

Offset Name Info

0x00 LOCK Once a LOCK bit is written to 1, ACCESSCTRL silently ignores

writes from that master. LOCK is writable only by a Secure,

Privileged processor or debugger.

LOCK bits are only writable when their value is zero. Once set,

they can never be cleared, except by a full reset of ACCESSCTRL

Setting the LOCK bit does not affect whether an access raises a

bus error. Unprivileged writes, or writes from the DMA, will

continue to raise bus errors. All other accesses will continue not

to.

0x04 FORCE_CORE_NS Force core 1’s bus accesses to always be Non-secure, no matter

the core’s internal state.

Useful for schemes where one core is designated as the Non-

secure core, since some peripherals may filter individual

registers internally based on security state but not on master ID.

0x08 CFGRESET Write 1 to reset all ACCESSCTRL configuration, except for the

LOCK and FORCE_CORE_NS registers.

This bit is used in the RP2350 bootrom to quickly restore

ACCESSCTRL to a known state during the boot path.

Note that, like all registers in ACCESSCTRL, this register is not

writable when the writer’s corresponding LOCK bit is set,

therefore a master which has been locked out of ACCESSCTRL

can not use the CFGRESET register to disturb its contents.

0x0c GPIO_NSMASK0 Control whether GPIO0…31 are accessible to Non-secure code.

Writable only by a Secure, Privileged processor or debugger.

0 → Secure access only

1 → Secure + Non-secure access

0x10 GPIO_NSMASK1 Control whether GPIO32..47 are accessible to Non-secure code,

and whether QSPI and USB bitbang are accessible through the

Non-secure SIO. Writable only by a Secure, Privileged processor

or debugger.

0x14 ROM Control access to ROM. Defaults to fully open access.

0x18 XIP_MAIN Control access to XIP_MAIN. Defaults to fully open access.

0x1c SRAM0 Control access to SRAM0. Defaults to fully open access.

0x20 SRAM1 Control access to SRAM1. Defaults to fully open access.

0x24 SRAM2 Control access to SRAM2. Defaults to fully open access.

0x28 SRAM3 Control access to SRAM3. Defaults to fully open access.

0x2c SRAM4 Control access to SRAM4. Defaults to fully open access.

0x30 SRAM5 Control access to SRAM5. Defaults to fully open access.

0x34 SRAM6 Control access to SRAM6. Defaults to fully open access.

0x38 SRAM7 Control access to SRAM7. Defaults to fully open access.
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Offset Name Info

0x3c SRAM8 Control access to SRAM8. Defaults to fully open access.

0x40 SRAM9 Control access to SRAM9. Defaults to fully open access.

0x44 DMA Control access to DMA. Defaults to Secure access from any

master.

0x48 USBCTRL Control access to USBCTRL. Defaults to Secure access from any

master.

0x4c PIO0 Control access to PIO0. Defaults to Secure access from any

master.

0x50 PIO1 Control access to PIO1. Defaults to Secure access from any

master.

0x54 PIO2 Control access to PIO2. Defaults to Secure access from any

master.

0x58 CORESIGHT_TRACE Control access to CORESIGHT_TRACE. Defaults to Secure,

Privileged processor or debug access only.

0x5c CORESIGHT_PERIPH Control access to CORESIGHT_PERIPH. Defaults to Secure,

Privileged processor or debug access only.

0x60 SYSINFO Control access to SYSINFO. Defaults to fully open access.

0x64 RESETS Control access to RESETS. Defaults to Secure access from any

master.

0x68 IO_BANK0 Control access to IO_BANK0. Defaults to Secure access from

any master.

0x6c IO_BANK1 Control access to IO_BANK1. Defaults to Secure access from

any master.

0x70 PADS_BANK0 Control access to PADS_BANK0. Defaults to Secure access from

any master.

0x74 PADS_QSPI Control access to PADS_QSPI. Defaults to Secure access from

any master.

0x78 BUSCTRL Control access to BUSCTRL. Defaults to Secure access from any

master.

0x7c ADC Control access to ADC. Defaults to Secure access from any

master.

0x80 HSTX Control access to HSTX. Defaults to Secure access from any

master.

0x84 I2C0 Control access to I2C0. Defaults to Secure access from any

master.

0x88 I2C1 Control access to I2C1. Defaults to Secure access from any

master.

0x8c PWM Control access to PWM. Defaults to Secure access from any

master.

0x90 SPI0 Control access to SPI0. Defaults to Secure access from any

master.

0x94 SPI1 Control access to SPI1. Defaults to Secure access from any

master.
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Offset Name Info

0x98 TIMER0 Control access to TIMER0. Defaults to Secure access from any

master.

0x9c TIMER1 Control access to TIMER1. Defaults to Secure access from any

master.

0xa0 UART0 Control access to UART0. Defaults to Secure access from any

master.

0xa4 UART1 Control access to UART1. Defaults to Secure access from any

master.

0xa8 OTP Control access to OTP. Defaults to Secure access from any

master.

0xac TBMAN Control access to TBMAN. Defaults to Secure access from any

master.

0xb0 POWMAN Control access to POWMAN. Defaults to Secure, Privileged

processor or debug access only.

0xb4 TRNG Control access to TRNG. Defaults to Secure, Privileged processor

or debug access only.

0xb8 SHA256 Control access to SHA256. Defaults to Secure, Privileged access

only.

0xbc SYSCFG Control access to SYSCFG. Defaults to Secure, Privileged

processor or debug access only.

0xc0 CLOCKS Control access to CLOCKS. Defaults to Secure, Privileged

processor or debug access only.

0xc4 XOSC Control access to XOSC. Defaults to Secure, Privileged processor

or debug access only.

0xc8 ROSC Control access to ROSC. Defaults to Secure, Privileged processor

or debug access only.

0xcc PLL_SYS Control access to PLL_SYS. Defaults to Secure, Privileged

processor or debug access only.

0xd0 PLL_USB Control access to PLL_USB. Defaults to Secure, Privileged

processor or debug access only.

0xd4 TICKS Control access to TICKS. Defaults to Secure, Privileged

processor or debug access only.

0xd8 WATCHDOG Control access to WATCHDOG. Defaults to Secure, Privileged

processor or debug access only.

0xdc PSM Control access to PSM. Defaults to Secure, Privileged processor

or debug access only.

0xe0 XIP_CTRL Control access to XIP_CTRL. Defaults to Secure, Privileged

processor or debug access only.

0xe4 XIP_QMI Control access to XIP_QMI. Defaults to Secure, Privileged

processor or debug access only.

0xe8 XIP_AUX Control access to XIP_AUX. Defaults to Secure, Privileged access

only.
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ACCESSCTRL: LOCK Register

Offset: 0x00

Description

Once a LOCK bit is written to 1, ACCESSCTRL silently ignores writes from that master. LOCK is writable only by a

Secure, Privileged processor or debugger.

LOCK bits are only writable when their value is zero. Once set, they can never be cleared, except by a full reset of

ACCESSCTRL

Setting the LOCK bit does not affect whether an access raises a bus error. Unprivileged writes, or writes from the DMA,

will continue to raise bus errors. All other accesses will continue not to.

Table 909. LOCK

Register
Bits Description Type Reset

31:4 Reserved. - -

3 DEBUG RW 0x0

2 DMA RO 0x1

1 CORE1 RW 0x0

0 CORE0 RW 0x0

ACCESSCTRL: FORCE_CORE_NS Register

Offset: 0x04

Description

Force core 1’s bus accesses to always be Non-secure, no matter the core’s internal state.

Useful for schemes where one core is designated as the Non-secure core, since some peripherals may filter individual

registers internally based on security state but not on master ID.

Table 910.

FORCE_CORE_NS

Register

Bits Description Type Reset

31:2 Reserved. - -

1 CORE1 RW 0x0

0 Reserved. - -

ACCESSCTRL: CFGRESET Register

Offset: 0x08
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Table 911. CFGRESET

Register
Bits Description Type Reset

31:1 Reserved. - -

0 Write 1 to reset all ACCESSCTRL configuration, except for the LOCK and

FORCE_CORE_NS registers.

This bit is used in the RP2350 bootrom to quickly restore ACCESSCTRL to a

known state during the boot path.

Note that, like all registers in ACCESSCTRL, this register is not writable when

the writer’s corresponding LOCK bit is set, therefore a master which has been

locked out of ACCESSCTRL can not use the CFGRESET register to disturb its

contents.

SC 0x0

ACCESSCTRL: GPIO_NSMASK0 Register

Offset: 0x0c

Table 912.

GPIO_NSMASK0

Register

Bits Description Type Reset

31:0 Control whether GPIO0…31 are accessible to Non-secure code. Writable only

by a Secure, Privileged processor or debugger.

0 → Secure access only

1 → Secure + Non-secure access

RW 0x00000000

ACCESSCTRL: GPIO_NSMASK1 Register

Offset: 0x10

Description

Control whether GPIO32..47 are accessible to Non-secure code, and whether QSPI and USB bitbang are accessible

through the Non-secure SIO. Writable only by a Secure, Privileged processor or debugger.

Table 913.

GPIO_NSMASK1

Register

Bits Description Type Reset

31:28 QSPI_SD RW 0x0

27 QSPI_CSN RW 0x0

26 QSPI_SCK RW 0x0

25 USB_DM RW 0x0

24 USB_DP RW 0x0

23:16 Reserved. - -

15:0 GPIO RW 0x0000

ACCESSCTRL: ROM Register

Offset: 0x14

Description

Control whether debugger, DMA, core 0 and core 1 can access ROM, and at what security/privilege levels they can

do so.

Defaults to fully open access.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which
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becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 914. ROM

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, ROM can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, ROM can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, ROM can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, ROM can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, ROM can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, ROM can be accessed from a Secure, Unprivileged

context.

RW 0x1

1 NSP: If 1, ROM can be accessed from a Non-secure, Privileged context. RW 0x1

0 NSU: If 1, and NSP is also set, ROM can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x1

ACCESSCTRL: XIP_MAIN Register

Offset: 0x18

Description

Control whether debugger, DMA, core 0 and core 1 can access XIP_MAIN, and at what security/privilege levels they

can do so.

Defaults to fully open access.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 915. XIP_MAIN

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, XIP_MAIN can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, XIP_MAIN can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, XIP_MAIN can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, XIP_MAIN can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, XIP_MAIN can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, XIP_MAIN can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, XIP_MAIN can be accessed from a Non-secure, Privileged context. RW 0x1
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, XIP_MAIN can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x1

ACCESSCTRL: SRAM0 Register

Offset: 0x1c

Description

Control whether debugger, DMA, core 0 and core 1 can access SRAM0, and at what security/privilege levels they

can do so.

Defaults to fully open access.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 916. SRAM0

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SRAM0 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SRAM0 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, SRAM0 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SRAM0 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SRAM0 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SRAM0 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, SRAM0 can be accessed from a Non-secure, Privileged context. RW 0x1

0 NSU: If 1, and NSP is also set, SRAM0 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x1

ACCESSCTRL: SRAM1 Register

Offset: 0x20

Description

Control whether debugger, DMA, core 0 and core 1 can access SRAM1, and at what security/privilege levels they

can do so.

Defaults to fully open access.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 917. SRAM1

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SRAM1 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SRAM1 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, SRAM1 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SRAM1 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SRAM1 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SRAM1 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, SRAM1 can be accessed from a Non-secure, Privileged context. RW 0x1

0 NSU: If 1, and NSP is also set, SRAM1 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x1

ACCESSCTRL: SRAM2 Register

Offset: 0x24

Description

Control whether debugger, DMA, core 0 and core 1 can access SRAM2, and at what security/privilege levels they

can do so.

Defaults to fully open access.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 918. SRAM2

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SRAM2 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SRAM2 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, SRAM2 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SRAM2 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SRAM2 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SRAM2 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, SRAM2 can be accessed from a Non-secure, Privileged context. RW 0x1
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, SRAM2 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x1

ACCESSCTRL: SRAM3 Register

Offset: 0x28

Description

Control whether debugger, DMA, core 0 and core 1 can access SRAM3, and at what security/privilege levels they

can do so.

Defaults to fully open access.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 919. SRAM3

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SRAM3 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SRAM3 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, SRAM3 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SRAM3 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SRAM3 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SRAM3 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, SRAM3 can be accessed from a Non-secure, Privileged context. RW 0x1

0 NSU: If 1, and NSP is also set, SRAM3 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x1

ACCESSCTRL: SRAM4 Register

Offset: 0x2c

Description

Control whether debugger, DMA, core 0 and core 1 can access SRAM4, and at what security/privilege levels they

can do so.

Defaults to fully open access.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 920. SRAM4

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SRAM4 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SRAM4 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, SRAM4 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SRAM4 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SRAM4 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SRAM4 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, SRAM4 can be accessed from a Non-secure, Privileged context. RW 0x1

0 NSU: If 1, and NSP is also set, SRAM4 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x1

ACCESSCTRL: SRAM5 Register

Offset: 0x30

Description

Control whether debugger, DMA, core 0 and core 1 can access SRAM5, and at what security/privilege levels they

can do so.

Defaults to fully open access.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 921. SRAM5

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SRAM5 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SRAM5 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, SRAM5 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SRAM5 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SRAM5 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SRAM5 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, SRAM5 can be accessed from a Non-secure, Privileged context. RW 0x1
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, SRAM5 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x1

ACCESSCTRL: SRAM6 Register

Offset: 0x34

Description

Control whether debugger, DMA, core 0 and core 1 can access SRAM6, and at what security/privilege levels they

can do so.

Defaults to fully open access.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 922. SRAM6

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SRAM6 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SRAM6 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, SRAM6 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SRAM6 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SRAM6 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SRAM6 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, SRAM6 can be accessed from a Non-secure, Privileged context. RW 0x1

0 NSU: If 1, and NSP is also set, SRAM6 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x1

ACCESSCTRL: SRAM7 Register

Offset: 0x38

Description

Control whether debugger, DMA, core 0 and core 1 can access SRAM7, and at what security/privilege levels they

can do so.

Defaults to fully open access.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 923. SRAM7

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SRAM7 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SRAM7 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, SRAM7 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SRAM7 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SRAM7 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SRAM7 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, SRAM7 can be accessed from a Non-secure, Privileged context. RW 0x1

0 NSU: If 1, and NSP is also set, SRAM7 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x1

ACCESSCTRL: SRAM8 Register

Offset: 0x3c

Description

Control whether debugger, DMA, core 0 and core 1 can access SRAM8, and at what security/privilege levels they

can do so.

Defaults to fully open access.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 924. SRAM8

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SRAM8 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SRAM8 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, SRAM8 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SRAM8 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SRAM8 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SRAM8 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, SRAM8 can be accessed from a Non-secure, Privileged context. RW 0x1
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, SRAM8 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x1

ACCESSCTRL: SRAM9 Register

Offset: 0x40

Description

Control whether debugger, DMA, core 0 and core 1 can access SRAM9, and at what security/privilege levels they

can do so.

Defaults to fully open access.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 925. SRAM9

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SRAM9 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SRAM9 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, SRAM9 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SRAM9 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SRAM9 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SRAM9 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, SRAM9 can be accessed from a Non-secure, Privileged context. RW 0x1

0 NSU: If 1, and NSP is also set, SRAM9 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x1

ACCESSCTRL: DMA Register

Offset: 0x44

Description

Control whether debugger, DMA, core 0 and core 1 can access DMA, and at what security/privilege levels they can

do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 926. DMA

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, DMA can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, DMA can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, DMA can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, DMA can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, DMA can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, DMA can be accessed from a Secure, Unprivileged

context.

RW 0x1

1 NSP: If 1, DMA can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, DMA can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: USBCTRL Register

Offset: 0x48

Description

Control whether debugger, DMA, core 0 and core 1 can access USBCTRL, and at what security/privilege levels they

can do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 927. USBCTRL

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, USBCTRL can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, USBCTRL can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, USBCTRL can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, USBCTRL can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, USBCTRL can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, USBCTRL can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, USBCTRL can be accessed from a Non-secure, Privileged context. RW 0x0
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, USBCTRL can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: PIO0 Register

Offset: 0x4c

Description

Control whether debugger, DMA, core 0 and core 1 can access PIO0, and at what security/privilege levels they can

do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 928. PIO0

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, PIO0 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, PIO0 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, PIO0 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, PIO0 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, PIO0 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, PIO0 can be accessed from a Secure, Unprivileged

context.

RW 0x1

1 NSP: If 1, PIO0 can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, PIO0 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: PIO1 Register

Offset: 0x50

Description

Control whether debugger, DMA, core 0 and core 1 can access PIO1, and at what security/privilege levels they can

do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 929. PIO1

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, PIO1 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, PIO1 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, PIO1 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, PIO1 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, PIO1 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, PIO1 can be accessed from a Secure, Unprivileged

context.

RW 0x1

1 NSP: If 1, PIO1 can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, PIO1 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: PIO2 Register

Offset: 0x54

Description

Control whether debugger, DMA, core 0 and core 1 can access PIO2, and at what security/privilege levels they can

do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 930. PIO2

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, PIO2 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, PIO2 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, PIO2 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, PIO2 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, PIO2 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, PIO2 can be accessed from a Secure, Unprivileged

context.

RW 0x1

1 NSP: If 1, PIO2 can be accessed from a Non-secure, Privileged context. RW 0x0
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, PIO2 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: CORESIGHT_TRACE Register

Offset: 0x58

Description

Control whether debugger, DMA, core 0 and core 1 can access CORESIGHT_TRACE, and at what security/privilege

levels they can do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 931.

CORESIGHT_TRACE

Register

Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, CORESIGHT_TRACE can be accessed by the debugger, at

security/privilege levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, CORESIGHT_TRACE can be accessed by the DMA, at

security/privilege levels permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, CORESIGHT_TRACE can be accessed by core 1, at

security/privilege levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, CORESIGHT_TRACE can be accessed by core 0, at

security/privilege levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, CORESIGHT_TRACE can be accessed from a Secure, Privileged

context.

RW 0x1

2 SU: If 1, and SP is also set, CORESIGHT_TRACE can be accessed from a

Secure, Unprivileged context.

RW 0x0

1 NSP: If 1, CORESIGHT_TRACE can be accessed from a Non-secure, Privileged

context.

RW 0x0

0 NSU: If 1, and NSP is also set, CORESIGHT_TRACE can be accessed from a

Non-secure, Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: CORESIGHT_PERIPH Register

Offset: 0x5c

Description

Control whether debugger, DMA, core 0 and core 1 can access CORESIGHT_PERIPH, and at what security/privilege

levels they can do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 932.

CORESIGHT_PERIPH

Register

Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, CORESIGHT_PERIPH can be accessed by the debugger, at

security/privilege levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, CORESIGHT_PERIPH can be accessed by the DMA, at

security/privilege levels permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, CORESIGHT_PERIPH can be accessed by core 1, at

security/privilege levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, CORESIGHT_PERIPH can be accessed by core 0, at

security/privilege levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, CORESIGHT_PERIPH can be accessed from a Secure, Privileged

context.

RW 0x1

2 SU: If 1, and SP is also set, CORESIGHT_PERIPH can be accessed from a

Secure, Unprivileged context.

RW 0x0

1 NSP: If 1, CORESIGHT_PERIPH can be accessed from a Non-secure, Privileged

context.

RW 0x0

0 NSU: If 1, and NSP is also set, CORESIGHT_PERIPH can be accessed from a

Non-secure, Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: SYSINFO Register

Offset: 0x60

Description

Control whether debugger, DMA, core 0 and core 1 can access SYSINFO, and at what security/privilege levels they

can do so.

Defaults to fully open access.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 933. SYSINFO

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SYSINFO can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SYSINFO can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, SYSINFO can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SYSINFO can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SYSINFO can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SYSINFO can be accessed from a Secure,

Unprivileged context.

RW 0x1
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Bits Description Type Reset

1 NSP: If 1, SYSINFO can be accessed from a Non-secure, Privileged context. RW 0x1

0 NSU: If 1, and NSP is also set, SYSINFO can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x1

ACCESSCTRL: RESETS Register

Offset: 0x64

Description

Control whether debugger, DMA, core 0 and core 1 can access RESETS, and at what security/privilege levels they

can do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 934. RESETS

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, RESETS can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, RESETS can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, RESETS can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, RESETS can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, RESETS can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, RESETS can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, RESETS can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, RESETS can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: IO_BANK0 Register

Offset: 0x68

Description

Control whether debugger, DMA, core 0 and core 1 can access IO_BANK0, and at what security/privilege levels they

can do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 935. IO_BANK0

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, IO_BANK0 can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, IO_BANK0 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, IO_BANK0 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, IO_BANK0 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, IO_BANK0 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, IO_BANK0 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, IO_BANK0 can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, IO_BANK0 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: IO_BANK1 Register

Offset: 0x6c

Description

Control whether debugger, DMA, core 0 and core 1 can access IO_BANK1, and at what security/privilege levels they

can do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 936. IO_BANK1

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, IO_BANK1 can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, IO_BANK1 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, IO_BANK1 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, IO_BANK1 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, IO_BANK1 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, IO_BANK1 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, IO_BANK1 can be accessed from a Non-secure, Privileged context. RW 0x0
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, IO_BANK1 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: PADS_BANK0 Register

Offset: 0x70

Description

Control whether debugger, DMA, core 0 and core 1 can access PADS_BANK0, and at what security/privilege levels

they can do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 937.

PADS_BANK0 Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, PADS_BANK0 can be accessed by the debugger, at

security/privilege levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, PADS_BANK0 can be accessed by the DMA, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, PADS_BANK0 can be accessed by core 1, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, PADS_BANK0 can be accessed by core 0, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, PADS_BANK0 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, PADS_BANK0 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, PADS_BANK0 can be accessed from a Non-secure, Privileged

context.

RW 0x0

0 NSU: If 1, and NSP is also set, PADS_BANK0 can be accessed from a Non-

secure, Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: PADS_QSPI Register

Offset: 0x74

Description

Control whether debugger, DMA, core 0 and core 1 can access PADS_QSPI, and at what security/privilege levels

they can do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 938. PADS_QSPI

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, PADS_QSPI can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, PADS_QSPI can be accessed by the DMA, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, PADS_QSPI can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, PADS_QSPI can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, PADS_QSPI can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, PADS_QSPI can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, PADS_QSPI can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, PADS_QSPI can be accessed from a Non-

secure, Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: BUSCTRL Register

Offset: 0x78

Description

Control whether debugger, DMA, core 0 and core 1 can access BUSCTRL, and at what security/privilege levels they

can do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 939. BUSCTRL

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, BUSCTRL can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, BUSCTRL can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, BUSCTRL can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, BUSCTRL can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, BUSCTRL can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, BUSCTRL can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, BUSCTRL can be accessed from a Non-secure, Privileged context. RW 0x0
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, BUSCTRL can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: ADC Register

Offset: 0x7c

Description

Control whether debugger, DMA, core 0 and core 1 can access ADC, and at what security/privilege levels they can

do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 940. ADC

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, ADC can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, ADC can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, ADC can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, ADC can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, ADC can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, ADC can be accessed from a Secure, Unprivileged

context.

RW 0x1

1 NSP: If 1, ADC can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, ADC can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: HSTX Register

Offset: 0x80

Description

Control whether debugger, DMA, core 0 and core 1 can access HSTX, and at what security/privilege levels they can

do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 941. HSTX

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, HSTX can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, HSTX can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, HSTX can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, HSTX can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, HSTX can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, HSTX can be accessed from a Secure, Unprivileged

context.

RW 0x1

1 NSP: If 1, HSTX can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, HSTX can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: I2C0 Register

Offset: 0x84

Description

Control whether debugger, DMA, core 0 and core 1 can access I2C0, and at what security/privilege levels they can

do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 942. I2C0

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, I2C0 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, I2C0 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, I2C0 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, I2C0 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, I2C0 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, I2C0 can be accessed from a Secure, Unprivileged

context.

RW 0x1

1 NSP: If 1, I2C0 can be accessed from a Non-secure, Privileged context. RW 0x0
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, I2C0 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: I2C1 Register

Offset: 0x88

Description

Control whether debugger, DMA, core 0 and core 1 can access I2C1, and at what security/privilege levels they can

do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 943. I2C1

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, I2C1 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, I2C1 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, I2C1 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, I2C1 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, I2C1 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, I2C1 can be accessed from a Secure, Unprivileged

context.

RW 0x1

1 NSP: If 1, I2C1 can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, I2C1 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: PWM Register

Offset: 0x8c

Description

Control whether debugger, DMA, core 0 and core 1 can access PWM, and at what security/privilege levels they can

do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 944. PWM

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, PWM can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, PWM can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, PWM can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, PWM can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, PWM can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, PWM can be accessed from a Secure, Unprivileged

context.

RW 0x1

1 NSP: If 1, PWM can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, PWM can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: SPI0 Register

Offset: 0x90

Description

Control whether debugger, DMA, core 0 and core 1 can access SPI0, and at what security/privilege levels they can

do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 945. SPI0

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SPI0 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SPI0 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, SPI0 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SPI0 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SPI0 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SPI0 can be accessed from a Secure, Unprivileged

context.

RW 0x1

1 NSP: If 1, SPI0 can be accessed from a Non-secure, Privileged context. RW 0x0
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, SPI0 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: SPI1 Register

Offset: 0x94

Description

Control whether debugger, DMA, core 0 and core 1 can access SPI1, and at what security/privilege levels they can

do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 946. SPI1

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SPI1 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SPI1 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, SPI1 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SPI1 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SPI1 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SPI1 can be accessed from a Secure, Unprivileged

context.

RW 0x1

1 NSP: If 1, SPI1 can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, SPI1 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: TIMER0 Register

Offset: 0x98

Description

Control whether debugger, DMA, core 0 and core 1 can access TIMER0, and at what security/privilege levels they

can do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 947. TIMER0

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, TIMER0 can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, TIMER0 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, TIMER0 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, TIMER0 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, TIMER0 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, TIMER0 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, TIMER0 can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, TIMER0 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: TIMER1 Register

Offset: 0x9c

Description

Control whether debugger, DMA, core 0 and core 1 can access TIMER1, and at what security/privilege levels they

can do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 948. TIMER1

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, TIMER1 can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, TIMER1 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, TIMER1 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, TIMER1 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, TIMER1 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, TIMER1 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, TIMER1 can be accessed from a Non-secure, Privileged context. RW 0x0
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, TIMER1 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: UART0 Register

Offset: 0xa0

Description

Control whether debugger, DMA, core 0 and core 1 can access UART0, and at what security/privilege levels they can

do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 949. UART0

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, UART0 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, UART0 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, UART0 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, UART0 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, UART0 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, UART0 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, UART0 can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, UART0 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: UART1 Register

Offset: 0xa4

Description

Control whether debugger, DMA, core 0 and core 1 can access UART1, and at what security/privilege levels they can

do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 950. UART1

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, UART1 can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, UART1 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, UART1 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, UART1 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, UART1 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, UART1 can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, UART1 can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, UART1 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: OTP Register

Offset: 0xa8

Description

Control whether debugger, DMA, core 0 and core 1 can access OTP, and at what security/privilege levels they can

do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 951. OTP

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, OTP can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, OTP can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, OTP can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, OTP can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, OTP can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, OTP can be accessed from a Secure, Unprivileged

context.

RW 0x1

1 NSP: If 1, OTP can be accessed from a Non-secure, Privileged context. RW 0x0
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, OTP can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: TBMAN Register

Offset: 0xac

Description

Control whether debugger, DMA, core 0 and core 1 can access TBMAN, and at what security/privilege levels they

can do so.

Defaults to Secure access from any master.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 952. TBMAN

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, TBMAN can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, TBMAN can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, TBMAN can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, TBMAN can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, TBMAN can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, TBMAN can be accessed from a Secure,

Unprivileged context.

RW 0x1

1 NSP: If 1, TBMAN can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, TBMAN can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: POWMAN Register

Offset: 0xb0

Description

Control whether debugger, DMA, core 0 and core 1 can access POWMAN, and at what security/privilege levels they

can do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 953. POWMAN

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, POWMAN can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, POWMAN can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, POWMAN can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, POWMAN can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, POWMAN can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, POWMAN can be accessed from a Secure,

Unprivileged context.

RW 0x0

1 NSP: If 1, POWMAN can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, POWMAN can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: TRNG Register

Offset: 0xb4

Description

Control whether debugger, DMA, core 0 and core 1 can access TRNG, and at what security/privilege levels they can

do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 954. TRNG

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, TRNG can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, TRNG can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, TRNG can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, TRNG can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, TRNG can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, TRNG can be accessed from a Secure, Unprivileged

context.

RW 0x0

1 NSP: If 1, TRNG can be accessed from a Non-secure, Privileged context. RW 0x0
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, TRNG can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: SHA256 Register

Offset: 0xb8

Description

Control whether debugger, DMA, core 0 and core 1 can access SHA256, and at what security/privilege levels they

can do so.

Defaults to Secure, Privileged access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 955. SHA256

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SHA256 can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SHA256 can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, SHA256 can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SHA256 can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SHA256 can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SHA256 can be accessed from a Secure,

Unprivileged context.

RW 0x0

1 NSP: If 1, SHA256 can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, SHA256 can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: SYSCFG Register

Offset: 0xbc

Description

Control whether debugger, DMA, core 0 and core 1 can access SYSCFG, and at what security/privilege levels they

can do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 956. SYSCFG

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, SYSCFG can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, SYSCFG can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, SYSCFG can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, SYSCFG can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, SYSCFG can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, SYSCFG can be accessed from a Secure,

Unprivileged context.

RW 0x0

1 NSP: If 1, SYSCFG can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, SYSCFG can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: CLOCKS Register

Offset: 0xc0

Description

Control whether debugger, DMA, core 0 and core 1 can access CLOCKS, and at what security/privilege levels they

can do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 957. CLOCKS

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, CLOCKS can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, CLOCKS can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, CLOCKS can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, CLOCKS can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, CLOCKS can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, CLOCKS can be accessed from a Secure,

Unprivileged context.

RW 0x0

1 NSP: If 1, CLOCKS can be accessed from a Non-secure, Privileged context. RW 0x0
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, CLOCKS can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: XOSC Register

Offset: 0xc4

Description

Control whether debugger, DMA, core 0 and core 1 can access XOSC, and at what security/privilege levels they can

do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 958. XOSC

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, XOSC can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, XOSC can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, XOSC can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, XOSC can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, XOSC can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, XOSC can be accessed from a Secure, Unprivileged

context.

RW 0x0

1 NSP: If 1, XOSC can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, XOSC can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: ROSC Register

Offset: 0xc8

Description

Control whether debugger, DMA, core 0 and core 1 can access ROSC, and at what security/privilege levels they can

do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 959. ROSC

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, ROSC can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, ROSC can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, ROSC can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, ROSC can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, ROSC can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, ROSC can be accessed from a Secure, Unprivileged

context.

RW 0x0

1 NSP: If 1, ROSC can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, ROSC can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: PLL_SYS Register

Offset: 0xcc

Description

Control whether debugger, DMA, core 0 and core 1 can access PLL_SYS, and at what security/privilege levels they

can do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 960. PLL_SYS

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, PLL_SYS can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, PLL_SYS can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, PLL_SYS can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, PLL_SYS can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, PLL_SYS can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, PLL_SYS can be accessed from a Secure,

Unprivileged context.

RW 0x0

1 NSP: If 1, PLL_SYS can be accessed from a Non-secure, Privileged context. RW 0x0
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, PLL_SYS can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: PLL_USB Register

Offset: 0xd0

Description

Control whether debugger, DMA, core 0 and core 1 can access PLL_USB, and at what security/privilege levels they

can do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 961. PLL_USB

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, PLL_USB can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, PLL_USB can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, PLL_USB can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, PLL_USB can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, PLL_USB can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, PLL_USB can be accessed from a Secure,

Unprivileged context.

RW 0x0

1 NSP: If 1, PLL_USB can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, PLL_USB can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: TICKS Register

Offset: 0xd4

Description

Control whether debugger, DMA, core 0 and core 1 can access TICKS, and at what security/privilege levels they can

do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 962. TICKS

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, TICKS can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, TICKS can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, TICKS can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, TICKS can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, TICKS can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, TICKS can be accessed from a Secure,

Unprivileged context.

RW 0x0

1 NSP: If 1, TICKS can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, TICKS can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: WATCHDOG Register

Offset: 0xd8

Description

Control whether debugger, DMA, core 0 and core 1 can access WATCHDOG, and at what security/privilege levels

they can do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 963.

WATCHDOG Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, WATCHDOG can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, WATCHDOG can be accessed by the DMA, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, WATCHDOG can be accessed by core 1, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, WATCHDOG can be accessed by core 0, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, WATCHDOG can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, WATCHDOG can be accessed from a Secure,

Unprivileged context.

RW 0x0

1 NSP: If 1, WATCHDOG can be accessed from a Non-secure, Privileged context. RW 0x0
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, WATCHDOG can be accessed from a Non-

secure, Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: PSM Register

Offset: 0xdc

Description

Control whether debugger, DMA, core 0 and core 1 can access PSM, and at what security/privilege levels they can

do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 964. PSM

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, PSM can be accessed by the debugger, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, PSM can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, PSM can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, PSM can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, PSM can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, PSM can be accessed from a Secure, Unprivileged

context.

RW 0x0

1 NSP: If 1, PSM can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, PSM can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: XIP_CTRL Register

Offset: 0xe0

Description

Control whether debugger, DMA, core 0 and core 1 can access XIP_CTRL, and at what security/privilege levels they

can do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.
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Table 965. XIP_CTRL

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, XIP_CTRL can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, XIP_CTRL can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, XIP_CTRL can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, XIP_CTRL can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, XIP_CTRL can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, XIP_CTRL can be accessed from a Secure,

Unprivileged context.

RW 0x0

1 NSP: If 1, XIP_CTRL can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, XIP_CTRL can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: XIP_QMI Register

Offset: 0xe4

Description

Control whether debugger, DMA, core 0 and core 1 can access XIP_QMI, and at what security/privilege levels they

can do so.

Defaults to Secure, Privileged processor or debug access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 966. XIP_QMI

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, XIP_QMI can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, XIP_QMI can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x0

5 CORE1: If 1, XIP_QMI can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, XIP_QMI can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, XIP_QMI can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, XIP_QMI can be accessed from a Secure,

Unprivileged context.

RW 0x0

1 NSP: If 1, XIP_QMI can be accessed from a Non-secure, Privileged context. RW 0x0
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Bits Description Type Reset

0 NSU: If 1, and NSP is also set, XIP_QMI can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

ACCESSCTRL: XIP_AUX Register

Offset: 0xe8

Description

Control whether debugger, DMA, core 0 and core 1 can access XIP_AUX, and at what security/privilege levels they

can do so.

Defaults to Secure, Privileged access only.

This register is writable only from a Secure, Privileged processor or debugger, with the exception of the NSU bit, which

becomes Non-secure-Privileged-writable when the NSP bit is set.

Table 967. XIP_AUX

Register
Bits Description Type Reset

31:8 Reserved. - -

7 DBG: If 1, XIP_AUX can be accessed by the debugger, at security/privilege

levels permitted by SP/NSP/SU/NSU in this register.

RW 0x1

6 DMA: If 1, XIP_AUX can be accessed by the DMA, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

5 CORE1: If 1, XIP_AUX can be accessed by core 1, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

4 CORE0: If 1, XIP_AUX can be accessed by core 0, at security/privilege levels

permitted by SP/NSP/SU/NSU in this register.

RW 0x1

3 SP: If 1, XIP_AUX can be accessed from a Secure, Privileged context. RW 0x1

2 SU: If 1, and SP is also set, XIP_AUX can be accessed from a Secure,

Unprivileged context.

RW 0x0

1 NSP: If 1, XIP_AUX can be accessed from a Non-secure, Privileged context. RW 0x0

0 NSU: If 1, and NSP is also set, XIP_AUX can be accessed from a Non-secure,

Unprivileged context.

This bit is writable from a Non-secure, Privileged context, if and only if the NSP

bit is set.

RW 0x0

10.7. DMA

The RP2350 system DMA is a peripheral which performs arbitrary reads and writes on memory. This means that, as

with a processor, care is necessary to maintain isolation between memory or peripherals owned by different security

domains. Any given processor context must not access memory or peripherals belonging to a more secure context. The

DMA helps maintain this invariant by ensuring software can not use the DMA to access a more secure context on its

behalf, including such cases as a processor programming the DMA to program the DMA.

RP2350 extends the processor security/privilege states to individual DMA channels, and the DMA filters its own

memory accesses with a built-in memory protection unit (MPU) similarly capable to the Armv8-M SAU or the RISC-V

PMP. When correctly configured, this allows multiple security domains to transparently and safely share DMA
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resources. It is also possible to assign the entire DMA block wholesale to a single security domain using the

ACCESSCTRL registers (Section 10.6) if this fine-grained configuration is not desired.

This section gives an overview of the DMA’s security features. The specific hardware details are documented in Section

12.6.6.

10.7.1. Channel Security Attributes

Each channel is assigned a security level using the per-channel registers starting at SECCFG_CH0. This defines:

• The minimum privilege required to configure and control the channel, or observe its status

• The bus privilege at which the channel performs its memory accesses

For the sake of comparing security levels, the DMA assigns the following total order to AHB5 security/privilege

attributes: Secure + Privileged > Secure + Unprivileged > Non-secure + Privileged > Non-secure + Unprivileged.

A channel’s security level can be changed freely up until any of the channel’s control registers is written. After this point,

its security level is locked, and cannot be changed until the DMA block resets. At reset, all channels become Secure +

Privileged (security level = 3, the maximum).

The effects of the channel SECCFG registers are listed exhaustively in the relevant DMA documentation, Section 12.6.6.1.

10.7.2. Memory Protection Unit

The RP2350 DMA features a memory protection unit that you can configure to set the security/privilege level required to

access up to eight different address ranges, plus a default level for addresses not matched by any of those eight

ranges. The addresses of all DMA reads and writes are checked against the MPU address map. If the originating

channel’s security level is lower than that defined in the address map, the access is filtered. A filtered access has no

effect on the downstream bus, and returns a bus error to the offending channel.

The DMA memory protection unit is configured by DMA control registers starting from MPU_CTRL. See Section 12.6.6.3

for more details.

10.7.3. DREQ Attributes

Channels are not permitted to interface with the DREQs of peripherals above their security level, as determined by the

peripheral access controls in ACCESSCTRL. This is done to avoid any information being inferred from the timing of

secure peripheral transfers, and because the clear handshake on the RP2040 DREQ can be used maliciously to cause a

Secure DMA channel to overflow its destination FIFO and corrupt/lose data (for details about the DREQ handshake, see

Section 12.6.4.2).

The DREQ security levels are driven by the ACCESSCTRL block access registers. ACCESSCTRL takes the index of the

least-significant set bit in the 4-bit permission mask, having first ANDed the SP into SU, and NSP into SU. This creates a 2-

bit integer which is compared with the DMA channel’s security level to determine whether it can interface with this

DREQ.

10.7.4. IRQ Attributes

Each of the four shared DMA interrupt lines (IRQs) has a configurable security level. The IRQ’s security level is

compared with channel security levels, and with the bus privilege of accesses to the DMA’s interrupt control registers, to

determine:

• Whether a bus access is permitted to read/write the INTE/INTF/INTS registers for this IRQ

• Whether a given channel will be visible in this IRQ’s INTS register (and therefore whether that channel will cause
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assertion of this IRQ)

• Whether a given channel can have its interrupt pending flag set/cleared via this IRQ’s INTF/INTS registers

For a bus access to view/configure an IRQ, it must have a security level greater than or equal to the IRQ’s security level.

For an IRQ to observe a channel’s interrupt pending flag, the IRQ must have a security level greater than or equal to the

channel’s security level. Consequently, for a bus to observe a channel’s interrupt status, the bus access security level

must be greater than or equal to the channel’s security level.

For an IRQ to observe a channel’s interrupt pending flag, it must have a security level greater than or equal to the

channel’s security level.

There is only one INTR register. Which channels' interrupts can be observed and cleared through INTR is determined by

comparing channel security levels to the security level of the INTR bus access.

10.8. OTP

RP2350 contains 8 kB of OTP storage, organised as 4096 × 24-bit rows with hardware ECC protection. This is the only

mutable, on-die, non-volatile storage. Boot signing keys and decryption keys are stored in OTP, and as such it is a vital

part of the security architecture. This section gives a brief summary of OTP hardware protection features; Chapter 13

documents the hardware in full.

The RP2350 OTP subystem adds a hardware layer on top of the OTP storage array, to protect sensitive contents:

• OTP is protected at a 128-byte page granularity (see Section 13.5)

◦ Each page can be fully accessible, read-only, or fully inacessible

◦ Locks are defined separately for Secure, Non-secure and bootloader access

◦ Programming OTP lock locations starting at PAGE0_LOCK0 applies locks permanently

◦ Writing to registers starting at SW_LOCK0 advances locks to a less-permissive state until the next OTP reset

• OTP control registers used to access the SBPI interface are hardwired for Secure access only

◦ The SBPI interface is used to program the OTP and configure power supply and analogue hardware

• The guarded read aliases provide higher assurance against deliberate OTP power supply manipulation during

reads (Section 13.1.1)

• Hardware reads the OTP array at startup for security hardware configuration (Section 13.3.4)

◦ The critical flags (Section 13.4) enable secure boot, enable the glitch detectors, and disable debug

◦ The OTP hardware access keys (Section 13.5.2) provide further protection for OTP pages

◦ The debug keys (Section 3.5.9.2) are an additional mechanism to conditionally lock down debug access

OTP also contains configuration for the RP2350 bootrom, particularly its secure boot implementation. Section 13.9 lists

all predefined OTP data locations. Boot configuration is stored in page 1, starting from BOOT_FLAGS0.

The bootrom can load and run code stored in OTP; see the bootrom documentation in Section 5.10.7, and the OTP data

listings starting from OTPBOOT_SRC. When secure boot is enabled, code loaded from OTP is subject to all of the usual

requirements for image signing and versioning, so this code can form part of your secure boot chain. The chain_image()

ROM API allows your OTP-resident bootloader to call back into the ROM to verify the next boot stage that it has loaded.

10.9. Glitch Detector

The glitch detector detects loss of setup and hold margin in the system clock domain, which may be caused by

deliberate external manipulation of the system clock or core supply voltage. When it detects loss, the glitch detector

triggers a system reset rather than allowing software to continue to execute in a possibly undefined state. It responds
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within one system clock cycle, unlike the brownout detector, which has much more limited analog bandwidth.

The glitch detector is disabled by default, and can be armed by setting the GLITCH_DETECTOR_ENABLE flag in OTP. For

debugging purposes, you can also enable the glitch detector via the ARM register. This is not recommended in security-

sensitive applications, as the system is vulnerable until the point that software can enable the detectors.

10.9.1. Theory of Operation

The glitch detector is comprised of four identical detector circuits, based on a pair of D flip-flops. These detector

circuits are each placed in different, physically distant locations within the core voltage domain.

Figure 42. Glitch

detector trigger

circuit. Two flops each

toggle on every

system clock cycle.

One has a

programmable delay

line in its feedback

path, the other does

not. Loss of setup or

hold margin causes

one of the flops to fail

to toggle, so the flops

values differ, setting

the trigger output.

The detector triggers when the two D-flops take on different values, which is impossible under normal circumstances.

The delay line is programmable from 75% to 120% of the minimum system clock period in increments of 15%. Higher

delays make the circuit more sensitive to loss of setup margin. To configure initial sensitivity, use the

GLITCH_DETECTOR_SENS OTP flags. You can fine-tune sensitivity for each detector using the SENSITIVITY register.

Because the circuit is constructed from digital standard cells, it closely tracks the changes in propagation delay to

nearby cells caused by voltage and temperature fluctuations. Therefore the delay line’s propagation delay is specified

as a fraction of the maximum system clock data path delay, rather than a fixed time in nanoseconds.

10.9.2. Trigger Response

When any of the detectors fires, the corresponding bit in the TRIG_STATUS is set. If the glitch detector block is armed,

this detector event also resets almost all logic in the switched core domain. The glitch detector is armed if:

• The DISARM register is not set to the disarming bit pattern, and at least one of the following is true:

◦ The GLITCH_DETECTOR_EN OTP flag was programmed some time before the most recent reset of the OTP block

◦ The ARM register is set to an arming bit pattern

This holds the majority of the switched core domain in reset for approximately 120 microseconds before releasing the

reset. Specifically, this resets the PSM (Section 7.3), which resets all PSM-controlled resets starting with the processor

cold reset domain, in addition to all blocks reset by the RESETS block, which is itself reset by the PSM. The detector

circuits are also reset, as is the system watchdog including the watchdog scratch registers.

After a glitch detector-initiated reset, the CHIP_RESET.HAD_GLITCH_DETECT flag is set so that software can diagnose

that the last reset was caused by a glitch detector trigger. Check the TRIG_STATUS register to see which detector fired.

This can be useful for tuning the thresholds of individual detectors.

The only way to clear the detector circuits is to reset them, either via a full switched core domain reset (such as the RUN

pin, the SW-DP reset request, a PoR/BoR reset, or a reset of the switched core domain configured by POWMAN

controls), or by arming the glitch detector block so that the detectors reset along with the PSM.

Recovering from the glitch detector firing requires the low-power oscillator to be running (Section 8.4). Allowing the
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glitch detectors to fire when the LPOSC is disabled results in the chip holding itself in reset indefinitely until an external

reset such as the RUN pin resets the detectors.

10.9.3. List of Registers

The glitch detector control registers start at an address of 0x40158000.

Table 968. List of

GLITCH_DETECTOR

registers

Offset Name Info

0x00 ARM Forcibly arm the glitch detectors, if they are not already armed by

OTP. When armed, any individual detector trigger will cause a

restart of the switched core power domain’s power-on reset

state machine.

Glitch detector triggers are recorded accumulatively in

TRIG_STATUS. If the system is reset by a glitch detector trigger,

this is recorded in POWMAN_CHIP_RESET.

This register is Secure read/write only.

0x04 DISARM

0x08 SENSITIVITY Adjust the sensitivity of glitch detectors to values other than their

OTP-provided defaults.

This register is Secure read/write only.

0x0c LOCK

0x10 TRIG_STATUS Set when a detector output triggers. Write-1-clear.

(May immediately return high if the detector remains in a failed

state. Detectors can only be cleared by a full reset of the

switched core power domain.)

This register is Secure read/write only.

0x14 TRIG_FORCE Simulate the firing of one or more detectors. Writing ones to this

register will set the matching bits in STATUS_TRIG.

If the glitch detectors are currently armed, writing ones will also

immediately reset the switched core power domain, and set the

reset reason latches in POWMAN_CHIP_RESET to indicate a

glitch detector resets.

This register is Secure read/write only.

GLITCH_DETECTOR: ARM Register

Offset: 0x00

Table 969. ARM

Register
Bits Description Type Reset

31:16 Reserved. - -
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Bits Description Type Reset

15:0 Forcibly arm the glitch detectors, if they are not already armed by OTP. When

armed, any individual detector trigger will cause a restart of the switched core

power domain’s power-on reset state machine.

Glitch detector triggers are recorded accumulatively in TRIG_STATUS. If the

system is reset by a glitch detector trigger, this is recorded in

POWMAN_CHIP_RESET.

This register is Secure read/write only.

RW 0x5bad

Enumerated values:

0x5bad → Do not force the glitch detectors to be armed

0x0000 → Force the glitch detectors to be armed. (Any value other than

ARM_NO counts as YES)

GLITCH_DETECTOR: DISARM Register

Offset: 0x04

Table 970. DISARM

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Forcibly disarm the glitch detectors, if they are armed by OTP. Ignored if ARM

is YES.

This register is Secure read/write only.

RW 0x0000

Enumerated values:

0x0000 → Do not disarm the glitch detectors. (Any value other than

DISARM_YES counts as NO)

0xdcaf → Disarm the glitch detectors

GLITCH_DETECTOR: SENSITIVITY Register

Offset: 0x08

Description

Adjust the sensitivity of glitch detectors to values other than their OTP-provided defaults.

This register is Secure read/write only.

Table 971.

SENSITIVITY Register
Bits Description Type Reset

31:24 DEFAULT RW 0x00

Enumerated values:

0x00 → Use the default sensitivity configured in OTP for all detectors. (Any

value other than DEFAULT_NO counts as YES)

0xde → Do not use the default sensitivity configured in OTP. Instead use the

value from this register.

23:16 Reserved. - -

15:14 DET3_INV: Must be the inverse of DET3, else the default value is used. RW 0x0

13:12 DET2_INV: Must be the inverse of DET2, else the default value is used. RW 0x0
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Bits Description Type Reset

11:10 DET1_INV: Must be the inverse of DET1, else the default value is used. RW 0x0

9:8 DET0_INV: Must be the inverse of DET0, else the default value is used. RW 0x0

7:6 DET3: Set sensitivity for detector 3. Higher values are more sensitive. RW 0x0

5:4 DET2: Set sensitivity for detector 2. Higher values are more sensitive. RW 0x0

3:2 DET1: Set sensitivity for detector 1. Higher values are more sensitive. RW 0x0

1:0 DET0: Set sensitivity for detector 0. Higher values are more sensitive. RW 0x0

GLITCH_DETECTOR: LOCK Register

Offset: 0x0c

Table 972. LOCK

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 Write any nonzero value to disable writes to ARM, DISARM, SENSITIVITY and

LOCK. This register is Secure read/write only.

RW 0x00

GLITCH_DETECTOR: TRIG_STATUS Register

Offset: 0x10

Description

Set when a detector output triggers. Write-1-clear.

(May immediately return high if the detector remains in a failed state. Detectors can only be cleared by a full reset of the

switched core power domain.)

This register is Secure read/write only.

Table 973.

TRIG_STATUS Register
Bits Description Type Reset

31:4 Reserved. - -

3 DET3 WC 0x0

2 DET2 WC 0x0

1 DET1 WC 0x0

0 DET0 WC 0x0

GLITCH_DETECTOR: TRIG_FORCE Register

Offset: 0x14
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Table 974.

TRIG_FORCE Register
Bits Description Type Reset

31:4 Reserved. - -

3:0 Simulate the firing of one or more detectors. Writing ones to this register will

set the matching bits in STATUS_TRIG.

If the glitch detectors are currently armed, writing ones will also immediately

reset the switched core power domain, and set the reset reason latches in

POWMAN_CHIP_RESET to indicate a glitch detector resets.

This register is Secure read/write only.

SC 0x0

10.10. Factory Test JTAG

RP2350 contains JTAG hardware that is used to test devices after manufacturing. It is not a public interface, but its

capabilities are documented here for user risk assessment.

Much like the user-facing SWD debug, the JTAG interface is disabled at power-on, and enabled only once the OTP

power-on state machine has completed. If the CRIT1.SECURE_BOOT_ENABLE, CRIT1.SECURE_DEBUG_DISABLE or

CRIT1.DEBUG_DISABLE flag is set, then the JTAG interface remains held in reset indefinitely, so it cannot be

communicated with and cannot control internal hardware. The only way to re-enable the JTAG interface after setting

one of these critical flags is to set the RMA OTP flag (Section 10.11), which also permanently disables read and write

access to user OTP pages. The RMA flag itself is write-protected using the page 63 protection flags, so you can prevent

untrusted software from programming the RMA flag.

To take the JTAG interface out of reset, write to bit 0 of the RP-AP control register, accessed via SWD. To connect the

JTAG interface to GPIOs (TCK, TMS, TDI, TDO on GPIO0 → 3), set bit 1 of the RP-AP control register. The RP-AP is always

accessible, even when external debug is disabled, because it is also used to enter the debug keys (Section 3.5.9.2).

However, attempts to remove the JTAG reset are ignored when any of the aforementioned critical OTP flags are set.

The JTAG interface provides:

• Standard test capabilities such as IDCODE and EXTEST (boundary scan); these are not guaranteed to be IEEE-

compliant, as this is an internal factory test interface, not a user-facing debug port

• Full AHB bus access, with Secure and Privileged attributes and an HMASTER of 3 (debugger)

• Asynchronous access to a small subset of register controls, generally limited to clocks, oscillators and reset

controls

The JTAG interface’s AHB bus access is muxed in place of the DMA read port, when the JTAG interface is enabled.

Any and all details of the factory test JTAG interface, with the exception of which OTP flags disable and re-enable it, are

subject to change with revisions of the RP2350 silicon.

10.11. Decommissioning

Devices returned to Raspberry Pi Ltd for fault analysis must be decommissioned before return, to restore factory test

functionality. A device is decommissioned by programming the OTP PAGE63_LOCK0.RMA flag to 1. Return may be

requested by Raspberry Pi Ltd when diagnosing systematic issues across a population of devices.

Setting the RMA flag has two effects:

• The factory test JTAG interface is re-enabled, irrespective of the values of any CRIT1 flags.

• Pages 3 through 61 become permanently inaccessible: this is all pages which do not have predefined contents

listed in Section 13.9.
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The effect on OTP contents is as though all had been promoted to the inaccessible lock level:

• write attempts will fail

• read attempts will return all-ones, when read via an unguarded read alias, or bus faults, when read via a guarded

read alias

The logic which disables OTP access and the logic which re-enables the test interface are driven from the same signal

internally, so this bit does not provide external access to user OTP contents, provided no sensitive material is stored in

pages 0, 1, 2, 62 or 63. Setting the RMA flag is irreversible, and may render the device permanently unusable, if it is

configured to boot from OTP contents stored in pages 3 through 61.

After setting the RMA flag, test the OTP access (e.g. via the SWD interface) and verify for yourself that any sensitive

data stored in OTP has been made inaccessible.

The page 63 lock word has no other function besides RMA, since pages 62/63 contain the lock words themselves, each

of which is protected by its own permissions. This means the RMA flag can be write-protected by setting either a hard

or soft lock on page 63.
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Chapter 11. PIO

11.1. Overview

RP2350 contains 3 identical PIO blocks. Each PIO block has dedicated connections to the bus fabric, GPIO and interrupt

controller. The diagram for a single PIO block is shown below in Figure 43.
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Figure 43. PIO block-

level diagram. There

are three PIO blocks,

each containing four

state machines. The

four state machines

simultaneously

execute programs

from shared

instruction memory.

FIFO data queues

buffer data transferred

between PIO and the

system. GPIO mapping

logic allows each

state machine to

observe and

manipulate up to 32

GPIOs.

The programmable input/output block (PIO) is a versatile hardware interface. It can support a variety of IO standards,

including:

• 8080 and 6800 parallel bus

• I2C

• 3-pin I2S

• SDIO

• SPI, DSPI, QSPI

• UART

• DPI or VGA (via resistor DAC)

PIO is programmable in the same sense as a processor. There are three PIO blocks with four state machines. Each can

independently execute sequential programs to manipulate GPIOs and transfer data. Unlike a general purpose processor,

PIO state machines are specialised for IO, with a focus on determinism, precise timing, and close integration with fixed-

function hardware. Each state machine is equipped with:

• Two 32-bit shift registers (either direction, any shift count)

• Two 32-bit scratch registers

• 4 × 32-bit bus FIFO in each direction (TX/RX), reconfigurable as 8 × 32 in a single direction

• Fractional clock divider (16 integer, 8 fractional bits)
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• Flexible GPIO mapping

• DMA interface (sustained throughput up to 1 word per clock from system DMA)

• IRQ flag set/clear/status

Each state machine, along with its supporting hardware, occupies approximately the same silicon area as a standard

serial interface block, such as an SPI or I2C controller. However, PIO state machines can be configured and

reconfigured dynamically to implement numerous different interfaces.

Making state machines programmable in a software-like manner, rather than a fully configurable logic fabric like a

complex programmable logic device (CPLD), allows more hardware interfaces to be offered in the same cost and power

envelope. This also presents a more familiar programming model, and simpler tool flow, to those who wish to exploit

PIO’s full flexibility by programming it directly, rather than using a pre-made interface from the PIO library.

PIO is performant as well as flexible, thanks to a carefully selected set of fixed-function hardware inside each state

machine. When outputting DPI, PIO can sustain 360 Mb/s during the active scanline period when running from a

48 MHz system clock. In this example, one state machine handles frame/scanline timing and generates the pixel clock.

Another handles the pixel data and unpacks run-length-encoded scanlines.

State machines' inputs and outputs are mapped to up to 32 GPIOs (limited to 30 GPIOs for RP2350). All state machines

have independent, simultaneous access to any GPIO. For example, the standard UART code allows TX, RX, CTS and RTS to

be any four arbitrary GPIOs, and I2C permits the same for SDA and SCL. The amount of freedom available depends on how

exactly a given PIO program chooses to use PIO’s pin mapping resources, but at the minimum, an interface can be

freely shifted up or down by some number of GPIOs.

11.1.1. Changes from RP2040

RP2350 adds the following new registers and controls:

• DBG_CFGINFO.VERSION indicates the PIO version, to allow PIO feature detection at runtime.

◦ This 4-bit field was reserved-0 on RP2040 (indicating version 0), and reads as 1 on RP2350.

• GPIOBASE adds support for more than 32 GPIOs per PIO block.

◦ Each PIO block is still limited to 32 GPIOs at a time, but GPIOBASE selects which 32.

• CTRL.NEXT_PIO_MASK and CTRL.PREV_PIO_MASK apply some CTRL register operations to state machines in

neighbouring PIO blocks simultaneously.

◦ CTRL.NEXTPREV_SM_DISABLE stops PIO state machines in multiple PIO blocks simultaneously.

◦ CTRL.NEXTPREV_SM_ENABLE starts PIO state machines in multiple PIO blocks simultaneously.

◦ CTRL.NEXTPREV_CLKDIV_RESTART synchronises the clock dividers of PIO state machines in multiple PIO

blocks

• SM0_SHIFTCTRL.IN_COUNT masks unneeded IN-mapped pins to zero.

◦ This is useful for MOV x, PINS instructions, which previously always returned a full rotated 32-bit value.

• IRQ0_INTE and IRQ1_INTE now expose all eight SM IRQ flags to system-level interrupts (not just the lower four).

• Registers starting from RXF0_PUTGET0 expose each RX FIFO’s internal storage registers for random read or write

access from the system,

◦ The new FJOIN_RX_PUT FIFO join mode enables random writes from the state machine, and random reads from

the system (for implementing status registers).

◦ The new FJOIN_RX_GET FIFO join mode enables random reads from the state machine, and random writes from

the system (for implementing control registers).

◦ Setting both FJOIN_RX_PUT and FJOIN_RX_GET enables random read and write access from the state machine, but

disables system access.
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RP2350 adds the following new instruction features:

• Adds PINCTRL_JMP_PIN as a source for the WAIT instruction, plus an offset in the range 0-3.

◦ This gives WAIT pin arguments a per-SM mapping that is independent of the IN-mapped pins.

• Adds PINDIRS as a destination for MOV.

◦ This allows changing the direction of all OUT-mapped pins with a single instruction: MOV PINDIRS, NULL or MOV

PINDIRS, ~NULL

• Adds SM IRQ flags as a source for MOV x, STATUS

◦ This allows branching (as well as blocking) on the assertion of SM IRQ flags.

• Extends IRQ instruction encoding to allow state machines to set, clear and observe IRQ flags from different PIO

blocks.

◦ There is no delay penalty for cross-PIO IRQ flags: an IRQ on one state machine is observable to all state

machines on the next cycle.

• Adds the FJOIN_RX_GET FIFO mode.

◦ A new MOV encoding reads any of the four RX FIFO storage registers into OSR.

◦ This instruction permits random reads of the four FIFO entries, indexed either by instruction bits or the Y

scratch register.

• Adds the FJOIN_RX_PUT FIFO mode.

◦ A new MOV encoding writes the ISR into any of the four RX FIFO storage registers.

◦ The registers are indexed either by instruction bits or the Y scratch register.

RP2350 adds the following security features:

• Limits Non-secure PIOs (set to via ACCESSCTRL) to observation of only Non-secure GPIOs. Attempting to read a

Secure GPIO returns a 0.

• Disables cross-PIO functionality (IRQs, CTRL_NEXTPREV operations) between Non-secure PIO blocks (those which

permit Non-secure access according to ACCESSCTRL) and Secure-only blocks (those which do not).

RP2350 includes the following general improvements:

• Increased the number of PIO blocks from two to three (8 → 12 state machines).

• Improved GPIO input/output delay and skew.

• Reduced DMA request (DREQ) latency by one cycle vs RP2040.

11.2. Programmer’s Model

The four state machines execute from shared instruction memory. System software loads programs into this memory,

configures the state machines and IO mapping, and then sets the state machines running. PIO programs come from

various sources: assembled directly by the user, drawn from the PIO library, or generated programmatically by user

software.

From this point on, state machines are generally autonomous, and system software interacts through DMA, interrupts

and control registers, as with other peripherals on RP2350. For more complex interfaces, PIO provides a small but

flexible set of primitives which allow system software to be more hands-on with state machine control flow.
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Figure 44. State

machine overview.

Data flows in and out

through a pair of

FIFOs. The state

machine executes a

program which

transfers data

between these FIFOs,

a set of internal

registers, and the pins.

The clock divider can

reduce the state

machine’s execution

speed by a constant

factor.

11.2.1. PIO Programs

PIO state machines execute short binary programs.

Programs for common interfaces, such as UART, SPI, or I2C, are available in the PIO library. In many cases, it is not

necessary to write PIO programs. However, the PIO is much more flexible when programmed directly, supporting a wide

variety of interfaces which may not have been foreseen by its designers.

The PIO has a total of nine instructions: JMP, WAIT, IN, OUT, PUSH, PULL, MOV, IRQ, and SET. For more information about these

instructions, see Section 11.4.

Though the PIO only has a total of nine instructions, it would be difficult to edit PIO program binaries by hand. PIO

assembly is a textual format, describing a PIO program, where each command corresponds to one instruction in the

output binary. The following code snippet contains an example program written in in PIO assembly:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/squarewave/squarewave.pio Lines 8 - 13

 8 .program squarewave
 9     set pindirs, 1   ; Set pin to output
10 again:
11     set pins, 1 [1]  ; Drive pin high and then delay for one cycle
12     set pins, 0      ; Drive pin low
13     jmp again        ; Set PC to label `again`

The PIO assembler is included with the SDK, and is called pioasm. This program processes a PIO assembly input text file,

which may contain multiple programs, and writes out the assembled programs ready for use. For the SDK, these

assembled programs are emitted as C headers, containing constant arrays.

For more information, see Section 11.3.

11.2.2. Control Flow

On every system clock cycle, each state machine fetches, decodes and executes one instruction. Each instruction takes

precisely one cycle, unless it explicitly stalls (such as the WAIT instruction). Instructions may insert a delay of up to 31

cycles before the next instruction execute, to help write cycle-exact programs.

The program counter, or PC, points to the location in the instruction memory being executed on this cycle. Generally, PC

increments by one each cycle, wrapping at the end of the instruction memory. Jump instructions are an exception and

explicitly provide the next value that PC will take.

Our example assembly program (listed as .program squarewave above) shows both of these concepts in practice. It drives

a 50/50 duty cycle square wave with a period of four cycles onto a GPIO. Using some other features (e.g. side-set) this

can be made as low as two cycles.
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 NOTE

Side-set is where a state machine drives a small number of GPIOs in addition to the main side effects of the

instruction it executes. It’s described fully in Section 11.5.1.

The system has write-only access to the instruction memory, which is used to load programs. The clock divider slows

the state machine’s execution by a constant factor, represented as a 16.8 fixed-point fractional number. In the following

example, if a clock division of 2.5 were programmed, the square wave would have a period of  cycles. This

is useful for setting a precise baud rate for a serial interface, such as a UART.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/squarewave/squarewave.c Lines 34 - 38

34     // Load the assembled program directly into the PIO's instruction memory.
35     // Each PIO instance has a 32-slot instruction memory, which all 4 state
36     // machines can see. The system has write-only access.
37     for (uint i = 0; i < count_of(squarewave_program_instructions); ++i)
38         pio->instr_mem[i] = squarewave_program_instructions[i];

The following code fragments are part of a complete code example which drives a 12.5 MHz square wave out of GPIO 0

(or any other pins we might choose to map). We can also use pins WAIT PIN instruction to stall a state machine’s

execution for some amount of time, or a JMP PIN instruction to branch on the state of a pin, so control flow can vary

based on pin state.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/squarewave/squarewave.c Lines 42 - 47

42     // Configure state machine 0 to run at sysclk/2.5. The state machines can
43     // run as fast as one instruction per clock cycle, but we can scale their
44     // speed down uniformly to meet some precise frequency target, e.g. for a
45     // UART baud rate. This register has 16 integer divisor bits and 8
46     // fractional divisor bits.
47     pio->sm[0].clkdiv = (uint32_t) (2.5f * (1 << 16));

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/squarewave/squarewave.c Lines 51 - 59

51     // There are five pin mapping groups (out, in, set, side-set, jmp pin)
52     // which are used by different instructions or in different circumstances.
53     // Here we're just using SET instructions. Configure state machine 0 SETs
54     // to affect GPIO 0 only; then configure GPIO0 to be controlled by PIO0,
55     // as opposed to e.g. the processors.
56     pio->sm[0].pinctrl =
57             (1 << PIO_SM0_PINCTRL_SET_COUNT_LSB) |
58             (0 << PIO_SM0_PINCTRL_SET_BASE_LSB);
59     gpio_set_function(0, pio_get_funcsel(pio));

The system can start and stop each state machine at any time, via the CTRL register. Multiple state machines can be

started simultaneously, and the deterministic nature of PIO means they can stay perfectly synchronised.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/squarewave/squarewave.c Lines 63 - 67

63     // Set the state machine running. The PIO CTRL register is global within a
64     // PIO instance, so you can start/stop multiple state machines
65     // simultaneously. We're using the register's hardware atomic set alias to
66     // make one bit high without doing a read-modify-write on the register.
67     hw_set_bits(&pio->ctrl, 1 << (PIO_CTRL_SM_ENABLE_LSB + 0));
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Most instructions are executed from instruction memory, but there are other sources which can be freely mixed:

• Instructions written to a special configuration register (SMx INSTR) are immediately executed, momentarily

interrupting other execution. For example, a JMP instruction written to SMx INSTR causes the state machine to start

executing from a different location.

• Instructions can be executed from a register, using the MOV EXEC instruction.

• Instructions can be executed from the output shifter, using the OUT EXEC instruction

The last of these is particularly versatile: instructions can be embedded in the stream of data passing through the FIFO.

The I2C example uses this to embed e.g. STOP and RESTART line conditions alongside normal data. In the case of MOV and

OUT EXEC, the MOV/OUT itself executes in one cycle, and the executee on the next.

11.2.3. Registers

Each state machine possesses a small number of internal registers. These hold input or output data, and temporary

values such as loop counter variables.

11.2.3.1. Output Shift Register (OSR)

Figure 45. Output Shift

Register (OSR). Data is

parcelled out 1…32

bits at a time, and

unused data is

recycled by a

bidirectional shifter.

Once empty, the OSR

is reloaded from the

TX FIFO.

The Output Shift Register (OSR) holds and shifts output data between the TX FIFO and the pins or other destinations,

such as the scratch registers.

• PULL instructions: remove a 32-bit word from the TX FIFO and place into the OSR.

• OUT instructions shift data from the OSR to other destinations, 1…32 bits at a time.

• The OSR fills with zeroes as data is shifted out

• The state machine will automatically refill the OSR from the FIFO on an OUT instruction, once some total shift count

threshold is reached, if autopull is enabled

• Shift direction can be left/right, configurable by the processor via configuration registers

For example, to stream data through the FIFO and output to the pins at a rate of one byte per two clocks:

1 .program pull_example1
2 loop:
3     out pins, 8
4 public entry_point:
5     pull
6     out pins, 8 [1]
7     out pins, 8 [1]
8     out pins, 8
9     jmp loop

11.2.4. Autopull

Autopull (see Section 11.5.4) allows the hardware to automatically refill the OSR in the majority of cases, with the state

machine stalling if it tries to OUT from an empty OSR. This has two benefits:
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• No instructions spent on explicitly pulling from FIFO at the right time

• Higher throughput: can output up to 32 bits on every single clock cycle, if the FIFO stays topped up

After configuring autopull, the above program can be simplified to the following, which behaves identically:

1 .program pull_example2
2 
3 loop:
4     out pins, 8
5 public entry_point:
6     jmp loop

Program wrapping (Section 11.5.2) allows further simplification and, if desired, an output of 1 byte every system clock

cycle.

1 .program pull_example3
2 
3 public entry_point:
4 .wrap_target
5     out pins, 8 [1]
6 .wrap

11.2.4.1. Input Shift Register (ISR)

Figure 46. Input Shift

Register (ISR). Data

enters 1…32 bits at a

time, and current

contents is shifted left

or right to make room.

Once full, contents is

written to the RX FIFO.

• IN instructions shift 1…32 bits at a time into the register.

• PUSH instructions write the ISR contents to the RX FIFO.

• The ISR is cleared to all-zeroes when pushed.

• The state machine will automatically push the ISR on an IN instruction, once some shift threshold is reached, if

autopush is enabled.

• Shift direction is configurable by the processor via configuration registers

Some peripherals, like UARTs, must shift in from the left to get correct bit order, since the wire order is LSB-first;

however, the processor may expect the resulting byte to be right-aligned. This is solved by the special null input source,

which allows the programmer to shift some number of zeroes into the ISR, following the data.

11.2.4.2. Shift Counters

State machines remember how many bits, in total, have been shifted out of the OSR via OUT instructions, and into the ISR

via IN instructions. This information is tracked at all times by a pair of hardware counters: the output shift counter and

the input shift counter. Each is capable of holding values from 0 to 32 inclusive. With each shift operation, the relevant

counter increments by the shift count, up to the maximum value of 32 (equal to the width of the shift register). The state

machine can be configured to perform certain actions when a counter reaches a configurable threshold:

• The OSR can be automatically refilled once some number of bits have been shifted out (see Section 11.5.4).

• The ISR can be automatically emptied once some number of bits have been shifted in (see Section 11.5.4.
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• PUSH or PULL instructions can be conditioned on the input or output shift counter, respectively.

On PIO reset, or the assertion of CTRL_SM_RESTART, the input shift counter is cleared to 0 (nothing yet shifted in), and the

output shift counter is initialised to 32 (nothing remaining to be shifted out; fully exhausted). Some other instructions

affect the shift counters:

• A successful PULL clears the output shift counter to 0

• A successful PUSH clears the input shift counter to 0

• MOV OSR, … (i.e. any MOV instruction that writes OSR) clears the output shift counter to 0

• MOV ISR, … (i.e. any MOV instruction that writes ISR) clears the input shift counter to 0

• OUT ISR, count sets the input shift counter to count

11.2.4.3. Scratch Registers

Each state machine has two 32-bit internal scratch registers, called X and Y.

They are used as:

• Source/destination for IN/OUT/SET/MOV

• Source for branch conditions

For example, suppose we wanted to produce a long pulse for "1" data bits, and a short pulse for "0" data bits:

 1 .program ws2812_led
 2 
 3 public entry_point:
 4     pull
 5     set x, 23       ; Loop over 24 bits
 6 bitloop:
 7     set pins, 1     ; Drive pin high
 8     out y, 1 [5]    ; Shift 1 bit out, and write it to y
 9     jmp !y skip     ; Skip the extra delay if the bit was 0
10     nop [5]
11 skip:
12     set pins, 0 [5]
13     jmp x-- bitloop ; Jump if x nonzero, and decrement x
14     jmp entry_point

Here X is used as a loop counter, and Y is used as a temporary variable for branching on single bits from the OSR. This

program can be used to drive a WS2812 LED interface, although more compact implementations are possible (as few

as 3 instructions).

MOV allows the use of the scratch registers to save/restore the shift registers if, for example, you would like to repeatedly

shift out the same sequence.

 NOTE

A much more compact WS2812 example (4 instructions total) is shown in Section 11.6.2.

11.2.4.4. FIFOs

Each state machine has a pair of 4-word deep FIFOs, one for data transfer from system to state machine (TX), and the

other for state machine to system (RX). The TX FIFO is written to by system bus masters, such as a processor or DMA

controller, and the RX FIFO is written to by the state machine. FIFOs decouple the timing of the PIO state machines and

the system bus, allowing state machines to go for longer periods without processor intervention.
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FIFOs also generate data request (DREQ) signals, which allow a system DMA controller to pace its reads/writes based

on the presence of data in an RX FIFO, or space for new data in a TX FIFO. This allows a processor to set up a long

transaction, potentially involving many kilobytes of data, which will proceed with no further processor intervention.

Often, a state machine only transfers data in one direction. In this case, the SHIFTCTRL_FJOIN option can merge the two

FIFOs into a single 8-entry FIFO that only goes in one direction. This is useful for high-bandwidth interfaces such as DPI.

11.2.5. Stalling

State machines may momentarily pause execution for a number of reasons:

• A WAIT instruction’s condition is not yet met

• A blocking PULL when the TX FIFO is empty, or a blocking PUSH when the RX FIFO is full

• An IRQ WAIT instruction which has set an IRQ flag, and is waiting for it to clear

• An OUT instruction when autopull is enabled, and OSR has already reached its shift threshold

• An IN instruction when autopush is enabled, ISR reaches its shift threshold, and the RX FIFO is full

In this case, the program counter does not advance, and the state machine will continue executing this instruction on

the next cycle. If the instruction specifies some number of delay cycles before the next instruction starts, these do not

begin until after the stall clears.

 NOTE

Side-set (Section 11.5.1) is not affected by stalls, and always takes place on the first cycle of the attached

instruction.

11.2.6. Pin Mapping

PIO controls the output level and direction of up to 32 GPIOs, and can observe their input levels. On every system clock

cycle, each state machine may do none, one, or both of the following:

• Change the level or direction of some GPIOs via an OUT or SET instruction, or read some GPIOs via an IN instruction

• Change the level or direction of some GPIOs via a side-set operation

Each of these operations uses one of four contiguous ranges of GPIOs, with the base and count of each range

configured via each state machine’s PINCTRL register. There is a range for each of OUT, SET, IN and side-set operations.

Each range can cover any of the GPIOs accessible to a given PIO block (on RP2350 this is the 30 user GPIOs), and the

ranges can overlap.

For each individual GPIO output (level and direction separately), PIO considers all 8 writes that may have occurred on

that cycle, and applies the write from the highest-numbered state machine. If the same state machine performs a SET

/OUT and a side-set on the same GPIO simultaneously, the side-set is used. If no state machine writes to this GPIO

output, its value does not change from the previous cycle.

Generally each state machine’s outputs are mapped to a distinct group of GPIOs, implementing some peripheral

interface.

11.2.7. IRQ Flags

IRQ flags are state bits which can be set or cleared by state machines or the system. There are 8 in total: all 8 are visible

to all state machines, and the lower 4 can also be masked into one of PIO’s interrupt request lines, via the IRQ0_INTE and

IRQ1_INTE control registers.

They have two main uses:
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• Asserting system level interrupts from a state machine program, and optionally waiting for the interrupt to be

acknowledged

• Synchronising execution between two state machines

State machines interact with the flags via the IRQ and WAIT instructions.

11.2.8. Interactions Between State Machines

Instruction memory is implemented as a 1-write, 4-read register file, allowing all four state machines to read an

instruction on the same cycle without stalling.

There are three ways to apply the multiple state machines:

• Pointing multiple state machines at the same program

• Pointing multiple state machines at different programs

• Using multiple state machines to run different parts of the same interface, e.g. TX and RX side of a UART, or

clock/hsync and pixel data on a DPI display

State machines cannot communicate data, but they can synchronise with one another by using the IRQ flags. There are

8 flags total (the lower four of which can be masked for use as system IRQs), and each state machine can set or clear

any flag using the IRQ instruction, and can wait for a flag to go high or low using the WAIT IRQ instruction. This allows

cycle-accurate synchronisation between state machines.

11.3. PIO Assembler (pioasm)

The PIO Assembler parses a PIO source file and outputs the assembled version ready for inclusion in an RP2350

application. This includes C and C++ applications built against the SDK, and Python programs running on the RP2350

MicroPython port.

This section briefly introduces the directives and instructions that can be used in pioasm input. For a deeper discussion

of how to use pioasm, how it is integrated into the SDK build system, extended features such as code pass through, and

the various output formats it can produce, see Raspberry Pi Pico-series C/C++ SDK.

11.3.1. Directives

The following directives control the assembly of PIO programs:

.define (PUBLIC) <symbol> <value>

Define an integer symbol named <symbol> with the value <value> (see Section 11.3.2). If this .define appears before

the first program in the input file, then this define is global to all programs, otherwise it is local to the program in

which it occurs. If PUBLIC is specified, the symbol will be emitted into the assembled output for use by user code. For

the SDK this takes the following forms:

• #define <program_name> <symbol> value: for program symbols

• #define <symbol> value: for global symbols

.clock_div <divider>

If this directive is present, <divider> is the state machine clock divider for the program. Note, that divider is a floating

point value, but may not currently use arithmetic expressions or defined values. This directive affects the default

state machine configuration for a program. This directive is only valid within a program before the first instruction.

.fifo <fifo_config>

If this directive is present, it is used to specify the FIFO configuration for the program. It affects the default state
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machine configuration for a program, but also restricts what instructions may be used (for example PUSH makes

no sense if there is no IN FIFO configured).

This directive supports the following configuration values:

• txrx: 4 FIFO entries for each of TX and RX; this is the default.

• tx: All 8 FIFO entries for TX.

• rx: All 8 FIFO entries for RX.

• txput: 4 FIFO entries for TX, and 4 FIFO entries for mov rxfifo[index], isr aka put. This value is not supported on

PIO version 0.

• txget: 4 FIFO entries for TX, and 4 FIFO entries for mov osr, rxfifo[index] aka get. This value is not supported on

PIO version 0.

• putget: 4 FIFO entries for mov rxfifo[index], isr aka put, and 4 FIFO entries for mov osr, rxfifo[index] aka get.

This value is not supported on PIO version 0.

This directive is only valid within a program before the first instruction.

.mov_status rxfifo < <n>

.mov_status txfifo < <n>

.mov_status irq <(next|prev)> set <n>

This directive configures the source for the mov , STATUS. One of the three syntaxes can be used to set the status

based on the RXFIFO level being below a value N, the TXFIFO level being below a value N, or an IRQ flag N being set

on this PIO instance (or the next higher numbered, or lowered numbered PIO instance if next or prev or specified).

Note, that the IRQ option requires PIO version 1.

This directive affects the default state machine configuration for a program. This directive is only valid within a

program before the first instruction.

.in <count> (left|right) (auto) (<threshold>)

If this directive is present, <count> indicates the number of IN bits to be used. 'left' or 'right' if specified, control the

ISR shift direction; 'auto', if present, enables "auto-push"; <threshold>, if present, specifies the "auto-push" threshold.

This directive affects the default state machine configuration for a program.

This directive is only valid within a program before the first instruction. When assembling for PIO version 0, <count>

must be 32.

.program <name>

Start a new program with the name <name>. Note that that name is used in code so should be

alphanumeric/underscore not starting with a digit. The program lasts until another .program directive or the end of

the source file. PIO instructions are only allowed within a program.

.origin <offset>

Optional directive to specify the PIO instruction memory offset at which the program must load. Most commonly

this is used for programs that must load at offset 0, because they use data based JMPs with the (absolute) jmp

target being stored in only a few bits. This directive is invalid outside a program.

.out <count> (left|right) (auto) (<threshold>)

If this directive is present, <count> indicates the number of OUT bits to be used. 'left' or 'right' if specified control the

OSR shift direction; 'auto', if present, enables "auto-pull"; <threshold>, if present, specifies the "auto-pull" threshold.

This directive affects the default state machine configuration for a program. This directive is only valid within a

program before the first instruction.

.pio_version <version>

This directive sets the target PIO hardware version. The version for RP2350 is 1 or RP2350, and is also the default

version number. For backwards compatibility with RP2040, 0 or RP2040 may be used.

If this directive appears before the first program in the input file, then this define is the default for all programs,

otherwise it specifies the version for the program in which it occurs. If specified for a program, it must occur before
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the first instruction.

.set <count>

If this directive is present, <count> indicates the number of SET bits to be used. This directive affects the default

state machine configuration for a program. This directive is only valid within a program before the first instruction.

.side_set <count> (opt) (pindirs)

If this directive is present, <count> indicates the number of side-set bits to be used. Additionally, opt may be specified

to indicate that a side <value> is optional for instructions (note this requires stealing an extra bit — in addition to the

<count> bits — from those available for the instruction delay). Finally, pindirs may be specified to indicate that the

side set values should be applied to the PINDIRs and not the PINs. This directive is only valid within a program

before the first instruction.

.wrap_target

Place prior to an instruction, this directive specifies the instruction where execution continues due to program

wrapping. This directive is invalid outside of a program, may only be used once within a program, and if not

specified defaults to the start of the program.

.wrap

Placed after an instruction, this directive specifies the instruction after which, in normal control flow (i.e. jmp with

false condition, or no jmp), the program wraps (to .wrap_target instruction). This directive is invalid outside of a

program, may only be used once within a program, and if not specified defaults to after the last program

instruction.

.lang_opt <lang> <name> <option>

Specifies an option for the program related to a particular language generator. (See Language Generators in

Raspberry Pi Pico-series C/C++ SDK). This directive is invalid outside of a program.

.word <value>

Stores a raw 16-bit value as an instruction in the program. This directive is invalid outside of a program.

11.3.2. Values

The following types of values can be used to define integer numbers or branch targets:

Table 975. Values in

pioasm, i.e. <value>
integer An integer value, e.g. 3 or -7.

hex A hexadecimal value, e.g. 0xf.

binary A binary value, e.g. 0b1001.

symbol A value defined by a .define (see pioasm_define).

<label> The instruction offset of the label within the program. Typically used with a JMP instruction

(see Section 11.4.2).

(<expression>) An expression to be evaluated; see expressions. Note that the parentheses are necessary.

11.3.3. Expressions

Expressions may be freely used within pioasm values.

Table 976.

Expressions in pioasm

i.e. <expression>

<expression> + <expression> The sum of two expressions

<expression> - <expression> The difference of two expressions

<expression> * <expression> The multiplication of two expressions

<expression> / <expression> The integer division of two expressions
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- <expression> The negation of another expression

<expression> << <expression> One expression shifted left by another expression

<expression> >> <expression> One expression shifted right by another expression

:: <expression> The bit reverse of another expression

<value> Any value (see Section 11.3.2)

11.3.4. Comments

To create a line comment that ignores all content on a certain line following a certain symbol, use // or ;.

To create a C-style block comment that ignores all content across multiple lines until after a start symbol until an end

symbol appears, use /* to begin the comment and */ to end the comment.

11.3.5. Labels

Labels use the following forms at the start of a line:

<symbol>:

PUBLIC <symbol>:

 TIP

A label is really just an automatic .define with a value set to the current program instruction offset. A PUBLIC label is

exposed to the user code in the same way as a PUBLIC .define.

11.3.6. Instructions

All pioasm instructions follow a common pattern:

<instruction> (side <side_set_value>) ([<delay_value>])

where:

<instruction> An assembly instruction detailed in the following sections. (see Section 11.4)

<side_set_value> A value (see Section 11.3.2) to apply to the side_set pins at the start of the instruction. Note that

the rules for a side-set value via side <side_set_value> are dependent on the .side_set (see

pioasm_side_set) directive for the program. If no .side_set is specified then the side <side_set_value>

is invalid, if an optional number of sideset pins is specified then side <side_set_value> may be

present, and if a non-optional number of sideset pins is specified, then side <side_set_value> is

required. The <side_set_value> must fit within the number of side-set bits specified in the .side_set

directive.
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<delay_value> Specifies the number of cycles to delay after the instruction completes. The delay_value is

specified as a value (see Section 11.3.2), and in general is between 0 and 31 inclusive (a 5-bit

value), however the number of bits is reduced when sideset is enabled via the .side_set (see

pioasm_side_set) directive. If the <delay_value> is not present, then the instruction has no delay.

 NOTE

pioasm instruction names, keywords and directives are case insensitive; lower case is used in the Assembly Syntax

sections below, as this is the style used in the SDK.

 NOTE

Commas appear in some Assembly Syntax sections below, but are entirely optional, e.g. out pins, 3 may be written

out pins 3, and jmp x-- label may be written as jmp x--, label. The Assembly Syntax sections below uses the first

style in each case as this is the style used in the SDK.

11.3.7. Pseudoinstructions

pioasm provides aliases for certain instructions, as a convenience:

nop Assembles to mov y, y. No side effect, but a useful vehicle for a side-set operation or an extra delay.

11.4. Instruction Set

11.4.1. Summary

PIO instructions are 16 bits long, and use the following encoding:

Table 977. PIO

instruction encoding
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JMP 0 0 0 Delay/side-set Condition Address

WAIT 0 0 1 Delay/side-set Pol Source Index

IN 0 1 0 Delay/side-set Source Bit count

OUT 0 1 1 Delay/side-set Destination Bit count

PUSH 1 0 0 Delay/side-set 0 IfF Blk 0 0 0 0 0

MOV 1 0 0 Delay/side-set 0 0 0 1 IdxI 0 Index

PULL 1 0 0 Delay/side-set 1 IfE Blk 0 0 0 0 0

MOV 1 0 0 Delay/side-set 1 0 0 1 IdxI 0 Index

MOV 1 0 1 Delay/side-set Destination Op Source

IRQ 1 1 0 Delay/side-set 0 Clr Wait IdxMode Index

SET 1 1 1 Delay/side-set Destination Data

All PIO instructions execute in one clock cycle.

The function of the 5-bit Delay/side-set field depends on the state machine’s SIDESET_COUNT configuration:

• Up to 5 LSBs (5 minus SIDESET_COUNT) encode a number of idle cycles inserted between this instruction and the next.
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• Up to 5 MSBs, set by SIDESET_COUNT, encode a side-set (Section 11.5.1), which can assert a constant onto some

GPIOs, concurrently with main instruction execution.

11.4.2. JMP

11.4.2.1. Encoding

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JMP 0 0 0 Delay/side-set Condition Address

11.4.2.2. Operation

Set program counter to Address if Condition is true, otherwise no operation.

Delay cycles on a JMP always take effect, whether Condition is true or false, and they take place after Condition is

evaluated and the program counter is updated.

• Condition:

◦ 000: (no condition): Always

◦ 001: !X: scratch X zero

◦ 010: X--: scratch X non-zero, prior to decrement

◦ 011: !Y: scratch Y zero

◦ 100: Y--: scratch Y non-zero, prior to decrement

◦ 101: X!=Y: scratch X not equal scratch Y

◦ 110: PIN: branch on input pin

◦ 111: !OSRE: output shift register not empty

• Address: Instruction address to jump to. In the instruction encoding this is an absolute address within the PIO

instruction memory

JMP PIN branches on the GPIO selected by EXECCTRL_JMP_PIN, a configuration field which selects one out of the maximum

of 32 GPIO inputs visible to a state machine, independently of the state machine’s other input mapping. The branch is

taken if the GPIO is high.

!OSRE compares the bits shifted out since the last PULL with the shift count threshold configured by SHIFTCTRL_PULL_THRESH.

This is the same threshold used by autopull (Section 11.5.4).

JMP X-- and JMP Y-- always decrement scratch register X or Y, respectively. The decrement is not conditional on the

current value of the scratch register. The branch is conditioned on the initial value of the register, i.e. before the

decrement took place: if the register is initially nonzero, the branch is taken.

11.4.2.3. Assembler Syntax

jmp (<cond>) <target>

where:
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<cond> An optional condition listed above (e.g. !x for scratch X zero). If a condition code is not specified, the

branch is always taken.

<target> A program label or value (see Section 11.3.2) representing instruction offset within the program (the

first instruction being offset 0). Because the PIO JMP instruction uses absolute addresses in the PIO

instruction memory, JMPs need to be adjusted based on the program load offset at runtime. This is

handled for you when loading a program with the SDK, but care should be taken when encoding JMP

instructions for use by OUT EXEC.

11.4.3. WAIT

11.4.3.1. Encoding

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WAIT 0 0 1 Delay/side-set Pol Source Index

11.4.3.2. Operation

Stall until some condition is met.

Like all stalling instructions (Section 11.2.5), delay cycles begin after the instruction completes. That is, if any delay

cycles are present, they do not begin counting until after the wait condition is met.

• Polarity:

◦ 1: wait for a 1.

◦ 0: wait for a 0.

• Source: what to wait on. Values are:

◦ 00: GPIO: System GPIO input selected by Index. This is an absolute GPIO index, and is not affected by the state

machine’s input IO mapping.

◦ 01: PIN: Input pin selected by Index. This state machine’s input IO mapping is applied first, and then Index

selects which of the mapped bits to wait on. In other words, the pin is selected by adding Index to the

PINCTRL_IN_BASE configuration, modulo 32.

◦ 10: IRQ: PIO IRQ flag selected by Index

◦ 11: JMPPIN: wait on the pin indexed by the PINCTRL_JMP_PIN configuration, plus an Index in the range 0-3, all

modulo 32. Other values of Index are reserved.

• Index: which pin or bit to check.

WAIT x IRQ behaves slightly differently from other WAIT sources:

• If Polarity is 1, the selected IRQ flag is cleared by the state machine upon the wait condition being met.

• The flag index is decoded in the same way as the IRQ index field, decoding down from the two MSBs (aligning with

the IRQ instruction IdxMode field):

◦ 00: the three LSBs are used directly to index the IRQ flags in this PIO block.

◦ 01 (PREV), the instruction references an IRQ from the next-lower-numbered PIO in the system, wrapping to the

highest-numbered PIO if this is PIO0.

◦ 10 (REL), the state machine ID (0…3) is added to the IRQ index, by way of modulo-4 addition on the two LSBs.

For example, state machine 2 with a flag value of 0x11 will wait on flag 3, and a flag value of 0x13 will wait on

flag 1. This allows multiple state machines running the same program to synchronise with each other.
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◦ 11 (NEXT), the instruction references an IRQ from the next-higher-numbered PIO in the system, wrapping to

PIO0 if this is the highest-numbered PIO.

 CAUTION

WAIT 1 IRQ x should not be used with IRQ flags presented to the interrupt controller, to avoid a race condition with a

system interrupt handler

11.4.3.3. Assembler Syntax

wait <polarity> gpio <gpio_num>

wait <polarity> pin <pin_num>

wait <polarity> irq <irq_num> (rel, next, prev)

wait <polarity> jmppin (+ <pin_offset>)

where:

<polarity> A value (see Section 11.3.2) specifying the polarity (either 0 or 1).

<pin_num> A value (see Section 11.3.2) specifying the input pin number (as mapped by the SM input pin

mapping).

<gpio_num> A value (see Section 11.3.2) specifying the actual GPIO pin number.

<irq_num> (rel) A value (see Section 11.3.2) specifying The IRQ number to wait on (0-7). If rel is present, then the

actual IRQ number used is calculating by replacing the low two bits of the IRQ number (irq_num10)

with the low two bits of the sum (irq_num10 + sm_num10) where sm_num10 is the state machine number.

<pin_offset> A value (see Section 11.3.2) added to the jmp_pin to get the actual pin number.

11.4.4. IN

11.4.4.1. Encoding

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IN 0 1 0 Delay/side-set Source Bit count

11.4.4.2. Operation

Shift Bit count bits from Source into the Input Shift Register (ISR). Shift direction is configured for each state machine by

SHIFTCTRL_IN_SHIFTDIR. Additionally, increase the input shift count by Bit count, saturating at 32.
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• Source:

◦ 000: PINS

◦ 001: X (scratch register X)

◦ 010: Y (scratch register Y)

◦ 011: NULL (all zeroes)

◦ 100: Reserved

◦ 101: Reserved

◦ 110: ISR

◦ 111: OSR

• Bit count: How many bits to shift into the ISR. 1…32 bits, 32 is encoded as 00000

If automatic push is enabled, IN will also push the ISR contents to the RX FIFO if the push threshold is reached

(SHIFTCTRL_PUSH_THRESH). IN still executes in one cycle, whether an automatic push takes place or not. The state machine

will stall if the RX FIFO is full when an automatic push occurs. An automatic push clears the ISR contents to all-zeroes,

and clears the input shift count. See Section 11.5.4.

IN always uses the least significant Bit count bits of the source data. For example, if PINCTRL_IN_BASE is set to 5, the

instruction IN PINS, 3 will take the values of pins 5, 6 and 7, and shift these into the ISR. First the ISR is shifted to the left

or right to make room for the new input data, then the input data is copied into the gap this leaves. The bit order of the

input data is not dependent on the shift direction.

NULL can be used for shifting the ISR’s contents. For example, UARTs receive the LSB first, so must shift to the right.

After 8 IN PINS, 1 instructions, the input serial data will occupy bits 31…24 of the ISR. An IN NULL, 24 instruction will shift

in 24 zero bits, aligning the input data at ISR bits 7…0. Alternatively, the processor or DMA could perform a byte read

from FIFO address + 3, which would take bits 31…24 of the FIFO contents.

11.4.4.3. Assembler Syntax

in <source>, <bit_count>

where:

<source> One of the sources specified above.

<bit_count> A value (see Section 11.3.2) specifying the number of bits to shift (valid range 1-32).

11.4.5. OUT

11.4.5.1. Encoding

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OUT 0 1 1 Delay/side-set Destination Bit count

11.4.5.2. Operation

Shift Bit count bits out of the Output Shift Register (OSR), and write those bits to Destination. Additionally, increase the
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output shift count by Bit count, saturating at 32.

• Destination:

◦ 000: PINS

◦ 001: X (scratch register X)

◦ 010: Y (scratch register Y)

◦ 011: NULL (discard data)

◦ 100: PINDIRS

◦ 101: PC

◦ 110: ISR (also sets ISR shift counter to Bit count)

◦ 111: EXEC (Execute OSR shift data as instruction)

• Bit count: how many bits to shift out of the OSR. 1…32 bits, 32 is encoded as 00000

A 32-bit value is written to Destination: the lower Bit count bits come from the OSR, and the remainder are zeroes. This

value is the least significant Bit count bits of the OSR if SHIFTCTRL_OUT_SHIFTDIR is to the right, otherwise it is the most

significant bits.

PINS and PINDIRS use the OUT pin mapping, as described in Section 11.5.6.

If automatic pull is enabled, the OSR is automatically refilled from the TX FIFO if the pull threshold, SHIFTCTRL_PULL_THRESH,

is reached. The output shift count is simultaneously cleared to 0. In this case, the OUT will stall if the TX FIFO is empty,

but otherwise still executes in one cycle. The specifics are given in Section 11.5.4.

OUT EXEC allows instructions to be included inline in the FIFO datastream. The OUT itself executes on one cycle, and the

instruction from the OSR is executed on the next cycle. There are no restrictions on the types of instructions which can

be executed by this mechanism. Delay cycles on the initial OUT are ignored, but the executee may insert delay cycles as

normal.

OUT PC behaves as an unconditional jump to an address shifted out from the OSR.

11.4.5.3. Assembler Syntax

out <destination>, <bit_count>

where:

<destination> One of the destinations specified above.

<bit_count> A value (see Section 11.3.2) specifying the number of bits to shift (valid range 1-32).

11.4.6. PUSH

11.4.6.1. Encoding

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUSH 1 0 0 Delay/side-set 0 IfF Blk 0 0 0 0 0
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11.4.6.2. Operation

Push the contents of the ISR into the RX FIFO, as a single 32-bit word. Clear ISR to all-zeroes.

• IfFull: If 1, do nothing unless the total input shift count has reached its threshold, SHIFTCTRL_PUSH_THRESH (the same

as for autopush; see Section 11.5.4).

• Block: If 1, stall execution if RX FIFO is full.

PUSH IFFULL helps to make programs more compact, like autopush. It is useful in cases where the IN would stall at an

inappropriate time if autopush were enabled, e.g. if the state machine is asserting some external control signal at this

point.

The PIO assembler sets the Block bit by default. If the Block bit is not set, the PUSH does not stall on a full RX FIFO, instead

continuing immediately to the next instruction. The FIFO state and contents are unchanged when this happens. The ISR

is still cleared to all-zeroes, and the FDEBUG_RXSTALL flag is set (the same as a blocking PUSH or autopush to a full RX FIFO)

to indicate data was lost.

 NOTE

The operation of the PUSH instruction is undefined when SM0_SHIFTCTRL.FJOIN_RX_PUT or FJOIN_RX_GET is

set — see Section 11.4.8 and Section 11.4.9 for details of the PUT and GET instruction which can be used in this state.

11.4.6.3. Assembler Syntax

push (iffull)

push (iffull) block

push (iffull) noblock

where:

iffull Equivalent to IfFull == 1 above. i.e. the default if this is not specified is IfFull == 0.

block Equivalent to Block == 1 above. This is the default if neither block nor noblock is specified.

noblock Equivalent to Block == 0 above.

11.4.7. PULL

11.4.7.1. Encoding

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PULL 1 0 0 Delay/side-set 1 IfE Blk 0 0 0 0 0
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11.4.7.2. Operation

Load a 32-bit word from the TX FIFO into the OSR.

• IfEmpty: If 1, do nothing unless the total output shift count has reached its threshold, SHIFTCTRL_PULL_THRESH (the

same as for autopull; see Section 11.5.4).

• Block: If 1, stall if TX FIFO is empty. If 0, pulling from an empty FIFO copies scratch X to OSR.

Some peripherals (UART, SPI, etc.) should halt when no data is available, and pick it up as it comes in; others (I2S)

should clock continuously, and it is better to output placeholder or repeated data than to stop clocking. This can be

achieved with the Block parameter.

A non-blocking PULL on an empty FIFO has the same effect as MOV OSR, X. The program can either preload scratch

register X with a suitable default, or execute a MOV X, OSR after each PULL NOBLOCK, so that the last valid FIFO word will be

recycled until new data is available.

PULL IFEMPTY is useful if an OUT with autopull would stall in an inappropriate location when the TX FIFO is empty. IfEmpty

permits some of the same program simplifications as autopull: for example, the elimination of an outer loop counter.

However, the stall occurs at a controlled point in the program.

 NOTE

When autopull is enabled, any PULL instruction is a no-op when the OSR is full, so that the PULL instruction behaves as

a barrier. OUT NULL, 32 can be used to explicitly discard the OSR contents. See Section 11.5.4.2 for more detail.

11.4.7.3. Assembler Syntax

pull (ifempty)

pull (ifempty) block

pull (ifempty) noblock

where:

ifempty Equivalent to IfEmpty == 1 above. i.e. the default if this is not specified is IfEmpty == 0.

block Equivalent to Block == 1 above. This is the default if neither block nor noblock is specified.

noblock Equivalent to Block == 0 above.

11.4.8. MOV (to RX)

11.4.8.1. Encoding

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOV 1 0 0 Delay/side-set 0 0 0 1 IdxI Index
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11.4.8.2. Operation

Write the ISR to a selected RX FIFO entry. The state machine can write the RX FIFO entries in any order, indexed either

by the Y register, or an immediate Index in the instruction. Requires the SHIFTCTRL_FJOIN_RX_PUT configuration field to be

set, otherwise its operation is undefined. The FIFO configuration can be specified for the program via the .fifo directive

(see pioasm_fifo).

If IdxI (index by immediate) is set, the RX FIFO’s registers are indexed by the two least-significant bits of the Index

operand. Otherwise, they are indexed by the two least-significant bits of the Y register. When IdxI is clear, all non-zero

values of Index are reserved encodings, and their operation is undefined.

When only SHIFTCTRL_FJOIN_RX_PUT is set (in SM0_SHIFTCTRL through SM3_SHIFTCTRL), the system can also read the RX

FIFO registers with random access via RXF0_PUTGET0 through RXF0_PUTGET3 (where RXFx indicates which state

machine’s FIFO is being accessed). In this state, the FIFO register storage is repurposed as status registers, which the

state machine can update at any time and the system can read at any time. For example, a quadrature decoder program

could maintain the current step count in a status register at all times, rather than pushing to the RX FIFO and potentially

blocking.

When both SHIFTCTRL_FJOIN_RX_PUT and SHIFTCTRL_FJOIN_RX_GET are set, the system can no longer access the RX FIFO

storage registers, but the state machine can now put/get the registers in arbitrary order, allowing them to be used as

additional scratch storage.

 NOTE

The RX FIFO storage registers have only a single read port and write port, and access through each port is assigned

to only one of (system, state machine) at any time.

11.4.8.3. Assembler Syntax

mov rxfifo[y], isr

mov rxfifo[<index>], isr

where:

y The literal token "y", indicating the RX FIFO entry is indexed by the Y register.

<index> A value (see Section 11.3.2) specifying the RX FIFO entry to write (valid range 0-3).

11.4.9. MOV (from RX)

11.4.9.1. Encoding

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOV 1 0 0 Delay/side-set 1 0 0 1 IdxI Index
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11.4.9.2. Operation

Read the selected RX FIFO entry into the OSR. The PIO state machine can read the FIFO entries in any order, indexed

either by the Y register, or an immediate Index in the instruction. Requires the SHIFTCTRL_FJOIN_RX_GET configuration field

to be set, otherwise its operation is undefined.

If IdxI (index by immediate) is set, the RX FIFO’s registers are indexed by the two least-significant bits of the Index

operand. Otherwise, they are indexed by the two least-significant bits of the Y register. When IdxI is clear, all non-zero

values of Index are reserved encodings, and their operation is undefined.

When only SHIFTCTRL_FJOIN_RX_GET is set, the system can also write the RX FIFO registers with random access via

RXF0_PUTGET0 through RXF0_PUTGET3 (where RXFx indicates which state machine’s FIFO is being accessed). In this

state, the RX FIFO register storage is repurposed as additional configuration registers, which the system can update at

any time and the state machine can read at any time. For example, a UART TX program might use these registers to

configure the number of data bits, or the presence of an additional stop bit.

When both SHIFTCTRL_FJOIN_RX_PUT and SHIFTCTRL_FJOIN_RX_GET are set, the system can no longer access the RX FIFO

storage registers, but the state machine can now put/get the registers in arbitrary order, allowing them to be used as

additional scratch storage.

 NOTE

The RX FIFO storage registers have only a single read port and write port, and access through each port is assigned

to only one of (system, state machine) at any time.

11.4.9.3. Assembler Syntax

mov osr, rxfifo[y]

mov osr, rxfifo[<index>]

where:

y The literal token "y", indicating the RX FIFO entry is indexed by the Y register.

<index> A value (see Section 11.3.2) specifying the RX FIFO entry to read (valid range 0-3).

11.4.10. MOV

11.4.10.1. Encoding

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOV 1 0 1 Delay/side-set Destination Op Source

11.4.10.2. Operation

Copy data from Source to Destination.

• Destination:
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◦ 000: PINS (Uses same pin mapping as OUT)

◦ 001: X (Scratch register X)

◦ 010: Y (Scratch register Y)

◦ 011: PINDIRS (Uses same pin mapping as OUT)

◦ 100: EXEC (Execute data as instruction)

◦ 101: PC

◦ 110: ISR (Input shift counter is reset to 0 by this operation, i.e. empty)

◦ 111: OSR (Output shift counter is reset to 0 by this operation, i.e. full)

• Operation:

◦ 00: None

◦ 01: Invert (bitwise complement)

◦ 10: Bit-reverse

◦ 11: Reserved

• Source:

◦ 000: PINS (Uses same pin mapping as IN)

◦ 001: X

◦ 010: Y

◦ 011: NULL

◦ 100: Reserved

◦ 101: STATUS

◦ 110: ISR

◦ 111: OSR

MOV PC causes an unconditional jump. MOV EXEC has the same behaviour as OUT EXEC (Section 11.4.5), and allows register

contents to be executed as an instruction. The MOV itself executes in 1 cycle, and the instruction in Source on the next

cycle. Delay cycles on MOV EXEC are ignored, but the executee may insert delay cycles as normal.

The STATUS source has a value of all-ones or all-zeroes, depending on some state machine status such as FIFO

full/empty, configured by EXECCTRL_STATUS_SEL.

MOV can manipulate the transferred data in limited ways, specified by the Operation argument. Invert sets each bit in

Destination to the logical NOT of the corresponding bit in Source, i.e. 1 bits become 0 bits, and vice versa. Bit reverse sets

each bit n in Destination to bit 31 - n in Source, assuming the bits are numbered 0 to 31.

MOV dst, PINS reads pins using the IN pin mapping, masked to the number of bits specified by SHIFTCTRL_IN_COUNT. The LSB

of the read value is the pin indicated by PINCTRL_IN_BASE, and each successive bit comes from a higher-numbered pin,

wrapping after 31. Result bits greater than the width specified by SHIFTCTRL_IN_COUNT configuration are 0.

MOV PINDIRS, src is not supported on PIO version 0.

11.4.10.3. Assembler Syntax

mov <destination>, (op) <source>

where:
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<destination> One of the destinations specified above.

op If present, is:

! or ~ for NOT (Note: this is always a bitwise NOT)

:: for bit reverse

<source> One of the sources specified above.

11.4.11. IRQ

11.4.11.1. Encoding

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IRQ 1 1 0 Delay/side-set 0 Clr Wait IdxMode Index

11.4.11.2. Operation

Set or clear the IRQ flag selected by Index argument.

• Clear: if 1, clear the flag selected by Index, instead of raising it. If Clear is set, the Wait bit has no effect.

• Wait: if 1, halt until the raised flag is lowered again, e.g. if a system interrupt handler has acknowledged the flag.

• Index: specifies an IRQ index from 0-7. This IRQ flag will be set/cleared depending on the Clear bit.

• IdxMode: modify the behaviour if the Index field, either modifying the index, or indexing IRQ flags from a different

PIO block:

◦ 00: the three LSBs are used directly to index the IRQ flags in this PIO block.

◦ 01 (PREV): the instruction references an IRQ flag from the next-lower-numbered PIO in the system, wrapping to

the highest-numbered PIO if this is PIO0.

◦ 10 (REL): the state machine ID (0…3) is added to the IRQ flag index, by way of modulo-4 addition on the two

LSBs. For example, state machine 2 with a flag value of '0x11' will wait on flag 3, and a flag value of '0x13' will

wait on flag 1. This allows multiple state machines running the same program to synchronise with each other.

◦ 11 (NEXT): the instruction references an IRQ flag from the next-higher-numbered PIO in the system, wrapping to

PIO0 if this is the highest-numbered PIO.

All IRQ flags 0-7 can be routed out to system level interrupts, on either of the PIO’s two external interrupt request lines,

configured by IRQ0_INTE and IRQ1_INTE.

The modulo addition mode (REL) allows relative addressing of 'IRQ' and 'WAIT' instructions, for synchronising state

machines which are running the same program. Bit 2 (the third LSB) is unaffected by this addition.

The NEXT/PREV modes can be used to synchronise between state machines in different PIO blocks. If these state

machines' clocks are divided, their clock dividers must be the same, and must have been synchronised by writing

CTRL.NEXTPREV_CLKDIV_RESTART in addition to the relevant NEXT_PIO_MASK/PREV_PIO_MASK bits. Note that the

cross-PIO connection is severed between PIOs with different accessibility to Non-secure code, as per ACCESSCTRL.

If Wait is set, Delay cycles do not begin until after the wait period elapses.
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11.4.11.3. Assembler Syntax

irq <irq_num> (prev, rel, next)

irq set <irq_num> (prev, rel, next)

irq nowait <irq_num> (prev, rel, next)

irq wait <irq_num> (prev, rel, next)

irq clear <irq_num> (prev, rel, next)

where:

<irq_num> (rel) A value (see Section 11.3.2) specifying The IRQ number to wait on (0-7). If rel is present, then the

actual IRQ number used is calculating by replacing the low two bits of the IRQ number (irq_num10)

with the low two bits of the sum (irq_num10 + sm_num10) where sm_num10 is the state machine number.

irq Set the IRQ without waiting.

irq set Set the IRQ without waiting.

irq nowait Set the IRQ without waiting.

irq wait Set the IRQ and wait for it to be cleared before proceeding.

irq clear Clear the IRQ.

11.4.12. SET

11.4.12.1. Encoding

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET 1 1 1 Delay/side-set Destination Data

11.4.12.2. Operation

Write immediate value Data to Destination.

• Destination:

◦ 000: PINS

◦ 001: X (scratch register X) 5 LSBs are set to Data, all others cleared to 0.
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◦ 010: Y (scratch register Y) 5 LSBs are set to Data, all others cleared to 0.

◦ 011: Reserved

◦ 100: PINDIRS

◦ 101: Reserved

◦ 110: Reserved

◦ 111: Reserved

• Data: 5-bit immediate value to drive to pins or register.

This can be used to assert control signals such as a clock or chip select, or to initialise loop counters. As Data is 5 bits in

size, scratch registers can be SET to values from 0-31, which is sufficient for a 32-iteration loop.

The mapping of SET and OUT onto pins is configured independently. They may be mapped to distinct locations, for

example if one pin is to be used as a clock signal, and another for data. They may also be overlapping ranges of pins: a

UART transmitter might use SET to assert start and stop bits, and OUT instructions to shift out FIFO data to the same pins.

11.4.12.3. Assembler Syntax

set <destination>, <value>

where:

<destination> Is one of the destinations specified above.

<value> The value (see Section 11.3.2) to set (valid range 0-31).

11.5. Functional Details

11.5.1. Side-set

Side-set is a feature that allows state machines to change the level or direction of up to 5 pins, concurrently with the

main execution of the instruction.

One example where this is necessary is a fast SPI interface: here a clock transition (toggling 1→0 or 0→1) must be

simultaneous with a data transition, where a new data bit is shifted from the OSR to a GPIO. In this case an OUT with a

side-set would achieve both of these at once.

This makes the timing of the interface more precise, reduces the overall program size (as a separate SET instruction is

not needed to toggle the clock pin), and also increases the maximum frequency the SPI can run at.

Side-set also makes GPIO mapping much more flexible, as its mapping is independent from SET. The example I2C code

allows SDA and SCL to be mapped to any two arbitrary pins, if clock stretching is disabled. Normally, SCL toggles to

synchronise data transfer, and SDA contains the data bits being shifted out. However, some particular I2C sequences

such as Start and Stop line conditions, need a fixed pattern to be driven on SDA as well as SCL. The mapping I2C uses to

achieve this is:

• Side-set → SCL

• OUT → SDA

• SET → SDA

This lets the state machine serve the two use cases of data on SDA and clock on SCL, or fixed transitions on both SDA
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and SCL, while still allowing SDA and SCL to be mapped to any two GPIOs of choice.

The side-set data is encoded in the Delay/side-set field of each instruction. Any instruction can be combined with side-

set, including instructions which write to the pins, such as OUT PINS or SET PINS. Side-set’s pin mapping is independent

from OUT and SET mappings, though it may overlap. If side-set and an OUT or SET write to the same pin simultaneously, the

side-set data is used.

 NOTE

If an instruction stalls, the side-set still takes effect immediately.

1 .program spi_tx_fast
2 .side_set 1
3 
4 loop:
5     out pins, 1  side 0
6     jmp loop     side 1

The spi_tx_fast example shows two benefits of this: data and clock transitions can be more precisely co-aligned, and

programs can be made faster overall, with an output of one bit per two system clock cycles in this case. Programs can

also be made smaller.

There are four things to configure when using side-set:

• The number of MSBs of the Delay/side-set field to use for side-set rather than delay. This is configured by

PINCTRL_SIDESET_COUNT. If this is set to 5, delay cycles are not available. If set to 0, no side-set will take place.

• Whether to use the most significant of these bits as an enable. Side-set takes place on instructions where the

enable is high. If there is no enable bit, every instruction on that state machine will perform a side-set, if

SIDESET_COUNT is nonzero. This is configured by EXECCTRL_SIDE_EN.

• The GPIO number to map the least-significant side-set bit to. Configured by PINCTRL_SIDESET_BASE.

• Whether side-set writes to GPIO levels or GPIO directions. Configured by EXECCTRL_SIDE_PINDIR

In the above example, we have only one side-set data bit, and every instruction performs a side-set, so no enable bit is

required. SIDESET_COUNT would be 1, SIDE_EN would be false. SIDE_PINDIR would also be false, as we want to drive the clock

high and low, not high- and low-impedance. SIDESET_BASE would select the GPIO the clock is driven from.

11.5.2. Program Wrapping

PIO programs often have an "outer loop": they perform the same sequence of steps, repetitively, as they transfer a

stream of data between the FIFOs and the outside world. The square wave program from the introduction is a minimal

example of this:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/squarewave/squarewave.pio Lines 8 - 13

 8 .program squarewave
 9     set pindirs, 1   ; Set pin to output
10 again:
11     set pins, 1 [1]  ; Drive pin high and then delay for one cycle
12     set pins, 0      ; Drive pin low
13     jmp again        ; Set PC to label `again`

The main body of the program drives a pin high, and then low, producing one period of a square wave. The entire

program then loops, driving a periodic output. The jump itself takes one cycle, as does each set instruction, so to keep

the high and low periods of the same duration, the set pins, 1 has a single delay cycle added, which makes the state
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machine idle for one cycle before executing the set pins, 0 instruction. In total, each loop takes four cycles. There are

two frustrations here:

• The JMP takes up space in the instruction memory that could be used for other programs

• The extra cycle taken to execute the JMP ends up halving the maximum output rate

As the Program Counter (PC) naturally wraps to 0 when incremented past 31, we could solve the second of these by

filling the entire instruction memory with a repeating pattern of set pins, 1 and set pins, 0, but this is wasteful. State

machines have a hardware feature, configured via their EXECCTRL control register, which solves this common case.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/squarewave/squarewave_wrap.pio Lines 12 - 20

12 .program squarewave_wrap
13 ; Like squarewave, but use the state machine's .wrap hardware instead of an
14 ; explicit jmp. This is a free (0-cycle) unconditional jump.
15 
16     set pindirs, 1   ; Set pin to output
17 .wrap_target
18     set pins, 1 [1]  ; Drive pin high and then delay for one cycle
19     set pins, 0 [1]  ; Drive pin low and then delay for one cycle
20 .wrap

After executing an instruction from the program memory, state machines use the following logic to update PC:

1. If the current instruction is a JMP, and the Condition is true, set PC to the Target

2. Otherwise, if PC matches EXECCTRL_WRAP_TOP, set PC to EXECCTRL_WRAP_BOTTOM

3. Otherwise, increment PC, or set to 0 if the current value is 31.

The .wrap_target and .wrap assembly directives in pioasm are essentially labels. They export constants which can be

written to the WRAP_BOTTOM and WRAP_TOP control fields, respectively:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/squarewave/generated/squarewave_wrap.pio.h

 1 // -------------------------------------------------- //
 2 // This file is autogenerated by pioasm; do not edit! //
 3 // -------------------------------------------------- //
 4 
 5 #pragma once
 6 
 7 #include "hardware/pio.h"
 8 
 9 // --------------- //
10 // squarewave_wrap //
11 // --------------- //
12 
13 #define squarewave_wrap_wrap_target 1
14 #define squarewave_wrap_wrap 2
15 #define squarewave_wrap_pio_version 0
16 
17 static const uint16_t squarewave_wrap_program_instructions[] = {
18     0xe081, //  0: set    pindirs, 1
19             //     .wrap_target
20     0xe101, //  1: set    pins, 1                [1]
21     0xe100, //  2: set    pins, 0                [1]
22             //     .wrap
23 };
24 
25 static const struct pio_program squarewave_wrap_program = {
26     .instructions = squarewave_wrap_program_instructions,
27     .length = 3,
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28     .origin = -1,
29     .pio_version = 0,
30     .used_gpio_ranges = 0x0
31 #endif
32 };
33 
34 static inline pio_sm_config squarewave_wrap_program_get_default_config(uint offset) {
35     pio_sm_config c = pio_get_default_sm_config();
36     sm_config_set_wrap(&c, offset + squarewave_wrap_wrap_target, offset +
   squarewave_wrap_wrap);
37     return c;
38 }

This is raw output from the PIO assembler, pioasm, which has created a default pio_sm_config object containing the WRAP

register values from the program listing. The control register fields could also be initialised directly.

 NOTE

WRAP_BOTTOM and WRAP_TOP are absolute addresses in the PIO instruction memory. If a program is loaded at an offset,

the wrap addresses must be adjusted accordingly.

The squarewave_wrap example has delay cycles inserted, so that it behaves identically to the original squarewave program.

Thanks to program wrapping, these can now be removed, so that the output toggles twice as fast, while maintaining an

even balance of high and low periods.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/squarewave/squarewave_fast.pio Lines 12 - 18

12 .program squarewave_fast
13 ; Like squarewave_wrap, but remove the delay cycles so we can run twice as fast.
14     set pindirs, 1   ; Set pin to output
15 .wrap_target
16     set pins, 1      ; Drive pin high
17     set pins, 0      ; Drive pin low
18 .wrap

11.5.3. FIFO Joining

By default, each state machine possesses a 4-entry FIFO in each direction: one for data transfer from system to state

machine (TX), the other for the reverse direction (RX). However, many applications do not require bidirectional data

transfer between the system and an individual state machine, but may benefit from deeper FIFOs: in particular, high-

bandwidth interfaces such as DPI. For these cases, SHIFTCTRL_FJOIN can merge the two 4-entry FIFOs into a single 8-entry

FIFO.

RP2350 Datasheet

11.5. Functional Details 892

https://github.com/raspberrypi/pico-examples/blob/develop/pio/squarewave/squarewave_fast.pio#L12-L18


Figure 47. Joinable

dual FIFO. A pair of

four-entry FIFOs,

implemented with four

data registers, a 1:4

decoder and a 4:1

multiplexer. Additional

multiplexing allows

write data and read

data to cross between

the TX and RX lanes,

so that all 8 entries

are accessible from

both ports

Another example is a UART: because the TX/CTS and RX/RTS parts a of a UART are asynchronous, they are

implemented on two separate state machines. It would be wasteful to leave half of each state machine’s FIFO

resources idle. The ability to join the two halves into just a TX FIFO for the TX/CTS state machine, or just an RX FIFO in

the case of the RX/RTS state machine, allows full utilisation. A UART equipped with an 8-deep FIFO can be left alone for

twice as long between interrupts as one with only a 4-deep FIFO.

When one FIFO is increased in size (from 4 to 8), the other FIFO on that state machine is reduced to zero. For example, if

joining to TX, the RX FIFO is unavailable, and any PUSH instruction will stall. The RX FIFO will appear both RXFULL and

RXEMPTY in the FSTAT register. The converse is true if joining to RX: the TX FIFO is unavailable, and the TXFULL and TXEMPTY

bits for this state machine will both be set in FSTAT. Setting both FJOIN_RX and FJOIN_TX makes both FIFOs unavailable.

8 FIFO entries is sufficient for 1 word per clock through the RP2350 system DMA, provided the DMA is not slowed by

contention with other masters.

 CAUTION

Changing FJOIN discards any data present in the state machine’s FIFOs. If this data is irreplaceable, it must be

drained beforehand.

11.5.4. Autopush and Autopull

With each OUT instruction, the OSR gradually empties, as data is shifted out. Once empty, it must be refilled: for example,

a PULL transfers one word of data from the TX FIFO to the OSR. Similarly, the ISR must be emptied once full. One

approach to this is a loop which performs a PULL after an appropriate amount of data has been shifted:

 1 .program manual_pull
 2 .side_set 1 opt
 3 
 4 .wrap_target
 5     set x, 2                   ; X = bit count - 2
 6     pull            side 1 [1]  ; Stall here if no TX data
 7 bitloop:
 8     out pins, 1     side 0 [1]  ; Shift out data bit and toggle clock low
 9     jmp x-- bitloop side 1 [1]  ; Loop runs 3 times
10     out pins, 1     side 0      ; Shift out last bit before reloading X
11 .wrap

This program shifts out 4 bits from each FIFO word, with an accompanying bit clock, at a constant rate of 1 bit per 4

cycles. When the TX FIFO is empty, it stalls with the clock high (noting that side-set still takes place on cycles where the
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instruction stalls). Figure 48 shows how a state machine would execute this program.

System Clock

0 2 3 432

2 1 0 2-1

1

Instruction

Scratch X

Clock pin (side -set)

OSR shift count

PULLSET OUT JMP OUT JMP OUT JMP SETOUT PULL

Bit 0 Bit 1 Bit 2 Bit 3Data pin (OUT)

Figure 48. Execution

of manual_pull

program. X is used as

a loop counter. On

each iteration, one

data bit is shifted out,

and the clock is

asserted low, then

high. A delay cycle on

each instruction

brings the total up to

four cycles per

iteration. After the

third loop, a fourth bit

is shifted out, and the

state machine

immediately returns to

the start of the

program to reload the

loop counter and pull

fresh data, while

maintaining the 4

cycles/bit cadence.

This program has some limitations:

• It occupies 5 instruction slots, but only 2 of these are immediately useful (out pins, 1 set 0 and … set 1), for

outputting serial data and a clock.

• Throughput is limited to system clock over 4, due to the extra cycles required to pull in new data, and reload the

loop counter.

This is a common type of problem for PIO, so each state machine has some extra hardware to handle it. State machines

keep track of the total shift count OUT of the OSR and IN to the ISR, and trigger certain actions once these counters reach

a programmable threshold.

• On an OUT instruction which reaches or exceeds the pull threshold, the state machine can simultaneously refill the

OSR from the TX FIFO, if data is available.

• On an IN instruction which reaches or exceeds the push threshold, the state machine can write the shift result

directly to the RX FIFO, and clear the ISR.

The manual_pull example can be rewritten to take advantage of automatic pull (autopull):

1 .program autopull
2 .side_set 1
3 
4 .wrap_target
5     out pins, 1   side 0    [1]
6     nop           side 1    [1]
7 .wrap

This is shorter and simpler than the original, and can run twice as fast, if the delay cycles are removed, since the

hardware refills the OSR "for free". Note that the program does not determine the total number of bits to be shifted

before the next pull; the hardware automatically pulls once the programmable threshold, SHIFCTRL_PULL_THRESH, is reached,

so the same program could also shift out e.g. 16 or 32 bits from each FIFO word.

Finally, note that the above program is not exactly the same as the original, since it stalls with the clock output low,

rather than high. We can change the location of the stall, using the PULL IFEMPTY instruction, which uses the same

configurable threshold as autopull:

1 .program somewhat_manual_pull
2 .side_set 1
3 
4 .wrap_target
5     out pins, 1   side 0    [1]
6     pull ifempty  side 1    [1]
7 .wrap

Below is a complete example (PIO program, plus a C program to load and run it) which illustrates autopull and autopush

both enabled on the same state machine. It programs state machine 0 to loopback data from the TX FIFO to the RX

FIFO, with a throughput of one word per two clocks. It also demonstrates how the state machine will stall if it tries to OUT

when both the OSR and TX FIFO are empty.
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1 .program auto_push_pull
2 
3 .wrap_target
4     out x, 32
5     in x, 32
6 .wrap

 1 #include "tb.h" // TODO this is built against existing sw tree, so that we get printf etc
 2 
 3 #include "platform.h"
 4 #include "pio_regs.h"
 5 #include "system.h"
 6 #include "hardware.h"
 7 
 8 #include "auto_push_pull.pio.h"
 9 
10 int main()
11 {
12     tb_init();
13 
14     // Load program and configure state machine 0 for autopush/pull with
15     // threshold of 32, and wrapping on program boundary. A threshold of 32 is
16     // encoded by a register value of 00000.
17     for (int i = 0; i < count_of(auto_push_pull_program); ++i)
18         mm_pio->instr_mem[i] = auto_push_pull_program[i];
19     mm_pio->sm[0].shiftctrl =
20         (1u << PIO_SM0_SHIFTCTRL_AUTOPUSH_LSB) |
21         (1u << PIO_SM0_SHIFTCTRL_AUTOPULL_LSB) |
22         (0u << PIO_SM0_SHIFTCTRL_PUSH_THRESH_LSB) |
23         (0u << PIO_SM0_SHIFTCTRL_PULL_THRESH_LSB);
24     mm_pio->sm[0].execctrl = 
25         (auto_push_pull_wrap_target << PIO_SM0_EXECCTRL_WRAP_BOTTOM_LSB) |
26         (auto_push_pull_wrap << PIO_SM0_EXECCTRL_WRAP_TOP_LSB);
27 
28     // Start state machine 0
29     hw_set_bits(&mm_pio->ctrl, 1u << (PIO_CTRL_SM_ENABLE_LSB + 0));
30 
31     // Push data into TX FIFO, and pop from RX FIFO
32     for (int i = 0; i < 5; ++i)
33         mm_pio->txf[0] = i;
34     for (int i = 0; i < 5; ++i)
35         printf("%d\n", mm_pio->rxf[0]);
36 
37     return 0;
38 }

Figure 49 shows how the state machine executes the example program. Initially the OSR is empty, so the state machine

stalls on the first OUT instruction. Once data is available in the TX FIFO, the state machine transfers this into the OSR. On

the next cycle, the OUT can execute using the data in the OSR (in this case, transferring this data to the X scratch

register), and the state machine simultaneously refills the OSR with fresh data from the FIFO. Since every IN instruction

immediately fills the ISR, the ISR remains empty, and IN transfers data directly from scratch X to the RX FIFO.
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clock

0 0 0 0 3232 0

0 0 0 0 00

2 3 4 51

Current Instruction

Stall

TX FIFO Empty

TX FIFO Pop

OSR Count (0=full)

RX FIFO Push

ISR Count (0=empty)

RX FIFO Push

INOUT OUT IN OUT IN OUT IN INOUT OUT

Figure 49. Execution

of auto_push_pull

program. The state

machine stalls on an

OUT until data has

travelled through the

TX FIFO into the OSR.

Subsequently, the OSR

is refilled

simultaneously with

each OUT operation

(due to bit count of

32), and IN data

bypasses the ISR and

goes straight to the RX

FIFO. The state

machine stalls again

when the FIFO has

drained, and the OSR

is once again empty.

To trigger automatic push or pull at the correct time, the state machine tracks the total shift count of the ISR and OSR,

using a pair of saturating 6-bit counters.

• At reset, or upon CTRL_SM_RESTART assertion, ISR shift counter is set to 0 (nothing shifted in), and OSR to 32 (nothing

left to be shifted out)

• An OUT instruction increases the OSR shift counter by Bit count

• An IN instruction increases the ISR shift counter by Bit count

• A PULL instruction or autopull clears the OSR counter to 0

• A PUSH instruction or autopush clears the ISR counter to 0

• A MOV OSR, x or MOV ISR, x clears the OSR or ISR shift counter to 0, respectively

• A OUT ISR, n instruction sets the ISR shift counter to n

On any OUT or IN instruction, the state machine compares the shift counters to the values of SHIFTCTRL_PULL_THRESH and

SHIFTCTRL_PUSH_THRESH to decide whether action is required. Autopull and autopush are individually enabled by the

SHIFTCTRL_AUTOPULL and SHIFTCTRL_AUTOPUSH fields.

11.5.4.1. Autopush Details

Pseudocode for an IN with autopush enabled:

 1 isr = shift_in(isr, input())
 2 isr count = saturate(isr count + in count)
 3 
 4 if rx count >= threshold:
 5     if rx fifo is full:
 6         stall
 7     else:
 8         push(isr)
 9         isr = 0
10         isr count = 0

The hardware performs the above steps in a single machine clock cycle, unless there is a stall.

Threshold is configurable from 1 to 32.
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 IMPORTANT

Autopush must not be enabled when SHIFTCTRL_FJOIN_RX_PUT or SHIFTCTRL_FJOIN_RX_PUTGET is set. Its operation in this

state is undefined.

11.5.4.2. Autopull Details

On non-OUT cycles, the hardware performs the equivalent of the following pseudocode:

1 if MOV or PULL:
2     osr count = 0
3 
4 if osr count >= threshold:
5     if tx fifo not empty:
6         osr = pull()
7         osr count = 0

An autopull can therefore occur at any point between two OUTs, depending on when the data arrives in the FIFO.

On OUT cycles, the sequence is a little different:

 1 if osr count >= threshold:
 2     if tx fifo not empty:
 3         osr = pull()
 4         osr count = 0
 5     stall
 6 else:
 7     output(osr)
 8     osr = shift(osr, out count)
 9     osr count = saturate(osr count + out count)
10 
11     if osr count >= threshold:
12         if tx fifo not empty:
13             osr = pull()
14             osr count = 0

The hardware is capable of refilling the OSR simultaneously with shifting out the last of the shift data, as these two

operations can proceed in parallel. However, it cannot fill an empty OSR and OUT it on the same cycle, due to the long

logic path this would create.

The refill is somewhat asynchronous to your program, but an OUT behaves as a data fence, and the state machine will

never OUT data which you didn’t write into the FIFO.

Note that a MOV from the OSR is undefined whilst autopull is enabled; you will read either any residual data that has not

been shifted out, or a fresh word from the FIFO, depending on a race against system DMA. Likewise, a MOV to the OSR

may overwrite data which has just been autopulled. However, data which you MOV into the OSR will never be overwritten,

since MOV updates the shift counter.

If you do need to read the OSR contents, you should perform an explicit PULL of some kind. The nondeterminism

described above is the cost of the hardware managing pulls automatically. When autopull is enabled, the behaviour of

PULL is altered: it becomes a no-op if the OSR is full. This is to avoid a race condition against the system DMA. It behaves

as a fence: either an autopull has already taken place, in which case the PULL has no effect, or the program will stall on

the PULL until data becomes available in the FIFO.

PULL does not require similar behaviour, because autopush does not have the same nondeterminism.

RP2350 Datasheet

11.5. Functional Details 897



11.5.5. Clock Dividers

PIO runs off the system clock, but this is too fast for many interfaces, and the number of Delay cycles which can be

inserted is limited. Some devices, such as UART, require the signalling rate to be precisely controlled and varied, and

ideally multiple state machines can be varied independently while running identical programs. Each state machine is

equipped with a clock divider, for this purpose.

Rather than slowing the system clock itself, the clock divider redefines how many system clock periods are considered

to be "one cycle", for execution purposes. It does this by generating a clock enable signal, which can pause and resume

execution on a per-system-clock-cycle basis. The clock divider generates clock enable pulses at regular intervals, so

that the state machine runs at some steady pace, potentially much slower than the system clock.

Implementing the clock dividers in this way allows interfacing between the state machines and the system to be

simpler, lower-latency, and with a smaller footprint. The state machine is completely idle on cycles where clock enable

is low, though the system can still access the state machine’s FIFOs and change its configuration.

The clock dividers are 16-bit integer, 8-bit fractional, with first-order delta-sigma for the fractional divider. The clock

divisor can vary between 1 and 65536, in increments of .

If the clock divisor is set to 1, the state machine runs on every cycle, i.e. full speed:

System Clock

CLKDIV_INT

CLKDIV_FRAC

Clock Enable

CTRL_SM_ENABLE

1

.0

Figure 50. State

machine operation

with a clock divisor of

1. Once the state

machine is enabled via

the CTRL register, its

clock enable is

asserted on every

cycle.
In general, an integer clock divisor of n will cause the state machine to run 1 cycle in every n, giving an effective clock

speed of .

System Clock

CLKDIV_INT

CLKDIV_FRAC

Clock Enable

CTRL_SM_ENABLE

2

.0

Figure 51. Integer

clock divisors yield a

periodic clock enable.

The clock divider

repeatedly counts

down from n, and

emits an enable pulse

when it reaches 1. Fractional division will maintain a steady state division rate of , where n and f are the integer and fractional

fields of this state machine’s CLKDIV register. It does this by selectively extending some division periods from  cycles to

.

System Clock

CLKDIV_INT

CLKDIV_FRAC

Clock Enable

CTRL_SM_ENABLE

2

.5

Figure 52. Fractional

clock division with an

average divisor of 2.5.

The clock divider

maintains a running

total of the fractional

value from each

division period, and

every time this value

wraps through 1, the

integer divisor is

increased by one for

the next division

period.

For small n, the jitter introduced by a fractional divider may be unacceptable. However, for larger values, this effect is

much less apparent.

 NOTE

For fast asynchronous serial, it is recommended to use even divisions or multiples of 1 Mbaud where possible,

rather than the traditional multiples of 300, to avoid unnecessary jitter.

11.5.6. GPIO Mapping

Internally, PIO has a 32-bit register for the output levels of each GPIO it can drive, and another register for the output

enables (Hi/Lo-Z). On every system clock cycle, each state machine can write to some or all of the GPIOs in each of

these registers.
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Figure 53. The state

machine has two

independent output

channels, one shared

by OUT/SET, and

another used by side-

set (which can happen

at any time). Three

independent mappings

(first GPIO, number of

GPIOs) control which

GPIOs OUT, SET and

side-set are directed

to. Input data is

rotated according to

which GPIO is mapped

to the LSB of the IN

data.

The write data and write masks for the output level and output enable registers come from the following sources:

• An OUT instruction writes to up to 32 bits. Depending on the instruction’s Destination field, this is applied to either

pins or pindirs. The least-significant bit of OUT data is mapped to PINCTRL_OUT_BASE, and this mapping continues for

PINCTRL_OUT_COUNT bits, wrapping after GPIO31.

• A SET instruction writes up to 5 bits. Depending on the instruction’s Destination field, this is applied to either pins or

pindirs. The least-significant bit of SET data is mapped to PINCTRL_SET_BASE, and this mapping continues for

PINCTRL_SET_COUNT bits, wrapping after GPIO31.

• A side-set operation writes up to 5 bits. Depending on the register field EXECCTRL_SIDE_PINDIR, this is applied to either

pins or pindirs. The least-significant bit of side-set data is mapped to PINCTRL_SIDESET_BASE, continuing for

PINCTRL_SIDESET_COUNT pins, minus one if EXECCTRL_SIDE_EN is set.

Each OUT/SET/side-set operation writes to a contiguous range of pins, but each of these ranges is independently sized

and positioned in the 32-bit GPIO space. This is sufficiently flexible for many applications. For example, if one state

machine is implementing some interface such as an SPI on a group of pins, another state machine can run the same

program, mapped to a different group of pins, and provide a second SPI interface.

On any given clock cycle, the state machine may perform an OUT or a SET, and may simultaneously perform a side-set.

The pin mapping logic generates a 32-bit write mask and write data bus for the output level and output enable registers,

based on this request, and the pin mapping configuration.

If a side-set overlaps with an OUT/SET performed by that state machine on the same cycle, the side-set takes precedence

in the overlapping region.

11.5.6.1. Output Priority

Figure 54. Per-GPIO

priority select of write

masks from each

state machine. Each

GPIO considers level

and direction writes

from each of the four

state machines, and

applies the value from

the highest-numbered

state machine.

Each state machine may assert an OUT/SET and a side-set through its pin mapping hardware on each cycle. This

generates 32 bits of write data and write mask for the GPIO output level and output enable registers, from each state

machine.

For each GPIO, PIO collates the writes from all four state machines, and applies the write from the highest-numbered
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state machine. This occurs separately for output levels and output values — it is possible for a state machine to change

both the level and direction of the same pin on the same cycle (e.g. via simultaneous SET and side-set), or for one state

machine to change a GPIO’s direction while another changes that GPIO’s level. If no state machine asserts a write to a

GPIO’s level or direction, the value does not change.

11.5.6.2. Input Mapping

The data observed by IN instructions is mapped such that the LSB is the GPIO selected by PINCTRL_IN_BASE, and

successively more-significant bits come from successively higher-numbered GPIOs, wrapping after 31.

In other words, the IN bus is a right-rotate of the GPIO input values, by PINCTRL_IN_BASE. If fewer than 32 GPIOs are

present, the PIO input is padded with zeroes up to 32 bits.

Some instructions, such as WAIT GPIO, use an absolute GPIO number, rather than an index into the IN data bus. In this

case, the right-rotate is not applied.

11.5.6.3. Input Synchronisers

To protect PIO from metastabilities, each GPIO input is equipped with a standard 2-flipflop synchroniser. This adds two

cycles of latency to input sampling, but the benefit is that state machines can perform an IN PINS at any point, and will

see only a clean high or low level, not some intermediate value that could disturb the state machine circuitry. This is

absolutely necessary for asynchronous interfaces such as UART RX.

It is possible to bypass these synchronisers, on a per-GPIO basis. This reduces input latency, but it is then up to the user

to guarantee that the state machine does not sample its inputs at inappropriate times. Generally this is only possible for

synchronous interfaces such as SPI. Synchronisers are bypassed by setting the corresponding bit in INPUT_SYNC_BYPASS.

 WARNING

Sampling a metastable input can lead to unpredictable state machine behaviour. This should be avoided.

11.5.7. Forced and EXEC’d Instructions

Besides the instruction memory, state machines can execute instructions from 3 other sources:

• MOV EXEC which executes an instruction from some register Source

• OUT EXEC which executes data shifted out from the OSR

• The SMx_INSTR control registers, to which the system can write instructions for immediate execution

 1 .program exec_example
 2 
 3 hang:
 4     jmp hang
 5 execute:
 6     out exec, 32
 7     jmp execute
 8 
 9 .program instructions_to_push
10 
11     out x, 32
12     in x, 32
13     push
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 1 #include "tb.h" // TODO this is built against existing sw tree, so that we get printf etc
 2 
 3 #include "platform.h"
 4 #include "pio_regs.h"
 5 #include "system.h"
 6 #include "hardware.h"
 7 
 8 #include "exec_example.pio.h"
 9 
10 int main()
11 {
12     tb_init();
13 
14     for (int i = 0; i < count_of(exec_example_program); ++i)
15         mm_pio->instr_mem[i] = exec_example_program[i];
16 
17     // Enable autopull, threshold of 32
18     mm_pio->sm[0].shiftctrl = (1u << PIO_SM0_SHIFTCTRL_AUTOPULL_LSB);
19 
20     // Start state machine 0 -- will sit in "hang" loop
21     hw_set_bits(&mm_pio->ctrl, 1u << (PIO_CTRL_SM_ENABLE_LSB + 0));
22 
23     // Force a jump to program location 1
24     mm_pio->sm[0].instr = 0x0000 | 0x1; // jmp execute
25 
26     // Feed a mixture of instructions and data into FIFO
27     mm_pio->txf[0] = instructions_to_push_program[0]; // out x, 32
28     mm_pio->txf[0] = 12345678;                        // data to be OUTed
29     mm_pio->txf[0] = instructions_to_push_program[1]; // in x, 32
30     mm_pio->txf[0] = instructions_to_push_program[2]; // push
31 
32     // The program pushed into TX FIFO will return some data in RX FIFO
33     while (mm_pio->fstat & (1u << PIO_FSTAT_RXEMPTY_LSB))
34         ;
35 
36     printf("%d\n", mm_pio->rxf[0]);
37 
38     return 0;
39 }

Here we load an example program into the state machine, which does two things:

• Enters an infinite loop

• Enters a loop which repeatedly pulls 32 bits of data from the TX FIFO, and executes the lower 16 bits as an

instruction

The C program sets the state machine running, at which point it enters the hang loop. While the state machine is still

running, the C program forces in a jmp instruction, which causes the state machine to break out of the loop.

When an instruction is written to the INSTR register, the state machine immediately decodes and executes that

instruction, rather than the instruction it would have fetched from the PIO’s instruction memory. The program counter

does not advance, so on the next cycle (assuming the instruction forced into the INSTR interface did not stall) the state

machine continues to execute its current program from the point where it left off, unless the written instruction itself

manipulated PC.

Delay cycles are ignored on instructions written to the INSTR register, and execute immediately, ignoring the state

machine clock divider. This interface is provided for performing initial setup and effecting control flow changes, so it

executes instructions in a timely manner, no matter how the state machine is configured.

Instructions written to the INSTR register are permitted to stall, in which case the state machine will latch this instruction

internally until it completes. This is signified by the EXECCTRL_EXEC_STALLED flag. This can be cleared by restarting the state
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machine, or writing a NOP to INSTR.

In the second phase of the example state machine program, the OUT EXEC instruction is used. The OUT itself occupies one

execution cycle, and the instruction which the OUT executes is on the next execution cycle. Note that one of the

instructions we execute is also an OUT — the state machine is only capable of executing one OUT instruction on any given

cycle.

OUT EXEC works by writing the OUT shift data to an internal instruction latch. On the next cycle, the state machine

remembers it must execute from this latch rather than the instruction memory, and also knows to not advance PC on this

second cycle.

This program will print "12345678" when run.

 CAUTION

If an instruction written to INSTR stalls, it is stored in the same instruction latch used by OUT EXEC and MOV EXEC, and will

overwrite an in-progress instruction there. If EXEC instructions are used, instructions written to INSTR must not stall.

11.6. Examples

These examples illustrate some of PIO’s hardware features, by implementing common I/O interfaces.

 TIP

Raspberry Pi Pico-series C/C++ SDK has a comprehensive PIO chapter that begins with writing and building your

first PIO application. Later chapters walk through some programs line-by-line. Finally, it covers broader topics such

as using PIO with DMA, and how PIO can integrate into your software.

11.6.1. Duplex SPI
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Figure 55. In SPI, a

host and device

exchange data over a

bidirectional pair of

serial data lines,

synchronous with a

clock (SCK). Two

flags, CPOL and

CPHA, specify the

clock’s behaviour.

CPOL is the idle state

of the clock: 0 for low,

1 for high. The clock

pulses a number of

times, transferring one

bit in each direction

per pulse, but always

returns to its idle

state. CPHA

determines on which

edge of the clock data

is captured: 0 for

leading edge, and 1 for

trailing edge. The

arrows in the figure

show the clock edge

where data is captured

by both the host and

device.

SPI is a common serial interface with a twisty history. The following program implements full-duplex (i.e. transferring

data in both directions simultaneously) SPI, with a CPHA parameter of 0.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/spi/spi.pio Lines 14 - 32

14 .program spi_cpha0
15 .side_set 1
16 
17 ; Pin assignments:
18 ; - SCK is side-set pin 0
19 ; - MOSI is OUT pin 0
20 ; - MISO is IN pin 0
21 ;
22 ; Autopush and autopull must be enabled, and the serial frame size is set by
23 ; configuring the push/pull threshold. Shift left/right is fine, but you must
24 ; justify the data yourself. This is done most conveniently for frame sizes of
25 ; 8 or 16 bits by using the narrow store replication and narrow load byte
26 ; picking behaviour of RP2040's IO fabric.
27 
28 ; Clock phase = 0: data is captured on the leading edge of each SCK pulse, and
29 ; transitions on the trailing edge, or some time before the first leading edge.
30 
31     out pins, 1 side 0 [1] ; Stall here on empty (sideset proceeds even if
32     in pins, 1  side 1 [1] ; instruction stalls, so we stall with SCK low)

This code uses autopush and autopull to continuously stream data from the FIFOs. The entire program runs once for

every bit that is transferred, and then loops. The state machine tracks how many bits have been shifted in/out, and

automatically pushes/pulls the FIFOs at the correct point. A similar program handles the CPHA=1 case:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/spi/spi.pio Lines 34 - 42

34 .program spi_cpha1
35 .side_set 1
36 
37 ; Clock phase = 1: data transitions on the leading edge of each SCK pulse, and
38 ; is captured on the trailing edge.
39 
40     out x, 1    side 0     ; Stall here on empty (keep SCK deasserted)
41     mov pins, x side 1 [1] ; Output data, assert SCK (mov pins uses OUT mapping)
42     in pins, 1  side 0     ; Input data, deassert SCK
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 NOTE

These programs do not control the chip select line; chip select is often implemented as a software-controlled GPIO,

due to wildly different behaviour between different SPI hardware. The full spi.pio source linked above contains some

examples how PIO can implement a hardware chip select line.

A C helper function configures the state machine, connects the GPIOs, and sets the state machine running. Note that

the SPI frame size — that is, the number of bits transferred for each FIFO record — can be programmed to any value

from 1 to 32, without modifying the program. Once configured, the state machine is set running.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/spi/spi.pio Lines 46 - 72

46 static inline void pio_spi_init(PIO pio, uint sm, uint prog_offs, uint n_bits,
47         float clkdiv, bool cpha, bool cpol, uint pin_sck, uint pin_mosi, uint pin_miso) {
48     pio_sm_config c = cpha ? spi_cpha1_program_get_default_config(prog_offs) :
   spi_cpha0_program_get_default_config(prog_offs);
49     sm_config_set_out_pins(&c, pin_mosi, 1);
50     sm_config_set_in_pins(&c, pin_miso);
51     sm_config_set_sideset_pins(&c, pin_sck);
52     // Only support MSB-first in this example code (shift to left, auto push/pull,
   threshold=nbits)
53     sm_config_set_out_shift(&c, false, true, n_bits);
54     sm_config_set_in_shift(&c, false, true, n_bits);
55     sm_config_set_clkdiv(&c, clkdiv);
56 
57     // MOSI, SCK output are low, MISO is input
58     pio_sm_set_pins_with_mask(pio, sm, 0, (1u << pin_sck) | (1u << pin_mosi));
59     pio_sm_set_pindirs_with_mask(pio, sm, (1u << pin_sck) | (1u << pin_mosi), (1u << pin_sck)
   | (1u << pin_mosi) | (1u << pin_miso));
60     pio_gpio_init(pio, pin_mosi);
61     pio_gpio_init(pio, pin_miso);
62     pio_gpio_init(pio, pin_sck);
63 
64     // The pin muxes can be configured to invert the output (among other things
65     // and this is a cheesy way to get CPOL=1
66     gpio_set_outover(pin_sck, cpol ? GPIO_OVERRIDE_INVERT : GPIO_OVERRIDE_NORMAL);
67     // SPI is synchronous, so bypass input synchroniser to reduce input delay.
68     hw_set_bits(&pio->input_sync_bypass, 1u << pin_miso);
69 
70     pio_sm_init(pio, sm, prog_offs, &c);
71     pio_sm_set_enabled(pio, sm, true);
72 }

The state machine will now immediately begin to shift out any data appearing in the TX FIFO, and push received data

into the RX FIFO.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/spi/pio_spi.c Lines 18 - 34

18 void __time_critical_func(pio_spi_write8_blocking)(const pio_spi_inst_t *spi, const uint8_t
   *src, size_t len) {
19     size_t tx_remain = len, rx_remain = len;
20     // Do 8 bit accesses on FIFO, so that write data is byte-replicated. This
21     // gets us the left-justification for free (for MSB-first shift-out)
22     io_rw_8 *txfifo = (io_rw_8 *) &spi->pio->txf[spi->sm];
23     io_rw_8 *rxfifo = (io_rw_8 *) &spi->pio->rxf[spi->sm];
24     while (tx_remain || rx_remain) {
25         if (tx_remain && !pio_sm_is_tx_fifo_full(spi->pio, spi->sm)) {
26             *txfifo = *src++;
27             --tx_remain;
28         }
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29         if (rx_remain && !pio_sm_is_rx_fifo_empty(spi->pio, spi->sm)) {
30             (void) *rxfifo;
31             --rx_remain;
32         }
33     }
34 }

Putting this all together, this complete C program will loop back some data through a PIO SPI at 1 MHz, with all four

CPOL/CPHA combinations:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/spi/spi_loopback.c

 1 /**
 2  * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3  *
 4  * SPDX-License-Identifier: BSD-3-Clause
 5  */
 6 
 7 #include <stdlib.h>
 8 #include <stdio.h>
 9 
10 #include "pico/stdlib.h"
11 #include "pio_spi.h"
12 
13 // This program instantiates a PIO SPI with each of the four possible
14 // CPOL/CPHA combinations, with the serial input and output pin mapped to the
15 // same GPIO. Any data written into the state machine's TX FIFO should then be
16 // serialised, deserialised, and reappear in the state machine's RX FIFO.
17 
18 #define PIN_SCK 18
19 #define PIN_MOSI 16
20 #define PIN_MISO 16 // same as MOSI, so we get loopback
21 
22 #define BUF_SIZE 20
23 
24 void test(const pio_spi_inst_t *spi) {
25     static uint8_t txbuf[BUF_SIZE];
26     static uint8_t rxbuf[BUF_SIZE];
27     printf("TX:");
28     for (int i = 0; i < BUF_SIZE; ++i) {
29         txbuf[i] = rand() >> 16;
30         rxbuf[i] = 0;
31         printf(" %02x", (int) txbuf[i]);
32     }
33     printf("\n");
34 
35     pio_spi_write8_read8_blocking(spi, txbuf, rxbuf, BUF_SIZE);
36 
37     printf("RX:");
38     bool mismatch = false;
39     for (int i = 0; i < BUF_SIZE; ++i) {
40         printf(" %02x", (int) rxbuf[i]);
41         mismatch = mismatch || rxbuf[i] != txbuf[i];
42     }
43     if (mismatch)
44         printf("\nNope\n");
45     else
46         printf("\nOK\n");
47 }
48 
49 int main() {
50     stdio_init_all();
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51 
52     pio_spi_inst_t spi = {
53             .pio = pio0,
54             .sm = 0
55     };
56     float clkdiv = 31.25f;  // 1 MHz @ 125 clk_sys
57     uint cpha0_prog_offs = pio_add_program(spi.pio, &spi_cpha0_program);
58     uint cpha1_prog_offs = pio_add_program(spi.pio, &spi_cpha1_program);
59 
60     for (int cpha = 0; cpha <= 1; ++cpha) {
61         for (int cpol = 0; cpol <= 1; ++cpol) {
62             printf("CPHA = %d, CPOL = %d\n", cpha, cpol);
63             pio_spi_init(spi.pio, spi.sm,
64                          cpha ? cpha1_prog_offs : cpha0_prog_offs,
65                          8,       // 8 bits per SPI frame
66                          clkdiv,
67                          cpha,
68                          cpol,
69                          PIN_SCK,
70                          PIN_MOSI,
71                          PIN_MISO
72             );
73             test(&spi);
74             sleep_ms(10);
75         }
76     }
77 }

11.6.2. WS2812 LEDs

WS2812 LEDs are driven by a proprietary pulse-width serial format, with a wide positive pulse representing a "1" bit, and

narrow positive pulse a "0". Each LED has a serial input and a serial output; LEDs are connected in a chain, with each

serial input connected to the previous LED’s serial output.

Symbol

Output

1 0 0 1 Latch
Figure 56. WS2812

line format. Wide

positive pulse for 1,

narrow positive pulse

for 0, very long

negative pulse for

latch enable

LEDs consume 24 bits of pixel data, then pass any additional input data on to their output. In this way a single serial

burst can individually program the colour of each LED in a chain. A long negative pulse latches the pixel data into the

LEDs.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/ws2812/ws2812.pio Lines 8 - 31

 8 .program ws2812
 9 .side_set 1
10 
11 ; The following constants are selected for broad compatibility with WS2812,
12 ; WS2812B, and SK6812 LEDs. Other constants may support higher bandwidths for
13 ; specific LEDs, such as (7,10,8) for WS2812B LEDs.
14 
15 .define public T1 3
16 .define public T2 3
17 .define public T3 4
18 
19 .lang_opt python sideset_init = pico.PIO.OUT_HIGH
20 .lang_opt python out_init     = pico.PIO.OUT_HIGH
21 .lang_opt python out_shiftdir = 1
22 
23 .wrap_target
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24 bitloop:
25     out x, 1       side 0 [T3 - 1] ; Side-set still takes place when instruction stalls
26     jmp !x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse
27 do_one:
28     jmp  bitloop   side 1 [T2 - 1] ; Continue driving high, for a long pulse
29 do_zero:
30     nop            side 0 [T2 - 1] ; Or drive low, for a short pulse
31 .wrap

This program shifts bits from the OSR into X, and produces a wide or narrow pulse on side-set pin 0, based on the value

of each data bit. Autopull must be configured, with a threshold of 24. Software can then write 24-bit pixel values into the

FIFO, and these will be serialised to a chain of WS2812 LEDs. The .pio file contains a C helper function to set this up:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/ws2812/ws2812.pio Lines 36 - 52

36 static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
   bool rgbw) {
37 
38     pio_gpio_init(pio, pin);
39     pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
40 
41     pio_sm_config c = ws2812_program_get_default_config(offset);
42     sm_config_set_sideset_pins(&c, pin);
43     sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);
44     sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
45 
46     int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;
47     float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
48     sm_config_set_clkdiv(&c, div);
49 
50     pio_sm_init(pio, sm, offset, &c);
51     pio_sm_set_enabled(pio, sm, true);
52 }

Because the shift is MSB-first, and our pixels aren’t a power of two size (so we can’t rely on the narrow write replication

behaviour on RP2350 to fan out the bits for us), we need to preshift the values written to the TX FIFO.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/ws2812/ws2812.c Lines 38 - 40

38 static inline void put_pixel(uint32_t pixel_grb) {
39     pio_sm_put_blocking(pio0, 0, pixel_grb << 8u);
40 }

To DMA the pixels, we could instead set the autopull threshold to 8 bits, set the DMA transfer size to 8 bits, and write a

byte at a time into the FIFO. Each pixel would be 3 one-byte transfers. Because of how the bus fabric and DMA on

RP2350 work, each byte the DMA transfers will appear replicated four times when written to a 32-bit IO register, so

effectively your data is at both ends of the shift register, and you can shift in either direction without worry.
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 TIP

The WS2812 example is the subject of a tutorial in the Raspberry Pi Pico-series C/C++ SDK document, in the PIO

chapter. The tutorial dissects the ws2812 program line by line, traces through how the program executes, and shows

wave diagrams of the GPIO output at every point in the program.

11.6.3. UART TX

Bit Clock

TX

State

10 2 3 4 5 6 7

Start StopData (LSB first)Idle

Figure 57. UART serial

format. The line is

high when idle. The

transmitter pulls the

line down for one bit

period to signify the

start of a serial frame

(the "start bit"), and a

small, fixed number of

data bits follows. The

line returns to the idle

state for at least one

bit period (the "stop

bit") before the next

serial frame can

begin.

This program implements the transmit component of a universal asynchronous receive/transmit (UART) serial

peripheral. Perhaps it would be more correct to refer to this as a UAT.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/uart_tx/uart_tx.pio Lines 8 - 18

 8 .program uart_tx
 9 .side_set 1 opt
10 
11 ; An 8n1 UART transmit program.
12 ; OUT pin 0 and side-set pin 0 are both mapped to UART TX pin.
13 
14     pull       side 1 [7]  ; Assert stop bit, or stall with line in idle state
15     set x, 7   side 0 [7]  ; Preload bit counter, assert start bit for 8 clocks
16 bitloop:                   ; This loop will run 8 times (8n1 UART)
17     out pins, 1            ; Shift 1 bit from OSR to the first OUT pin
18     jmp x-- bitloop   [6]  ; Each loop iteration is 8 cycles.

As written, it will:

1. Stall with the pin driven high until data appears (noting that side-set takes effect even when the state machine is

stalled)

2. Assert a start bit, for 8 SM execution cycles

3. Shift out 8 data bits, each lasting for 8 cycles

4. Return to the idle line state for at least 8 cycles before asserting the next start bit

If the state machine’s clock divider is configured to run at 8 times the desired baud rate, this program will transmit well-

formed UART serial frames, whenever data is pushed to the TX FIFO either by software or the system DMA. To extend

the program to cover different frame sizes (different numbers of data bits), the set x, 7 could be replaced with mov x, y,

so that the y scratch register becomes a per-SM configuration register for UART frame size.

The .pio file in the SDK also contains this function, for configuring the pins and the state machine, once the program

has been loaded into the PIO instruction memory:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/uart_tx/uart_tx.pio Lines 24 - 51

24 static inline void uart_tx_program_init(PIO pio, uint sm, uint offset, uint pin_tx, uint
   baud) {
25     // Tell PIO to initially drive output-high on the selected pin, then map PIO
26     // onto that pin with the IO muxes.
27     pio_sm_set_pins_with_mask(pio, sm, 1u << pin_tx, 1u << pin_tx);
28     pio_sm_set_pindirs_with_mask(pio, sm, 1u << pin_tx, 1u << pin_tx);
29     pio_gpio_init(pio, pin_tx);
30 
31     pio_sm_config c = uart_tx_program_get_default_config(offset);
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32 
33     // OUT shifts to right, no autopull
34     sm_config_set_out_shift(&c, true, false, 32);
35 
36     // We are mapping both OUT and side-set to the same pin, because sometimes
37     // we need to assert user data onto the pin (with OUT) and sometimes
38     // assert constant values (start/stop bit)
39     sm_config_set_out_pins(&c, pin_tx, 1);
40     sm_config_set_sideset_pins(&c, pin_tx);
41 
42     // We only need TX, so get an 8-deep FIFO!
43     sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
44 
45     // SM transmits 1 bit per 8 execution cycles.
46     float div = (float)clock_get_hz(clk_sys) / (8 * baud);
47     sm_config_set_clkdiv(&c, div);
48 
49     pio_sm_init(pio, sm, offset, &c);
50     pio_sm_set_enabled(pio, sm, true);
51 }

The state machine is configured to shift right in out instructions, because UARTs typically send data LSB-first. Once

configured, the state machine will print any characters pushed to the TX FIFO.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/uart_tx/uart_tx.pio Lines 53 - 55

53 static inline void uart_tx_program_putc(PIO pio, uint sm, char c) {
54     pio_sm_put_blocking(pio, sm, (uint32_t)c);
55 }

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/uart_tx/uart_tx.pio Lines 57 - 60

57 static inline void uart_tx_program_puts(PIO pio, uint sm, const char *s) {
58     while (*s)
59         uart_tx_program_putc(pio, sm, *s++);
60 }

The example program in the SDK will configure one PIO state machine as a UART TX peripheral, and use it to print a

message on GPIO 0 at 115200 baud once per second.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/uart_tx/uart_tx.c

 1 /**
 2  * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3  *
 4  * SPDX-License-Identifier: BSD-3-Clause
 5  */
 6 
 7 #include "pico/stdlib.h"
 8 #include "hardware/pio.h"
 9 #include "uart_tx.pio.h"
10 
11 int main() {
12     // We're going to use PIO to print "Hello, world!" on the same GPIO which we
13     // normally attach UART0 to.
14     const uint PIN_TX = 0;
15     // This is the same as the default UART baud rate on Pico
16     const uint SERIAL_BAUD = 115200;
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17 
18     PIO pio = pio0;
19     uint sm = 0;
20     uint offset = pio_add_program(pio, &uart_tx_program);
21     uart_tx_program_init(pio, sm, offset, PIN_TX, SERIAL_BAUD);
22 
23     while (true) {
24         uart_tx_program_puts(pio, sm, "Hello, world! (from PIO!)\n");
25         sleep_ms(1000);
26     }
27 }

With the two PIO instances on RP2350, this could be extended to 8 additional UART TX interfaces, on 8 different pins,

with 8 different baud rates.

11.6.4. UART RX

Recalling Figure 57 showing the format of an 8n1 UART:

Bit Clock

TX

State

10 2 3 4 5 6 7

Start StopData (LSB first)Idle

We can recover the data by waiting for the start bit, sampling 8 times with the correct timing, and pushing the result to

the RX FIFO. Below is possibly the shortest program which can do this:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/uart_rx/uart_rx.pio Lines 8 - 19

 8 .program uart_rx_mini
 9 
10 ; Minimum viable 8n1 UART receiver. Wait for the start bit, then sample 8 bits
11 ; with the correct timing.
12 ; IN pin 0 is mapped to the GPIO used as UART RX.
13 ; Autopush must be enabled, with a threshold of 8.
14 
15     wait 0 pin 0        ; Wait for start bit
16     set x, 7 [10]       ; Preload bit counter, delay until eye of first data bit
17 bitloop:                ; Loop 8 times
18     in pins, 1          ; Sample data
19     jmp x-- bitloop [6] ; Each iteration is 8 cycles

This works, but it has some annoying characteristics, like repeatedly outputting NUL characters if the line is stuck low.

Ideally, we would want to drop data that is not correctly framed by a start and stop bit (and set some sticky flag to

indicate this has happened), and pause receiving when the line is stuck low for long periods. We can add these to our

program, at the cost of a few more instructions.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/uart_rx/uart_rx.pio Lines 44 - 63

44 .program uart_rx
45 
46 ; Slightly more fleshed-out 8n1 UART receiver which handles framing errors and
47 ; break conditions more gracefully.
48 ; IN pin 0 and JMP pin are both mapped to the GPIO used as UART RX.
49 
50 start:
51     wait 0 pin 0        ; Stall until start bit is asserted
52     set x, 7    [10]    ; Preload bit counter, then delay until halfway through
53 bitloop:                ; the first data bit (12 cycles incl wait, set).
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54     in pins, 1          ; Shift data bit into ISR
55     jmp x-- bitloop [6] ; Loop 8 times, each loop iteration is 8 cycles
56     jmp pin good_stop   ; Check stop bit (should be high)
57 
58     irq 4 rel           ; Either a framing error or a break. Set a sticky flag,
59     wait 1 pin 0        ; and wait for line to return to idle state.
60     jmp start           ; Don't push data if we didn't see good framing.
61 
62 good_stop:              ; No delay before returning to start; a little slack is
63     push                ; important in case the TX clock is slightly too fast.

The second example does not use autopush (Section 11.5.4), preferring instead to use an explicit push instruction, so

that it can condition the push on whether a correct stop bit is seen. The .pio file includes a helper function which

configures the state machine and connects it to a GPIO with the pull-up enabled:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/uart_rx/uart_rx.pio Lines 67 - 85

67 static inline void uart_rx_program_init(PIO pio, uint sm, uint offset, uint pin, uint baud) {
68     pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, false);
69     pio_gpio_init(pio, pin);
70     gpio_pull_up(pin);
71 
72     pio_sm_config c = uart_rx_program_get_default_config(offset);
73     sm_config_set_in_pins(&c, pin); // for WAIT, IN
74     sm_config_set_jmp_pin(&c, pin); // for JMP
75     // Shift to right, autopush disabled
76     sm_config_set_in_shift(&c, true, false, 32);
77     // Deeper FIFO as we're not doing any TX
78     sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);
79     // SM transmits 1 bit per 8 execution cycles.
80     float div = (float)clock_get_hz(clk_sys) / (8 * baud);
81     sm_config_set_clkdiv(&c, div);
82 
83     pio_sm_init(pio, sm, offset, &c);
84     pio_sm_set_enabled(pio, sm, true);
85 }

To correctly receive data which is sent LSB-first, the ISR is configured to shift to the right. After shifting in 8 bits, this

unfortunately leaves our 8 data bits in bits 31:24 of the ISR, with 24 zeroes in the LSBs. One option here is an in null, 24

instruction to shuffle the ISR contents down to 7:0. Another is to read from the FIFO at an offset of 3 bytes, with an 8-bit

read, so that the processor’s bus hardware (or the DMA’s) picks out the relevant byte for free:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/uart_rx/uart_rx.pio Lines 87 - 93

87 static inline char uart_rx_program_getc(PIO pio, uint sm) {
88     // 8-bit read from the uppermost byte of the FIFO, as data is left-justified
89     io_rw_8 *rxfifo_shift = (io_rw_8*)&pio->rxf[sm] + 3;
90     while (pio_sm_is_rx_fifo_empty(pio, sm))
91         tight_loop_contents();
92     return (char)*rxfifo_shift;
93 }

An example program shows how this UART RX program can be used to receive characters sent by one of the hardware

UARTs on RP2350. A wire must be connected from GPIO4 to GPIO3 for this program to function. To make the wrangling

of 3 different serial ports a little easier, this program uses core 1 to print out a string on the test UART (UART 1), and the

code running on core 0 will pull out characters from the PIO state machine, and pass them along to the UART used for

the debug console (UART 0). Another approach here would be interrupt-based IO, using PIO’s FIFO IRQs. If the

SM0_RXNEMPTY bit is set in the IRQ0_INTE register, then PIO will raise its first interrupt request line whenever there is a
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character in state machine 0’s RX FIFO.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/uart_rx/uart_rx.c

 1 /**
 2  * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3  *
 4  * SPDX-License-Identifier: BSD-3-Clause
 5  */
 6 
 7 #include <stdio.h>
 8 
 9 #include "pico/stdlib.h"
10 #include "pico/multicore.h"
11 #include "hardware/pio.h"
12 #include "hardware/uart.h"
13 #include "uart_rx.pio.h"
14 
15 // This program
16 // - Uses UART1 (the spare UART, by default) to transmit some text
17 // - Uses a PIO state machine to receive that text
18 // - Prints out the received text to the default console (UART0)
19 // This might require some reconfiguration on boards where UART1 is the
20 // default UART.
21 
22 #define SERIAL_BAUD PICO_DEFAULT_UART_BAUD_RATE
23 #define HARD_UART_INST uart1
24 
25 // You'll need a wire from GPIO4 -> GPIO3
26 #define HARD_UART_TX_PIN 4
27 #define PIO_RX_PIN 3
28 
29 // Ask core 1 to print a string, to make things easier on core 0
30 void core1_main() {
31     const char *s = (const char *) multicore_fifo_pop_blocking();
32     uart_puts(HARD_UART_INST, s);
33 }
34 
35 int main() {
36     // Console output (also a UART, yes it's confusing)
37     setup_default_uart();
38     printf("Starting PIO UART RX example\n");
39 
40     // Set up the hard UART we're going to use to print characters
41     uart_init(HARD_UART_INST, SERIAL_BAUD);
42     gpio_set_function(HARD_UART_TX_PIN, GPIO_FUNC_UART);
43 
44     // Set up the state machine we're going to use to receive them.
45     PIO pio = pio0;
46     uint sm = 0;
47     uint offset = pio_add_program(pio, &uart_rx_program);
48     uart_rx_program_init(pio, sm, offset, PIO_RX_PIN, SERIAL_BAUD);
49 
50     // Tell core 1 to print some text to uart1 as fast as it can
51     multicore_launch_core1(core1_main);
52     const char *text = "Hello, world from PIO! (Plus 2 UARTs and 2 cores, for complex
   reasons)\n";
53     multicore_fifo_push_blocking((uint32_t) text);
54 
55     // Echo characters received from PIO to the console
56     while (true) {
57         char c = uart_rx_program_getc(pio, sm);
58         putchar(c);
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59     }
60 }

11.6.5. Manchester Serial TX and RX

Figure 58. Manchester

serial line code. Each

data bit is represented

by either a high pulse

followed by a low

pulse (representing a

'0' bit) or a low pulse

followed by a high

pulse (a '1' bit).

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/manchester_encoding/manchester_encoding.pio Lines 8 - 30

 8 .program manchester_tx
 9 .side_set 1 opt
10 
11 ; Transmit one bit every 12 cycles. a '0' is encoded as a high-low sequence
12 ; (each part lasting half a bit period, or 6 cycles) and a '1' is encoded as a
13 ; low-high sequence.
14 ;
15 ; Side-set bit 0 must be mapped to the GPIO used for TX.
16 ; Autopull must be enabled -- this program does not care about the threshold.
17 ; The program starts at the public label 'start'.
18 
19 .wrap_target
20 do_1:
21     nop         side 0 [5] ; Low for 6 cycles (5 delay, +1 for nop)
22     jmp get_bit side 1 [3] ; High for 4 cycles. 'get_bit' takes another 2 cycles
23 do_0:
24     nop         side 1 [5] ; Output high for 6 cycles
25     nop         side 0 [3] ; Output low for 4 cycles
26 public start:
27 get_bit:
28     out x, 1               ; Always shift out one bit from OSR to X, so we can
29     jmp !x do_0            ; branch on it. Autopull refills the OSR when empty.
30 .wrap

Starting from the label called start, this program shifts one data bit at a time into the X register, so that it can branch on

the value. Depending on the outcome, it uses side-set to drive either a 1-0 or 0-1 sequence onto the chosen GPIO. This

program uses autopull (Section 11.5.4.2) to automatically replenish the OSR from the TX FIFO once a certain amount of

data has been shifted out, without interrupting program control flow or timing. This feature is enabled by a helper

function in the .pio file which configures and starts the state machine:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/manchester_encoding/manchester_encoding.pio Lines 33 - 46

33 static inline void manchester_tx_program_init(PIO pio, uint sm, uint offset, uint pin, float
   div) {
34     pio_sm_set_pins_with_mask(pio, sm, 0, 1u << pin);
35     pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
36     pio_gpio_init(pio, pin);
37 
38     pio_sm_config c = manchester_tx_program_get_default_config(offset);
39     sm_config_set_sideset_pins(&c, pin);
40     sm_config_set_out_shift(&c, true, true, 32);
41     sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
42     sm_config_set_clkdiv(&c, div);
43     pio_sm_init(pio, sm, offset + manchester_tx_offset_start, &c);
44 
45     pio_sm_set_enabled(pio, sm, true);
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46 }

Another state machine can be programmed to recover the original data from the transmitted signal:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/manchester_encoding/manchester_encoding.pio Lines 49 - 71

49 .program manchester_rx
50 
51 ; Assumes line is idle low, first bit is 0
52 ; One bit is 12 cycles
53 ; a '0' is encoded as 10
54 ; a '1' is encoded as 01
55 ;
56 ; Both the IN base and the JMP pin mapping must be pointed at the GPIO used for RX.
57 ; Autopush must be enabled.
58 ; Before enabling the SM, it should be placed in a 'wait 1, pin` state, so that
59 ; it will not start sampling until the initial line idle state ends.
60 
61 start_of_0:            ; We are 0.25 bits into a 0 - signal is high
62     wait 0 pin 0       ; Wait for the 1->0 transition - at this point we are 0.5 into the bit
63     in y, 1 [8]        ; Emit a 0, sleep 3/4 of a bit
64     jmp pin start_of_0 ; If signal is 1 again, it's another 0 bit, otherwise it's a 1
65 
66 .wrap_target
67 start_of_1:            ; We are 0.25 bits into a 1 - signal is 1   
68     wait 1 pin 0       ; Wait for the 0->1 transition - at this point we are 0.5 into the bit
69     in x, 1 [8]        ; Emit a 1, sleep 3/4 of a bit
70     jmp pin start_of_0 ; If signal is 0 again, it's another 1 bit otherwise it's a 0
71 .wrap

The main complication here is staying aligned to the input transitions, as the transmitter’s and receiver’s clocks may

drift relative to one another. In Manchester code there is always a transition in the centre of the symbol, and based on

the initial line state (high or low) we know the direction of this transition, so we can use a wait instruction to

resynchronise to the line transitions on every data bit.

This program expects the X and Y registers to be initialised with the values 1 and 0 respectively, so that a constant 1 or

0 can be provided to the in instruction. The code that configures the state machine initialises these registers by

executing some set instructions before setting the program running.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/manchester_encoding/manchester_encoding.pio Lines 74 - 94

74 static inline void manchester_rx_program_init(PIO pio, uint sm, uint offset, uint pin, float
   div) {
75     pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, false);
76     pio_gpio_init(pio, pin);
77 
78     pio_sm_config c = manchester_rx_program_get_default_config(offset);
79     sm_config_set_in_pins(&c, pin); // for WAIT
80     sm_config_set_jmp_pin(&c, pin); // for JMP
81     sm_config_set_in_shift(&c, true, true, 32);
82     sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);
83     sm_config_set_clkdiv(&c, div);
84     pio_sm_init(pio, sm, offset, &c);
85 
86     // X and Y are set to 0 and 1, to conveniently emit these to ISR/FIFO.
87     pio_sm_exec(pio, sm, pio_encode_set(pio_x, 1));
88     pio_sm_exec(pio, sm, pio_encode_set(pio_y, 0));
89     // Assume line is idle low, and first transmitted bit is 0. Put SM in a
90     // wait state before enabling. RX will begin once the first 0 symbol is
91     // detected.

RP2350 Datasheet

11.6. Examples 914

https://github.com/raspberrypi/pico-examples/blob/develop/pio/manchester_encoding/manchester_encoding.pio#L49-L71
https://github.com/raspberrypi/pico-examples/blob/develop/pio/manchester_encoding/manchester_encoding.pio#L74-L94


92     pio_sm_exec(pio, sm, pio_encode_wait_pin(1, 0) | pio_encode_delay(2));
93     pio_sm_set_enabled(pio, sm, true);
94 }

The example C program in the SDK will transmit Manchester serial data from GPIO2 to GPIO3 at approximately 10 Mb/s

(assuming a system clock of 125 MHz).

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/manchester_encoding/manchester_encoding.c Lines 20 - 43

20 int main() {
21     stdio_init_all();
22 
23     PIO pio = pio0;
24     uint sm_tx = 0;
25     uint sm_rx = 1;
26 
27     uint offset_tx = pio_add_program(pio, &manchester_tx_program);
28     uint offset_rx = pio_add_program(pio, &manchester_rx_program);
29     printf("Transmit program loaded at %d\n", offset_tx);
30     printf("Receive program loaded at %d\n", offset_rx);
31 
32     manchester_tx_program_init(pio, sm_tx, offset_tx, pin_tx, 1.f);
33     manchester_rx_program_init(pio, sm_rx, offset_rx, pin_rx, 1.f);
34 
35     pio_sm_set_enabled(pio, sm_tx, false);
36     pio_sm_put_blocking(pio, sm_tx, 0);
37     pio_sm_put_blocking(pio, sm_tx, 0x0ff0a55a);
38     pio_sm_put_blocking(pio, sm_tx, 0x12345678);
39     pio_sm_set_enabled(pio, sm_tx, true);
40 
41     for (int i = 0; i < 3; ++i)
42         printf("%08x\n", pio_sm_get_blocking(pio, sm_rx));
43 }

11.6.6. Differential Manchester (BMC) TX and RX

Figure 59. Differential

Manchester serial line

code, also known as

biphase mark code

(BMC). The line

transitions at the start

of every bit period.

The presence of a

transition in the centre

of the bit period

signifies a 1 data bit,

and the absence, a 0

bit. These encoding

rules are the same

whether the line has

an initial high or low

state.

The transmit program is similar to the Manchester example: it repeatedly shifts a bit from the OSR into X (relying on

autopull to refill the OSR in the background), branches, and drives a GPIO up and down based on the value of this bit.

The added complication is that the pattern we drive onto the pin depends not just on the value of the data bit, as with

vanilla Manchester encoding, but also on the state the line was left in at the end of the last bit period. This is illustrated

in Figure 59, where the pattern is inverted if the line is initially high. To cope with this, there are two copies of the test-

and-drive code, one for each initial line state, and these are linked together in the correct order by a sequence of jumps.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/differential_manchester/differential_manchester.pio Lines 8 - 35

 8 .program differential_manchester_tx
 9 .side_set 1 opt
10 
11 ; Transmit one bit every 16 cycles. In each bit period:
12 ; - A '0' is encoded as a transition at the start of the bit period
13 ; - A '1' is encoded as a transition at the start *and* in the middle
14 ;
15 ; Side-set bit 0 must be mapped to the data output pin.

RP2350 Datasheet

11.6. Examples 915

https://github.com/raspberrypi/pico-examples/blob/develop/pio/manchester_encoding/manchester_encoding.c#L20-L43
https://github.com/raspberrypi/pico-examples/blob/develop/pio/differential_manchester/differential_manchester.pio#L8-L35


16 ; Autopull must be enabled.
17 
18 public start:
19 initial_high:
20     out x, 1                     ; Start of bit period: always assert transition
21     jmp !x high_0     side 1 [6] ; Test the data bit we just shifted out of OSR
22 high_1:
23     nop
24     jmp initial_high  side 0 [6] ; For `1` bits, also transition in the middle
25 high_0:
26     jmp initial_low          [7] ; Otherwise, the line is stable in the middle
27 
28 initial_low:
29     out x, 1                     ; Always shift 1 bit from OSR to X so we can
30     jmp !x low_0      side 0 [6] ; branch on it. Autopull refills OSR for us.
31 low_1:
32     nop
33     jmp initial_low   side 1 [6] ; If there are two transitions, return to
34 low_0:
35     jmp initial_high         [7] ; the initial line state is flipped!

The .pio file also includes a helper function to initialise a state machine for differential Manchester TX, and connect it to

a chosen GPIO. We arbitrarily choose a 32-bit frame size and LSB-first serialisation (shift_to_right is true in

sm_config_set_out_shift), but as the program operates on one bit at a time, we could change this by reconfiguring the

state machine.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/differential_manchester/differential_manchester.pio Lines 38 - 53

38 static inline void differential_manchester_tx_program_init(PIO pio, uint sm, uint offset,
   uint pin, float div) {
39     pio_sm_set_pins_with_mask(pio, sm, 0, 1u << pin);
40     pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
41     pio_gpio_init(pio, pin);
42 
43     pio_sm_config c = differential_manchester_tx_program_get_default_config(offset);
44     sm_config_set_sideset_pins(&c, pin);
45     sm_config_set_out_shift(&c, true, true, 32);
46     sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
47     sm_config_set_clkdiv(&c, div);
48     pio_sm_init(pio, sm, offset + differential_manchester_tx_offset_start, &c);
49 
50     // Execute a blocking pull so that we maintain the initial line state until data is
   available
51     pio_sm_exec(pio, sm, pio_encode_pull(false, true));
52     pio_sm_set_enabled(pio, sm, true);
53 }

The RX program uses the following strategy:

1. Wait until the initial transition at the start of the bit period, so we stay aligned to the transmit clock

2. Then, wait 3/4 of the configured bit period, so that we are centred on the second half-bit-period (see Figure 59)

3. Sample the line at this point to determine whether there are one or two transitions in this bit period

4. Repeat

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/differential_manchester/differential_manchester.pio Lines 55 - 85

55 .program differential_manchester_rx
56 
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57 ; Assumes line is idle low
58 ; One bit is 16 cycles. In each bit period:
59 ; - A '0' is encoded as a transition at time 0
60 ; - A '1' is encoded as a transition at time 0 and a transition at time T/2
61 ;
62 ; The IN mapping and the JMP pin select must both be mapped to the GPIO used for
63 ; RX data. Autopush must be enabled.
64 
65 public start:
66 initial_high:           ; Find rising edge at start of bit period
67     wait 1 pin, 0  [11] ; Delay to eye of second half-period (i.e 3/4 of way
68     jmp pin high_0      ; through bit) and branch on RX pin high/low.
69 high_1:
70     in x, 1             ; Second transition detected (a `1` data symbol)
71     jmp initial_high
72 high_0:
73     in y, 1 [1]         ; Line still high, no centre transition (data is `0`)
74     ; Fall-through
75 
76 .wrap_target
77 initial_low:            ; Find falling edge at start of bit period
78     wait 0 pin, 0 [11]  ; Delay to eye of second half-period
79     jmp pin low_1
80 low_0:
81     in y, 1             ; Line still low, no centre transition (data is `0`)
82     jmp initial_high
83 low_1:                  ; Second transition detected (data is `1`)
84     in x, 1 [1]
85 .wrap

This code assumes that X and Y have the values 1 and 0, respectively. This is arranged for by the included C helper

function:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/differential_manchester/differential_manchester.pio Lines 88 - 104

 88 static inline void differential_manchester_rx_program_init(PIO pio, uint sm, uint offset,
    uint pin, float div) {
 89     pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, false);
 90     pio_gpio_init(pio, pin);
 91 
 92     pio_sm_config c = differential_manchester_rx_program_get_default_config(offset);
 93     sm_config_set_in_pins(&c, pin); // for WAIT
 94     sm_config_set_jmp_pin(&c, pin); // for JMP
 95     sm_config_set_in_shift(&c, true, true, 32);
 96     sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);
 97     sm_config_set_clkdiv(&c, div);
 98     pio_sm_init(pio, sm, offset, &c);
 99 
100     // X and Y are set to 0 and 1, to conveniently emit these to ISR/FIFO.
101     pio_sm_exec(pio, sm, pio_encode_set(pio_x, 1));
102     pio_sm_exec(pio, sm, pio_encode_set(pio_y, 0));
103     pio_sm_set_enabled(pio, sm, true);
104 }

All the pieces now exist to loopback some serial data over a wire between two GPIOs.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/differential_manchester/differential_manchester.c

 1 /**
 2  * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
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 3  *
 4  * SPDX-License-Identifier: BSD-3-Clause
 5  */
 6 
 7 #include <stdio.h>
 8 
 9 #include "pico/stdlib.h"
10 #include "hardware/pio.h"
11 #include "differential_manchester.pio.h"
12 
13 // Differential serial transmit/receive example
14 // Need to connect a wire from GPIO2 -> GPIO3
15 
16 const uint pin_tx = 2;
17 const uint pin_rx = 3;
18 
19 int main() {
20     stdio_init_all();
21 
22     PIO pio = pio0;
23     uint sm_tx = 0;
24     uint sm_rx = 1;
25 
26     uint offset_tx = pio_add_program(pio, &differential_manchester_tx_program);
27     uint offset_rx = pio_add_program(pio, &differential_manchester_rx_program);
28     printf("Transmit program loaded at %d\n", offset_tx);
29     printf("Receive program loaded at %d\n", offset_rx);
30 
31     // Configure state machines, set bit rate at 5 Mbps
32     differential_manchester_tx_program_init(pio, sm_tx, offset_tx, pin_tx, 125.f / (16 * 5));
33     differential_manchester_rx_program_init(pio, sm_rx, offset_rx, pin_rx, 125.f / (16 * 5));
34 
35     pio_sm_set_enabled(pio, sm_tx, false);
36     pio_sm_put_blocking(pio, sm_tx, 0);
37     pio_sm_put_blocking(pio, sm_tx, 0x0ff0a55a);
38     pio_sm_put_blocking(pio, sm_tx, 0x12345678);
39     pio_sm_set_enabled(pio, sm_tx, true);
40 
41     for (int i = 0; i < 3; ++i)
42         printf("%08x\n", pio_sm_get_blocking(pio, sm_rx));
43 }

11.6.7. I2C

RP2350 Datasheet

11.6. Examples 918



Figure 60. A 1-byte I2C

read transfer. In the

idle state, both lines

float high. The initiator

drives SDA low (a

Start condition),

followed by 7 address

bits A6-A0, and a

direction bit

(Read/nWrite). The

target drives SDA low

to acknowledge the

address (ACK). Data

bytes follow. The

target serialises data

on SDA, clocked out

by SCL. Every 9th

clock, the initiator

pulls SDA low to

acknowledge the data,

except on the last

byte, where it leaves

the line high (NAK).

Releasing SDA whilst

SCL is high is a Stop

condition, returning

the bus to idle.

I2C is an ubiquitous serial bus first described in the Dead Sea Scrolls, and later used by Philips Semiconductor. Two

wires with pullup resistors form an open-drain bus, and multiple agents address and signal one another over this bus by

driving the bus lines low, or releasing them to be pulled high. It has a number of unusual attributes:

• SCL can be held low at any time, for any duration, by any member of the bus (not necessarily the target or initiator

of the transfer). This is known as clock stretching. The bus does not advance until all drivers release the clock.

• Members of the bus can be a target of one transfer and initiate other transfers (the master/slave roles are not

fixed). However this is poorly supported by most I2C hardware.

• SCL is not an edge-sensitive clock, rather SDA must be valid the entire time SCL is high.

• In spite of the transparency of SDA against SCL, transitions of SDA whilst SCL is high are used to mark beginning

and end of transfers (Start/Stop), or a new address phase within one (Restart).

The PIO program listed below handles serialisation, clock stretching, and checking of ACKs in the initiator role. It

provides a mechanism for escaping PIO instructions in the FIFO datastream, to issue Start/Stop/Restart sequences at

appropriate times. Provided no unexpected NAKs are received, this can perform long sequences of I2C transfers from a

DMA buffer, without processor intervention.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/i2c/i2c.pio Lines 8 - 73

 8 .program i2c
 9 .side_set 1 opt pindirs
10 
11 ; TX Encoding:
12 ; | 15:10 | 9     | 8:1  | 0   |
13 ; | Instr | Final | Data | NAK |
14 ;
15 ; If Instr has a value n > 0, then this FIFO word has no
16 ; data payload, and the next n + 1 words will be executed as instructions.
17 ; Otherwise, shift out the 8 data bits, followed by the ACK bit.
18 ;
19 ; The Instr mechanism allows stop/start/repstart sequences to be programmed
20 ; by the processor, and then carried out by the state machine at defined points
21 ; in the datastream.
22 ;
23 ; The "Final" field should be set for the final byte in a transfer.
24 ; This tells the state machine to ignore a NAK: if this field is not
25 ; set, then any NAK will cause the state machine to halt and interrupt.
26 ;
27 ; Autopull should be enabled, with a threshold of 16.
28 ; Autopush should be enabled, with a threshold of 8.
29 ; The TX FIFO should be accessed with halfword writes, to ensure
30 ; the data is immediately available in the OSR.
31 ;
32 ; Pin mapping:
33 ; - Input pin 0 is SDA, 1 is SCL (if clock stretching used)
34 ; - Jump pin is SDA
35 ; - Side-set pin 0 is SCL
36 ; - Set pin 0 is SDA
37 ; - OUT pin 0 is SDA
38 ; - SCL must be SDA + 1 (for wait mapping)
39 ;
40 ; The OE outputs should be inverted in the system IO controls!
41 ; (It's possible for the inversion to be done in this program,
42 ; but costs 2 instructions: 1 for inversion, and one to cope
43 ; with the side effect of the MOV on TX shift counter.)
44 
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45 do_nack:
46     jmp y-- entry_point        ; Continue if NAK was expected
47     irq wait 0 rel             ; Otherwise stop, ask for help
48 
49 do_byte:
50     set x, 7                   ; Loop 8 times
51 bitloop:
52     out pindirs, 1         [7] ; Serialise write data (all-ones if reading)
53     nop             side 1 [2] ; SCL rising edge
54     wait 1 pin, 1          [4] ; Allow clock to be stretched
55     in pins, 1             [7] ; Sample read data in middle of SCL pulse
56     jmp x-- bitloop side 0 [7] ; SCL falling edge
57 
58     ; Handle ACK pulse
59     out pindirs, 1         [7] ; On reads, we provide the ACK.
60     nop             side 1 [7] ; SCL rising edge
61     wait 1 pin, 1          [7] ; Allow clock to be stretched
62     jmp pin do_nack side 0 [2] ; Test SDA for ACK/NAK, fall through if ACK
63 
64 public entry_point:
65 .wrap_target
66     out x, 6                   ; Unpack Instr count
67     out y, 1                   ; Unpack the NAK ignore bit
68     jmp !x do_byte             ; Instr == 0, this is a data record.
69     out null, 32               ; Instr > 0, remainder of this OSR is invalid
70 do_exec:
71     out exec, 16               ; Execute one instruction per FIFO word
72     jmp x-- do_exec            ; Repeat n + 1 times
73 .wrap

The IO mapping required by the I2C program is quite complex, due to the different ways that the two serial lines must be

driven and sampled. One interesting feature is that state machine must drive the output enable high when the output is

low, since the bus is open-drain, so the sense of the data is inverted. This could be handled in the PIO program (e.g. mov

osr, ~osr), but instead we can use the IO controls on RP2350 to perform this inversion in the GPIO muxes, saving an

instruction.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/i2c/i2c.pio Lines 81 - 121

 81 static inline void i2c_program_init(PIO pio, uint sm, uint offset, uint pin_sda, uint
    pin_scl) {
 82     assert(pin_scl == pin_sda + 1);
 83     pio_sm_config c = i2c_program_get_default_config(offset);
 84 
 85     // IO mapping
 86     sm_config_set_out_pins(&c, pin_sda, 1);
 87     sm_config_set_set_pins(&c, pin_sda, 1);
 88     sm_config_set_in_pins(&c, pin_sda);
 89     sm_config_set_sideset_pins(&c, pin_scl);
 90     sm_config_set_jmp_pin(&c, pin_sda);
 91 
 92     sm_config_set_out_shift(&c, false, true, 16);
 93     sm_config_set_in_shift(&c, false, true, 8);
 94 
 95     float div = (float)clock_get_hz(clk_sys) / (32 * 100000);
 96     sm_config_set_clkdiv(&c, div);
 97 
 98     // Try to avoid glitching the bus while connecting the IOs. Get things set
 99     // up so that pin is driven down when PIO asserts OE low, and pulled up
100     // otherwise.
101     gpio_pull_up(pin_scl);
102     gpio_pull_up(pin_sda);
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103     uint32_t both_pins = (1u << pin_sda) | (1u << pin_scl);
104     pio_sm_set_pins_with_mask(pio, sm, both_pins, both_pins);
105     pio_sm_set_pindirs_with_mask(pio, sm, both_pins, both_pins);
106     pio_gpio_init(pio, pin_sda);
107     gpio_set_oeover(pin_sda, GPIO_OVERRIDE_INVERT);
108     pio_gpio_init(pio, pin_scl);
109     gpio_set_oeover(pin_scl, GPIO_OVERRIDE_INVERT);
110     pio_sm_set_pins_with_mask(pio, sm, 0, both_pins);
111 
112     // Clear IRQ flag before starting, and make sure flag doesn't actually
113     // assert a system-level interrupt (we're using it as a status flag)
114     pio_set_irq0_source_enabled(pio, (enum pio_interrupt_source) ((uint) pis_interrupt0 +
    sm), false);
115     pio_set_irq1_source_enabled(pio, (enum pio_interrupt_source) ((uint) pis_interrupt0 +
    sm), false);
116     pio_interrupt_clear(pio, sm);
117 
118     // Configure and start SM
119     pio_sm_init(pio, sm, offset + i2c_offset_entry_point, &c);
120     pio_sm_set_enabled(pio, sm, true);
121 }

We can also use the PIO assembler to generate a table of instructions for passing through the FIFO, for

Start/Stop/Restart conditions.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/i2c/i2c.pio Lines 126 - 136

126 .program set_scl_sda
127 .side_set 1 opt
128 
129 ; Assemble a table of instructions which software can select from, and pass
130 ; into the FIFO, to issue START/STOP/RSTART. This isn't intended to be run as
131 ; a complete program.
132 
133     set pindirs, 0 side 0 [7] ; SCL = 0, SDA = 0
134     set pindirs, 1 side 0 [7] ; SCL = 0, SDA = 1
135     set pindirs, 0 side 1 [7] ; SCL = 1, SDA = 0
136     set pindirs, 1 side 1 [7] ; SCL = 1, SDA = 1

The example code does blocking software IO on the state machine’s FIFOs, to avoid the extra complexity of setting up

the system DMA. For example, an I2C start condition is enqueued like so:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/i2c/pio_i2c.c Lines 69 - 73

69 void pio_i2c_start(PIO pio, uint sm) {
70     pio_i2c_put_or_err(pio, sm, 1u << PIO_I2C_ICOUNT_LSB); // Escape code for 2 instruction
   sequence
71     pio_i2c_put_or_err(pio, sm, set_scl_sda_program_instructions[I2C_SC1_SD0]);    // We are
   already in idle state, just pull SDA low
72     pio_i2c_put_or_err(pio, sm, set_scl_sda_program_instructions[I2C_SC0_SD0]);    // Also
   pull clock low so we can present data
73 }

Because I2C can go wrong at so many points, we need to be able to check the error flag asserted by the state machine,

clear the halt and restart it, before asserting a Stop condition and releasing the bus.
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Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/i2c/pio_i2c.c Lines 15 - 17

15 bool pio_i2c_check_error(PIO pio, uint sm) {
16     return pio_interrupt_get(pio, sm);
17 }

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/i2c/pio_i2c.c Lines 19 - 23

19 void pio_i2c_resume_after_error(PIO pio, uint sm) {
20     pio_sm_drain_tx_fifo(pio, sm);
21     pio_sm_exec(pio, sm, (pio->sm[sm].execctrl & PIO_SM0_EXECCTRL_WRAP_BOTTOM_BITS) >>
   PIO_SM0_EXECCTRL_WRAP_BOTTOM_LSB);
22     pio_interrupt_clear(pio, sm);
23 }

We need some higher-level functions to pass correctly-formatted data though the FIFOs and insert Starts, Stops, NAKs

and so on at the correct points. This is enough to present a similar interface to the other hardware I2Cs on RP2350.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/i2c/i2c_bus_scan.c Lines 13 - 42

13 int main() {
14     stdio_init_all();
15 
16     PIO pio = pio0;
17     uint sm = 0;
18     uint offset = pio_add_program(pio, &i2c_program);
19     i2c_program_init(pio, sm, offset, PIN_SDA, PIN_SCL);
20 
21     printf("\nPIO I2C Bus Scan\n");
22     printf("   0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F\n");
23 
24     for (int addr = 0; addr < (1 << 7); ++addr) {
25         if (addr % 16 == 0) {
26             printf("%02x ", addr);
27         }
28         // Perform a 0-byte read from the probe address. The read function
29         // returns a negative result NAK'd any time other than the last data
30         // byte. Skip over reserved addresses.
31         int result;
32         if (reserved_addr(addr))
33             result = -1;
34         else
35             result = pio_i2c_read_blocking(pio, sm, addr, NULL, 0);
36 
37         printf(result < 0 ? "." : "@");
38         printf(addr % 16 == 15 ? "\n" : "  ");
39     }
40     printf("Done.\n");
41     return 0;
42 }

11.6.8. PWM
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Figure 61. Pulse width

modulation (PWM).

The state machine

outputs positive

voltage pulses at

regular intervals. The

width of these pulses

is controlled, so that

the line is high for

some controlled

fraction of the time

(the duty cycle). One

use of this is to

smoothly vary the

brightness of an LED,

by pulsing it faster

than human

persistence of vision.

This program repeatedly counts down to 0 with the Y register, whilst comparing the Y count to a pulse width held in the

X register. The output is asserted low before counting begins, and asserted high when the value in Y reaches X. Once Y

reaches 0, the process repeats, and the output is once more driven low. The fraction of time that the output is high is

therefore proportional to the pulse width stored in X.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/pwm/pwm.pio Lines 10 - 22

10 .program pwm
11 .side_set 1 opt
12 
13     pull noblock    side 0 ; Pull from FIFO to OSR if available, else copy X to OSR.
14     mov x, osr             ; Copy most-recently-pulled value back to scratch X
15     mov y, isr             ; ISR contains PWM period. Y used as counter.
16 countloop:
17     jmp x!=y noset         ; Set pin high if X == Y, keep the two paths length matched
18     jmp skip        side 1
19 noset:
20     nop                    ; Single dummy cycle to keep the two paths the same length
21 skip:
22     jmp y-- countloop      ; Loop until Y hits 0, then pull a fresh PWM value from FIFO

Often, a PWM can be left at a particular pulse width for thousands of pulses, rather than supplying a new pulse width

each time. This example highlights how a non-blocking PULL (Section 11.4.7) can achieve this: if the TX FIFO is empty, a

non-blocking PULL will copy X to the OSR. After pulling, the program copies the OSR into X, so that it can be compared to

the count value in Y. The net effect is that, if a new duty cycle value has not been supplied through the TX FIFO at the

start of this period, the duty cycle from the previous period (which has been copied from X to OSR via the failed PULL, and

then back to X via the MOV) is reused, for as many periods as necessary.

Another useful technique shown here is using the ISR as a configuration register, if IN instructions are not required.

System software can load an arbitrary 32-bit value into the ISR (by executing instructions directly on the state machine),

and the program will copy this value into Y each time it begins counting. The ISR can be used to configure the range of

PWM counting, and the state machine’s clock divider controls the rate of counting.

To start modulating some pulses, we first need to map the state machine’s side-set pins to the GPIO we want to output

PWM on, and tell the state machine where the program is loaded in the PIO instruction memory:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/pwm/pwm.pio Lines 25 - 31

25 static inline void pwm_program_init(PIO pio, uint sm, uint offset, uint pin) {
26    pio_gpio_init(pio, pin);
27    pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
28    pio_sm_config c = pwm_program_get_default_config(offset);
29    sm_config_set_sideset_pins(&c, pin);
30    pio_sm_init(pio, sm, offset, &c);
31 }

A little footwork is required to load the ISR with the desired counting range:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/pwm/pwm.c Lines 14 - 20

14 void pio_pwm_set_period(PIO pio, uint sm, uint32_t period) {
15     pio_sm_set_enabled(pio, sm, false);
16     pio_sm_put_blocking(pio, sm, period);
17     pio_sm_exec(pio, sm, pio_encode_pull(false, false));
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18     pio_sm_exec(pio, sm, pio_encode_out(pio_isr, 32));
19     pio_sm_set_enabled(pio, sm, true);
20 }

Once this is done, the state machine can be enabled, and PWM values written directly to its TX FIFO.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/pwm/pwm.c Lines 23 - 25

23 void pio_pwm_set_level(PIO pio, uint sm, uint32_t level) {
24     pio_sm_put_blocking(pio, sm, level);
25 }

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/pwm/pwm.c Lines 27 - 51

27 int main() {
28     stdio_init_all();
29 #ifndef PICO_DEFAULT_LED_PIN
30 #warning pio/pwm example requires a board with a regular LED
31     puts("Default LED pin was not defined");
32 #else
33 
34     // todo get free sm
35     PIO pio = pio0;
36     int sm = 0;
37     uint offset = pio_add_program(pio, &pwm_program);
38     printf("Loaded program at %d\n", offset);
39 
40     pwm_program_init(pio, sm, offset, PICO_DEFAULT_LED_PIN);
41     pio_pwm_set_period(pio, sm, (1u << 16) - 1);
42 
43     int level = 0;
44     while (true) {
45         printf("Level = %d\n", level);
46         pio_pwm_set_level(pio, sm, level * level);
47         level = (level + 1) % 256;
48         sleep_ms(10);
49     }
50 #endif
51 }

If the TX FIFO is kept topped up with fresh pulse width values, this program will consume a new pulse width for each

pulse. Once the FIFO runs dry, the program will again start reusing the most recently supplied value.

11.6.9. Addition

Although not designed for computation, PIO is quite likely Turing-complete, provided a long enough piece of tape can be

found. It is conjectured that it could run DOOM, given a sufficiently high clock speed.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/addition/addition.pio Lines 7 - 25

 7 .program addition
 8 
 9 ; Pop two 32 bit integers from the TX FIFO, add them together, and push the
10 ; result to the TX FIFO. Autopush/pull should be disabled as we're using
11 ; explicit push and pull instructions.
12 ;
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13 ; This program uses the two's complement identity x + y == ~(~x - y)
14 
15     pull
16     mov x, ~osr
17     pull
18     mov y, osr
19     jmp test        ; this loop is equivalent to the following C code:
20 incr:               ; while (y--)
21     jmp x-- test    ;     x--;
22 test:               ; This has the effect of subtracting y from x, eventually.
23     jmp y-- incr
24     mov isr, ~x
25     push

A full 32-bit addition takes only around one minute at 125 MHz. The program pulls two numbers from the TX FIFO and

pushes their sum to the RX FIFO, which is perfect for use either with the system DMA, or directly by the processor:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/addition/addition.c

 1 /**
 2  * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3  *
 4  * SPDX-License-Identifier: BSD-3-Clause
 5  */
 6 
 7 #include <stdlib.h>
 8 #include <stdio.h>
 9 
10 #include "pico/stdlib.h"
11 #include "hardware/pio.h"
12 #include "addition.pio.h"
13 
14 // Pop quiz: how many additions does the processor do when calling this function
15 uint32_t do_addition(PIO pio, uint sm, uint32_t a, uint32_t b) {
16     pio_sm_put_blocking(pio, sm, a);
17     pio_sm_put_blocking(pio, sm, b);
18     return pio_sm_get_blocking(pio, sm);
19 }
20 
21 int main() {
22     stdio_init_all();
23 
24     PIO pio = pio0;
25     uint sm = 0;
26     uint offset = pio_add_program(pio, &addition_program);
27     addition_program_init(pio, sm, offset);
28 
29     printf("Doing some random additions:\n");
30     for (int i = 0; i < 10; ++i) {
31         uint a = rand() % 100;
32         uint b = rand() % 100;
33         printf("%u + %u = %u\n", a, b, do_addition(pio, sm, a, b));
34     }
35 }

11.6.10. Further Examples

Raspberry Pi Pico-series C/C++ SDK has a PIO chapter which goes into depth on some software-centric topics not

presented here. It includes a PIO + DMA logic analyser example that can sample every GPIO on every cycle (a bandwidth
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of nearly 4Gbps at 125 MHz, although this does fill up RP2350’s RAM somewhat quickly).

There are also further examples in the pio/ directory in the Pico Examples repository.

Some of the more experimental example code, such as DPI and SD card support, is currently located in the Pico Extras

and Pico Playground repositories. The PIO parts of these are functional, but the surrounding software stacks are still in

an experimental state.

11.7. List of Registers

The PIO0 and PIO1 registers start at base addresses of 0x50200000 and 0x50300000 respectively (defined as PIO0_BASE

and PIO1_BASE in SDK).

Table 978. List of PIO

registers
Offset Name Info

0x000 CTRL PIO control register

0x004 FSTAT FIFO status register

0x008 FDEBUG FIFO debug register

0x00c FLEVEL FIFO levels

0x010 TXF0 Direct write access to the TX FIFO for this state machine. Each

write pushes one word to the FIFO. Attempting to write to a full

FIFO has no effect on the FIFO state or contents, and sets the

sticky FDEBUG_TXOVER error flag for this FIFO.

0x014 TXF1 Direct write access to the TX FIFO for this state machine. Each

write pushes one word to the FIFO. Attempting to write to a full

FIFO has no effect on the FIFO state or contents, and sets the

sticky FDEBUG_TXOVER error flag for this FIFO.

0x018 TXF2 Direct write access to the TX FIFO for this state machine. Each

write pushes one word to the FIFO. Attempting to write to a full

FIFO has no effect on the FIFO state or contents, and sets the

sticky FDEBUG_TXOVER error flag for this FIFO.

0x01c TXF3 Direct write access to the TX FIFO for this state machine. Each

write pushes one word to the FIFO. Attempting to write to a full

FIFO has no effect on the FIFO state or contents, and sets the

sticky FDEBUG_TXOVER error flag for this FIFO.

0x020 RXF0 Direct read access to the RX FIFO for this state machine. Each

read pops one word from the FIFO. Attempting to read from an

empty FIFO has no effect on the FIFO state, and sets the sticky

FDEBUG_RXUNDER error flag for this FIFO. The data returned to

the system on a read from an empty FIFO is undefined.

0x024 RXF1 Direct read access to the RX FIFO for this state machine. Each

read pops one word from the FIFO. Attempting to read from an

empty FIFO has no effect on the FIFO state, and sets the sticky

FDEBUG_RXUNDER error flag for this FIFO. The data returned to

the system on a read from an empty FIFO is undefined.

0x028 RXF2 Direct read access to the RX FIFO for this state machine. Each

read pops one word from the FIFO. Attempting to read from an

empty FIFO has no effect on the FIFO state, and sets the sticky

FDEBUG_RXUNDER error flag for this FIFO. The data returned to

the system on a read from an empty FIFO is undefined.
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Offset Name Info

0x02c RXF3 Direct read access to the RX FIFO for this state machine. Each

read pops one word from the FIFO. Attempting to read from an

empty FIFO has no effect on the FIFO state, and sets the sticky

FDEBUG_RXUNDER error flag for this FIFO. The data returned to

the system on a read from an empty FIFO is undefined.

0x030 IRQ State machine IRQ flags register. Write 1 to clear. There are eight

state machine IRQ flags, which can be set, cleared, and waited on

by the state machines. There’s no fixed association between

flags and state machines — any state machine can use any flag.

Any of the eight flags can be used for timing synchronisation

between state machines, using IRQ and WAIT instructions. Any

combination of the eight flags can also routed out to either of the

two system-level interrupt requests, alongside FIFO status

interrupts — see e.g. IRQ0_INTE.

0x034 IRQ_FORCE Writing a 1 to each of these bits will forcibly assert the

corresponding IRQ. Note this is different to the INTF register:

writing here affects PIO internal state. INTF just asserts the

processor-facing IRQ signal for testing ISRs, and is not visible to

the state machines.

0x038 INPUT_SYNC_BYPASS There is a 2-flipflop synchronizer on each GPIO input, which

protects PIO logic from metastabilities. This increases input

delay, and for fast synchronous IO (e.g. SPI) these synchronizers

may need to be bypassed. Each bit in this register corresponds

to one GPIO.

0 → input is synchronized (default)

1 → synchronizer is bypassed

If in doubt, leave this register as all zeroes.

0x03c DBG_PADOUT Read to sample the pad output values PIO is currently driving to

the GPIOs. On RP2040 there are 30 GPIOs, so the two most

significant bits are hardwired to 0.

0x040 DBG_PADOE Read to sample the pad output enables (direction) PIO is

currently driving to the GPIOs. On RP2040 there are 30 GPIOs, so

the two most significant bits are hardwired to 0.

0x044 DBG_CFGINFO The PIO hardware has some free parameters that may vary

between chip products.

These should be provided in the chip datasheet, but are also

exposed here.

0x048 INSTR_MEM0 Write-only access to instruction memory location 0

0x04c INSTR_MEM1 Write-only access to instruction memory location 1

0x050 INSTR_MEM2 Write-only access to instruction memory location 2

0x054 INSTR_MEM3 Write-only access to instruction memory location 3

0x058 INSTR_MEM4 Write-only access to instruction memory location 4

0x05c INSTR_MEM5 Write-only access to instruction memory location 5

0x060 INSTR_MEM6 Write-only access to instruction memory location 6

0x064 INSTR_MEM7 Write-only access to instruction memory location 7
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Offset Name Info

0x068 INSTR_MEM8 Write-only access to instruction memory location 8

0x06c INSTR_MEM9 Write-only access to instruction memory location 9

0x070 INSTR_MEM10 Write-only access to instruction memory location 10

0x074 INSTR_MEM11 Write-only access to instruction memory location 11

0x078 INSTR_MEM12 Write-only access to instruction memory location 12

0x07c INSTR_MEM13 Write-only access to instruction memory location 13

0x080 INSTR_MEM14 Write-only access to instruction memory location 14

0x084 INSTR_MEM15 Write-only access to instruction memory location 15

0x088 INSTR_MEM16 Write-only access to instruction memory location 16

0x08c INSTR_MEM17 Write-only access to instruction memory location 17

0x090 INSTR_MEM18 Write-only access to instruction memory location 18

0x094 INSTR_MEM19 Write-only access to instruction memory location 19

0x098 INSTR_MEM20 Write-only access to instruction memory location 20

0x09c INSTR_MEM21 Write-only access to instruction memory location 21

0x0a0 INSTR_MEM22 Write-only access to instruction memory location 22

0x0a4 INSTR_MEM23 Write-only access to instruction memory location 23

0x0a8 INSTR_MEM24 Write-only access to instruction memory location 24

0x0ac INSTR_MEM25 Write-only access to instruction memory location 25

0x0b0 INSTR_MEM26 Write-only access to instruction memory location 26

0x0b4 INSTR_MEM27 Write-only access to instruction memory location 27

0x0b8 INSTR_MEM28 Write-only access to instruction memory location 28

0x0bc INSTR_MEM29 Write-only access to instruction memory location 29

0x0c0 INSTR_MEM30 Write-only access to instruction memory location 30

0x0c4 INSTR_MEM31 Write-only access to instruction memory location 31

0x0c8 SM0_CLKDIV Clock divisor register for state machine 0

Frequency = clock freq / (CLKDIV_INT + CLKDIV_FRAC / 256)

0x0cc SM0_EXECCTRL Execution/behavioural settings for state machine 0

0x0d0 SM0_SHIFTCTRL Control behaviour of the input/output shift registers for state

machine 0

0x0d4 SM0_ADDR Current instruction address of state machine 0

0x0d8 SM0_INSTR Read to see the instruction currently addressed by state machine

0’s program counter

Write to execute an instruction immediately (including jumps)

and then resume execution.

0x0dc SM0_PINCTRL State machine pin control

0x0e0 SM1_CLKDIV Clock divisor register for state machine 1

Frequency = clock freq / (CLKDIV_INT + CLKDIV_FRAC / 256)

0x0e4 SM1_EXECCTRL Execution/behavioural settings for state machine 1
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Offset Name Info

0x0e8 SM1_SHIFTCTRL Control behaviour of the input/output shift registers for state

machine 1

0x0ec SM1_ADDR Current instruction address of state machine 1

0x0f0 SM1_INSTR Read to see the instruction currently addressed by state machine

1’s program counter

Write to execute an instruction immediately (including jumps)

and then resume execution.

0x0f4 SM1_PINCTRL State machine pin control

0x0f8 SM2_CLKDIV Clock divisor register for state machine 2

Frequency = clock freq / (CLKDIV_INT + CLKDIV_FRAC / 256)

0x0fc SM2_EXECCTRL Execution/behavioural settings for state machine 2

0x100 SM2_SHIFTCTRL Control behaviour of the input/output shift registers for state

machine 2

0x104 SM2_ADDR Current instruction address of state machine 2

0x108 SM2_INSTR Read to see the instruction currently addressed by state machine

2’s program counter

Write to execute an instruction immediately (including jumps)

and then resume execution.

0x10c SM2_PINCTRL State machine pin control

0x110 SM3_CLKDIV Clock divisor register for state machine 3

Frequency = clock freq / (CLKDIV_INT + CLKDIV_FRAC / 256)

0x114 SM3_EXECCTRL Execution/behavioural settings for state machine 3

0x118 SM3_SHIFTCTRL Control behaviour of the input/output shift registers for state

machine 3

0x11c SM3_ADDR Current instruction address of state machine 3

0x120 SM3_INSTR Read to see the instruction currently addressed by state machine

3’s program counter

Write to execute an instruction immediately (including jumps)

and then resume execution.

0x124 SM3_PINCTRL State machine pin control

0x128 RXF0_PUTGET0 Direct read/write access to entry 0 of SM0’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x12c RXF0_PUTGET1 Direct read/write access to entry 1 of SM0’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x130 RXF0_PUTGET2 Direct read/write access to entry 2 of SM0’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x134 RXF0_PUTGET3 Direct read/write access to entry 3 of SM0’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.
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0x138 RXF1_PUTGET0 Direct read/write access to entry 0 of SM1’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x13c RXF1_PUTGET1 Direct read/write access to entry 1 of SM1’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x140 RXF1_PUTGET2 Direct read/write access to entry 2 of SM1’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x144 RXF1_PUTGET3 Direct read/write access to entry 3 of SM1’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x148 RXF2_PUTGET0 Direct read/write access to entry 0 of SM2’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x14c RXF2_PUTGET1 Direct read/write access to entry 1 of SM2’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x150 RXF2_PUTGET2 Direct read/write access to entry 2 of SM2’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x154 RXF2_PUTGET3 Direct read/write access to entry 3 of SM2’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x158 RXF3_PUTGET0 Direct read/write access to entry 0 of SM3’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x15c RXF3_PUTGET1 Direct read/write access to entry 1 of SM3’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x160 RXF3_PUTGET2 Direct read/write access to entry 2 of SM3’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x164 RXF3_PUTGET3 Direct read/write access to entry 3 of SM3’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is

set.

0x168 GPIOBASE Relocate GPIO 0 (from PIO’s point of view) in the system GPIO

numbering, to access more than 32 GPIOs from PIO.

Only the values 0 and 16 are supported (only bit 4 is writable).

0x16c INTR Raw Interrupts

0x170 IRQ0_INTE Interrupt Enable for irq0

0x174 IRQ0_INTF Interrupt Force for irq0

0x178 IRQ0_INTS Interrupt status after masking & forcing for irq0

0x17c IRQ1_INTE Interrupt Enable for irq1
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Offset Name Info

0x180 IRQ1_INTF Interrupt Force for irq1

0x184 IRQ1_INTS Interrupt status after masking & forcing for irq1

PIO: CTRL Register

Offset: 0x000

Description

PIO control register

Table 979. CTRL

Register
Bits Description Type Reset

31:27 Reserved. - -

26 NEXTPREV_CLKDIV_RESTART: Write 1 to restart the clock dividers of state

machines in neighbouring PIO blocks, as specified by NEXT_PIO_MASK and

PREV_PIO_MASK in the same write.

This is equivalent to writing 1 to the corresponding CLKDIV_RESTART bits in

those PIOs' CTRL registers.

SC 0x0

25 NEXTPREV_SM_DISABLE: Write 1 to disable state machines in neighbouring

PIO blocks, as specified by NEXT_PIO_MASK and PREV_PIO_MASK in the

same write.

This is equivalent to clearing the corresponding SM_ENABLE bits in those

PIOs' CTRL registers.

SC 0x0

24 NEXTPREV_SM_ENABLE: Write 1 to enable state machines in neighbouring

PIO blocks, as specified by NEXT_PIO_MASK and PREV_PIO_MASK in the

same write.

This is equivalent to setting the corresponding SM_ENABLE bits in those PIOs'

CTRL registers.

If both OTHERS_SM_ENABLE and OTHERS_SM_DISABLE are set, the disable

takes precedence.

SC 0x0

23:20 NEXT_PIO_MASK: A mask of state machines in the neighbouring higher-

numbered PIO block in the system (or PIO block 0 if this is the highest-

numbered PIO block) to which to apply the operations specified by

NEXTPREV_CLKDIV_RESTART, NEXTPREV_SM_ENABLE, and

NEXTPREV_SM_DISABLE in the same write.

This allows state machines in a neighbouring PIO block to be

started/stopped/clock-synced exactly simultaneously with a write to this PIO

block’s CTRL register.

Note that in a system with two PIOs, NEXT_PIO_MASK and PREV_PIO_MASK

actually indicate the same PIO block. In this case the effects are applied

cumulatively (as though the masks were OR’d together).

Neighbouring PIO blocks are disconnected (status signals tied to 0 and

control signals ignored) if one block is accessible to NonSecure code, and one

is not.

SC 0x0
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Bits Description Type Reset

19:16 PREV_PIO_MASK: A mask of state machines in the neighbouring lower-

numbered PIO block in the system (or the highest-numbered PIO block if this

is PIO block 0) to which to apply the operations specified by

OP_CLKDIV_RESTART, OP_ENABLE, OP_DISABLE in the same write.

This allows state machines in a neighbouring PIO block to be

started/stopped/clock-synced exactly simultaneously with a write to this PIO

block’s CTRL register.

Neighbouring PIO blocks are disconnected (status signals tied to 0 and

control signals ignored) if one block is accessible to NonSecure code, and one

is not.

SC 0x0

15:12 Reserved. - -

11:8 CLKDIV_RESTART: Restart a state machine’s clock divider from an initial

phase of 0. Clock dividers are free-running, so once started, their output

(including fractional jitter) is completely determined by the integer/fractional

divisor configured in SMx_CLKDIV. This means that, if multiple clock dividers

with the same divisor are restarted simultaneously, by writing multiple 1 bits to

this field, the execution clocks of those state machines will run in precise

lockstep.

Note that setting/clearing SM_ENABLE does not stop the clock divider from

running, so once multiple state machines' clocks are synchronised, it is safe to

disable/reenable a state machine, whilst keeping the clock dividers in sync.

Note also that CLKDIV_RESTART can be written to whilst the state machine is

running, and this is useful to resynchronise clock dividers after the divisors

(SMx_CLKDIV) have been changed on-the-fly.

SC 0x0

7:4 SM_RESTART: Write 1 to instantly clear internal SM state which may be

otherwise difficult to access and will affect future execution.

Specifically, the following are cleared: input and output shift counters; the

contents of the input shift register; the delay counter; the waiting-on-IRQ state;

any stalled instruction written to SMx_INSTR or run by OUT/MOV EXEC; any

pin write left asserted due to OUT_STICKY.

The contents of the output shift register and the X/Y scratch registers are not

affected.

SC 0x0

3:0 SM_ENABLE: Enable/disable each of the four state machines by writing 1/0 to

each of these four bits. When disabled, a state machine will cease executing

instructions, except those written directly to SMx_INSTR by the system.

Multiple bits can be set/cleared at once to run/halt multiple state machines

simultaneously.

RW 0x0

PIO: FSTAT Register

Offset: 0x004

Description

FIFO status register
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Table 980. FSTAT

Register
Bits Description Type Reset

31:28 Reserved. - -

27:24 TXEMPTY: State machine TX FIFO is empty RO 0xf

23:20 Reserved. - -

19:16 TXFULL: State machine TX FIFO is full RO 0x0

15:12 Reserved. - -

11:8 RXEMPTY: State machine RX FIFO is empty RO 0xf

7:4 Reserved. - -

3:0 RXFULL: State machine RX FIFO is full RO 0x0

PIO: FDEBUG Register

Offset: 0x008

Description

FIFO debug register

Table 981. FDEBUG

Register
Bits Description Type Reset

31:28 Reserved. - -

27:24 TXSTALL: State machine has stalled on empty TX FIFO during a blocking

PULL, or an OUT with autopull enabled. Write 1 to clear.

WC 0x0

23:20 Reserved. - -

19:16 TXOVER: TX FIFO overflow (i.e. write-on-full by the system) has occurred.

Write 1 to clear. Note that write-on-full does not alter the state or contents of

the FIFO in any way, but the data that the system attempted to write is

dropped, so if this flag is set, your software has quite likely dropped some data

on the floor.

WC 0x0

15:12 Reserved. - -

11:8 RXUNDER: RX FIFO underflow (i.e. read-on-empty by the system) has

occurred. Write 1 to clear. Note that read-on-empty does not perturb the state

of the FIFO in any way, but the data returned by reading from an empty FIFO is

undefined, so this flag generally only becomes set due to some kind of

software error.

WC 0x0

7:4 Reserved. - -

3:0 RXSTALL: State machine has stalled on full RX FIFO during a blocking PUSH,

or an IN with autopush enabled. This flag is also set when a nonblocking

PUSH to a full FIFO took place, in which case the state machine has dropped

data. Write 1 to clear.

WC 0x0

PIO: FLEVEL Register

Offset: 0x00c

Description

FIFO levels

Table 982. FLEVEL

Register
Bits Description Type Reset

31:28 RX3 RO 0x0
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Bits Description Type Reset

27:24 TX3 RO 0x0

23:20 RX2 RO 0x0

19:16 TX2 RO 0x0

15:12 RX1 RO 0x0

11:8 TX1 RO 0x0

7:4 RX0 RO 0x0

3:0 TX0 RO 0x0

PIO: TXF0, TXF1, TXF2, TXF3 Registers

Offsets: 0x010, 0x014, 0x018, 0x01c

Table 983. TXF0,

TXF1, TXF2, TXF3

Registers

Bits Description Type Reset

31:0 Direct write access to the TX FIFO for this state machine. Each write pushes

one word to the FIFO. Attempting to write to a full FIFO has no effect on the

FIFO state or contents, and sets the sticky FDEBUG_TXOVER error flag for this

FIFO.

WF 0x00000000

PIO: RXF0, RXF1, RXF2, RXF3 Registers

Offsets: 0x020, 0x024, 0x028, 0x02c

Table 984. RXF0,

RXF1, RXF2, RXF3

Registers

Bits Description Type Reset

31:0 Direct read access to the RX FIFO for this state machine. Each read pops one

word from the FIFO. Attempting to read from an empty FIFO has no effect on

the FIFO state, and sets the sticky FDEBUG_RXUNDER error flag for this FIFO.

The data returned to the system on a read from an empty FIFO is undefined.

RF -

PIO: IRQ Register

Offset: 0x030

Table 985. IRQ

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 State machine IRQ flags register. Write 1 to clear. There are eight state

machine IRQ flags, which can be set, cleared, and waited on by the state

machines. There’s no fixed association between flags and state

machines — any state machine can use any flag.

Any of the eight flags can be used for timing synchronisation between state

machines, using IRQ and WAIT instructions. Any combination of the eight

flags can also routed out to either of the two system-level interrupt requests,

alongside FIFO status interrupts — see e.g. IRQ0_INTE.

WC 0x00

PIO: IRQ_FORCE Register

Offset: 0x034

Table 986. IRQ_FORCE

Register
Bits Description Type Reset

31:8 Reserved. - -
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Bits Description Type Reset

7:0 Writing a 1 to each of these bits will forcibly assert the corresponding IRQ.

Note this is different to the INTF register: writing here affects PIO internal

state. INTF just asserts the processor-facing IRQ signal for testing ISRs, and is

not visible to the state machines.

WF 0x00

PIO: INPUT_SYNC_BYPASS Register

Offset: 0x038

Table 987.

INPUT_SYNC_BYPASS

Register

Bits Description Type Reset

31:0 There is a 2-flipflop synchronizer on each GPIO input, which protects PIO logic

from metastabilities. This increases input delay, and for fast synchronous IO

(e.g. SPI) these synchronizers may need to be bypassed. Each bit in this

register corresponds to one GPIO.

0 → input is synchronized (default)

1 → synchronizer is bypassed

If in doubt, leave this register as all zeroes.

RW 0x00000000

PIO: DBG_PADOUT Register

Offset: 0x03c

Table 988.

DBG_PADOUT Register
Bits Description Type Reset

31:0 Read to sample the pad output values PIO is currently driving to the GPIOs. On

RP2040 there are 30 GPIOs, so the two most significant bits are hardwired to

0.

RO 0x00000000

PIO: DBG_PADOE Register

Offset: 0x040

Table 989.

DBG_PADOE Register
Bits Description Type Reset

31:0 Read to sample the pad output enables (direction) PIO is currently driving to

the GPIOs. On RP2040 there are 30 GPIOs, so the two most significant bits are

hardwired to 0.

RO 0x00000000

PIO: DBG_CFGINFO Register

Offset: 0x044

Description

The PIO hardware has some free parameters that may vary between chip products.

These should be provided in the chip datasheet, but are also exposed here.

Table 990.

DBG_CFGINFO

Register

Bits Description Type Reset

31:28 VERSION: Version of the core PIO hardware. RO 0x1

Enumerated values:

0x0 → Version 0 (RP2040)

0x1 → Version 1 (RP2350)

27:22 Reserved. - -
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Bits Description Type Reset

21:16 IMEM_SIZE: The size of the instruction memory, measured in units of one

instruction

RO -

15:12 Reserved. - -

11:8 SM_COUNT: The number of state machines this PIO instance is equipped

with.

RO -

7:6 Reserved. - -

5:0 FIFO_DEPTH: The depth of the state machine TX/RX FIFOs, measured in

words.

Joining fifos via SHIFTCTRL_FJOIN gives one FIFO with double

this depth.

RO -

PIO: INSTR_MEM0, INSTR_MEM1, …, INSTR_MEM30, INSTR_MEM31 Registers

Offsets: 0x048, 0x04c, …, 0x0c0, 0x0c4

Table 991.

INSTR_MEM0,

INSTR_MEM1, …,

INSTR_MEM30,

INSTR_MEM31

Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Write-only access to instruction memory location N WO 0x0000

PIO: SM0_CLKDIV, SM1_CLKDIV, SM2_CLKDIV, SM3_CLKDIV Registers

Offsets: 0x0c8, 0x0e0, 0x0f8, 0x110

Description

Clock divisor register for state machine N

Frequency = clock freq / (CLKDIV_INT + CLKDIV_FRAC / 256)

Table 992.

SM0_CLKDIV,

SM1_CLKDIV,

SM2_CLKDIV,

SM3_CLKDIV

Registers

Bits Description Type Reset

31:16 INT: Effective frequency is sysclk/(int + frac/256).

Value of 0 is interpreted as 65536. If INT is 0, FRAC must also be 0.

RW 0x0001

15:8 FRAC: Fractional part of clock divisor RW 0x00

7:0 Reserved. - -

PIO: SM0_EXECCTRL, SM1_EXECCTRL, SM2_EXECCTRL, SM3_EXECCTRL

Registers

Offsets: 0x0cc, 0x0e4, 0x0fc, 0x114

Description

Execution/behavioural settings for state machine N

Table 993.

SM0_EXECCTRL,

SM1_EXECCTRL,

SM2_EXECCTRL,

SM3_EXECCTRL

Registers

Bits Description Type Reset

31 EXEC_STALLED: If 1, an instruction written to SMx_INSTR is stalled, and

latched by the state machine. Will clear to 0 once this instruction completes.

RO 0x0

30 SIDE_EN: If 1, the MSB of the Delay/Side-set instruction field is used as side-

set enable, rather than a side-set data bit. This allows instructions to perform

side-set optionally, rather than on every instruction, but the maximum possible

side-set width is reduced from 5 to 4. Note that the value of

PINCTRL_SIDESET_COUNT is inclusive of this enable bit.

RW 0x0
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Bits Description Type Reset

29 SIDE_PINDIR: If 1, side-set data is asserted to pin directions, instead of pin

values

RW 0x0

28:24 JMP_PIN: The GPIO number to use as condition for JMP PIN. Unaffected by

input mapping.

RW 0x00

23:19 OUT_EN_SEL: Which data bit to use for inline OUT enable RW 0x00

18 INLINE_OUT_EN: If 1, use a bit of OUT data as an auxiliary write enable

When used in conjunction with OUT_STICKY, writes with an enable of 0 will

deassert the latest pin write. This can create useful masking/override

behaviour

due to the priority ordering of state machine pin writes (SM0 < SM1 < …)

RW 0x0

17 OUT_STICKY: Continuously assert the most recent OUT/SET to the pins RW 0x0

16:12 WRAP_TOP: After reaching this address, execution is wrapped to

wrap_bottom.

If the instruction is a jump, and the jump condition is true, the jump takes

priority.

RW 0x1f

11:7 WRAP_BOTTOM: After reaching wrap_top, execution is wrapped to this

address.

RW 0x00

6:5 STATUS_SEL: Comparison used for the MOV x, STATUS instruction. RW 0x0

Enumerated values:

0x0 → All-ones if TX FIFO level < N, otherwise all-zeroes

0x1 → All-ones if RX FIFO level < N, otherwise all-zeroes

0x2 → All-ones if the indexed IRQ flag is raised, otherwise all-zeroes

4:0 STATUS_N: Comparison level or IRQ index for the MOV x, STATUS instruction.

If STATUS_SEL is TXLEVEL or RXLEVEL, then values of STATUS_N greater

than the current FIFO depth are reserved, and have undefined behaviour.

RW 0x00

Enumerated values:

0x00 → Index 0-7 of an IRQ flag in this PIO block

0x08 → Index 0-7 of an IRQ flag in the next lower-numbered PIO block

0x10 → Index 0-7 of an IRQ flag in the next higher-numbered PIO block

PIO: SM0_SHIFTCTRL, SM1_SHIFTCTRL, SM2_SHIFTCTRL, SM3_SHIFTCTRL

Registers

Offsets: 0x0d0, 0x0e8, 0x100, 0x118

Description

Control behaviour of the input/output shift registers for state machine N

Table 994.

SM0_SHIFTCTRL,

SM1_SHIFTCTRL,

SM2_SHIFTCTRL,

SM3_SHIFTCTRL

Registers

Bits Description Type Reset

31 FJOIN_RX: When 1, RX FIFO steals the TX FIFO’s storage, and becomes twice

as deep.

TX FIFO is disabled as a result (always reads as both full and empty).

FIFOs are flushed when this bit is changed.

RW 0x0
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Bits Description Type Reset

30 FJOIN_TX: When 1, TX FIFO steals the RX FIFO’s storage, and becomes twice

as deep.

RX FIFO is disabled as a result (always reads as both full and empty).

FIFOs are flushed when this bit is changed.

RW 0x0

29:25 PULL_THRESH: Number of bits shifted out of OSR before autopull, or

conditional pull (PULL IFEMPTY), will take place.

Write 0 for value of 32.

RW 0x00

24:20 PUSH_THRESH: Number of bits shifted into ISR before autopush, or

conditional push (PUSH IFFULL), will take place.

Write 0 for value of 32.

RW 0x00

19 OUT_SHIFTDIR: 1 = shift out of output shift register to right. 0 = to left. RW 0x1

18 IN_SHIFTDIR: 1 = shift input shift register to right (data enters from left). 0 = to

left.

RW 0x1

17 AUTOPULL: Pull automatically when the output shift register is emptied, i.e. on

or following an OUT instruction which causes the output shift counter to reach

or exceed PULL_THRESH.

RW 0x0

16 AUTOPUSH: Push automatically when the input shift register is filled, i.e. on an

IN instruction which causes the input shift counter to reach or exceed

PUSH_THRESH.

RW 0x0

15 FJOIN_RX_PUT: If 1, disable this state machine’s RX FIFO, make its storage

available for random write access by the state machine (using the put

instruction) and, unless FJOIN_RX_GET is also set, random read access by the

processor (through the RXFx_PUTGETy registers).

If FJOIN_RX_PUT and FJOIN_RX_GET are both set, then the RX FIFO’s

registers can be randomly read/written by the state machine, but are

completely inaccessible to the processor.

Setting this bit will clear the FJOIN_TX and FJOIN_RX bits.

RW 0x0

14 FJOIN_RX_GET: If 1, disable this state machine’s RX FIFO, make its storage

available for random read access by the state machine (using the get

instruction) and, unless FJOIN_RX_PUT is also set, random write access by

the processor (through the RXFx_PUTGETy registers).

If FJOIN_RX_PUT and FJOIN_RX_GET are both set, then the RX FIFO’s

registers can be randomly read/written by the state machine, but are

completely inaccessible to the processor.

Setting this bit will clear the FJOIN_TX and FJOIN_RX bits.

RW 0x0

13:5 Reserved. - -
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Bits Description Type Reset

4:0 IN_COUNT: Set the number of pins which are not masked to 0 when read by an

IN PINS, WAIT PIN or MOV x, PINS instruction.

For example, an IN_COUNT of 5 means that the 5 LSBs of the IN pin group are

visible (bits 4:0), but the remaining 27 MSBs are masked to 0. A count of 32 is

encoded with a field value of 0, so the default behaviour is to not perform any

masking.

Note this masking is applied in addition to the masking usually performed by

the IN instruction. This is mainly useful for the MOV x, PINS instruction, which

otherwise has no way of masking pins.

RW 0x00

PIO: SM0_ADDR, SM1_ADDR, SM2_ADDR, SM3_ADDR Registers

Offsets: 0x0d4, 0x0ec, 0x104, 0x11c

Table 995. SM0_ADDR,

SM1_ADDR,

SM2_ADDR,

SM3_ADDR Registers

Bits Description Type Reset

31:5 Reserved. - -

4:0 Current instruction address of state machine N RO 0x00

PIO: SM0_INSTR, SM1_INSTR, SM2_INSTR, SM3_INSTR Registers

Offsets: 0x0d8, 0x0f0, 0x108, 0x120

Table 996.

SM0_INSTR,

SM1_INSTR,

SM2_INSTR,

SM3_INSTR Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Read to see the instruction currently addressed by state machine N's program

counter.

Write to execute an instruction immediately (including jumps) and then

resume execution.

RW -

PIO: SM0_PINCTRL, SM1_PINCTRL, SM2_PINCTRL, SM3_PINCTRL Registers

Offsets: 0x0dc, 0x0f4, 0x10c, 0x124

Description

State machine pin control

Table 997.

SM0_PINCTRL,

SM1_PINCTRL,

SM2_PINCTRL,

SM3_PINCTRL

Registers

Bits Description Type Reset

31:29 SIDESET_COUNT: The number of MSBs of the Delay/Side-set instruction field

which are used for side-set. Inclusive of the enable bit, if present. Minimum of

0 (all delay bits, no side-set) and maximum of 5 (all side-set, no delay).

RW 0x0

28:26 SET_COUNT: The number of pins asserted by a SET. In the range 0 to 5

inclusive.

RW 0x5

25:20 OUT_COUNT: The number of pins asserted by an OUT PINS, OUT PINDIRS or

MOV PINS instruction. In the range 0 to 32 inclusive.

RW 0x00

19:15 IN_BASE: The pin which is mapped to the least-significant bit of a state

machine’s IN data bus. Higher-numbered pins are mapped to consecutively

more-significant data bits, with a modulo of 32 applied to pin number.

RW 0x00
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Bits Description Type Reset

14:10 SIDESET_BASE: The lowest-numbered pin that will be affected by a side-set

operation. The MSBs of an instruction’s side-set/delay field (up to 5,

determined by SIDESET_COUNT) are used for side-set data, with the remaining

LSBs used for delay. The least-significant bit of the side-set portion is the bit

written to this pin, with more-significant bits written to higher-numbered pins.

RW 0x00

9:5 SET_BASE: The lowest-numbered pin that will be affected by a SET PINS or

SET PINDIRS instruction. The data written to this pin is the least-significant bit

of the SET data.

RW 0x00

4:0 OUT_BASE: The lowest-numbered pin that will be affected by an OUT PINS,

OUT PINDIRS or MOV PINS instruction. The data written to this pin will always

be the least-significant bit of the OUT or MOV data.

RW 0x00

PIO: RXF0_PUTGET0 Register

Offset: 0x128

Table 998.

RXF0_PUTGET0

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 0 of SM0’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF0_PUTGET1 Register

Offset: 0x12c

Table 999.

RXF0_PUTGET1

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 1 of SM0’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF0_PUTGET2 Register

Offset: 0x130

Table 1000.

RXF0_PUTGET2

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 2 of SM0’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF0_PUTGET3 Register

Offset: 0x134

Table 1001.

RXF0_PUTGET3

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 3 of SM0’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF1_PUTGET0 Register

Offset: 0x138
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Table 1002.

RXF1_PUTGET0

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 0 of SM1’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF1_PUTGET1 Register

Offset: 0x13c

Table 1003.

RXF1_PUTGET1

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 1 of SM1’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF1_PUTGET2 Register

Offset: 0x140

Table 1004.

RXF1_PUTGET2

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 2 of SM1’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF1_PUTGET3 Register

Offset: 0x144

Table 1005.

RXF1_PUTGET3

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 3 of SM1’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF2_PUTGET0 Register

Offset: 0x148

Table 1006.

RXF2_PUTGET0

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 0 of SM2’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF2_PUTGET1 Register

Offset: 0x14c

Table 1007.

RXF2_PUTGET1

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 1 of SM2’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF2_PUTGET2 Register

Offset: 0x150
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Table 1008.

RXF2_PUTGET2

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 2 of SM2’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF2_PUTGET3 Register

Offset: 0x154

Table 1009.

RXF2_PUTGET3

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 3 of SM2’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF3_PUTGET0 Register

Offset: 0x158

Table 1010.

RXF3_PUTGET0

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 0 of SM3’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF3_PUTGET1 Register

Offset: 0x15c

Table 1011.

RXF3_PUTGET1

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 1 of SM3’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF3_PUTGET2 Register

Offset: 0x160

Table 1012.

RXF3_PUTGET2

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 2 of SM3’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: RXF3_PUTGET3 Register

Offset: 0x164

Table 1013.

RXF3_PUTGET3

Register

Bits Description Type Reset

31:0 Direct read/write access to entry 3 of SM3’s RX FIFO, if

SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set.

RW 0x00000000

PIO: GPIOBASE Register

Offset: 0x168

Table 1014.

GPIOBASE Register
Bits Description Type Reset

31:5 Reserved. - -
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Bits Description Type Reset

4 Relocate GPIO 0 (from PIO’s point of view) in the system GPIO numbering, to

access more than 32 GPIOs from PIO.

Only the values 0 and 16 are supported (only bit 4 is writable).

RW 0x0

3:0 Reserved. - -

PIO: INTR Register

Offset: 0x16c

Description

Raw Interrupts

Table 1015. INTR

Register
Bits Description Type Reset

31:16 Reserved. - -

15 SM7 RO 0x0

14 SM6 RO 0x0

13 SM5 RO 0x0

12 SM4 RO 0x0

11 SM3 RO 0x0

10 SM2 RO 0x0

9 SM1 RO 0x0

8 SM0 RO 0x0

7 SM3_TXNFULL RO 0x0

6 SM2_TXNFULL RO 0x0

5 SM1_TXNFULL RO 0x0

4 SM0_TXNFULL RO 0x0

3 SM3_RXNEMPTY RO 0x0

2 SM2_RXNEMPTY RO 0x0

1 SM1_RXNEMPTY RO 0x0

0 SM0_RXNEMPTY RO 0x0

PIO: IRQ0_INTE Register

Offset: 0x170

Description

Interrupt Enable for irq0

Table 1016.

IRQ0_INTE Register
Bits Description Type Reset

31:16 Reserved. - -

15 SM7 RW 0x0

14 SM6 RW 0x0
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Bits Description Type Reset

13 SM5 RW 0x0

12 SM4 RW 0x0

11 SM3 RW 0x0

10 SM2 RW 0x0

9 SM1 RW 0x0

8 SM0 RW 0x0

7 SM3_TXNFULL RW 0x0

6 SM2_TXNFULL RW 0x0

5 SM1_TXNFULL RW 0x0

4 SM0_TXNFULL RW 0x0

3 SM3_RXNEMPTY RW 0x0

2 SM2_RXNEMPTY RW 0x0

1 SM1_RXNEMPTY RW 0x0

0 SM0_RXNEMPTY RW 0x0

PIO: IRQ0_INTF Register

Offset: 0x174

Description

Interrupt Force for irq0

Table 1017.

IRQ0_INTF Register
Bits Description Type Reset

31:16 Reserved. - -

15 SM7 RW 0x0

14 SM6 RW 0x0

13 SM5 RW 0x0

12 SM4 RW 0x0

11 SM3 RW 0x0

10 SM2 RW 0x0

9 SM1 RW 0x0

8 SM0 RW 0x0

7 SM3_TXNFULL RW 0x0

6 SM2_TXNFULL RW 0x0

5 SM1_TXNFULL RW 0x0

4 SM0_TXNFULL RW 0x0

3 SM3_RXNEMPTY RW 0x0

2 SM2_RXNEMPTY RW 0x0

1 SM1_RXNEMPTY RW 0x0
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Bits Description Type Reset

0 SM0_RXNEMPTY RW 0x0

PIO: IRQ0_INTS Register

Offset: 0x178

Description

Interrupt status after masking & forcing for irq0

Table 1018.

IRQ0_INTS Register
Bits Description Type Reset

31:16 Reserved. - -

15 SM7 RO 0x0

14 SM6 RO 0x0

13 SM5 RO 0x0

12 SM4 RO 0x0

11 SM3 RO 0x0

10 SM2 RO 0x0

9 SM1 RO 0x0

8 SM0 RO 0x0

7 SM3_TXNFULL RO 0x0

6 SM2_TXNFULL RO 0x0

5 SM1_TXNFULL RO 0x0

4 SM0_TXNFULL RO 0x0

3 SM3_RXNEMPTY RO 0x0

2 SM2_RXNEMPTY RO 0x0

1 SM1_RXNEMPTY RO 0x0

0 SM0_RXNEMPTY RO 0x0

PIO: IRQ1_INTE Register

Offset: 0x17c

Description

Interrupt Enable for irq1

Table 1019.

IRQ1_INTE Register
Bits Description Type Reset

31:16 Reserved. - -

15 SM7 RW 0x0

14 SM6 RW 0x0

13 SM5 RW 0x0

12 SM4 RW 0x0

11 SM3 RW 0x0

10 SM2 RW 0x0
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Bits Description Type Reset

9 SM1 RW 0x0

8 SM0 RW 0x0

7 SM3_TXNFULL RW 0x0

6 SM2_TXNFULL RW 0x0

5 SM1_TXNFULL RW 0x0

4 SM0_TXNFULL RW 0x0

3 SM3_RXNEMPTY RW 0x0

2 SM2_RXNEMPTY RW 0x0

1 SM1_RXNEMPTY RW 0x0

0 SM0_RXNEMPTY RW 0x0

PIO: IRQ1_INTF Register

Offset: 0x180

Description

Interrupt Force for irq1

Table 1020.

IRQ1_INTF Register
Bits Description Type Reset

31:16 Reserved. - -

15 SM7 RW 0x0

14 SM6 RW 0x0

13 SM5 RW 0x0

12 SM4 RW 0x0

11 SM3 RW 0x0

10 SM2 RW 0x0

9 SM1 RW 0x0

8 SM0 RW 0x0

7 SM3_TXNFULL RW 0x0

6 SM2_TXNFULL RW 0x0

5 SM1_TXNFULL RW 0x0

4 SM0_TXNFULL RW 0x0

3 SM3_RXNEMPTY RW 0x0

2 SM2_RXNEMPTY RW 0x0

1 SM1_RXNEMPTY RW 0x0

0 SM0_RXNEMPTY RW 0x0

PIO: IRQ1_INTS Register

Offset: 0x184
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Description

Interrupt status after masking & forcing for irq1

Table 1021.

IRQ1_INTS Register
Bits Description Type Reset

31:16 Reserved. - -

15 SM7 RO 0x0

14 SM6 RO 0x0

13 SM5 RO 0x0

12 SM4 RO 0x0

11 SM3 RO 0x0

10 SM2 RO 0x0

9 SM1 RO 0x0

8 SM0 RO 0x0

7 SM3_TXNFULL RO 0x0

6 SM2_TXNFULL RO 0x0

5 SM1_TXNFULL RO 0x0

4 SM0_TXNFULL RO 0x0

3 SM3_RXNEMPTY RO 0x0

2 SM2_RXNEMPTY RO 0x0

1 SM1_RXNEMPTY RO 0x0

0 SM0_RXNEMPTY RO 0x0

RP2350 Datasheet

11.7. List of Registers 947



Chapter 12. Peripherals

12.1. UART

Arm Documentation

Excerpted from the PrimeCell UART (PL011) Technical Reference Manual. Used with permission.

RP2350 has 2 identical instances of a UART peripheral, based on the Arm Primecell UART (PL011) (Revision r1p5).

Each instance supports the following features:

• Separate 32×8 TX and 32×12 RX FIFOs

• Programmable baud rate generator, clocked by clk_peri (see Figure 32)

• Standard asynchronous communication bits (start, stop, parity) added on transmit and removed on receive

• Line break detection

• Programmable serial interface (5, 6, 7, or 8 bits)

• 1 or 2 stop bits

• Programmable hardware flow control

Each UART can be connected to a number of GPIO pins as defined in the GPIO muxing table in Section 9.4. Connections

to the GPIO muxing use a prefix including the UART instance name uart0_ or uart1_, and include the following:

• Transmit data tx (referred to as UARTTXD in the following sections)

• Received data rx (referred to as UARTRXD in the following sections)

• Output flow control rts (referred to as nUARTRTS in the following sections)

• Input flow control cts (referred to as nUARTCTS in the following sections)

The modem mode and IrDA mode of the PL011 are not supported.

The UARTCLK is driven from clk_peri, and PCLK is driven from the system clock clk_sys (see Figure 32).

12.1.1. Overview

The UART performs:

• Serial-to-parallel conversion on data received from a peripheral device

• Parallel-to-serial conversion on data transmitted to the peripheral device

The CPU reads and writes data and control/status information through the AMBA APB interface. The transmit and

receive paths are buffered with internal FIFO memories that store up to 32 bytes independently in both transmit and

receive modes.

The UART:

• Includes a programmable baud rate generator that generates a common transmit and receive internal clock from

the UART internal reference clock input, UARTCLK

• Offers similar functionality to the industry-standard 16C650 UART device

• Supports a maximum baud rate of UARTCLK / 16 in UART mode (7.8 Mbaud at 125MHz)
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The UART operation and baud rate values are controlled by the Line Control Register (UARTLCR_H) and the baud rate

divisor registers: Integer Baud Rate Register (UARTIBRD), and Fractional Baud Rate Register (UARTFBRD).

The UART can generate:

• Individually maskable interrupts from the receive (including timeout), transmit, modem status and error conditions

• A single combined interrupt so that the output is asserted if any of the individual interrupts are asserted and

unmasked

• DMA request signals for interfacing with a Direct Memory Access (DMA) controller

If a framing, parity, or break error occurs during reception, the appropriate error bit is set and stored in the FIFO. If an

overrun condition occurs, the overrun register bit is set immediately and FIFO data is prevented from being overwritten.

You can program the FIFOs to be 1-byte deep providing a conventional double-buffered UART interface.

There is a programmable hardware flow control feature that uses the nUARTCTS input and the nUARTRTS output to

automatically control the serial data flow.

12.1.2. Functional description

Figure 62. UART block

diagram. Test logic is

not shown for clarity.

12.1.2.1. AMBA APB interface

The AMBA APB interface generates read and write decodes for accesses to status/control registers, and the transmit

and receive FIFOs.

12.1.2.2. Register block

The register block stores data written, or to be read across the AMBA APB interface.

RP2350 Datasheet

12.1. UART 949



12.1.2.3. Baud rate generator

The baud rate generator contains free-running counters that generate the internal clocks: Baud16 and IrLPBaud16

signals. Baud16 provides timing information for UART transmit and receive control. Baud16 is a stream of pulses with a

width of one UARTCLK clock period and a frequency of 16 times the baud rate.

12.1.2.4. Transmit FIFO

The transmit FIFO is an 8-bit wide, 32 location deep, FIFO memory buffer. CPU data written across the APB interface is

stored in the FIFO until read out by the transmit logic. When disabled, the transmit FIFO acts like a one byte holding

register.

12.1.2.5. Receive FIFO

The receive FIFO is a 12-bit wide, 32 location deep, FIFO memory buffer. Received data and corresponding error bits are

stored in the receive FIFO by the receive logic until read out by the CPU across the APB interface. When disabled, the

receive FIFO acts like a one byte holding register.

12.1.2.6. Transmit logic

The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO. Control logic outputs

the serial bit stream in the following order:

1. Start bit

2. Data bits (Least Significant Bit (LSB) first)

3. Parity bit

4. Stop bits according to the programmed configuration in control registers

12.1.2.7. Receive logic

The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start pulse has been

detected. Receive logic includes overrun, parity, frame error checking, and line break detection; you can find the output

of these checks in the status that accompanies the data written to the receive FIFO.

12.1.2.8. Interrupt generation logic

The UART generates individual maskable active HIGH interrupts to the processor interrupt controllers. To generate

combined interrupts, the UART outputs an OR function of the individual interrupt requests.

For more information, see Section 12.1.6.

12.1.2.9. DMA interface

The UART provides an interface to connect to the DMA controller as a UART DMA; for more information, see Section

12.1.5.
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12.1.2.10. Synchronizing registers and logic

The UART supports both asynchronous and synchronous operation of the clocks, PCLK and UARTCLK. The UART

implements always-on synchronisation registers and handshaking logic. This has a minimal impact on performance and

area. The UART performs control signal synchronisation on both directions of data flow (from the PCLK to the UARTCLK

domain, and from the UARTCLK to the PCLK domain).

12.1.3. Operation

12.1.3.1. Clock signals

The frequency selected for UARTCLK must accommodate the required range of baud rates:

• FUARTCLK (min) ≥ 16 × baud_rate (max)

• FUARTCLK (max) ≤ 16 × 65535 × baud_rate (min)

For example, for a range of baud rates from 110 baud to 460800 baud the UARTCLK frequency must be between

7.3728MHz to 115.34MHz.

To use all baud rates, the UARTCLK frequency must fall within the required error limits.

There is also a constraint on the ratio of clock frequencies for PCLK to UARTCLK. The frequency of UARTCLK must be no more

than 5/3 times faster than the frequency of PCLK:

• FUARTCLK ≤ 5/3 × FPCLK

For example, in UART mode, to generate 921600 baud when UARTCLK is 14.7456MHz, PCLK must be greater than or equal

to 8.85276MHz. This ensures that the UART has sufficient time to write the received data to the receive FIFO.

12.1.3.2. UART operation

Control data is written to the UART Line Control Register, UARTLCR. This register is 30 bits wide internally, but provides

external access through the APB interface by writes to the following registers:

• UARTLCR_H, which defines the following:

◦ transmission parameters

◦ word length

◦ buffer mode

◦ number of transmitted stop bits

◦ parity mode

◦ break generation

• UARTIBRD, which defines the integer baud rate divider

• UARTFBRD, which defines the fractional baud rate divider

12.1.3.2.1. Fractional baud rate divider

The baud rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. The baud rate generator

uses the baud rate divisor to determine the bit period. The fractional baud rate divider enables the use of any clock with

a frequency greater than 3.6864MHz to act as UARTCLK, while it is still possible to generate all the standard baud rates.

The 16-bit integer is written to the Integer Baud Rate Register, UARTIBRD. The 6-bit fractional part is written to the

Fractional Baud Rate Register, UARTFBRD. The Baud Rate Divisor has the following relationship to UARTCLK:
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Baud Rate Divisor = UARTCLK/(16×Baud Rate) =  where  is the integer part and  is the

fractional part separated by a decimal point as shown in Figure 63.

Figure 63. Baud rate

divisor.

To calculate the 6-bit number ( ), multiply the fractional part of the required baud rate divisor by 64 ( , where  is the

width of the UARTFBRD register) and add 0.5 to account for rounding errors:

The UART generates an internal clock enable signal, Baud16. This is a stream of UARTCLK-wide pulses with an average

frequency of 16 times the required baud rate. Divide this signal by 16 to give the transmit clock. A low number in the

baud rate divisor produces a short bit period, and a high number in the baud rate divisor produces a long bit period.

12.1.3.2.2. Data transmission or reception

The UART uses two 32-byte FIFOs to store data received and transmitted. The receive FIFO has an extra four bits per

character for status information. For transmission, data is written into the transmit FIFO. If the UART is enabled, it

causes a data frame to start transmitting with the parameters indicated in the Line Control Register, UARTLCR_H. Data

continues to be transmitted until there is no data left in the transmit FIFO. The BUSY signal goes HIGH immediately after

data writes to the transmit FIFO (that is, the FIFO is non-empty) and remains asserted HIGH while data transmits. BUSY

is negated only when the transmit FIFO is empty, and the last character has been transmitted from the shift register,

including the stop bits. BUSY can be asserted HIGH even though the UART might no longer be enabled.

For each sample of data, three readings are taken and the majority value is kept. In the following paragraphs, the middle

sampling point is defined, and one sample is taken either side of it.

When the receiver is idle (UARTRXD continuously 1, in the marking state) and a LOW is detected on the data input (a start

bit has been received), the receive counter, with the clock enabled by Baud16, begins running and data is sampled on

the eighth cycle of that counter in UART mode, or the fourth cycle of the counter in SIR mode to allow for the shorter

logic 0 pulses (half way through a bit period).

The start bit is valid if UARTRXD is still LOW on the eighth cycle of Baud16, otherwise a false start bit is detected and it is

ignored.

If the start bit was valid, successive data bits are sampled on every 16th cycle of Baud16 (that is, one bit period later)

according to the programmed length of the data characters. The parity bit is then checked if parity mode was enabled.

Lastly, a valid stop bit is confirmed if UARTRXD is HIGH, otherwise a framing error has occurred. When a full word is

received, the data is stored in the receive FIFO, with any error bits associated with that word

12.1.3.2.3. Error bits

The receive FIFO stores three error bits in bits 8 (framing), 9 (parity), and 10 (break), each associated with a particular

character. An additional error bit, stored in bit 11 of the receive FIFO, indicates an overrun error.

12.1.3.2.4. Overrun bit

The overrun bit is not associated with the character in the receive FIFO. The overrun error is set when the FIFO is full and

the next character is completely received in the shift register. The data in the shift register is overwritten, but it is not

written into the FIFO. When an empty location becomes available in the FIFO, another character is received and the state

of the overrun bit is copied into the receive FIFO along with the received character. The overrun state is then cleared.

Table 1022 lists the bit functions of the receive FIFO.
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Table 1022. Receive

FIFO bit functions
FIFO bit Function

11 Overrun indicator

10 Break error

9 Parity error

8 Framing error

7:0 Received data

12.1.3.2.5. Disabling the FIFOs

The bottom entry of the transmit and receive sides of the UART both have the equivalent of a 1-byte holding register.

You can manipulate flags to disable the FIFOs, allowing you to use the bottom entry of the FIFOs as a 1-byte register.

However, this doesn’t physically disable the FIFOs. When using the FIFOs as a 1-byte register, a write to the data register

bypasses the holding register unless the transmit shift register is already in use.

12.1.3.2.6. System and diagnostic loopback testing

To perform loopback testing for UART data, set the Loop Back Enable (LBE) bit to 1 in the Control Register, UARTCR.

Data transmitted on UARTTXD is received on the UARTRXD input.

12.1.3.3. UART character frame

Figure 64. UART

character frame.

12.1.4. UART hardware flow control

The fully-selectable hardware flow control feature enables you to control the serial data flow with the nUARTRTS output

and nUARTCTS input signals. Figure 65 shows how to communicate between two devices using hardware flow control:

Figure 65. Hardware

flow control between

two similar devices.

When the RTS flow control is enabled, nUARTRTS is asserted until the receive FIFO is filled up to the programmed

watermark level. When the CTS flow control is enabled, the transmitter can only transmit data when nUARTCTS is asserted.

The hardware flow control is selectable using the RTSEn and CTSEn bits in the Control Register, UARTCR. Table 1023 shows

how to configure UARTCR register bits to enable RTS and/or CTS.
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Table 1023. Control

bits to enable and

disable hardware flow

control.

UARTCR register bits

CTSEn RTSEn Description

1 1 Both RTS and CTS flow control

enabled

1 0 Only CTS flow control enabled

0 1 Only RTS flow control enabled

0 0 Both RTS and CTS flow control

disabled

 NOTE

When RTS flow control is enabled, the software cannot use the RTSEn bit in the Control Register (UARTCR) to control

the status of nUARTRTS.

12.1.4.1. RTS flow control

The RTS flow control logic is linked to the programmable receive FIFO watermark levels.

When RTS flow control is disabled, the receive FIFO receives data until full, or no more data is transmitted to it.

When RTS flow control is enabled, the nUARTRTS is asserted until the receive FIFO fills up to the watermark level. When the

receive FIFO reaches the watermark level, the nUARTRTS signal is de-asserted. This indicates that the FIFO has no more

room to receive data. The transmission of data is expected to cease after the current character has been transmitted.

When the receive FIFO drains below the watermark level, the nUARTRTS signal is reasserted.

12.1.4.2. CTS flow control

The CTS flow control logic is linked to the nUARTCTS signal.

When CTS flow control is disabled, the transmitter transmits data until the transmit FIFO is empty.

When CTS flow control is enabled, the transmitter checks the nUARTCTS signal before transmitting each byte. It only

transmits the byte if the nUARTCTS signal is asserted. As long as the transmit FIFO is not empty and nUARTCTS is asserted,

data continues to transmit. If the transmit FIFO is empty and the nUARTCTS signal is asserted, no data is transmitted. If the

nUARTCTS signal is de-asserted during transmission, the transmitter finishes transmitting the current character before

stopping.

12.1.5. UART DMA Interface

The UART provides an interface to connect to a DMA controller. The DMA operation of the UART is controlled using the

DMA Control Register, UARTDMACR. The DMA interface includes the following signals:

For receive:

UARTRXDMASREQ

Single character DMA transfer request, asserted by the UART. For receive, one character consists of up to 12 bits.

This signal is asserted when the receive FIFO contains at least one character.

UARTRXDMABREQ

Burst DMA transfer request, asserted by the UART. This signal is asserted when the receive FIFO contains more

characters than the programmed watermark level. You can program the watermark level for each FIFO using the

Interrupt FIFO Level Select Register (UARTIFLS).

RP2350 Datasheet

12.1. UART 954



UARTRXDMACLR

DMA request clear, asserted by a DMA controller to clear the receive request signals. If DMA burst transfer is

requested, the clear signal is asserted during the transfer of the last data in the burst.

For transmit:

UARTTXDMASREQ

Single character DMA transfer request, asserted by the UART. For transmit, one character consists of up to eight

bits. This signal is asserted when there is at least one empty location in the transmit FIFO.

UARTTXDMABREQ

Burst DMA transfer request, asserted by the UART. This signal is asserted when the transmit FIFO contains less

characters than the watermark level. You can program the watermark level for each FIFO using the Interrupt FIFO

Level Select Register (UARTIFLS).

UARTTXDMACLR

DMA request clear, asserted by a DMA controller to clear the transmit request signals. If DMA burst transfer is

requested, the clear signal is asserted during the transfer of the last data in the burst.

The burst transfer and single transfer request signals are not mutually exclusive: they can both be asserted at the same

time. When the receive FIFO exceeds the watermark level, the burst transfer request and the single transfer request

signals are both asserted. When the receive FIFO is below than the watermark level, only the single transfer request

signal is asserted. This is useful in situations where the number of characters left to be received in the stream is less

than a burst.

Consider a scenario where the watermark level is set to four, but 19 characters are left to be received. The DMA

controller then transfers four bursts of four characters and three single transfers to complete the stream.

 NOTE

For the remaining three characters, the UART cannot assert the burst request.

Each request signal remains asserted until the relevant DMACLR signal is asserted. After the request clear signal is de-

asserted, a request signal can become active again, depending on the conditions described previously. All request

signals are de-asserted if the UART is disabled or the relevant DMA enable bit, TXDMAE or RXDMAE, in the DMA Control

Register, UARTDMACR, is cleared.

If you disable the FIFOs in the UART, it operates in character mode. Character mode limits FIFO transfers to a single

character at a time, so only the DMA single transfer mode can operate. In character mode, only the UARTRXDMASREQ and

UARTTXDMASREQ request signals can be asserted. For information about disabling the FIFOs, see the Line Control Register,

UARTLCR_H.

When the UART is in the FIFO enabled mode, data transfers can use either single or burst transfers depending on the

programmed watermark level and the amount of data in the FIFO. Table 1024 lists the trigger points for UARTRXDMABREQ

and UARTTXDMABREQ, depending on the watermark level, for the transmit and receive FIFOs.

Table 1024. DMA

trigger points for the

transmit and receive

FIFOs.

Watermark level Burst length

Transmit (number of empty

locations)

Receive (number of filled locations)

1/8 28 4

1/4 24 8

1/2 16 16

3/4 8 24

7/8 4 28

In addition, the DMAONERR bit in the DMA Control Register, UARTDMACR, supports the use of the receive error interrupt,
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UARTEINTR. It enables the DMA receive request outputs, UARTRXDMASREQ or UARTRXDMABREQ, to be masked out when the UART

error interrupt, UARTEINTR, is asserted. The DMA receive request outputs remain inactive until the UARTEINTR is cleared. The

DMA transmit request outputs are unaffected.

Figure 66. DMA

transfer waveforms.

Figure 66 shows the timing diagram for both a single transfer request and a burst transfer request with the appropriate

DMACLR signal. The signals are all synchronous to PCLK. For the sake of clarity it is assumed that there is no

synchronization of the request signals in the DMA controller.

12.1.6. Interrupts

There are eleven maskable interrupts generated in the UART. On RP2350, only the combined interrupt output, UARTINTR, is

connected.

To enable or disable individual interrupts, change the mask bits in the Interrupt Mask Set/Clear Register, UARTIMSC. Set

the appropriate mask bit HIGH to enable the interrupt.

The transmit and receive dataflow interrupts UARTRXINTR and UARTTXINTR have been separated from the status interrupts.

This enables you to use UARTRXINTR and UARTTXINTR to read or write data in response to FIFO trigger levels.

The error interrupt, UARTEINTR, can be triggered when there is an error in the reception of data. A number of error

conditions are possible.

The modem status interrupt, UARTMSINTR, is a combined interrupt of all the individual modem status signals.

The status of the individual interrupt sources can be read either from the Raw Interrupt Status Register, UARTRIS, or from

the Masked Interrupt Status Register, UARTMIS.

12.1.6.1. UARTMSINTR

The modem status interrupt is asserted if any of the modem status signals (nUARTCTS, nUARTDCD, nUARTDSR, and nUARTRI)

change. To clear the modem status interrupt, write a 1 to the bits corresponding to the modem status signals that

generated the interrupt in the Interrupt Clear Register (UARTICR).

12.1.6.2. UARTRXINTR

The receive interrupt changes state when one of the following events occurs:

• The FIFOs are enabled and the receive FIFO reaches the programmed trigger level. This asserts the receive

interrupt HIGH. To clear the receive interrupt, read data from the receive FIFO until it drops below the trigger level.

• The FIFOs are disabled (have a depth of one location) and data is received, thereby filling the receive FIFO. This

asserts the receive interrupt HIGH. To clear the receive interrupt, perform a single read from the receive FIFO.

In both cases, you can also clear the interrupt manually.

12.1.6.3. UARTTXINTR

The transmit interrupt changes state when one of the following events occurs:

• The FIFOs are enabled and the transmit FIFO is equal to or lower than the programmed trigger level. This asserts

the transmit interrupt HIGH. To clear the transmit interrupt, write data to the transmit FIFO until it exceeds the
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trigger level.

• The FIFOs are disabled (have a depth of one location) and there is no data present in the transmit FIFO. This

asserts the transmit interrupt HIGH. To clear the transmit interrupt, perform a single write to the transmit FIFO.

In both cases, you can also clear the interrupt manually.

To update the transmit FIFO, write data to the transmit FIFO before or after enabling the UART and the interrupts.

 NOTE

The transmit interrupt is based on a transition through a level, rather than on the level itself. When the interrupt and

the UART is enabled before any data is written to the transmit FIFO, the interrupt is not set. The interrupt is only set

after written data leaves the single location of the transmit FIFO and it becomes empty.

12.1.6.4. UARTRTINTR

The receive timeout interrupt is asserted when the receive FIFO is not empty and no more data is received during a 32-

bit period.

The receive timeout interrupt is cleared in the following scenarios:

• the FIFO becomes empty through reading all the data or by reading the holding register

• a 1 is written to the corresponding bit of the Interrupt Clear Register, UARTICR

12.1.6.5. UARTEINTR

The error interrupt is asserted when an error occurs in the reception of data by the UART. The interrupt can be caused

by a number of different error conditions:

• framing

• parity

• break

• overrun

To determine the cause of the interrupt, read the Raw Interrupt Status Register (UARTRIS) or the Masked Interrupt Status

Register (UARTMIS). To clear the interrupt, write to the relevant bits of the Interrupt Clear Register, UARTICR (bits 7 to 10 are

the error clear bits).

12.1.6.6. UARTINTR

The interrupts are also combined into a single output, that is an OR function of the individual masked sources. You can

connect this output to a system interrupt controller to provide another level of masking on a individual peripheral basis.

The combined UART interrupt is asserted if any of the individual interrupts are asserted and enabled.

12.1.7. Programmer’s Model

The SDK provides a uart_init function to configure the UART with a particular baud rate. Once the UART is initialised,

the user must configure a GPIO pin as UART_TX and UART_RX. See Section 9.10.1 for more information on selecting a GPIO

function.

To initialise the UART, the uart_init function takes the following steps:

1. De-asserts the reset
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2. Enables clk_peri

3. Sets enable bits in the control register

4. Enables the FIFOs

5. Sets the baud rate divisors

6. Sets the format

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_uart/uart.c Lines 42 - 92

42 uint uart_init(uart_inst_t *uart, uint baudrate) {
43     invalid_params_if(HARDWARE_UART, uart != uart0 && uart != uart1);
44 
45     if (uart_clock_get_hz(uart) == 0) {
46         return 0;
47     }
48 
49     uart_reset(uart);
50     uart_unreset(uart);
51 
52     uart_set_translate_crlf(uart, PICO_UART_DEFAULT_CRLF);
53 
54     // Any LCR writes need to take place before enabling the UART
55     uint baud = uart_set_baudrate(uart, baudrate);
56 
57     // inline the uart_set_format() call, as we don't need the CR disable/re-enable
58     // protection, and also many people will never call it again, so having
59     // the generic function is not useful, and much bigger than this inlined
60     // code which is only a handful of instructions.
61     //
62     // The UART_UARTLCR_H_FEN_BITS setting is combined as well as it is the same register
63 #ifdef 0
64     uart_set_format(uart, 8, 1, UART_PARITY_NONE);
65     // Enable FIFOs (must be before setting UARTEN, as this is an LCR access)
66     hw_set_bits(&uart_get_hw(uart)->lcr_h, UART_UARTLCR_H_FEN_BITS);
67 #else
68     uint data_bits = 8;
69     uint stop_bits = 1;
70     uint parity = UART_PARITY_NONE;
71     hw_write_masked(&uart_get_hw(uart)->lcr_h,
72         ((data_bits - 5u) << UART_UARTLCR_H_WLEN_LSB) |
73             ((stop_bits - 1u) << UART_UARTLCR_H_STP2_LSB) |
74             (bool_to_bit(parity != UART_PARITY_NONE) << UART_UARTLCR_H_PEN_LSB) |
75             (bool_to_bit(parity == UART_PARITY_EVEN) << UART_UARTLCR_H_EPS_LSB) |
76             UART_UARTLCR_H_FEN_BITS,
77         UART_UARTLCR_H_WLEN_BITS | UART_UARTLCR_H_STP2_BITS |
78             UART_UARTLCR_H_PEN_BITS | UART_UARTLCR_H_EPS_BITS |
79             UART_UARTLCR_H_FEN_BITS);
80 #endif
81 
82     // Enable the UART, both TX and RX
83     uart_get_hw(uart)->cr = UART_UARTCR_UARTEN_BITS | UART_UARTCR_TXE_BITS |
   UART_UARTCR_RXE_BITS;
84     // Always enable DREQ signals -- no harm in this if DMA is not listening
85     uart_get_hw(uart)->dmacr = UART_UARTDMACR_TXDMAE_BITS | UART_UARTDMACR_RXDMAE_BITS;
86 
87     return baud;
88 }
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12.1.7.1. Baud Rate Calculation

The UART baud rate is derived from dividing clk_peri.

If the required baud rate is 115200 and UARTCLK = 125MHz then:

Baud Rate Divisor = (125 × 106)/(16 × 115200) ~= 67.817

Therefore, BRDI = 67 and BRDF = 0.817,

Therefore, fractional part, m = integer((0.817 × 64) + 0.5) = 52

Generated baud rate divider = 67 + 52/64 = 67.8125

Generated baud rate = (125 × 106)/(16 × 67.8125) ~= 115207

Error = (abs(115200 - 115207) / 115200) × 100 ~= 0.006%

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_uart/uart.c Lines 155 - 180

155 uint uart_set_baudrate(uart_inst_t *uart, uint baudrate) {
156     invalid_params_if(HARDWARE_UART, baudrate == 0);
157     uint32_t baud_rate_div = (8 * uart_clock_get_hz(uart) / baudrate) + 1;
158     uint32_t baud_ibrd = baud_rate_div >> 7;
159     uint32_t baud_fbrd;
160 
161     if (baud_ibrd == 0) {
162         baud_ibrd = 1;
163         baud_fbrd = 0;
164     } else if (baud_ibrd >= 65535) {
165         baud_ibrd = 65535;
166         baud_fbrd = 0;
167     }  else {
168         baud_fbrd = (baud_rate_div & 0x7f) >> 1;
169     }
170 
171     uart_get_hw(uart)->ibrd = baud_ibrd;
172     uart_get_hw(uart)->fbrd = baud_fbrd;
173 
174     // PL011 needs a (dummy) LCR_H write to latch in the divisors.
175     // We don't want to actually change LCR_H contents here.
176     uart_write_lcr_bits_masked(uart, 0, 0);
177 
178     // See datasheet
179     return (4 * uart_clock_get_hz(uart)) / (64 * baud_ibrd + baud_fbrd);
180 }

12.1.8. List of Registers

The UART0 and UART1 registers start at base addresses of 0x40070000 and 0x40078000 respectively (defined as

UART0_BASE and UART1_BASE in SDK).

Table 1025. List of

UART registers
Offset Name Info

0x000 UARTDR Data Register, UARTDR

0x004 UARTRSR Receive Status Register/Error Clear Register,

UARTRSR/UARTECR

0x018 UARTFR Flag Register, UARTFR

0x020 UARTILPR IrDA Low-Power Counter Register, UARTILPR
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Offset Name Info

0x024 UARTIBRD Integer Baud Rate Register, UARTIBRD

0x028 UARTFBRD Fractional Baud Rate Register, UARTFBRD

0x02c UARTLCR_H Line Control Register, UARTLCR_H

0x030 UARTCR Control Register, UARTCR

0x034 UARTIFLS Interrupt FIFO Level Select Register, UARTIFLS

0x038 UARTIMSC Interrupt Mask Set/Clear Register, UARTIMSC

0x03c UARTRIS Raw Interrupt Status Register, UARTRIS

0x040 UARTMIS Masked Interrupt Status Register, UARTMIS

0x044 UARTICR Interrupt Clear Register, UARTICR

0x048 UARTDMACR DMA Control Register, UARTDMACR

0xfe0 UARTPERIPHID0 UARTPeriphID0 Register

0xfe4 UARTPERIPHID1 UARTPeriphID1 Register

0xfe8 UARTPERIPHID2 UARTPeriphID2 Register

0xfec UARTPERIPHID3 UARTPeriphID3 Register

0xff0 UARTPCELLID0 UARTPCellID0 Register

0xff4 UARTPCELLID1 UARTPCellID1 Register

0xff8 UARTPCELLID2 UARTPCellID2 Register

0xffc UARTPCELLID3 UARTPCellID3 Register

UART: UARTDR Register

Offset: 0x000

Description

Data Register, UARTDR

Table 1026. UARTDR

Register
Bits Description Type Reset

31:12 Reserved. - -

11 OE: Overrun error. This bit is set to 1 if data is received and the receive FIFO is

already full. This is cleared to 0 once there is an empty space in the FIFO and a

new character can be written to it.

RO -

10 BE: Break error. This bit is set to 1 if a break condition was detected, indicating

that the received data input was held LOW for longer than a full-word

transmission time (defined as start, data, parity and stop bits). In FIFO mode,

this error is associated with the character at the top of the FIFO. When a break

occurs, only one 0 character is loaded into the FIFO. The next character is only

enabled after the receive data input goes to a 1 (marking state), and the next

valid start bit is received.

RO -

9 PE: Parity error. When set to 1, it indicates that the parity of the received data

character does not match the parity that the EPS and SPS bits in the Line

Control Register, UARTLCR_H. In FIFO mode, this error is associated with the

character at the top of the FIFO.

RO -
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Bits Description Type Reset

8 FE: Framing error. When set to 1, it indicates that the received character did

not have a valid stop bit (a valid stop bit is 1). In FIFO mode, this error is

associated with the character at the top of the FIFO.

RO -

7:0 DATA: Receive (read) data character. Transmit (write) data character. RWF -

UART: UARTRSR Register

Offset: 0x004

Description

Receive Status Register/Error Clear Register, UARTRSR/UARTECR

Table 1027. UARTRSR

Register
Bits Description Type Reset

31:4 Reserved. - -

3 OE: Overrun error. This bit is set to 1 if data is received and the FIFO is already

full. This bit is cleared to 0 by a write to UARTECR. The FIFO contents remain

valid because no more data is written when the FIFO is full, only the contents

of the shift register are overwritten. The CPU must now read the data, to

empty the FIFO.

WC 0x0

2 BE: Break error. This bit is set to 1 if a break condition was detected, indicating

that the received data input was held LOW for longer than a full-word

transmission time (defined as start, data, parity, and stop bits). This bit is

cleared to 0 after a write to UARTECR. In FIFO mode, this error is associated

with the character at the top of the FIFO. When a break occurs, only one 0

character is loaded into the FIFO. The next character is only enabled after the

receive data input goes to a 1 (marking state) and the next valid start bit is

received.

WC 0x0

1 PE: Parity error. When set to 1, it indicates that the parity of the received data

character does not match the parity that the EPS and SPS bits in the Line

Control Register, UARTLCR_H. This bit is cleared to 0 by a write to UARTECR.

In FIFO mode, this error is associated with the character at the top of the FIFO.

WC 0x0

0 FE: Framing error. When set to 1, it indicates that the received character did

not have a valid stop bit (a valid stop bit is 1). This bit is cleared to 0 by a write

to UARTECR. In FIFO mode, this error is associated with the character at the

top of the FIFO.

WC 0x0

UART: UARTFR Register

Offset: 0x018

Description

Flag Register, UARTFR

Table 1028. UARTFR

Register
Bits Description Type Reset

31:9 Reserved. - -

8 RI: Ring indicator. This bit is the complement of the UART ring indicator,

nUARTRI, modem status input. That is, the bit is 1 when nUARTRI is LOW.

RO -
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Bits Description Type Reset

7 TXFE: Transmit FIFO empty. The meaning of this bit depends on the state of

the FEN bit in the Line Control Register, UARTLCR_H. If the FIFO is disabled,

this bit is set when the transmit holding register is empty. If the FIFO is

enabled, the TXFE bit is set when the transmit FIFO is empty. This bit does not

indicate if there is data in the transmit shift register.

RO 0x1

6 RXFF: Receive FIFO full. The meaning of this bit depends on the state of the

FEN bit in the UARTLCR_H Register. If the FIFO is disabled, this bit is set when

the receive holding register is full. If the FIFO is enabled, the RXFF bit is set

when the receive FIFO is full.

RO 0x0

5 TXFF: Transmit FIFO full. The meaning of this bit depends on the state of the

FEN bit in the UARTLCR_H Register. If the FIFO is disabled, this bit is set when

the transmit holding register is full. If the FIFO is enabled, the TXFF bit is set

when the transmit FIFO is full.

RO 0x0

4 RXFE: Receive FIFO empty. The meaning of this bit depends on the state of the

FEN bit in the UARTLCR_H Register. If the FIFO is disabled, this bit is set when

the receive holding register is empty. If the FIFO is enabled, the RXFE bit is set

when the receive FIFO is empty.

RO 0x1

3 BUSY: UART busy. If this bit is set to 1, the UART is busy transmitting data.

This bit remains set until the complete byte, including all the stop bits, has

been sent from the shift register. This bit is set as soon as the transmit FIFO

becomes non-empty, regardless of whether the UART is enabled or not.

RO 0x0

2 DCD: Data carrier detect. This bit is the complement of the UART data carrier

detect, nUARTDCD, modem status input. That is, the bit is 1 when nUARTDCD

is LOW.

RO -

1 DSR: Data set ready. This bit is the complement of the UART data set ready,

nUARTDSR, modem status input. That is, the bit is 1 when nUARTDSR is LOW.

RO -

0 CTS: Clear to send. This bit is the complement of the UART clear to send,

nUARTCTS, modem status input. That is, the bit is 1 when nUARTCTS is LOW.

RO -

UART: UARTILPR Register

Offset: 0x020

Description

IrDA Low-Power Counter Register, UARTILPR

Table 1029. UARTILPR

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 ILPDVSR: 8-bit low-power divisor value. These bits are cleared to 0 at reset. RW 0x00

UART: UARTIBRD Register

Offset: 0x024

Description

Integer Baud Rate Register, UARTIBRD

Table 1030. UARTIBRD

Register
Bits Description Type Reset

31:16 Reserved. - -
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Bits Description Type Reset

15:0 BAUD_DIVINT: The integer baud rate divisor. These bits are cleared to 0 on

reset.

RW 0x0000

UART: UARTFBRD Register

Offset: 0x028

Description

Fractional Baud Rate Register, UARTFBRD

Table 1031.

UARTFBRD Register
Bits Description Type Reset

31:6 Reserved. - -

5:0 BAUD_DIVFRAC: The fractional baud rate divisor. These bits are cleared to 0

on reset.

RW 0x00

UART: UARTLCR_H Register

Offset: 0x02c

Description

Line Control Register, UARTLCR_H

Table 1032.

UARTLCR_H Register
Bits Description Type Reset

31:8 Reserved. - -

7 SPS: Stick parity select. 0 = stick parity is disabled 1 = either: * if the EPS bit is

0 then the parity bit is transmitted and checked as a 1 * if the EPS bit is 1 then

the parity bit is transmitted and checked as a 0. This bit has no effect when

the PEN bit disables parity checking and generation.

RW 0x0

6:5 WLEN: Word length. These bits indicate the number of data bits transmitted or

received in a frame as follows: b11 = 8 bits b10 = 7 bits b01 = 6 bits b00 = 5

bits.

RW 0x0

4 FEN: Enable FIFOs: 0 = FIFOs are disabled (character mode) that is, the FIFOs

become 1-byte-deep holding registers 1 = transmit and receive FIFO buffers

are enabled (FIFO mode).

RW 0x0

3 STP2: Two stop bits select. If this bit is set to 1, two stop bits are transmitted

at the end of the frame. The receive logic does not check for two stop bits

being received.

RW 0x0

2 EPS: Even parity select. Controls the type of parity the UART uses during

transmission and reception: 0 = odd parity. The UART generates or checks for

an odd number of 1s in the data and parity bits. 1 = even parity. The UART

generates or checks for an even number of 1s in the data and parity bits. This

bit has no effect when the PEN bit disables parity checking and generation.

RW 0x0

1 PEN: Parity enable: 0 = parity is disabled and no parity bit added to the data

frame 1 = parity checking and generation is enabled.

RW 0x0

0 BRK: Send break. If this bit is set to 1, a low-level is continually output on the

UARTTXD output, after completing transmission of the current character. For

the proper execution of the break command, the software must set this bit for

at least two complete frames. For normal use, this bit must be cleared to 0.

RW 0x0

UART: UARTCR Register
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Offset: 0x030

Description

Control Register, UARTCR

Table 1033. UARTCR

Register
Bits Description Type Reset

31:16 Reserved. - -

15 CTSEN: CTS hardware flow control enable. If this bit is set to 1, CTS hardware

flow control is enabled. Data is only transmitted when the nUARTCTS signal is

asserted.

RW 0x0

14 RTSEN: RTS hardware flow control enable. If this bit is set to 1, RTS hardware

flow control is enabled. Data is only requested when there is space in the

receive FIFO for it to be received.

RW 0x0

13 OUT2: This bit is the complement of the UART Out2 (nUARTOut2) modem

status output. That is, when the bit is programmed to a 1, the output is 0. For

DTE this can be used as Ring Indicator (RI).

RW 0x0

12 OUT1: This bit is the complement of the UART Out1 (nUARTOut1) modem

status output. That is, when the bit is programmed to a 1 the output is 0. For

DTE this can be used as Data Carrier Detect (DCD).

RW 0x0

11 RTS: Request to send. This bit is the complement of the UART request to

send, nUARTRTS, modem status output. That is, when the bit is programmed

to a 1 then nUARTRTS is LOW.

RW 0x0

10 DTR: Data transmit ready. This bit is the complement of the UART data

transmit ready, nUARTDTR, modem status output. That is, when the bit is

programmed to a 1 then nUARTDTR is LOW.

RW 0x0

9 RXE: Receive enable. If this bit is set to 1, the receive section of the UART is

enabled. Data reception occurs for either UART signals or SIR signals

depending on the setting of the SIREN bit. When the UART is disabled in the

middle of reception, it completes the current character before stopping.

RW 0x1

8 TXE: Transmit enable. If this bit is set to 1, the transmit section of the UART is

enabled. Data transmission occurs for either UART signals, or SIR signals

depending on the setting of the SIREN bit. When the UART is disabled in the

middle of transmission, it completes the current character before stopping.

RW 0x1

7 LBE: Loopback enable. If this bit is set to 1 and the SIREN bit is set to 1 and

the SIRTEST bit in the Test Control Register, UARTTCR is set to 1, then the

nSIROUT path is inverted, and fed through to the SIRIN path. The SIRTEST bit

in the test register must be set to 1 to override the normal half-duplex SIR

operation. This must be the requirement for accessing the test registers

during normal operation, and SIRTEST must be cleared to 0 when loopback

testing is finished. This feature reduces the amount of external coupling

required during system test. If this bit is set to 1, and the SIRTEST bit is set to

0, the UARTTXD path is fed through to the UARTRXD path. In either SIR mode

or UART mode, when this bit is set, the modem outputs are also fed through to

the modem inputs. This bit is cleared to 0 on reset, to disable loopback.

RW 0x0

6:3 Reserved. - -
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Bits Description Type Reset

2 SIRLP: SIR low-power IrDA mode. This bit selects the IrDA encoding mode. If

this bit is cleared to 0, low-level bits are transmitted as an active high pulse

with a width of 3 / 16th of the bit period. If this bit is set to 1, low-level bits are

transmitted with a pulse width that is 3 times the period of the IrLPBaud16

input signal, regardless of the selected bit rate. Setting this bit uses less

power, but might reduce transmission distances.

RW 0x0

1 SIREN: SIR enable: 0 = IrDA SIR ENDEC is disabled. nSIROUT remains LOW (no

light pulse generated), and signal transitions on SIRIN have no effect. 1 = IrDA

SIR ENDEC is enabled. Data is transmitted and received on nSIROUT and

SIRIN. UARTTXD remains HIGH, in the marking state. Signal transitions on

UARTRXD or modem status inputs have no effect. This bit has no effect if the

UARTEN bit disables the UART.

RW 0x0

0 UARTEN: UART enable: 0 = UART is disabled. If the UART is disabled in the

middle of transmission or reception, it completes the current character before

stopping. 1 = the UART is enabled. Data transmission and reception occurs for

either UART signals or SIR signals depending on the setting of the SIREN bit.

RW 0x0

UART: UARTIFLS Register

Offset: 0x034

Description

Interrupt FIFO Level Select Register, UARTIFLS

Table 1034. UARTIFLS

Register
Bits Description Type Reset

31:6 Reserved. - -

5:3 RXIFLSEL: Receive interrupt FIFO level select. The trigger points for the receive

interrupt are as follows: b000 = Receive FIFO becomes >= 1 / 8 full b001 =

Receive FIFO becomes >= 1 / 4 full b010 = Receive FIFO becomes >= 1 / 2 full

b011 = Receive FIFO becomes >= 3 / 4 full b100 = Receive FIFO becomes >= 7

/ 8 full b101-b111 = reserved.

RW 0x2

2:0 TXIFLSEL: Transmit interrupt FIFO level select. The trigger points for the

transmit interrupt are as follows: b000 = Transmit FIFO becomes <= 1 / 8 full

b001 = Transmit FIFO becomes <= 1 / 4 full b010 = Transmit FIFO becomes <=

1 / 2 full b011 = Transmit FIFO becomes <= 3 / 4 full b100 = Transmit FIFO

becomes <= 7 / 8 full b101-b111 = reserved.

RW 0x2

UART: UARTIMSC Register

Offset: 0x038

Description

Interrupt Mask Set/Clear Register, UARTIMSC

Table 1035.

UARTIMSC Register
Bits Description Type Reset

31:11 Reserved. - -

10 OEIM: Overrun error interrupt mask. A read returns the current mask for the

UARTOEINTR interrupt. On a write of 1, the mask of the UARTOEINTR interrupt

is set. A write of 0 clears the mask.

RW 0x0

RP2350 Datasheet

12.1. UART 965



Bits Description Type Reset

9 BEIM: Break error interrupt mask. A read returns the current mask for the

UARTBEINTR interrupt. On a write of 1, the mask of the UARTBEINTR interrupt

is set. A write of 0 clears the mask.

RW 0x0

8 PEIM: Parity error interrupt mask. A read returns the current mask for the

UARTPEINTR interrupt. On a write of 1, the mask of the UARTPEINTR interrupt

is set. A write of 0 clears the mask.

RW 0x0

7 FEIM: Framing error interrupt mask. A read returns the current mask for the

UARTFEINTR interrupt. On a write of 1, the mask of the UARTFEINTR interrupt

is set. A write of 0 clears the mask.

RW 0x0

6 RTIM: Receive timeout interrupt mask. A read returns the current mask for the

UARTRTINTR interrupt. On a write of 1, the mask of the UARTRTINTR interrupt

is set. A write of 0 clears the mask.

RW 0x0

5 TXIM: Transmit interrupt mask. A read returns the current mask for the

UARTTXINTR interrupt. On a write of 1, the mask of the UARTTXINTR interrupt

is set. A write of 0 clears the mask.

RW 0x0

4 RXIM: Receive interrupt mask. A read returns the current mask for the

UARTRXINTR interrupt. On a write of 1, the mask of the UARTRXINTR interrupt

is set. A write of 0 clears the mask.

RW 0x0

3 DSRMIM: nUARTDSR modem interrupt mask. A read returns the current mask

for the UARTDSRINTR interrupt. On a write of 1, the mask of the

UARTDSRINTR interrupt is set. A write of 0 clears the mask.

RW 0x0

2 DCDMIM: nUARTDCD modem interrupt mask. A read returns the current mask

for the UARTDCDINTR interrupt. On a write of 1, the mask of the

UARTDCDINTR interrupt is set. A write of 0 clears the mask.

RW 0x0

1 CTSMIM: nUARTCTS modem interrupt mask. A read returns the current mask

for the UARTCTSINTR interrupt. On a write of 1, the mask of the

UARTCTSINTR interrupt is set. A write of 0 clears the mask.

RW 0x0

0 RIMIM: nUARTRI modem interrupt mask. A read returns the current mask for

the UARTRIINTR interrupt. On a write of 1, the mask of the UARTRIINTR

interrupt is set. A write of 0 clears the mask.

RW 0x0

UART: UARTRIS Register

Offset: 0x03c

Description

Raw Interrupt Status Register, UARTRIS

Table 1036. UARTRIS

Register
Bits Description Type Reset

31:11 Reserved. - -

10 OERIS: Overrun error interrupt status. Returns the raw interrupt state of the

UARTOEINTR interrupt.

RO 0x0

9 BERIS: Break error interrupt status. Returns the raw interrupt state of the

UARTBEINTR interrupt.

RO 0x0

8 PERIS: Parity error interrupt status. Returns the raw interrupt state of the

UARTPEINTR interrupt.

RO 0x0
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Bits Description Type Reset

7 FERIS: Framing error interrupt status. Returns the raw interrupt state of the

UARTFEINTR interrupt.

RO 0x0

6 RTRIS: Receive timeout interrupt status. Returns the raw interrupt state of the

UARTRTINTR interrupt. a

RO 0x0

5 TXRIS: Transmit interrupt status. Returns the raw interrupt state of the

UARTTXINTR interrupt.

RO 0x0

4 RXRIS: Receive interrupt status. Returns the raw interrupt state of the

UARTRXINTR interrupt.

RO 0x0

3 DSRRMIS: nUARTDSR modem interrupt status. Returns the raw interrupt state

of the UARTDSRINTR interrupt.

RO -

2 DCDRMIS: nUARTDCD modem interrupt status. Returns the raw interrupt state

of the UARTDCDINTR interrupt.

RO -

1 CTSRMIS: nUARTCTS modem interrupt status. Returns the raw interrupt state

of the UARTCTSINTR interrupt.

RO -

0 RIRMIS: nUARTRI modem interrupt status. Returns the raw interrupt state of

the UARTRIINTR interrupt.

RO -

UART: UARTMIS Register

Offset: 0x040

Description

Masked Interrupt Status Register, UARTMIS

Table 1037. UARTMIS

Register
Bits Description Type Reset

31:11 Reserved. - -

10 OEMIS: Overrun error masked interrupt status. Returns the masked interrupt

state of the UARTOEINTR interrupt.

RO 0x0

9 BEMIS: Break error masked interrupt status. Returns the masked interrupt

state of the UARTBEINTR interrupt.

RO 0x0

8 PEMIS: Parity error masked interrupt status. Returns the masked interrupt

state of the UARTPEINTR interrupt.

RO 0x0

7 FEMIS: Framing error masked interrupt status. Returns the masked interrupt

state of the UARTFEINTR interrupt.

RO 0x0

6 RTMIS: Receive timeout masked interrupt status. Returns the masked

interrupt state of the UARTRTINTR interrupt.

RO 0x0

5 TXMIS: Transmit masked interrupt status. Returns the masked interrupt state

of the UARTTXINTR interrupt.

RO 0x0

4 RXMIS: Receive masked interrupt status. Returns the masked interrupt state

of the UARTRXINTR interrupt.

RO 0x0

3 DSRMMIS: nUARTDSR modem masked interrupt status. Returns the masked

interrupt state of the UARTDSRINTR interrupt.

RO -

2 DCDMMIS: nUARTDCD modem masked interrupt status. Returns the masked

interrupt state of the UARTDCDINTR interrupt.

RO -
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Bits Description Type Reset

1 CTSMMIS: nUARTCTS modem masked interrupt status. Returns the masked

interrupt state of the UARTCTSINTR interrupt.

RO -

0 RIMMIS: nUARTRI modem masked interrupt status. Returns the masked

interrupt state of the UARTRIINTR interrupt.

RO -

UART: UARTICR Register

Offset: 0x044

Description

Interrupt Clear Register, UARTICR

Table 1038. UARTICR

Register
Bits Description Type Reset

31:11 Reserved. - -

10 OEIC: Overrun error interrupt clear. Clears the UARTOEINTR interrupt. WC -

9 BEIC: Break error interrupt clear. Clears the UARTBEINTR interrupt. WC -

8 PEIC: Parity error interrupt clear. Clears the UARTPEINTR interrupt. WC -

7 FEIC: Framing error interrupt clear. Clears the UARTFEINTR interrupt. WC -

6 RTIC: Receive timeout interrupt clear. Clears the UARTRTINTR interrupt. WC -

5 TXIC: Transmit interrupt clear. Clears the UARTTXINTR interrupt. WC -

4 RXIC: Receive interrupt clear. Clears the UARTRXINTR interrupt. WC -

3 DSRMIC: nUARTDSR modem interrupt clear. Clears the UARTDSRINTR

interrupt.

WC -

2 DCDMIC: nUARTDCD modem interrupt clear. Clears the UARTDCDINTR

interrupt.

WC -

1 CTSMIC: nUARTCTS modem interrupt clear. Clears the UARTCTSINTR

interrupt.

WC -

0 RIMIC: nUARTRI modem interrupt clear. Clears the UARTRIINTR interrupt. WC -

UART: UARTDMACR Register

Offset: 0x048

Description

DMA Control Register, UARTDMACR

Table 1039.

UARTDMACR Register
Bits Description Type Reset

31:3 Reserved. - -

2 DMAONERR: DMA on error. If this bit is set to 1, the DMA receive request

outputs, UARTRXDMASREQ or UARTRXDMABREQ, are disabled when the

UART error interrupt is asserted.

RW 0x0

1 TXDMAE: Transmit DMA enable. If this bit is set to 1, DMA for the transmit

FIFO is enabled.

RW 0x0

0 RXDMAE: Receive DMA enable. If this bit is set to 1, DMA for the receive FIFO

is enabled.

RW 0x0
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UART: UARTPERIPHID0 Register

Offset: 0xfe0

Description

UARTPeriphID0 Register

Table 1040.

UARTPERIPHID0

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 PARTNUMBER0: These bits read back as 0x11 RO 0x11

UART: UARTPERIPHID1 Register

Offset: 0xfe4

Description

UARTPeriphID1 Register

Table 1041.

UARTPERIPHID1

Register

Bits Description Type Reset

31:8 Reserved. - -

7:4 DESIGNER0: These bits read back as 0x1 RO 0x1

3:0 PARTNUMBER1: These bits read back as 0x0 RO 0x0

UART: UARTPERIPHID2 Register

Offset: 0xfe8

Description

UARTPeriphID2 Register

Table 1042.

UARTPERIPHID2

Register

Bits Description Type Reset

31:8 Reserved. - -

7:4 REVISION: This field depends on the revision of the UART: r1p0 0x0 r1p1 0x1

r1p3 0x2 r1p4 0x2 r1p5 0x3

RO 0x3

3:0 DESIGNER1: These bits read back as 0x4 RO 0x4

UART: UARTPERIPHID3 Register

Offset: 0xfec

Description

UARTPeriphID3 Register

Table 1043.

UARTPERIPHID3

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 CONFIGURATION: These bits read back as 0x00 RO 0x00

UART: UARTPCELLID0 Register

Offset: 0xff0

Description

UARTPCellID0 Register
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Table 1044.

UARTPCELLID0

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 UARTPCELLID0: These bits read back as 0x0D RO 0x0d

UART: UARTPCELLID1 Register

Offset: 0xff4

Description

UARTPCellID1 Register

Table 1045.

UARTPCELLID1

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 UARTPCELLID1: These bits read back as 0xF0 RO 0xf0

UART: UARTPCELLID2 Register

Offset: 0xff8

Description

UARTPCellID2 Register

Table 1046.

UARTPCELLID2

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 UARTPCELLID2: These bits read back as 0x05 RO 0x05

UART: UARTPCELLID3 Register

Offset: 0xffc

Description

UARTPCellID3 Register

Table 1047.

UARTPCELLID3

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 UARTPCELLID3: These bits read back as 0xB1 RO 0xb1

12.2. I2C

Synopsys Documentation

Synopsys Proprietary. Used with permission.

I2C is a commonly used 2-wire interface that can be used to connect devices for low speed data transfer using clock SCL

and data SDA wires.

RP2350 has two identical instances of an I2C controller. The external pins of each controller are connected to GPIO pins

as defined in the GPIO muxing table in Section 9.4. The muxing options give some IO flexibility.
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12.2.1. Features

Each I2C controller is based on a configuration of the Synopsys DW_apb_i2c (v2.03a) IP. The following features are

supported:

• Master or Slave (Default to Master mode)

• Standard mode, Fast mode or Fast mode plus

• Default slave address 0x055

• Supports 10-bit addressing in Master mode

• 16-element transmit buffer

• 16-element receive buffer

• Can be driven from DMA

• Can generate interrupts

12.2.1.1. Standard

The I2C controller was designed for I2C Bus specification, version 6.0, dated April 2014.

12.2.1.2. Clocking

All clocks in the I2C controller are connected to clk_sys, including ic_clk which is mentioned in later sections. The I2C

clock is generated by dividing down this clock, controlled by registers inside the block.

12.2.1.3. IOs

Each controller must connect its clock SCL and data SDA to one pair of GPIOs. The I2C standard requires that drivers drive

a signal low, or when not driven the signal will be pulled high. This applies to SCL and SDA. The GPIO pads should be

configured for:

• pull-up enabled

• slew rate limited

• schmitt trigger enabled

 NOTE

There should also be external pull-ups on the board as the internal pad pull-ups may not be strong enough to pull up

external circuits.

12.2.2. IP Configuration

I2C configuration details (each instance is fully independent):

• 32-bit APB access

• Supports Standard mode, Fast mode or Fast mode plus (not High speed)

• Default slave address of 0x055

• Master or Slave mode

• Master by default (Slave mode disabled at reset)
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• 10-bit addressing supported in master mode (7-bit by default)

• 16 entry transmit buffer

• 16 entry receive buffer

• Allows restart conditions when a master (can be disabled for legacy device support)

• Configurable timing to adjust TsuDAT/ThDAT

• General calls responded to on reset

• Interface to DMA

• Single interrupt output

• Configurable timing to adjust clock frequency

• Spike suppression (default 7 clk_sys cycles)

• Can NACK after data received by Slave

• Hold transfer when TX FIFO empty

• Hold bus until space available in RX FIFO

• Restart detect interrupt in Slave mode

• Optional blocking Master commands (not enabled by default)

12.2.3. I2C Overview

The I2C bus is a 2-wire serial interface, consisting of a serial data line SDA and a serial clock SCL. These wires carry

information between the devices connected to the bus. Each device is recognized by a unique address and can operate

as either a "transmitter" or "receiver", depending on the function of the device. Devices can also be considered as

masters or slaves when performing data transfers. A master is a device that initiates a data transfer on the bus and

generates the clock signals to permit that transfer. At that time, any device addressed is considered a slave.

 NOTE

The I2C block must only be programmed to operate in either master OR slave mode only. Operating as a master and

slave simultaneously is not supported.

The I2C block can operate in these modes:

• standard mode (with data rates from 0 to 100 kb/s),

• fast mode (with data rates up to 400 kb/s),

• fast mode plus (with data rates up to 1000 kb/s).

These modes are not supported:

• High-speed mode (with data rates up to 3.4Mb/s),

• Ultra-Fast Speed Mode (with data rates up to 5Mb/s).

 NOTE

References to fast mode also apply to fast mode plus, unless specifically stated otherwise.

The I2C block can communicate with devices in one of these modes as long as they are attached to the bus.

Additionally, fast mode devices are downward compatible. For instance, fast mode devices can communicate with

standard mode devices at up to 100 kb/s over the I2C bus system. However, standard mode devices are not upward

compatible and should not be incorporated in a fast-mode I2C bus system as they cannot follow the higher transfer

rate; unpredictable states would occur.
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The following devices commonly use high-speed mode:

• LCD displays

• high-bit count ADCs

• high capacity EEPROMs

These devices typically need to transfer large amounts of data.

Most maintenance and control applications, the common use for the I2C bus, typically operate at 100 kHz in standard

and fast modes. Any DW_apb_i2c device can be attached to an I2C bus. Every device can talk with any master, passing

information back and forth. There needs to be at least one master (such as a microcontroller or DSP) on the bus, but

there can be multiple masters, which require them to arbitrate for ownership. Multiple masters and arbitration are

explained later in this chapter. The I2C block does not support SMBus and PMBus protocols (for System management

and Power management).

The DW_apb_i2c is made up of:

• an AMBA APB slave interface

• an I2C interface

• FIFO logic to maintain coherency between the two interfaces

The blocks of the component are illustrated in Figure 67.

AMBA Bus 

Interface Unit
Register File

Slave State 

Machine

Master State 

Machine

Clock Generator Rx Shift Tx Shift Rx Filter

Toggle Synchronizer DMA Interface
Interrupt 

Controller

RX FIFO TX FIFO

DW_apb_i2c

Figure 67. I2C Block

diagram

The following define the functions of the blocks in Figure 67:

• AMBA Bus Interface Unit: Takes the APB interface signals and translates them into a common generic interface

that allows the register file to be bus protocol-agnostic.

• Register File: Contains configuration registers and is the interface with software.

• Slave State Machine: Follows the protocol for a slave and monitors bus for address match.

• Master State Machine: Generates the I2C protocol for the master transfers.

• Clock Generator: Calculates the required timing to do the following:

◦ Generate the SCL clock when configured as a master

◦ Check for bus idle

◦ Generate a START and a STOP

◦ Setup the data and hold the data

• RX Shift: Takes data into the design and extracts it in byte format.
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• TX Shift: Presents data supplied by CPU for transfer on the I2C bus.

• RX Filter: Detects the events in the bus; for example, start, stop and arbitration lost.

• Toggle: Generates pulses on both sides and toggles to transfer signals across clock domains.

• Synchronizer: Transfers signals from one clock domain to another.

• DMA Interface: Generates the handshaking signals to the central DMA controller in order to automate the data

transfer without CPU intervention.

• Interrupt Controller: Generates the raw interrupt and interrupt flags, allowing them to be set and cleared.

• RX FIFO/TX FIFO: Holds the RX FIFO and TX FIFO register banks and controllers, along with their status levels.

12.2.4. I2C Terminology

This section defines key terms used in various parts of the I2C.

12.2.4.1. I2C Bus Terms

The following terms relate to how the role of the I2C device and how it interacts with other I2C devices on the bus.

Transmitter

the device that sends data to the bus. A transmitter can either be a device that initiates the data transmission to the

bus (a master-transmitter) or the device that responds to a request from the master to send data to the bus (a

slave-transmitter).

Receiver

the device that receives data from the bus. A receiver can either be a device that receives data on its own request (a

master-receiver) or a device that receives data in response to a request from the master (a slave-receiver).

Master

the component that initializes a transfer (START command), generates the clock SCL signal and terminates the

transfer (STOP command). A master can be either a transmitter or a receiver.

Slave

the device addressed by the master. A slave can be either receiver or transmitter.

Multi-master

the ability for more than one master to co-exist on the bus at the same time without collision or data loss.

Arbitration

the predefined procedure that authorizes only one master at a time to take control of the bus. For more information

about this behaviour, refer to Section 12.2.8.

Synchronization

the predefined procedure that synchronizes the clock signals provided by two or more masters. For more

information about this feature, refer to Section 12.2.9.

SDA

the data signal line (Serial Data).

SCL

the clock signal line (Serial Clock).
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12.2.4.2. Bus Transfer Terms

The following terms are specific to data transfers that occur to and from the I2C bus.

START (RESTART)

data transfer begins with a START or RESTART condition. The level of the SDA data line changes from high to low,

while the SCL clock line remains high. When this occurs, the bus becomes busy.

 NOTE

START and RESTART conditions are functionally identical.

STOP

data transfer is terminated by a STOP condition. This occurs when the level on the SDA data line passes from the low

state to the high state, while the SCL clock line remains high. When the data transfer has been terminated, the bus is

free or idle once again. The bus stays busy if a RESTART is generated instead of a STOP condition.

12.2.5. I2C Behaviour

The DW_apb_i2c can be controlled via software to be one of the following:

• An I2C master only, communicating with other I2C slaves

• An I2C slave only, communicating with one or more I2C masters.

The master is responsible for generating the clock and controlling the transfer of data. The slave is responsible for

either transmitting or receiving data to and from the master. The acknowledgement of data is sent by the device that is

receiving data, which can be either a master or a slave. As mentioned previously, the I2C protocol also allows multiple

masters to reside on the I2C bus and uses an arbitration procedure to determine bus ownership.

Each slave has a unique address determined by the system designer. When a master wants to communicate with a

slave:

1. The master transmits a START/RESTART condition that is then followed by the slave’s address and a control bit

(R/W) to determine if the master wants to transmit data or receive data from the slave.

2. The slave then sends an acknowledge (ACK) pulse after the address.

When the master (master-transmitter) writes to the slave (slave-receiver), the receiver gets one byte of data. This

transaction continues until the master terminates the transmission with a STOP condition.

When the master reads from a slave (master-receiver), the slave transmits (slave-transmitter) a byte of data to the

master. The master then acknowledges the transaction with the ACK pulse. This transaction continues until the master

terminates the transmission by not acknowledging (NACK) the transaction after the last byte is received, and then the

master issues a STOP condition or addresses another slave after issuing a RESTART condition. This behaviour is

illustrated in Figure 68.

SDA

SCL S
or
R

START or RESTART Condition

P
or
R

R
or
P

STOP AND RESTART ConditionByte Complete Interrupt 
within Slave

SCL held low while 
servicing interrupts

MSB

1 2 1 2 93-87 8 9

LSB ACK

from slave from receiver

ACK

Figure 68. Data

transfer on the I2C

Bus

The DW_apb_i2c is a synchronous serial interface. The SDA line is a bidirectional signal that changes only while the SCL line

is low except for STOP, START, and RESTART conditions. The output drivers are open-drain or open-collector to perform

wire-AND functions on the bus. The maximum number of devices on the bus is limited by only the maximum

capacitance specification of 400 pF. Data is transmitted in byte packages.

The I2C protocols implemented in DW_apb_i2c are described in more details in Section 12.2.6.
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12.2.5.1. START and STOP Generation

When operating as an I2C master, putting data into the TX FIFO causes the DW_apb_i2c to generate a START condition on

the I2C bus. Writing a 1 to IC_DATA_CMD.STOP causes the DW_apb_i2c to generate a STOP condition on the I2C bus; a

STOP condition is not issued if this bit is not set, even if the TX FIFO is empty.

When operating as a slave, the DW_apb_i2c does not generate START and STOP conditions, as per the protocol. However,

if a read request is made to the DW_apb_i2c, it holds the SCL line low until read data has been supplied to it. This stalls the

I2C bus until read data is provided to the slave DW_apb_i2c, or the DW_apb_i2c slave is disabled by writing a 0 to

IC_ENABLE.ENABLE.

12.2.5.2. Combined Formats

The DW_apb_i2c supports mixed read and write combined format transactions in both 7-bit and 10-bit addressing modes.

The DW_apb_i2c does not support mixed address and mixed address format - that is, a 7-bit address transaction followed

by a 10-bit address transaction or vice versa-combined format transactions. To initiate combined format transfers,

IC_CON.IC_RESTART_EN should be set to 1. With this value set and operating as a master, when the DW_apb_i2c

completes an I2C transfer, it checks the TX FIFO and executes the next transfer. If the direction of this transfer differs

from the previous transfer, the combined format is used to issue the transfer. If the TX FIFO is empty when the current

I2C transfer completes:

• IC_DATA_CMD.STOP is checked and:

◦ If set to 1, a STOP bit is issued.

◦ If set to 0, the SCL is held low until the next command is written to the TX FIFO.

For more details, refer to Section 12.2.7.

12.2.6. I2C Protocols

This section defines protocols used in the DW_apb_i2c.

12.2.6.1. START and STOP Conditions

When the bus is idle, both the SCL and SDA signals are pulled high through external pull-up resistors on the bus. When the

master wants to start a transmission on the bus, the master issues a START condition: a high-to-low transition of the

SDA signal while SCL is 1. When the master wants to terminate the transmission, the master issues a STOP condition: a

low-to-high transition of the SDA signal while SCL is 1. Figure 69 shows the timing of the START and STOP conditions.

When data is being transmitted on the bus, the SDA signal must be stable when SCL is set to 1.

SDA

SCL
S

Data line Stable Data Valid Change of Data 
Allowed

Stop ConditionChange of Data AllowedStart Condition

P

Figure 69. I2C START

and STOP Condition
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 NOTE

The signal transitions for the START/STOP conditions, as depicted in Figure 69, reflect those observed at the output

signals of the master driving the I2C bus. Care should be taken when observing the SDA/SCL signals at the input

signals of slaves, because unequal line delays may result in an incorrect SDA/SCL timing relationship.

12.2.6.2. Addressing Slave Protocol

There are two address formats: 7-bit and 10-bit.

12.2.6.2.1. 7-bit Address Format

In the 7-bit address format, the first seven bits (bits 7:1) of the first byte set the slave address and the LSB bit (bit 0)

defines the R/W status, as shown in Figure 70. When bit 0 is set to 0, the master writes to the slave. When bit 0 is set to

1, the master reads from the slave.

S A6 A5 A4 A3 A2 A1 A0 R/W ACK

sent by slave
Slave Address

S = START Condition ACK = Acknowledge R/W = Read/Write Pulse

Figure 70. I2C 7-bit

Address Format

12.2.6.2.2. 10-bit Address Format

The 10-bit address format transfers two bytes for each 10-bit address.

• In the first byte, the first five bits (bits 7:3) indicate a 10-bit transfer. The next two bits (bits 2:1) contain bits 9:8 of

the slave address. The LSB bit (bit 0) defines the R/W status.

• The second byte contains bits 7:0 of the slave address.

Figure 71 shows the 10-bit address format:

S ‘1’ ‘1’ ‘1’ ‘0’ A9 A8 A7 A6 A5 A4 A3 A2 A1 A0R/W ACK

sent by slave
Reserved for 10-bit Address

sent by slave

S = START Condition ACK = Acknowledge R/W = Read/Write Pulse

ACK

Figure 71. 10-bit

Address Format

This table defines the special purpose and reserved first byte addresses.

Table 1048.

I2C/SMBus Definition

of Bits in First Byte

Slave Address R/W Bit Description

0000 000 0 General Call Address. DW_apb_i2c

places the data in the receive buffer

and issues a General Call interrupt.

0000 000 1 START byte. For more details, refer to

Section 12.2.6.4.

0000 001 X CBUS address. DW_apb_i2c ignores

these accesses.

0000 010 X Reserved.
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Slave Address R/W Bit Description

0000 011 X Reserved.

0000 1XX X High-speed master code (for more

information, refer to Section 12.2.8).

1111 1XX X Reserved.

1111 0XX X 10-bit slave addressing.

0001 000 X SMbus Host. (not supported)

0001 100 X SMBus Alert Response Address. (not

supported)

1100 001 X SMBus Device Default Address. (not

supported)

DW_apb_i2c does not restrict you from using reserved addresses. However, if you use these reserved addresses, you may

experience incompatibilities with I2C components.

12.2.6.3. Transmitting and Receiving Protocol

The master can initiate data transmission and reception to and from the bus, acting as either a master-transmitter or

master-receiver. A slave responds to requests from the master to either transmit data or receive data to/from the bus,

acting as either a slave-transmitter or slave-receiver, respectively.

12.2.6.3.1. Master-Transmitter and Slave-Receiver

All data is transmitted in byte format, with no limit on the number of bytes transferred per data transfer. After the master

sends the address and R/W bit or the master transmits a byte of data to the slave, the slave-receiver must respond with

the acknowledge signal (ACK). When no slave-receiver responds with an ACK pulse, the master aborts the transfer by

issuing a STOP condition. The slave must leave the SDA line high so that the master can abort the transfer. If the master-

transmitter is transmitting data as shown in Figure 72, the slave-receiver responds to the master-transmitter with an

acknowledge pulse after every byte of data is received.

S

For 7-bit Address

R/W

‘0’ (read)

A ADATA A/A PDATASlave Address

A/A PDATAS

For 10-bit Address

From Master to Slave A = Acknowledge (SDA low)

A = No Acknowledge (SDA high)

S = START Condition

P = STOP ConditionFrom Slave to  Master

R/W

‘0’ (write)

A ASlave Address
First 7 bits

Slave Address
Second Byte

‘11110xxx’

Figure 72. I2C Master-

Transmitter Protocol

12.2.6.3.2. Master-Receiver and Slave-Transmitter

If the master is receiving data as shown in Figure 73 the master responds to the slave-transmitter with an acknowledge

pulse after receiving each byte of data, except for the last byte. This is the way the master-receiver notifies the slave-

transmitter that this is the last byte. The slave-transmitter relinquishes the SDA line after detecting No Acknowledge

(NACK) so that the master can issue a STOP condition.
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S

For 7-bit Address

R/W

‘1’ (read)

A ADATA A PDATASlave Address

‘1’ (read)

S

For 10-bit Address

From Master to Slave A = Acknowledge (SDA low)

A = No Acknowledge (SDA high)

S = START Condition

R = RESTART Condition

P = STOP ConditionFrom Slave to  Master

R/W

‘0’ (write)

A A ASr A PDATASlave Address
First 7 bits

Slave Address
Second Byte R/WSlave Address

First 7 bits

‘11110xxx’ ‘11110xxx’

Figure 73. I2C Master-

Receiver Protocol

When a master does not want to relinquish the bus with a STOP condition, the master can issue a RESTART condition.

This is identical to a START condition except it occurs after the ACK pulse. Operating in master mode, the DW_apb_i2c can

then communicate with the same slave using a transfer of a different direction. For a description of the combined

format transactions that the DW_apb_i2c supports, see Section 12.2.5.2.

 NOTE

The DW_apb_i2c must be completely disabled before the target slave address register (IC_TAR) can be reprogrammed.

12.2.6.4. START BYTE Transfer Protocol

The START BYTE transfer protocol is designed for systems that do not have an on-board dedicated I2C hardware

module. When the DW_apb_i2c is addressed as a slave, it always samples the I2C bus at the highest speed supported so

that it never requires a START BYTE transfer. However, when DW_apb_i2c is a master, it supports the generation of START

BYTE transfers at the beginning of every transfer in case a slave device requires it.

This protocol consists of the transmission of seven zeros, followed by a one, as illustrated in Figure 74. This allows the

processor polling the bus to under-sample the address phase until zero is detected. Once the microcontroller detects a

zero, it switches from the under sampling rate to the correct rate of the master.

SDA

SCL 1 2

S Ack

(HIGH)

dummy 
acknowledge

Sr

7 8 9

start byte 00000001

Figure 74. I2C Start

Byte Transfer

The START BYTE procedure is as follows:

1. Master generates a START condition.

2. Master transmits the START byte (0000 0001).

3. Master transmits the ACK clock pulse. (Present only to conform with the byte handling format used on the bus)

4. No slave sets the ACK signal to zero.

5. Master generates a RESTART (R) condition.

Hardware receivers do not respond to the START BYTE procedure because it uses a reserved address and resets after

the RESTART condition generates.
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12.2.7. TX FIFO Management and START, STOP and RESTART Generation

When operating as a master, the DW_apb_i2c component supports the mode of TX (transmit) FIFO management

illustrated in Figure 75.

12.2.7.1. TX FIFO Management

The component does not generate a STOP if the TX FIFO becomes empty; in this situation the component holds the SCL

line low, stalling the bus until a new entry is available in the TX FIFO. A STOP condition is generated only when the user

specifically requests it by setting bit nine (Stop bit) of the command written to IC_DATA_CMD register. Figure 75 shows

the bits in the IC_DATA_CMD register.

IC_DATA_CMD Restart

Data Read/Write field; data retrieved from slave is read from  
 this field; data to be sent to slave is written to this field

CDM Write-only field; this bit determines whether transfer to  
 be carried out is Read (CMD=1) or Write (CMD=0)

Stop Write-only field; this bit determines whether STOP is  
 generated after data byte is sent or received

Restart Write-only field; this bit determines whether RESTART  
 (or STOP followed by START in case or restart   
 capability is not enabled) is generated before data is  
 sent or received

9 8 7 0

Stop CMD DATA

Figure 75.

IC_DATA_CMD

Register

Figure 76 illustrates the behaviour of the DW_apb_i2c when the TX FIFO becomes empty while operating as a master

transmitter, as well as the generation of a STOP condition.

SDA

SCL

FIFO_

EMPTY

A6

S

Tx FIFO loaded with data 
(write data in this example)

Last byte popped from 
Tx FIFO, with STOP bit 
not set

Master releases SCL line and 
resumes transmission because 
new data became available

Data availability triggers 
START condition on bus

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0A5 A4 A3 A2 A1 A0 D6D7 D5 D4 D3 D2 D1 D0W Ack Ack AckAck

P

Because STOP bit was not set on 
last byte popped from Tx FIFO, 
Master holds SCL low

Tx FIFO loaded 
with new data

Last byte popped from Tx FIFO 
with STOP bit set

STOP bit enabled triggers 
STOP condition on bus

Figure 76. Master

Transmitter - TX FIFO

Empties/STOP

Generation

Figure 77 illustrates the behaviour of the DW_apb_i2c when the TX FIFO becomes empty while operating as a master

receiver, as well as the generation of a STOP condition.
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Figure 78 and Figure 79 illustrate configurations where the user can control the generation of RESTART conditions on

the I2C bus. If bit 10 (Restart) of the IC_DATA_CMD register is set and the restart capability is enabled (IC_RESTART_EN=1),

a RESTART is generated before the data byte is written to or read from the slave. If the restart capability is not enabled,

a STOP followed by a START is generated in place of the RESTART. Figure 78 illustrates this situation during operation

as a master transmitter.
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Figure 79 illustrates the same situation, but during operation as a master receiver.
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Figure 80 illustrates operation as a master transmitter where the Stop bit of the IC_DATA_CMD register is set and the TX

FIFO is not empty.
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Figure 81 illustrates operation as a master transmitter where the first byte loaded into the TX FIFO is allowed to go

empty with the Restart bit set.
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Figure 82 illustrates operation as a master receiver where the Stop bit of the IC_DATA_CMD register is set and the TX

FIFO is not empty.
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Figure 83 illustrates operation as a master receiver where the first command loaded after the TX FIFO is allowed to

empty and the Restart bit is set.
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12.2.8. Multiple Master Arbitration

The DW_apb_i2c bus protocol allows multiple masters to reside on the same bus. If there are two masters on the same

I2C bus, there is an arbitration procedure if both try to take control of the bus at the same time by generating a START

condition at the same time. Once a master (for example, a microcontroller) has control of the bus, no other master can

take control until the first master sends a STOP condition and places the bus in an idle state.

Arbitration takes place on the SDA line, while the SCL line is set to 1. The master, which transmits a one while the other

master transmits zero, loses arbitration and turns off its data output stage. The master that lost arbitration can continue

to generate clocks until the end of the byte transfer. If both masters address the same slave device, the arbitration

could go into the data phase.

Upon detecting that it has lost arbitration to another master, the DW_apb_i2c stops generating SCL by disabling the output

driver. Figure 84 illustrates the timing of two masters arbitrating on the bus.

CLKA

DATA2

SDA

SCL

MSB

MSB

MSB

‘0’

matching data

DATA1 loses arbitration

SDA mirrors DATA2

SDA lines up 
with DATA1 
START condition

‘1’

Figure 84. Multiple

Master Arbitration

Control of the bus is determined by address or master code and data sent by competing masters, so there is no central

master nor any order of priority on the bus.

Arbitration is not allowed between the following conditions:

• A RESTART condition and a data bit

• A STOP condition and a data bit

• A RESTART condition and a STOP condition

 NOTE

Slaves do not participate in the arbitration process.

12.2.9. Clock Synchronization

When two or more masters try to transfer information on the bus at the same time, they must arbitrate and synchronize

the SCL clock. All masters generate their own clock to transfer messages. Data is valid only during the high period of SCL
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clock. Clock synchronization is performed using the wired-AND connection to the SCL signal. When the master

transitions the SCL clock to zero, the master starts counting the low time of the SCL clock and transitions the SCL clock

signal to one at the beginning of the next clock period. However, if another master is holding the SCL line to 0, then the

master goes into a HIGH wait state until the SCL clock line transitions to one.

All masters then count off their high time, and the master with the shortest high time transitions the SCL line to zero. The

masters then count out their low time and the one with the longest low time forces the other masters into a HIGH wait

state. Therefore, a synchronized SCL clock is generated, which is illustrated in Figure 85. Optionally, slaves may hold the

SCL line low to slow down the timing on the I2C bus.

CLKA

CLKB

SCL

Wait State

SCL LOW transition Resets all CLKs 
to start counting their LOW periods

SCL transitions HIGH when 
all CLKs are in HIGH state

Start counting HIGH period

Figure 85. Multi-

Master Clock

Synchronization

12.2.10. Operation Modes

This section provides information about operation modes.

 NOTE

Only set the DW_apb_i2c to operate as an I2C Master or an I2C Slave. Never set the DW_apb_i2c to operate as both

simultaneously. To avoid this, never simultaneously set IC_CON.IC_SLAVE_DISABLE and IC_CON.MASTER_MODE to

zero and one, respectively.

12.2.10.1. Slave Mode Operation

This section discusses slave mode procedures.

12.2.10.1.1. Initial Configuration

To use the DW_apb_i2c as a slave, perform the following steps:

1. Disable the DW_apb_i2c by writing a 0 to IC_ENABLE.ENABLE.

2. Write to the IC_SAR register (bits 9:0) to set the slave address. This is the address to which the DW_apb_i2c

responds.

3. Write to the IC_CON register to specify which type of addressing is supported (7-bit or 10-bit by setting bit 3).

Enable the DW_apb_i2c in slave-only mode by writing a 0 into bit six (IC_CON.IC_SLAVE_DISABLE) and a 0 to bit zero

(IC_CON.MASTER_MODE).
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 NOTE

Slaves and masters can use different addressing settings. For instance, a slave can be programmed with 7-bit

addressing and a master with 10-bit addressing, and vice versa.

4. Enable the DW_apb_i2c by writing a 1 to IC_ENABLE.ENABLE.

 NOTE

Depending on the reset values chosen, steps two and three may not be necessary because the reset values can be

configured. For instance, if the device is only going to be a master, there would be no need to set the slave address

because you can configure DW_apb_i2c to have the slave disabled after reset and to enable the master after reset. The

values stored are static and do not need to be reprogrammed if the DW_apb_i2c is disabled.

 WARNING

Only bring the DW_apb_i2c Slave out of reset when the I2C bus is IDLE. De-asserting the reset when a transfer is

ongoing on the bus causes internal synchronization flip-flops used to synchronize SDA and SCL to toggle from a reset

value of one to the actual value on the bus. This can result in SDA toggling from one to zero while SCL is one, thereby

causing a false START condition to be detected by the DW_apb_i2c Slave. This scenario can also be avoided by

configuring the DW_apb_i2c with IC_SLAVE_DISABLE = 1 and MASTER_MODE = 1 so that the Slave interface is disabled after

reset. It can then be enabled by programming IC_CON[0] = 0 and IC_CON[6] = 0 after the internal SDA and SCL have

synchronized to the value on the bus; this takes approximately six ic_clk cycles after reset de-assertion.

12.2.10.1.2. Slave-Transmitter Operation for a Single Byte

When another I2C master device on the bus addresses the DW_apb_i2c and requests data, the DW_apb_i2c acts as a slave-

transmitter. The following steps occur:

1. The other I2C master device initiates an I2C transfer with an address that matches the slave address in the IC_SAR

register of the DW_apb_i2c.

2. The DW_apb_i2c acknowledges the sent address and recognizes the direction of the transfer to indicate that it is

acting as a slave-transmitter.

3. The DW_apb_i2c asserts the RD_REQ interrupt (bit five of the IC_RAW_INTR_STAT register) and holds the SCL line low. It

remains in a wait state until software responds. If the RD_REQ interrupt has been masked, due to

IC_INTR_MASK.M_RD_REQ being set to zero, use a hardware and/or software timing routine to instruct the CPU to

perform periodic reads of the IC_RAW_INTR_STAT register.

◦ Reads that indicate IC_RAW_INTR_STAT.RD_REQ being set to one must be treated as the equivalent of the

RD_REQ interrupt being asserted.

◦ Software must then act to satisfy the I2C transfer.

◦ The timing interval used should be in the order of 10 times the fastest SCL clock period the DW_apb_i2c can

handle. For example, for 400 kb/s, the timing interval is 25μs.

 NOTE

The value of 10 is recommended here because this is approximately the amount of time required for a

single byte of data transferred on the I2C bus.

4. If there is any data remaining in the TX FIFO before receiving the read request, the DW_apb_i2c asserts a TX_ABRT

interrupt (bit six of the IC_RAW_INTR_STAT register) to flush the old data from the TX FIFO. If the TX_ABRT interrupt

has been masked, due to IC_INTR_MASK.M_TX_ABRT being set to zero, re-use the timing routine described in the

previous step to read the IC_RAW_INTR_STAT register.
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 NOTE

Because the DW_apb_i2c's TX FIFO is forced into a flushed/reset state whenever a TX_ABRT event occurs, software

must release the DW_apb_i2c from this state by reading the IC_CLR_TX_ABRT register before attempting to write

into the TX FIFO. See register IC_RAW_INTR_STAT for more details.

◦ Reads that indicate bit six (R_TX_ABRT) being set to one must be treated as the equivalent of the TX_ABRT

interrupt being asserted.

◦ There is no further action required from software.

◦ The timing interval used should be similar to that described in the previous step for the

IC_RAW_INTR_STAT.RD_REQ register.

5. Software writes to the IC_DATA_CMD register with the data to be written (by writing a 0 in bit 8).

6. Software must clear the RD_REQ and TX_ABRT interrupts (bits five and six, respectively) of the IC_RAW_INTR_STAT

register before proceeding. If the RD_REQ or TX_ABRT interrupts have been masked, then clearing of the

IC_RAW_INTR_STAT register will have already been performed when either the R_RD_REQ or R_TX_ABRT bit has been

read as one.

7. The DW_apb_i2c releases the SCL and transmits the byte.

8. The master may hold the I2C bus by issuing a RESTART condition or release the bus by issuing a STOP condition.

 NOTE

Slave-Transmitter Operation for a single byte is not applicable in Ultra-Fast mode, since this mode does not support

read transfers.

12.2.10.1.3. Slave-Receiver Operation for a Single Byte

When another I2C master device on the bus addresses the DW_apb_i2c and is sending data, the DW_apb_i2c acts as a slave-

receiver and the following steps occur:

1. The other I2C master device initiates an I2C transfer with an address that matches the DW_apb_i2c's slave address in

the IC_SAR register.

2. The DW_apb_i2c acknowledges the sent address and recognizes the direction of the transfer to indicate that the

DW_apb_i2c is acting as a slave-receiver.

3. DW_apb_i2c receives the transmitted byte and places it in the receive buffer.

 NOTE

If the Rx (receive) FIFO is completely filled with data when a byte is pushed, then the DW_apb_i2c slave holds the

I2C SCL line low until the Rx FIFO has some space, and then continues with the next read request.

4. DW_apb_i2c asserts the RX_FULL interrupt IC_RAW_INTR_STAT.RX_FULL. If the RX_FULL interrupt has been masked, due

to setting IC_INTR_MASK.M_RX_FULL to zero or setting IC_TX_TL to a value larger than zero, you should

implement a timing routine (described in Section 12.2.10.1.2) for periodic reads of the IC_STATUS register. This

timing routine should treat reads of the IC_STATUS register, with bit 3 (RFNE) set at one as the equivalent of an

RX_FULL interrupt.

5. Software may read the byte from the IC_DATA_CMD register (bits 7:0).

6. The other master device may hold the I2C bus by issuing a RESTART condition, or release the bus by issuing a

STOP condition.
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12.2.10.1.4. Slave-Transfer Operation For Bulk Transfers

In the standard I2C protocol, all transactions are single byte transactions; the programmer responds to a remote master

read request by writing one byte into the slave’s TX FIFO. When a slave (slave-transmitter) receives a read request

(RD_REQ) from the remote master (master-receiver), at a minimum there should be at least one entry placed into the

slave-transmitter’s TX FIFO.

DW_apb_i2c handles more data in the TX FIFO. This enables subsequent read requests to take data without raising an

interrupt. This eliminates latencies incurred between interrupts. This mode only occurs when DW_apb_i2c acts as a slave-

transmitter. If the remote master acknowledges the data sent by the slave-transmitter and there is no data in the slave’s

TX FIFO, the DW_apb_i2c holds the I2C SCL line low while it raises the read request interrupt (RD_REQ) and waits for a data

write into the TX FIFO.

If the RD_REQ interrupt is masked by setting IC_INTR_STAT.R_RD_REQ to zero, use a timing routine to activate periodic

reads of the IC_RAW_INTR_STAT register. Reads of IC_RAW_INTR_STAT that return bit five (RD_REQ) set to one must be

treated as the equivalent of RD_REQ. This timing routine is similar to that described in Section 12.2.10.1.2.

The RD_REQ interrupt is raised upon a read request. Always clear this interrupt when exiting the interrupt service handling

routine (ISR). The ISR allows you to either write one byte or more than one byte into the TX FIFO. The master can

request additional data at the end of a transmission by acknowledging the last byte. In this scenario, the slave must

raise RD_REQ again.

If you know in advance that the remote master requests a packet of n bytes, you can write n byte to the TX FIFO. Then,

when another master addresses DW_apb_i2c and requests data, the remote master will receive a continuous stream of

data. This happens because the DW_apb_i2c slave continues to send data to the remote master as long as the remote

master acknowledges the data sent and there is data available in the TX FIFO. There is no need to hold the SCL line low

or to issue RD_REQ again.

If the remote master doesn’t read all of the bytes from the TX FIFO, the DW_apb_i2c ignores the excess bytes with the

following procedure:

• The DW_apb_i2c clears the TX FIFO.

• The DW_apb_i2c generates a transmit abort (TX_ABRT) event.

At the time an ACK/NACK is expected, if a NACK is received, then the remote master has all the data it wants. At this

time, a flag is raised within the slave’s state machine to clear the leftover data in the TX FIFO. This flag is transferred to

the processor bus clock domain where the FIFO exists and the contents of the TX FIFO is cleared at that time.

12.2.10.2. Master Mode Operation

This section discusses master mode procedures.

12.2.10.2.1. Initial Configuration

To use the DW_apb_i2c as a master, perform the following steps:

1. Disable the DW_apb_i2c by writing zero to IC_ENABLE.ENABLE.

2. Write to the IC_CON register to set the maximum speed mode supported (bits 2:1) and the desired speed of the

DW_apb_i2c master-initiated transfers, either 7-bit or 10-bit addressing (bit 4). Ensure that bit six

(IC_SLAVE_DISABLE) is written with a 1 and bit zero (MASTER_MODE) is written with a 1.
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 NOTE

Slaves and masters can use different addressing settings. For instance, a slave can be programmed with 7-bit

addressing and a master with 10-bit addressing, and vice versa.

3. Write the address of the I2C device to be addressed to bits 9:0 of the IC_TAR register. This register also

determines whether the I2C will perform a General Call or a START BYTE command.

4. Enable the DW_apb_i2c by writing a one to IC_ENABLE.ENABLE.

5. Write the transfer direction and the data to be sent to the IC_DATA_CMD register. This step generates the START

condition and the address byte on the DW_apb_i2c. Once DW_apb_i2c is enabled and there is data in the TX FIFO,

DW_apb_i2c starts reading the data.

 NOTE

If you write to the IC_DATA_CMD register before enabling the DW_apb_i2c, the data and commands are lost: the

buffers are kept cleared when DW_apb_i2c is disabled.

The values stored are static and do not need to be reprogrammed when the DW_apb_i2c is disabled except for transfer

direction and data. As a result, you may not need to perform steps two, three, four, and five if you already configured the

reset values.

12.2.10.2.2. Master Transmit and Master Receive

The DW_apb_i2c supports switching back and forth between reading and writing dynamically. To transmit data, write data

to the lower byte of the I2C RX/TX Data Buffer and Command Register (IC_DATA_CMD). For I2C write operations, write

zero to the CMD bit [8]. Subsequently, to issue a read command, write a one to the CMD bit and write don’t care to the

lower byte of the IC_DATA_CMD register. The DW_apb_i2c master continues to initiate transfers as long as there are

commands present in the TX FIFO. If the TX FIFO becomes empty, the master performs one of the following actions

based on the value of IC_DATA_CMD:

• If set to one, it issues a STOP condition after completing the current transfer.

• If set to zero, it holds SCL low until next command is written to the TX FIFO.

For more details, refer to Section 12.2.7.

12.2.10.3. Disabling DW_apb_i2c

The IC_ENABLE_STATUS register allows software to unambiguously determine when the I2C hardware has completely

shut down.

 NOTE

Earlier versions of DW_apb_i2c required the programmer to monitor two registers: (IC_STATUS and

IC_RAW_INTR_STAT). RP2350 only requires the programmer to monitor IC_ENABLE_STATUS.

To shut down I2C hardware, write a zero to IC_ENABLE.ENABLE. The DW_apb_i2c master can be disabled only if the

command currently processing when the de-assertion occurs has the STOP bit set to one. If you attempt to disable the

DW_apb_i2c master while processing a command without the STOP bit set, the DW_apb_i2c master continues to remain

active, holding the SCL line low until a new command is received in the TX FIFO.

To relinquish the I2C bus and disable DW_apb_i2c while the DW_apb_i2c master is processing a command without the STOP

bit set, issue an ABORT request.
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12.2.10.3.1. Procedure

1. Define a timer interval (ti2c_poll) equal to the 10 times the signalling period for the highest I2C transfer speed used in

the system and supported by DW_apb_i2c. For example, if the highest I2C transfer mode is 400 kb/s, ti2c_poll is 25μs.

2. Define a maximum time-out parameter, MAX_T_POLL_COUNT, such that if any repeated polling operation exceeds this

maximum value, an error is reported.

3. Execute a blocking thread, process, or function that prevents any further I2C master transactions from starting

from software, but allows any pending transfers to be completed.

 NOTE

This step can be ignored if DW_apb_i2c is programmed to operate as an I2C slave only.

1. The variable POLL_COUNT is initialized to zero.

2. Set bit zero of the IC_ENABLE register to zero.

3. Read the IC_ENABLE_STATUS register and test the IC_EN bit (bit 0). Increment POLL_COUNT by one. If

POLL_COUNT >= MAX_T_POLL_COUNT, exit with the relevant error code.

4. If IC_ENABLE_STATUS[0] is one, sleep for ti2c_poll and proceed to the previous step. Otherwise, exit with a

relevant success code.

12.2.10.4. Aborting I2C Transfers

The ABORT control bit of the IC_ENABLE register allows the software to relinquish the I2C bus before completing the

issued transfer commands from the TX FIFO. In response to an ABORT request, the controller issues the STOP condition

over the I2C bus, followed by a TX FIFO flush. Aborting the transfer is allowed only in master mode of operation.

12.2.10.4.1. Procedure

1. Stop filling the TX FIFO (IC_DATA_CMD) with new commands.

2. When operating in DMA mode, disable the transmit DMA by setting TDMAE to zero.

3. Set IC_ENABLE.ABORT to one.

4. Wait for the M_TX_ABRT interrupt.

5. Read the IC_TX_ABRT_SOURCE register to identify the source as ABRT_USER_ABRT.

12.2.11. Spike Suppression

The DW_apb_i2c contains programmable spike suppression logic that matches requirements imposed by the I2C Bus

Specification for SS/FS modes. This logic is based on counters that monitor the input signals (SCL and SDA), checking if

they remain stable for a predetermined amount of ic_clk cycles before they are sampled internally. There is one

separate counter for each signal (SCL and SDA). The number of ic_clk cycles can be programmed by the user. The value

should account for the frequency of ic_clk and the relevant spike length specification. Each counter starts whenever its

input signal changes value. Depending on the behaviour of the input signal, one of the following scenarios occurs:

• The input signal remains unchanged until the counter reaches its count limit value. When this happens, the counter

resets and stops, and the internal version of the signal updates to the input value.

• The input signal changes again before the counter reaches its count limit value. When this happens, the counter

resets and stops, but the internal version of the signal does not update.

The timing diagram in Figure 86 illustrates the behaviour described above.
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Figure 86. Spike

Suppression Example

 NOTE

There is a 2-stage synchronizer on the SCL input. For the sake of simplicity, this synchronization delay was not

included in the timing diagram in Figure 86.

The I2C Bus Specification calls for different maximum spike lengths according to the operating mode (50 ns for SS and

FS). Register IC_FS_SPKLEN holds the maximum spike length for SS and FS modes.

This register is 8 bits wide and accessible through the APB interface for reads and writes. However, you can only write

to this register when the DW_apb_i2c is disabled. The minimum value that can be programmed into these registers is one;

attempting to program a value smaller than one results in the value one being written.

The default value for these registers is based on the value of 100 ns for ic_clk period, so should be updated for the

clk_sys period in use on RP2350.

 NOTE

• Because the minimum value that can be programmed into the IC_FS_SPKLEN register is one, the spike length

specification can be exceeded for low frequencies of ic_clk. Consider the simple example of a 10 MHz (100 ns

period) ic_clk; in this case, the minimum spike length that can be programmed is 100 ns, which means that

spikes up to this length are suppressed.

• Standard synchronization logic (two flip-flops in series) is implemented upstream of the spike suppression

logic and is not affected in any way by the contents of the spike length registers or the operation of the spike

suppression logic; the two operations (synchronization and spike suppression) are completely independent.

Because the SCL and SDA inputs are asynchronous to ic_clk, there is one ic_clk cycle uncertainty in the sampling

of these signals. Depending on when they occur relative to the rising edge of ic_clk, spikes of the same original

length might show a difference of one ic_clk cycle after being sampled.

• Spike suppression is symmetrical; the behaviour is exactly the same for transitions from zero to one and from

one to zero.

12.2.12. Fast Mode Plus Operation

In fast mode plus, the DW_apb_i2c extends fast mode operation to be support speeds up to 1000 kb/s. To enable the

DW_apb_i2c for fast mode plus operation, perform the following steps before initiating any data transfer:

1. Set ic_clk frequency greater than or equal to 32 MHz (refer to Section 12.2.14.2.1).

2. Program the IC_CON register [2:1] = 2’b10 for fast mode or fast mode plus.

3. Program IC_FS_SCL_LCNT and IC_FS_SCL_HCNT registers to meet the fast mode plus SCL (refer to Section

12.2.14).

4. Program the IC_FS_SPKLEN register to suppress the maximum spike of 50 ns.

5. Program the IC_SDA_SETUP register to meet the minimum data setup time (tSU; DAT).

12.2.13. Bus Clear Feature

DW_apb_i2c supports the bus clear feature that provides graceful recovery of data SDA and clock SCL lines during unlikely

events in which either the clock or data line is stuck at LOW.
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12.2.13.1. SDA Line Stuck at LOW Recovery

In case of SDA line stuck at LOW, the master performs the following actions to recover as shown in Figure 87 and Figure

88:

1. Master sends a maximum of nine clock pulses to recover the bus LOW within those nine clocks.

◦ The number of clock pulses will vary with the number of bits that remain to be sent by the slave. As the

maximum number of bits is nine, master sends up to nine clock pluses and allows the slave to recover.

◦ The master attempts to assert a Logic 1 on the SDA line and check whether SDA is recovered. If the SDA is not

recovered, it will continue to send a maximum of nine SCL clocks.

2. If SDA line is recovered within nine clock pulses, the master will send STOP to release the bus.

3. If SDA line is not recovered even after the ninth clock pulse, you must hardware reset the system.

Recovery Clocks

SDA

SCL

MST_SDA

0 1 2 3 4 5 6 7 8 9 10

Master drives 9 clocks to recover SDA stuck at low

Figure 87. SDA

Recovery with 9 SCL

Clocks

Recovery Clocks

SDA

SCL

MST_SDA

0 1 2 3 4 5 6 7

Master drives 9 clocks to recover SDA stuck at low

Figure 88. SDA

Recovery with 6 SCL

Clocks

12.2.13.2. SCL Line is Stuck at LOW

In the unlikely event (due to an electric failure of a circuit) where the clock (SCL) is stuck to LOW, there is no effective

method to overcome this problem. Instead, reset the bus using the hardware reset signal.

12.2.14. IC_CLK Frequency Configuration

When the DW_apb_i2c is configured as a Standard (SS), Fast (FS), or Fast-Mode Plus (FM+), the *CNT registers must be set

before any I2C bus transaction can take place in order to ensure proper I/O timing. The *CNT registers are:

• IC_SS_SCL_HCNT

• IC_SS_SCL_LCNT

• IC_FS_SCL_HCNT

• IC_FS_SCL_LCNT

 NOTE

The tBUF timing and setup/hold time of START, STOP and RESTART registers uses *HCNT/*LCNT register settings for

the corresponding speed mode.
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 NOTE

It is not necessary to program any of the *CNT registers if the DW_apb_i2c is enabled to operate only as an I2C slave,

since these registers are used only to determine the SCL timing requirements for operation as an I2C master.

Table 1049 lists the derivation of I2C timing parameters from the *CNT programming registers.

Table 1049. Derivation

of I2C Timing

Parameters from

*CNT Registers

Timing Parameter Symbol Standard Speed Fast Speed / Fast Speed Plus

LOW period of the SCL clock tLOW IC_SS_SCL_LCNT IC_FS_SCL_LCNT

HIGH period of the SCL clock tHIGH IC_SS_SCL_HCNT IC_FS_SCL_HCNT

Setup time for a repeated

START condition

tSU;STA IC_SS_SCL_LCNT IC_FS_SCL_HCNT

Hold time (repeated) START

condition

tHD;STA IC_SS_SCL_HCNT IC_FS_SCL_HCNT

Setup time for STOP

condition

tSU;STO IC_SS_SCL_HCNT IC_FS_SCL_HCNT

Bus free time between a

STOP and a START

condition

tBUF IC_SS_SCL_LCNT IC_FS_SCL_LCNT

Spike length tSP IC_FS_SPKLEN IC_FS_SPKLEN

Data hold time tHD;DAT IC_SDA_HOLD IC_SDA_HOLD

Data setup time tSU;DAT IC_SDA_SETUP IC_SDA_SETUP

12.2.14.1. Minimum High and Low Counts in SS, FS, and FM+ Modes.

When the DW_apb_i2c operates as an I2C master, in both transmit and receive transfers:

• IC_SS_SCL_LCNT and IC_FS_SCL_LCNT register values must be larger than IC_FS_SPKLEN + 7.

• IC_SS_SCL_HCNT and IC_FS_SCL_HCNT register values must be larger than IC_FS_SPKLEN + 5.

Details regarding the DW_apb_i2c high and low counts are as follows:

• The minimum value of IC_*_SPKLEN + 7 for the *_LCNT registers is due to the time required for the DW_apb_i2c to drive

SDA after a negative edge of SCL.

• The minimum value of IC_*_SPKLEN + 5 for the *_HCNT registers is due to the time required for the DW_apb_i2c to

sample SDA during the high period of SCL.

• The DW_apb_i2c adds one cycle to the programmed *_LCNT value in order to generate the low period of the SCL clock;

this is due to the counting logic for SCL low counting to (*_LCNT + 1).

• The DW_apb_i2c adds IC_*_SPKLEN + 7 cycles to the programmed *_HCNT value in order to generate the high period of

the SCL clock, due to the following factors:

◦ The counting logic for SCL high counts to (*_HCNT + 1).

◦ The digital filtering applied to the SCL line incurs a delay of SPKLEN + 2 ic_clk cycles, where SPKLEN is

IC_FS_SPKLEN if the component is operating in SS or FS.

◦ Whenever SCL is driven one to zero by the DW_apb_i2c (completing the SCL high time) an internal logic latency of

three ic_clk cycles is incurred. Consequently, the minimum SCL low time of which the DW_apb_i2c is capable is

nine ic_clk periods (7 + 1 + 1), while the minimum SCL high time is thirteen ic_clk periods (6 + 1 + 3 + 3).
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 NOTE

The total high time and low time of SCL generated by the DW_apb_i2c master is also influenced by the rise time and fall

time of the SCL line, as shown in the illustration and equations in Figure 89. SCL rise and fall time parameters vary

depending on external factors such as:

• Characteristics of the IO driver

• Pull-up resistor value

• Total capacitance on SCL line

These characteristics are beyond the control of the DW_apb_i2c.

HCNT + IC_*_SPKLEN + 7

SCL 
rise time

SCL 
fall time

SCL 
rise time

LCNT + 1

SCL_High_time = [(HCNT + IC_*_SPKLEN + 7) * ic_clk] + SCL_Fall_time

SCL_low_time = [(LCNT + 1) * ic_clk] - SCL_Fall_time + SCL_Rise_time

ic_clk

ic_clk_in_a/SCL

Figure 89. Impact of

SCL Rise Time and Fall

Time on Generated

SCL

12.2.14.2. Minimum IC_CLK Frequency

This section describes the minimum ic_clk frequencies that the DW_apb_i2c supports for each speed mode, and the

associated high and low count values. In slave mode, IC_SDA_HOLD (Thd;dat) and IC_SDA_SETUP (Tsu:dat) need to be

programmed to satisfy the I2C protocol timing requirements. The following examples are for the case where

IC_FS_SPKLEN is programmed to two.

12.2.14.2.1. Standard Mode (SM), Fast Mode (FM), and Fast Mode Plus (FM+)

This section details how to derive a minimum ic_clk value for standard and fast modes of the DW_apb_i2c. Although the

following method shows how to do fast mode calculations, you can also use the same method in order to do

calculations for standard mode and fast mode plus.

 NOTE

The following computations do not consider the SCL_Rise_time and SCL_Fall_time.

Given conditions and calculations for the minimum DW_apb_i2c ic_clk value in fast mode:

• Fast mode has data rate of 400 kb/s; implies SCL period of 1/400 kHz = 2.5μs

• Minimum hcnt value of 14 as a seed value; IC_HCNT_FS = 14

• Protocol minimum SCL high and low times:

◦ MIN_SCL_LOWtime_FS = 1300 ns

◦ MIN_SCL_HIGHtime_FS = 600 ns

Derived equations:
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SCL_PERIOD_FS / (IC_HCNT_FS + IC_LCNT_FS) = IC_CLK_PERIOD

IC_LCNT_FS × IC_CLK_PERIOD = MIN_SCL_LOWtime_FS

Combined, the previous equations produce the following:

IC_LCNT_FS × (SCL_PERIOD_FS / (IC_LCNT_FS + IC_HCNT_FS) ) = MIN_SCL_LOWtime_FS

Solving for IC_LCNT_FS:

IC_LCNT_FS × (2.5μs / (IC_LCNT_FS + 14) ) = 1.3μs

The previous equation gives:

IC_LCNT_FS = roundup(15.166) = 16

These calculations produce IC_LCNT_FS = 16 and IC_HCNT_FS = 14, giving an ic_clk value of:

2.5μs / (16 + 14) = 83.3ns = 12 MHz

Testing these results shows that protocol requirements are satisfied.

Table 1050 lists the minimum ic_clk values for all modes with high and low count values.

Table 1050. ic_clk in

Relation to High and

Low Counts

Speed Mode ic_clkfreq

(MHz)

Minimum

Value of

IC_*_SPKLEN

SCL Low Time

in `ic_clk`s

SCL Low

Program

Value

SCL Low Time SCL High

Time in

`ic_clk`s

SCL High

Program

Value

SCL High

Time

SS 2.7 1 13 12 4.7μs 14 6 5.2μs

FS 12.0 1 16 15 1.33μs 14 6 1.16μs

FM+ 32 2 16 15 500 ns 16 7 500 ns

• The IC_*_SCL_LCNT and IC_*_SCL_HCNT registers are programmed using the SCL low and high program values in Table

1050, which are calculated using SCL low count minus one, and SCL high counts minus eight, respectively. The

values in Table 1050 are based on IC_SDA_RX_HOLD = 0. The maximum IC_SDA_RX_HOLD value depends on the IC_*CNT

registers in Master mode.

• In order to compute the HCNT and LCNT considering RC timings, use the following equations:

◦ IC_HCNT_* = [(HCNT + IC_*_SPKLEN + 7) * ic_clk] + SCL_Fall_time

◦ IC_LCNT_* = [(LCNT + 1) * ic_clk] - SCL_Fall_time + SCL_Rise_time

12.2.14.3. Calculating High and Low Counts

The calculations below show how to calculate SCL high and low counts for each speed mode in the DW_apb_i2c. For the

calculations to work, the ic_clk frequencies used must not be less than the minimum ic_clk frequencies specified in

Table 1050.

The default ic_clk period value is set to 100 ns, so default SCL high and low count values are calculated for each speed
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mode based on this clock. These values need updating according to the guidelines below.

The equation to calculate the proper number of ic_clk signals required for setting the proper SCL clocks high and low

times is as follows:

IC_xCNT = (ROUNDUP(MIN_SCL_xxxtime*OSCFREQ,0))

MIN_SCL_HIGHtime = Minimum High Period
MIN_SCL_HIGHtime =  4000ns for 100kb/s,
                    600ns for 400kb/s,
                    260ns for 1000kb/s,

MIN_SCL_LOWtime = Minimum Low Period
MIN_SCL_LOWtime =   4700ns for 100kb/s,
                    1300ns for 400kb/s,
                    500ns for 1000kb/s,

OSCFREQ = ic_clk Clock Frequency (Hz).

For example:

OSCFREQ = 100MHz
I2Cmode = fast, 400kb/s
MIN_SCL_HIGHtime = 600ns.
MIN_SCL_LOWtime = 1300ns.

IC_xCNT = (ROUNDUP(MIN_SCL_HIGH_LOWtime*OSCFREQ,0))

IC_HCNT = (ROUNDUP(600ns * 100MHz,0))
IC_HCNTSCL PERIOD = 60
IC_LCNT = (ROUNDUP(1300ns * 100MHz,0))
IC_LCNTSCL PERIOD = 130
Actual MIN_SCL_HIGHtime = 60*(1/100MHz) = 600ns
Actual MIN_SCL_LOWtime = 130*(1/100MHz) = 1300ns

12.2.15. DMA Controller Interface

The DW_apb_i2c has built-in DMA capability; it has a handshaking interface to the DMA Controller to request and control

transfers. The APB bus is used to perform data transfers to and from the DMA. DMA transfers use single accesses,

since the data rate is relatively low.

12.2.15.1. Enabling the DMA Controller Interface

To enable the DMA Controller interface on the DW_apb_i2c, you must write the DMA Control Register (IC_DMA_CR).

Writing a one into the TDMAE bit field of IC_DMA_CR register enables the DW_apb_i2c transmit handshaking interface.

Writing a one into the RDMAE bit field of the IC_DMA_CR register enables the DW_apb_i2c receive handshaking interface.

12.2.15.2. Overview of Operation

The DMA Controller is programmed with the number of data items (transfer count) that are to be transmitted or

received by DW_apb_i2c.

The transfer is broken into single transfers on the bus, each initiated by a request from the DW_apb_i2c.
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For example, where the transfer count programmed into the DMA Controller is four. The DMA transfer consists of a

series of four single transactions. If the DW_apb_i2c makes a transmit request to this channel, a single data item is written

to the DW_apb_i2c TX FIFO. Similarly, if the DW_apb_i2c makes a receive request to this channel, a single data item is read

from the DW_apb_i2c RX FIFO. Four separate requests must be made to this DMA channel before all four data items are

written or read.

12.2.15.3. Watermark Levels

In DW_apb_i2c the registers for setting watermarks to allow DMA bursts do not need be set to anything other than their

reset value. Specifically, IC_DMA_TDLR and IC_DMA_RDLR can be left at reset values of zero. This is because only

single transfers are needed due to the low bandwidth of I2C relative to system bandwidth. Because the DMA controller

normally has the highest priority on the system bus, transfers complete quickly.

12.2.16. Operation of Interrupt Registers

Table 1051 lists the operation of the DW_apb_i2c interrupt registers and how they are set and cleared. Some bits are set

by hardware and cleared by software, whereas other bits are set and cleared by hardware.

Table 1051. Clearing

and Setting of

Interrupt Registers

Interrupt Bit Fields Set by Hardware/Cleared by Software Set and Cleared by Hardware

RESTART_DET Y N

GEN_CALL Y N

START_DET Y N

STOP_DET Y N

ACTIVITY Y N

RX_DONE Y N

TX_ABRT Y N

RD_REQ Y N

TX_EMPTY N Y

TX_OVER Y N

RX_FULL N Y

RX_OVER Y N

RX_UNDER Y N

12.2.17. List of Registers

The I2C0 and I2C1 registers start at base addresses of 0x40090000 and 0x40098000 respectively (defined as I2C0_BASE and

I2C1_BASE in SDK).
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 NOTE

You may see references to configuration constants in the I2C register descriptions; these are fixed values, set at

hardware design time. A full list of their values can be found in i2c.h in the pico-sdk GitHub repository.

Table 1052. List of I2C

registers
Offset Name Info

0x00 IC_CON I2C Control Register

0x04 IC_TAR I2C Target Address Register

0x08 IC_SAR I2C Slave Address Register

0x10 IC_DATA_CMD I2C Rx/Tx Data Buffer and Command Register

0x14 IC_SS_SCL_HCNT Standard Speed I2C Clock SCL High Count Register

0x18 IC_SS_SCL_LCNT Standard Speed I2C Clock SCL Low Count Register

0x1c IC_FS_SCL_HCNT Fast Mode or Fast Mode Plus I2C Clock SCL High Count Register

0x20 IC_FS_SCL_LCNT Fast Mode or Fast Mode Plus I2C Clock SCL Low Count Register

0x2c IC_INTR_STAT I2C Interrupt Status Register

0x30 IC_INTR_MASK I2C Interrupt Mask Register

0x34 IC_RAW_INTR_STAT I2C Raw Interrupt Status Register

0x38 IC_RX_TL I2C Receive FIFO Threshold Register

0x3c IC_TX_TL I2C Transmit FIFO Threshold Register

0x40 IC_CLR_INTR Clear Combined and Individual Interrupt Register

0x44 IC_CLR_RX_UNDER Clear RX_UNDER Interrupt Register

0x48 IC_CLR_RX_OVER Clear RX_OVER Interrupt Register

0x4c IC_CLR_TX_OVER Clear TX_OVER Interrupt Register

0x50 IC_CLR_RD_REQ Clear RD_REQ Interrupt Register

0x54 IC_CLR_TX_ABRT Clear TX_ABRT Interrupt Register

0x58 IC_CLR_RX_DONE Clear RX_DONE Interrupt Register

0x5c IC_CLR_ACTIVITY Clear ACTIVITY Interrupt Register

0x60 IC_CLR_STOP_DET Clear STOP_DET Interrupt Register

0x64 IC_CLR_START_DET Clear START_DET Interrupt Register

0x68 IC_CLR_GEN_CALL Clear GEN_CALL Interrupt Register

0x6c IC_ENABLE I2C ENABLE Register

0x70 IC_STATUS I2C STATUS Register

0x74 IC_TXFLR I2C Transmit FIFO Level Register

0x78 IC_RXFLR I2C Receive FIFO Level Register

0x7c IC_SDA_HOLD I2C SDA Hold Time Length Register

0x80 IC_TX_ABRT_SOURCE I2C Transmit Abort Source Register

0x84 IC_SLV_DATA_NACK_ONLY Generate Slave Data NACK Register

0x88 IC_DMA_CR DMA Control Register
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Offset Name Info

0x8c IC_DMA_TDLR DMA Transmit Data Level Register

0x90 IC_DMA_RDLR DMA Transmit Data Level Register

0x94 IC_SDA_SETUP I2C SDA Setup Register

0x98 IC_ACK_GENERAL_CALL I2C ACK General Call Register

0x9c IC_ENABLE_STATUS I2C Enable Status Register

0xa0 IC_FS_SPKLEN I2C SS, FS or FM+ spike suppression limit

0xa8 IC_CLR_RESTART_DET Clear RESTART_DET Interrupt Register

0xf4 IC_COMP_PARAM_1 Component Parameter Register 1

0xf8 IC_COMP_VERSION I2C Component Version Register

0xfc IC_COMP_TYPE I2C Component Type Register

I2C: IC_CON Register

Offset: 0x00

Description

I2C Control Register. This register can be written only when the DW_apb_i2c is disabled, which corresponds to the

IC_ENABLE[0] register being set to 0. Writes at other times have no effect.

Read/Write Access: - bit 10 is read only. - bit 11 is read only - bit 16 is read only - bit 17 is read only - bits 18 and 19 are

read only.

Table 1053. IC_CON

Register
Bits Description Type Reset

31:11 Reserved. - -

10 STOP_DET_IF_MASTER_ACTIVE: Master issues the STOP_DET interrupt

irrespective of whether master is active or not

RO 0x0

9 RX_FIFO_FULL_HLD_CTRL: This bit controls whether DW_apb_i2c should hold

the bus when the Rx FIFO is physically full to its RX_BUFFER_DEPTH, as

described in the IC_RX_FULL_HLD_BUS_EN parameter.

Reset value: 0x0.

RW 0x0

Enumerated values:

0x0 → Overflow when RX_FIFO is full

0x1 → Hold bus when RX_FIFO is full

8 TX_EMPTY_CTRL: This bit controls the generation of the TX_EMPTY interrupt,

as described in the IC_RAW_INTR_STAT register.

Reset value: 0x0.

RW 0x0

Enumerated values:

0x0 → Default behaviour of TX_EMPTY interrupt

0x1 → Controlled generation of TX_EMPTY interrupt
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Bits Description Type Reset

7 STOP_DET_IFADDRESSED: In slave mode: - 1’b1: issues the STOP_DET

interrupt only when it is addressed. - 1’b0: issues the STOP_DET irrespective of

whether it’s addressed or not. Reset value: 0x0

NOTE: During a general call address, this slave does not issue the STOP_DET

interrupt if STOP_DET_IF_ADDRESSED = 1’b1, even if the slave responds to the

general call address by generating ACK. The STOP_DET interrupt is generated

only when the transmitted address matches the slave address (SAR).

RW 0x0

Enumerated values:

0x0 → slave issues STOP_DET intr always

0x1 → slave issues STOP_DET intr only if addressed

6 IC_SLAVE_DISABLE: This bit controls whether I2C has its slave disabled,

which means once the presetn signal is applied, then this bit is set and the

slave is disabled.

If this bit is set (slave is disabled), DW_apb_i2c functions only as a master and

does not perform any action that requires a slave.

NOTE: Software should ensure that if this bit is written with 0, then bit 0 should

also be written with a 0.

RW 0x1

Enumerated values:

0x0 → Slave mode is enabled

0x1 → Slave mode is disabled

5 IC_RESTART_EN: Determines whether RESTART conditions may be sent when

acting as a master. Some older slaves do not support handling RESTART

conditions; however, RESTART conditions are used in several DW_apb_i2c

operations. When RESTART is disabled, the master is prohibited from

performing the following functions: - Sending a START BYTE - Performing any

high-speed mode operation - High-speed mode operation - Performing

direction changes in combined format mode - Performing a read operation

with a 10-bit address By replacing RESTART condition followed by a STOP and

a subsequent START condition, split operations are broken down into multiple

DW_apb_i2c transfers. If the above operations are performed, it will result in

setting bit 6 (TX_ABRT) of the IC_RAW_INTR_STAT register.

Reset value: ENABLED

RW 0x1

Enumerated values:

0x0 → Master restart disabled

0x1 → Master restart enabled

4 IC_10BITADDR_MASTER: Controls whether the DW_apb_i2c starts its

transfers in 7- or 10-bit addressing mode when acting as a master. - 0: 7-bit

addressing - 1: 10-bit addressing

RW 0x0

Enumerated values:

0x0 → Master 7Bit addressing mode

0x1 → Master 10Bit addressing mode
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Bits Description Type Reset

3 IC_10BITADDR_SLAVE: When acting as a slave, this bit controls whether the

DW_apb_i2c responds to 7- or 10-bit addresses. - 0: 7-bit addressing. The

DW_apb_i2c ignores transactions that involve 10-bit addressing; for 7-bit

addressing, only the lower 7 bits of the IC_SAR register are compared. - 1: 10-

bit addressing. The DW_apb_i2c responds to only 10-bit addressing transfers

that match the full 10 bits of the IC_SAR register.

RW 0x0

Enumerated values:

0x0 → Slave 7Bit addressing

0x1 → Slave 10Bit addressing

2:1 SPEED: These bits control at which speed the DW_apb_i2c operates; its

setting is relevant only if one is operating the DW_apb_i2c in master mode.

Hardware protects against illegal values being programmed by software.

These bits must be programmed appropriately for slave mode also, as it is

used to capture correct value of spike filter as per the speed mode.

This register should be programmed only with a value in the range of 1 to

IC_MAX_SPEED_MODE; otherwise, hardware updates this register with the

value of IC_MAX_SPEED_MODE.

1: standard mode (100 kbit/s)

2: fast mode (<=400 kbit/s) or fast mode plus (<=1000Kbit/s)

3: high speed mode (3.4 Mbit/s)

Note: This field is not applicable when IC_ULTRA_FAST_MODE=1

RW 0x2

Enumerated values:

0x1 → Standard Speed mode of operation

0x2 → Fast or Fast Plus mode of operation

0x3 → High Speed mode of operation

0 MASTER_MODE: This bit controls whether the DW_apb_i2c master is enabled.

NOTE: Software should ensure that if this bit is written with '1' then bit 6

should also be written with a '1'.

RW 0x1

Enumerated values:

0x0 → Master mode is disabled

0x1 → Master mode is enabled

I2C: IC_TAR Register

Offset: 0x04

Description

I2C Target Address Register

This register is 12 bits wide, and bits 31:12 are reserved. This register can be written to only when IC_ENABLE[0] is set

to 0.

Note: If the software or application is aware that the DW_apb_i2c is not using the TAR address for the pending
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commands in the Tx FIFO, then it is possible to update the TAR address even while the Tx FIFO has entries

(IC_STATUS[2]= 0). - It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C slave

only.

Table 1054. IC_TAR

Register
Bits Description Type Reset

31:12 Reserved. - -

11 SPECIAL: This bit indicates whether software performs a Device-ID or General

Call or START BYTE command. - 0: ignore bit 10 GC_OR_START and use

IC_TAR normally - 1: perform special I2C command as specified in Device_ID

or GC_OR_START bit Reset value: 0x0

RW 0x0

Enumerated values:

0x0 → Disables programming of GENERAL_CALL or START_BYTE

transmission

0x1 → Enables programming of GENERAL_CALL or START_BYTE

transmission

10 GC_OR_START: If bit 11 (SPECIAL) is set to 1 and bit 13(Device-ID) is set to 0,

then this bit indicates whether a General Call or START byte command is to be

performed by the DW_apb_i2c. - 0: General Call Address - after issuing a

General Call, only writes may be performed. Attempting to issue a read

command results in setting bit 6 (TX_ABRT) of the IC_RAW_INTR_STAT

register. The DW_apb_i2c remains in General Call mode until the SPECIAL bit

value (bit 11) is cleared. - 1: START BYTE Reset value: 0x0

RW 0x0

Enumerated values:

0x0 → GENERAL_CALL byte transmission

0x1 → START byte transmission

9:0 IC_TAR: This is the target address for any master transaction. When

transmitting a General Call, these bits are ignored. To generate a START BYTE,

the CPU needs to write only once into these bits.

If the IC_TAR and IC_SAR are the same, loopback exists but the FIFOs are

shared between master and slave, so full loopback is not feasible. Only one

direction loopback mode is supported (simplex), not duplex. A master cannot

transmit to itself; it can transmit to only a slave.

RW 0x055

I2C: IC_SAR Register

Offset: 0x08

Description

I2C Slave Address Register

Table 1055. IC_SAR

Register
Bits Description Type Reset

31:10 Reserved. - -
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Bits Description Type Reset

9:0 IC_SAR: The IC_SAR holds the slave address when the I2C is operating as a

slave. For 7-bit addressing, only IC_SAR[6:0] is used.

This register can be written only when the I2C interface is disabled, which

corresponds to the IC_ENABLE[0] register being set to 0. Writes at other times

have no effect.

Note: The default values cannot be any of the reserved address locations: that

is, 0x00 to 0x07, or 0x78 to 0x7f. The correct operation of the device is not

guaranteed if you program the IC_SAR or IC_TAR to a reserved value. Refer to

Table 1048 for a complete list of these reserved values.

RW 0x055

I2C: IC_DATA_CMD Register

Offset: 0x10

Description

I2C Rx/Tx Data Buffer and Command Register; this is the register the CPU writes to when filling the TX FIFO and the

CPU reads from when retrieving bytes from RX FIFO.

The size of the register changes as follows:

Write: - 11 bits when IC_EMPTYFIFO_HOLD_MASTER_EN=1 - 9 bits when IC_EMPTYFIFO_HOLD_MASTER_EN=0 Read: -

12 bits when IC_FIRST_DATA_BYTE_STATUS = 1 - 8 bits when IC_FIRST_DATA_BYTE_STATUS = 0 Note: In order for the

DW_apb_i2c to continue acknowledging reads, a read command should be written for every byte that is to be received;

otherwise the DW_apb_i2c will stop acknowledging.

Table 1056.

IC_DATA_CMD

Register

Bits Description Type Reset

31:12 Reserved. - -

11 FIRST_DATA_BYTE: Indicates the first data byte received after the address

phase for receive transfer in Master receiver or Slave receiver mode.

Reset value : 0x0

NOTE: In case of APB_DATA_WIDTH=8,

1. The user has to perform two APB Reads to IC_DATA_CMD in order to get

status on 11 bit.

2. In order to read the 11 bit, the user has to perform the first data byte read

[7:0] (offset 0x10) and then perform the second read [15:8] (offset 0x11) in

order to know the status of 11 bit (whether the data received in previous read

is a first data byte or not).

3. The 11th bit is an optional read field, user can ignore 2nd byte read [15:8]

(offset 0x11) if not interested in FIRST_DATA_BYTE status.

RO 0x0

Enumerated values:

0x0 → Sequential data byte received

0x1 → Non sequential data byte received
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Bits Description Type Reset

10 RESTART: This bit controls whether a RESTART is issued before the byte is

sent or received.

1 - If IC_RESTART_EN is 1, a RESTART is issued before the data is

sent/received (according to the value of CMD), regardless of whether or not

the transfer direction is changing from the previous command; if

IC_RESTART_EN is 0, a STOP followed by a START is issued instead.

0 - If IC_RESTART_EN is 1, a RESTART is issued only if the transfer direction is

changing from the previous command; if IC_RESTART_EN is 0, a STOP

followed by a START is issued instead.

Reset value: 0x0

SC 0x0

Enumerated values:

0x0 → Don’t Issue RESTART before this command

0x1 → Issue RESTART before this command

9 STOP: This bit controls whether a STOP is issued after the byte is sent or

received.

- 1 - STOP is issued after this byte, regardless of whether or not the Tx FIFO is

empty. If the Tx FIFO is not empty, the master immediately tries to start a new

transfer by issuing a START and arbitrating for the bus. - 0 - STOP is not

issued after this byte, regardless of whether or not the Tx FIFO is empty. If the

Tx FIFO is not empty, the master continues the current transfer by

sending/receiving data bytes according to the value of the CMD bit. If the Tx

FIFO is empty, the master holds the SCL line low and stalls the bus until a new

command is available in the Tx FIFO. Reset value: 0x0

SC 0x0

Enumerated values:

0x0 → Don’t Issue STOP after this command

0x1 → Issue STOP after this command

8 CMD: This bit controls whether a read or a write is performed. This bit does

not control the direction when the DW_apb_i2con acts as a slave. It controls

only the direction when it acts as a master.

When a command is entered in the TX FIFO, this bit distinguishes the write

and read commands. In slave-receiver mode, this bit is a 'don’t care' because

writes to this register are not required. In slave-transmitter mode, a '0'

indicates that the data in IC_DATA_CMD is to be transmitted.

When programming this bit, you should remember the following: attempting to

perform a read operation after a General Call command has been sent results

in a TX_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT register), unless bit 11

(SPECIAL) in the IC_TAR register has been cleared. If a '1' is written to this bit

after receiving a RD_REQ interrupt, then a TX_ABRT interrupt occurs.

Reset value: 0x0

SC 0x0

Enumerated values:

0x0 → Master Write Command
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Bits Description Type Reset

0x1 → Master Read Command

7:0 DAT: This register contains the data to be transmitted or received on the I2C

bus. If you are writing to this register and want to perform a read, bits 7:0

(DAT) are ignored by the DW_apb_i2c. However, when you read this register,

these bits return the value of data received on the DW_apb_i2c interface.

Reset value: 0x0

RW 0x00

I2C: IC_SS_SCL_HCNT Register

Offset: 0x14

Description

Standard Speed I2C Clock SCL High Count Register

Table 1057.

IC_SS_SCL_HCNT

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 IC_SS_SCL_HCNT: This register must be set before any I2C bus transaction

can take place to ensure proper I/O timing. This register sets the SCL clock

high-period count for standard speed. For more information, refer to 'IC_CLK

Frequency Configuration'.

This register can be written only when the I2C interface is disabled which

corresponds to the IC_ENABLE[0] register being set to 0. Writes at other times

have no effect.

The minimum valid value is 6; hardware prevents values less than this being

written, and if attempted results in 6 being set. For designs with

APB_DATA_WIDTH = 8, the order of programming is important to ensure the

correct operation of the DW_apb_i2c. The lower byte must be programmed

first. Then the upper byte is programmed.

NOTE: This register must not be programmed to a value higher than 65525,

because DW_apb_i2c uses a 16-bit counter to flag an I2C bus idle condition

when this counter reaches a value of IC_SS_SCL_HCNT + 10.

RW 0x0028

I2C: IC_SS_SCL_LCNT Register

Offset: 0x18

Description

Standard Speed I2C Clock SCL Low Count Register

Table 1058.

IC_SS_SCL_LCNT

Register

Bits Description Type Reset

31:16 Reserved. - -
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Bits Description Type Reset

15:0 IC_SS_SCL_LCNT: This register must be set before any I2C bus transaction

can take place to ensure proper I/O timing. This register sets the SCL clock

low period count for standard speed. For more information, refer to 'IC_CLK

Frequency Configuration'

This register can be written only when the I2C interface is disabled which

corresponds to the IC_ENABLE[0] register being set to 0. Writes at other times

have no effect.

The minimum valid value is 8; hardware prevents values less than this being

written, and if attempted, results in 8 being set. For designs with

APB_DATA_WIDTH = 8, the order of programming is important to ensure the

correct operation of DW_apb_i2c. The lower byte must be programmed first,

and then the upper byte is programmed.

RW 0x002f

I2C: IC_FS_SCL_HCNT Register

Offset: 0x1c

Description

Fast Mode or Fast Mode Plus I2C Clock SCL High Count Register

Table 1059.

IC_FS_SCL_HCNT

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 IC_FS_SCL_HCNT: This register must be set before any I2C bus transaction

can take place to ensure proper I/O timing. This register sets the SCL clock

high-period count for fast mode or fast mode plus. It is used in high-speed

mode to send the Master Code and START BYTE or General CALL. For more

information, refer to 'IC_CLK Frequency Configuration'.

This register goes away and becomes read-only returning 0s if

IC_MAX_SPEED_MODE = standard. This register can be written only when the

I2C interface is disabled, which corresponds to the IC_ENABLE[0] register

being set to 0. Writes at other times have no effect.

The minimum valid value is 6; hardware prevents values less than this being

written, and if attempted results in 6 being set. For designs with

APB_DATA_WIDTH == 8 the order of programming is important to ensure the

correct operation of the DW_apb_i2c. The lower byte must be programmed

first. Then the upper byte is programmed.

RW 0x0006

I2C: IC_FS_SCL_LCNT Register

Offset: 0x20

Description

Fast Mode or Fast Mode Plus I2C Clock SCL Low Count Register

Table 1060.

IC_FS_SCL_LCNT

Register

Bits Description Type Reset

31:16 Reserved. - -
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Bits Description Type Reset

15:0 IC_FS_SCL_LCNT: This register must be set before any I2C bus transaction

can take place to ensure proper I/O timing. This register sets the SCL clock

low period count for fast speed. It is used in high-speed mode to send the

Master Code and START BYTE or General CALL. For more information, refer to

'IC_CLK Frequency Configuration'.

This register goes away and becomes read-only returning 0s if

IC_MAX_SPEED_MODE = standard.

This register can be written only when the I2C interface is disabled, which

corresponds to the IC_ENABLE[0] register being set to 0. Writes at other times

have no effect.

The minimum valid value is 8; hardware prevents values less than this being

written, and if attempted results in 8 being set. For designs with

APB_DATA_WIDTH = 8 the order of programming is important to ensure the

correct operation of the DW_apb_i2c. The lower byte must be programmed

first. Then the upper byte is programmed. If the value is less than 8 then the

count value gets changed to 8.

RW 0x000d

I2C: IC_INTR_STAT Register

Offset: 0x2c

Description

I2C Interrupt Status Register

Each bit in this register has a corresponding mask bit in the IC_INTR_MASK register. These bits are cleared by reading

the matching interrupt clear register. The unmasked raw versions of these bits are available in the IC_RAW_INTR_STAT

register.

Table 1061.

IC_INTR_STAT

Register

Bits Description Type Reset

31:13 Reserved. - -

12 R_RESTART_DET: See IC_RAW_INTR_STAT for a detailed description of

R_RESTART_DET bit.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → R_RESTART_DET interrupt is inactive

0x1 → R_RESTART_DET interrupt is active

11 R_GEN_CALL: See IC_RAW_INTR_STAT for a detailed description of

R_GEN_CALL bit.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → R_GEN_CALL interrupt is inactive

0x1 → R_GEN_CALL interrupt is active
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Bits Description Type Reset

10 R_START_DET: See IC_RAW_INTR_STAT for a detailed description of

R_START_DET bit.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → R_START_DET interrupt is inactive

0x1 → R_START_DET interrupt is active

9 R_STOP_DET: See IC_RAW_INTR_STAT for a detailed description of

R_STOP_DET bit.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → R_STOP_DET interrupt is inactive

0x1 → R_STOP_DET interrupt is active

8 R_ACTIVITY: See IC_RAW_INTR_STAT for a detailed description of

R_ACTIVITY bit.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → R_ACTIVITY interrupt is inactive

0x1 → R_ACTIVITY interrupt is active

7 R_RX_DONE: See IC_RAW_INTR_STAT for a detailed description of

R_RX_DONE bit.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → R_RX_DONE interrupt is inactive

0x1 → R_RX_DONE interrupt is active

6 R_TX_ABRT: See IC_RAW_INTR_STAT for a detailed description of R_TX_ABRT

bit.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → R_TX_ABRT interrupt is inactive

0x1 → R_TX_ABRT interrupt is active

5 R_RD_REQ: See IC_RAW_INTR_STAT for a detailed description of R_RD_REQ

bit.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → R_RD_REQ interrupt is inactive

0x1 → R_RD_REQ interrupt is active
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Bits Description Type Reset

4 R_TX_EMPTY: See IC_RAW_INTR_STAT for a detailed description of

R_TX_EMPTY bit.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → R_TX_EMPTY interrupt is inactive

0x1 → R_TX_EMPTY interrupt is active

3 R_TX_OVER: See IC_RAW_INTR_STAT for a detailed description of R_TX_OVER

bit.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → R_TX_OVER interrupt is inactive

0x1 → R_TX_OVER interrupt is active

2 R_RX_FULL: See IC_RAW_INTR_STAT for a detailed description of R_RX_FULL

bit.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → R_RX_FULL interrupt is inactive

0x1 → R_RX_FULL interrupt is active

1 R_RX_OVER: See IC_RAW_INTR_STAT for a detailed description of

R_RX_OVER bit.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → R_RX_OVER interrupt is inactive

0x1 → R_RX_OVER interrupt is active

0 R_RX_UNDER: See IC_RAW_INTR_STAT for a detailed description of

R_RX_UNDER bit.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → RX_UNDER interrupt is inactive

0x1 → RX_UNDER interrupt is active

I2C: IC_INTR_MASK Register

Offset: 0x30

Description

I2C Interrupt Mask Register.

These bits mask their corresponding interrupt status bits. This register is active low; a value of 0 masks the interrupt,

whereas a value of 1 unmasks the interrupt.
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Table 1062.

IC_INTR_MASK

Register

Bits Description Type Reset

31:13 Reserved. - -

12 M_RESTART_DET: This bit masks the R_RESTART_DET interrupt in

IC_INTR_STAT register.

Reset value: 0x0

RW 0x0

Enumerated values:

0x0 → RESTART_DET interrupt is masked

0x1 → RESTART_DET interrupt is unmasked

11 M_GEN_CALL: This bit masks the R_GEN_CALL interrupt in IC_INTR_STAT

register.

Reset value: 0x1

RW 0x1

Enumerated values:

0x0 → GEN_CALL interrupt is masked

0x1 → GEN_CALL interrupt is unmasked

10 M_START_DET: This bit masks the R_START_DET interrupt in IC_INTR_STAT

register.

Reset value: 0x0

RW 0x0

Enumerated values:

0x0 → START_DET interrupt is masked

0x1 → START_DET interrupt is unmasked

9 M_STOP_DET: This bit masks the R_STOP_DET interrupt in IC_INTR_STAT

register.

Reset value: 0x0

RW 0x0

Enumerated values:

0x0 → STOP_DET interrupt is masked

0x1 → STOP_DET interrupt is unmasked

8 M_ACTIVITY: This bit masks the R_ACTIVITY interrupt in IC_INTR_STAT

register.

Reset value: 0x0

RW 0x0

Enumerated values:

0x0 → ACTIVITY interrupt is masked

0x1 → ACTIVITY interrupt is unmasked

7 M_RX_DONE: This bit masks the R_RX_DONE interrupt in IC_INTR_STAT

register.

Reset value: 0x1

RW 0x1

Enumerated values:

0x0 → RX_DONE interrupt is masked
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Bits Description Type Reset

0x1 → RX_DONE interrupt is unmasked

6 M_TX_ABRT: This bit masks the R_TX_ABRT interrupt in IC_INTR_STAT

register.

Reset value: 0x1

RW 0x1

Enumerated values:

0x0 → TX_ABORT interrupt is masked

0x1 → TX_ABORT interrupt is unmasked

5 M_RD_REQ: This bit masks the R_RD_REQ interrupt in IC_INTR_STAT register.

Reset value: 0x1

RW 0x1

Enumerated values:

0x0 → RD_REQ interrupt is masked

0x1 → RD_REQ interrupt is unmasked

4 M_TX_EMPTY: This bit masks the R_TX_EMPTY interrupt in IC_INTR_STAT

register.

Reset value: 0x1

RW 0x1

Enumerated values:

0x0 → TX_EMPTY interrupt is masked

0x1 → TX_EMPTY interrupt is unmasked

3 M_TX_OVER: This bit masks the R_TX_OVER interrupt in IC_INTR_STAT

register.

Reset value: 0x1

RW 0x1

Enumerated values:

0x0 → TX_OVER interrupt is masked

0x1 → TX_OVER interrupt is unmasked

2 M_RX_FULL: This bit masks the R_RX_FULL interrupt in IC_INTR_STAT

register.

Reset value: 0x1

RW 0x1

Enumerated values:

0x0 → RX_FULL interrupt is masked

0x1 → RX_FULL interrupt is unmasked

1 M_RX_OVER: This bit masks the R_RX_OVER interrupt in IC_INTR_STAT

register.

Reset value: 0x1

RW 0x1

Enumerated values:

0x0 → RX_OVER interrupt is masked

0x1 → RX_OVER interrupt is unmasked
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Bits Description Type Reset

0 M_RX_UNDER: This bit masks the R_RX_UNDER interrupt in IC_INTR_STAT

register.

Reset value: 0x1

RW 0x1

Enumerated values:

0x0 → RX_UNDER interrupt is masked

0x1 → RX_UNDER interrupt is unmasked

I2C: IC_RAW_INTR_STAT Register

Offset: 0x34

Description

I2C Raw Interrupt Status Register

Unlike the IC_INTR_STAT register, these bits are not masked so they always show the true status of the DW_apb_i2c.

Table 1063.

IC_RAW_INTR_STAT

Register

Bits Description Type Reset

31:13 Reserved. - -

12 RESTART_DET: Indicates whether a RESTART condition has occurred on the

I2C interface when DW_apb_i2c is operating in Slave mode and the slave is

being addressed. Enabled only when IC_SLV_RESTART_DET_EN=1.

Note: However, in high-speed mode or during a START BYTE transfer, the

RESTART comes before the address field as per the I2C protocol. In this case,

the slave is not the addressed slave when the RESTART is issued, therefore

DW_apb_i2c does not generate the RESTART_DET interrupt.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → RESTART_DET interrupt is inactive

0x1 → RESTART_DET interrupt is active

11 GEN_CALL: Set only when a General Call address is received and it is

acknowledged. It stays set until it is cleared either by disabling DW_apb_i2c or

when the CPU reads bit 0 of the IC_CLR_GEN_CALL register. DW_apb_i2c

stores the received data in the Rx buffer.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → GEN_CALL interrupt is inactive

0x1 → GEN_CALL interrupt is active

10 START_DET: Indicates whether a START or RESTART condition has occurred

on the I2C interface regardless of whether DW_apb_i2c is operating in slave or

master mode.

Reset value: 0x0

RO 0x0

Enumerated values:

RP2350 Datasheet

12.2. I2C 1010



Bits Description Type Reset

0x0 → START_DET interrupt is inactive

0x1 → START_DET interrupt is active

9 STOP_DET: Indicates whether a STOP condition has occurred on the I2C

interface regardless of whether DW_apb_i2c is operating in slave or master

mode.

In Slave Mode: - If IC_CON[7]=1’b1 (STOP_DET_IFADDRESSED), the STOP_DET

interrupt will be issued only if slave is addressed. Note: During a general call

address, this slave does not issue a STOP_DET interrupt if

STOP_DET_IF_ADDRESSED=1’b1, even if the slave responds to the general call

address by generating ACK. The STOP_DET interrupt is generated only when

the transmitted address matches the slave address (SAR). - If IC_CON[7]=1’b0

(STOP_DET_IFADDRESSED), the STOP_DET interrupt is issued irrespective of

whether it is being addressed. In Master Mode: - If IC_CON[10]=1’b1

(STOP_DET_IF_MASTER_ACTIVE),the STOP_DET interrupt will be issued only if

Master is active. - If IC_CON[10]=1’b0 (STOP_DET_IFADDRESSED),the

STOP_DET interrupt will be issued irrespective of whether master is active or

not. Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → STOP_DET interrupt is inactive

0x1 → STOP_DET interrupt is active

8 ACTIVITY: This bit captures DW_apb_i2c activity and stays set until it is

cleared. There are four ways to clear it: - Disabling the DW_apb_i2c - Reading

the IC_CLR_ACTIVITY register - Reading the IC_CLR_INTR register - System

reset Once this bit is set, it stays set unless one of the four methods is used to

clear it. Even if the DW_apb_i2c module is idle, this bit remains set until

cleared, indicating that there was activity on the bus.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → RAW_INTR_ACTIVITY interrupt is inactive

0x1 → RAW_INTR_ACTIVITY interrupt is active

7 RX_DONE: When the DW_apb_i2c is acting as a slave-transmitter, this bit is set

to 1 if the master does not acknowledge a transmitted byte. This occurs on

the last byte of the transmission, indicating that the transmission is done.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → RX_DONE interrupt is inactive

0x1 → RX_DONE interrupt is active
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Bits Description Type Reset

6 TX_ABRT: This bit indicates if DW_apb_i2c, as an I2C transmitter, is unable to

complete the intended actions on the contents of the transmit FIFO. This

situation can occur both as an I2C master or an I2C slave, and is referred to as

a 'transmit abort'. When this bit is set to 1, the IC_TX_ABRT_SOURCE register

indicates the reason why the transmit abort takes places.

Note: The DW_apb_i2c flushes/resets/empties the TX_FIFO and RX_FIFO

whenever there is a transmit abort caused by any of the events tracked by the

IC_TX_ABRT_SOURCE register. The FIFOs remains in this flushed state until

the register IC_CLR_TX_ABRT is read. Once this read is performed, the Tx FIFO

is then ready to accept more data bytes from the APB interface.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → TX_ABRT interrupt is inactive

0x1 → TX_ABRT interrupt is active

5 RD_REQ: This bit is set to 1 when DW_apb_i2c is acting as a slave and another

I2C master is attempting to read data from DW_apb_i2c. The DW_apb_i2c

holds the I2C bus in a wait state (SCL=0) until this interrupt is serviced, which

means that the slave has been addressed by a remote master that is asking

for data to be transferred. The processor must respond to this interrupt and

then write the requested data to the IC_DATA_CMD register. This bit is set to 0

just after the processor reads the IC_CLR_RD_REQ register.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → RD_REQ interrupt is inactive

0x1 → RD_REQ interrupt is active

4 TX_EMPTY: The behavior of the TX_EMPTY interrupt status differs based on

the TX_EMPTY_CTRL selection in the IC_CON register. - When

TX_EMPTY_CTRL = 0: This bit is set to 1 when the transmit buffer is at or

below the threshold value set in the IC_TX_TL register. - When

TX_EMPTY_CTRL = 1: This bit is set to 1 when the transmit buffer is at or

below the threshold value set in the IC_TX_TL register and the transmission of

the address/data from the internal shift register for the most recently popped

command is completed. It is automatically cleared by hardware when the

buffer level goes above the threshold. When IC_ENABLE[0] is set to 0, the TX

FIFO is flushed and held in reset. There the TX FIFO looks like it has no data

within it, so this bit is set to 1, provided there is activity in the master or slave

state machines. When there is no longer any activity, then with ic_en=0, this bit

is set to 0.

Reset value: 0x0.

RO 0x0

Enumerated values:

0x0 → TX_EMPTY interrupt is inactive

0x1 → TX_EMPTY interrupt is active
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Bits Description Type Reset

3 TX_OVER: Set during transmit if the transmit buffer is filled to

IC_TX_BUFFER_DEPTH and the processor attempts to issue another I2C

command by writing to the IC_DATA_CMD register. When the module is

disabled, this bit keeps its level until the master or slave state machines go

into idle, and when ic_en goes to 0, this interrupt is cleared.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → TX_OVER interrupt is inactive

0x1 → TX_OVER interrupt is active

2 RX_FULL: Set when the receive buffer reaches or goes above the RX_TL

threshold in the IC_RX_TL register. It is automatically cleared by hardware

when buffer level goes below the threshold. If the module is disabled

(IC_ENABLE[0]=0), the RX FIFO is flushed and held in reset; therefore the RX

FIFO is not full. So this bit is cleared once the IC_ENABLE bit 0 is programmed

with a 0, regardless of the activity that continues.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → RX_FULL interrupt is inactive

0x1 → RX_FULL interrupt is active

1 RX_OVER: Set if the receive buffer is completely filled to

IC_RX_BUFFER_DEPTH and an additional byte is received from an external I2C

device. The DW_apb_i2c acknowledges this, but any data bytes received after

the FIFO is full are lost. If the module is disabled (IC_ENABLE[0]=0), this bit

keeps its level until the master or slave state machines go into idle, and when

ic_en goes to 0, this interrupt is cleared.

Note: If bit 9 of the IC_CON register (RX_FIFO_FULL_HLD_CTRL) is

programmed to HIGH, then the RX_OVER interrupt never occurs, because the

Rx FIFO never overflows.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → RX_OVER interrupt is inactive

0x1 → RX_OVER interrupt is active

0 RX_UNDER: Set if the processor attempts to read the receive buffer when it is

empty by reading from the IC_DATA_CMD register. If the module is disabled

(IC_ENABLE[0]=0), this bit keeps its level until the master or slave state

machines go into idle, and when ic_en goes to 0, this interrupt is cleared.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → RX_UNDER interrupt is inactive

0x1 → RX_UNDER interrupt is active
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I2C: IC_RX_TL Register

Offset: 0x38

Description

I2C Receive FIFO Threshold Register

Table 1064. IC_RX_TL

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 RX_TL: Receive FIFO Threshold Level.

Controls the level of entries (or above) that triggers the RX_FULL interrupt (bit

2 in IC_RAW_INTR_STAT register). The valid range is 0-255, with the additional

restriction that hardware does not allow this value to be set to a value larger

than the depth of the buffer. If an attempt is made to do that, the actual value

set will be the maximum depth of the buffer. A value of 0 sets the threshold

for 1 entry, and a value of 255 sets the threshold for 256 entries.

RW 0x00

I2C: IC_TX_TL Register

Offset: 0x3c

Description

I2C Transmit FIFO Threshold Register

Table 1065. IC_TX_TL

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 TX_TL: Transmit FIFO Threshold Level.

Controls the level of entries (or below) that trigger the TX_EMPTY interrupt (bit

4 in IC_RAW_INTR_STAT register). The valid range is 0-255, with the additional

restriction that it may not be set to value larger than the depth of the buffer. If

an attempt is made to do that, the actual value set will be the maximum depth

of the buffer. A value of 0 sets the threshold for 0 entries, and a value of 255

sets the threshold for 255 entries.

RW 0x00

I2C: IC_CLR_INTR Register

Offset: 0x40

Description

Clear Combined and Individual Interrupt Register
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Table 1066.

IC_CLR_INTR Register
Bits Description Type Reset

31:1 Reserved. - -

0 CLR_INTR: Read this register to clear the combined interrupt, all individual

interrupts, and the IC_TX_ABRT_SOURCE register. This bit does not clear

hardware clearable interrupts but software clearable interrupts. Refer to Bit 9

of the IC_TX_ABRT_SOURCE register for an exception to clearing

IC_TX_ABRT_SOURCE.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_RX_UNDER Register

Offset: 0x44

Description

Clear RX_UNDER Interrupt Register

Table 1067.

IC_CLR_RX_UNDER

Register

Bits Description Type Reset

31:1 Reserved. - -

0 CLR_RX_UNDER: Read this register to clear the RX_UNDER interrupt (bit 0) of

the IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_RX_OVER Register

Offset: 0x48

Description

Clear RX_OVER Interrupt Register

Table 1068.

IC_CLR_RX_OVER

Register

Bits Description Type Reset

31:1 Reserved. - -

0 CLR_RX_OVER: Read this register to clear the RX_OVER interrupt (bit 1) of the

IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_TX_OVER Register

Offset: 0x4c

Description

Clear TX_OVER Interrupt Register
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Table 1069.

IC_CLR_TX_OVER

Register

Bits Description Type Reset

31:1 Reserved. - -

0 CLR_TX_OVER: Read this register to clear the TX_OVER interrupt (bit 3) of the

IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_RD_REQ Register

Offset: 0x50

Description

Clear RD_REQ Interrupt Register

Table 1070.

IC_CLR_RD_REQ

Register

Bits Description Type Reset

31:1 Reserved. - -

0 CLR_RD_REQ: Read this register to clear the RD_REQ interrupt (bit 5) of the

IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_TX_ABRT Register

Offset: 0x54

Description

Clear TX_ABRT Interrupt Register

Table 1071.

IC_CLR_TX_ABRT

Register

Bits Description Type Reset

31:1 Reserved. - -

0 CLR_TX_ABRT: Read this register to clear the TX_ABRT interrupt (bit 6) of the

IC_RAW_INTR_STAT register, and the IC_TX_ABRT_SOURCE register. This also

releases the TX FIFO from the flushed/reset state, allowing more writes to the

TX FIFO. Refer to Bit 9 of the IC_TX_ABRT_SOURCE register for an exception

to clearing IC_TX_ABRT_SOURCE.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_RX_DONE Register

Offset: 0x58

Description

Clear RX_DONE Interrupt Register
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Table 1072.

IC_CLR_RX_DONE

Register

Bits Description Type Reset

31:1 Reserved. - -

0 CLR_RX_DONE: Read this register to clear the RX_DONE interrupt (bit 7) of the

IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_ACTIVITY Register

Offset: 0x5c

Description

Clear ACTIVITY Interrupt Register

Table 1073.

IC_CLR_ACTIVITY

Register

Bits Description Type Reset

31:1 Reserved. - -

0 CLR_ACTIVITY: Reading this register clears the ACTIVITY interrupt if the I2C is

not active anymore. If the I2C module is still active on the bus, the ACTIVITY

interrupt bit continues to be set. It is automatically cleared by hardware if the

module is disabled and if there is no further activity on the bus. The value read

from this register to get status of the ACTIVITY interrupt (bit 8) of the

IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_STOP_DET Register

Offset: 0x60

Description

Clear STOP_DET Interrupt Register

Table 1074.

IC_CLR_STOP_DET

Register

Bits Description Type Reset

31:1 Reserved. - -

0 CLR_STOP_DET: Read this register to clear the STOP_DET interrupt (bit 9) of

the IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_START_DET Register

Offset: 0x64

Description

Clear START_DET Interrupt Register
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Table 1075.

IC_CLR_START_DET

Register

Bits Description Type Reset

31:1 Reserved. - -

0 CLR_START_DET: Read this register to clear the START_DET interrupt (bit 10)

of the IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_GEN_CALL Register

Offset: 0x68

Description

Clear GEN_CALL Interrupt Register

Table 1076.

IC_CLR_GEN_CALL

Register

Bits Description Type Reset

31:1 Reserved. - -

0 CLR_GEN_CALL: Read this register to clear the GEN_CALL interrupt (bit 11) of

IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_ENABLE Register

Offset: 0x6c

Description

I2C Enable Register

Table 1077.

IC_ENABLE Register
Bits Description Type Reset

31:3 Reserved. - -

2 TX_CMD_BLOCK: In Master mode: - 1’b1: Blocks the transmission of data on

I2C bus even if Tx FIFO has data to transmit. - 1’b0: The transmission of data

starts on I2C bus automatically, as soon as the first data is available in the Tx

FIFO. Note: To block the execution of Master commands, set the

TX_CMD_BLOCK bit only when Tx FIFO is empty (IC_STATUS[2]==1) and

Master is in Idle state (IC_STATUS[5] == 0). Any further commands put in the

Tx FIFO are not executed until TX_CMD_BLOCK bit is unset. Reset value:

IC_TX_CMD_BLOCK_DEFAULT

RW 0x0

Enumerated values:

0x0 → Tx Command execution not blocked

0x1 → Tx Command execution blocked
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Bits Description Type Reset

1 ABORT: When set, the controller initiates the transfer abort. - 0: ABORT not

initiated or ABORT done - 1: ABORT operation in progress The software can

abort the I2C transfer in master mode by setting this bit. The software can set

this bit only when ENABLE is already set; otherwise, the controller ignores any

write to ABORT bit. The software cannot clear the ABORT bit once set. In

response to an ABORT, the controller issues a STOP and flushes the Tx FIFO

after completing the current transfer, then sets the TX_ABORT interrupt after

the abort operation. The ABORT bit is cleared automatically after the abort

operation.

For a detailed description on how to abort I2C transfers, refer to 'Aborting I2C

Transfers'.

Reset value: 0x0

RW 0x0

Enumerated values:

0x0 → ABORT operation not in progress

0x1 → ABORT operation in progress

0 ENABLE: Controls whether the DW_apb_i2c is enabled. - 0: Disables

DW_apb_i2c (TX and RX FIFOs are held in an erased state) - 1: Enables

DW_apb_i2c Software can disable DW_apb_i2c while it is active. However, it is

important that care be taken to ensure that DW_apb_i2c is disabled properly. A

recommended procedure is described in 'Disabling DW_apb_i2c'.

When DW_apb_i2c is disabled, the following occurs: - The TX FIFO and RX

FIFO get flushed. - Status bits in the IC_INTR_STAT register are still active until

DW_apb_i2c goes into IDLE state. If the module is transmitting, it stops as well

as deletes the contents of the transmit buffer after the current transfer is

complete. If the module is receiving, the DW_apb_i2c stops the current

transfer at the end of the current byte and does not acknowledge the transfer.

In systems with asynchronous pclk and ic_clk when IC_CLK_TYPE parameter

set to asynchronous (1), there is a two ic_clk delay when enabling or disabling

the DW_apb_i2c. For a detailed description on how to disable DW_apb_i2c,

refer to 'Disabling DW_apb_i2c'

Reset value: 0x0

RW 0x0

Enumerated values:

0x0 → I2C is disabled

0x1 → I2C is enabled

I2C: IC_STATUS Register

Offset: 0x70

Description

I2C Status Register

This is a read-only register used to indicate the current transfer status and FIFO status. The status register may be read

at any time. None of the bits in this register request an interrupt.

When the I2C is disabled by writing 0 in bit 0 of the IC_ENABLE register: - Bits 1 and 2 are set to 1 - Bits 3 and 10 are set

to 0 When the master or slave state machines goes to idle and ic_en=0: - Bits 5 and 6 are set to 0
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Table 1078.

IC_STATUS Register
Bits Description Type Reset

31:7 Reserved. - -

6 SLV_ACTIVITY: Slave FSM Activity Status. When the Slave Finite State

Machine (FSM) is not in the IDLE state, this bit is set. - 0: Slave FSM is in IDLE

state so the Slave part of DW_apb_i2c is not Active - 1: Slave FSM is not in

IDLE state so the Slave part of DW_apb_i2c is Active Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → Slave is idle

0x1 → Slave not idle

5 MST_ACTIVITY: Master FSM Activity Status. When the Master Finite State

Machine (FSM) is not in the IDLE state, this bit is set. - 0: Master FSM is in

IDLE state so the Master part of DW_apb_i2c is not Active - 1: Master FSM is

not in IDLE state so the Master part of DW_apb_i2c is Active Note:

IC_STATUS[0]-that is, ACTIVITY bit-is the OR of SLV_ACTIVITY and

MST_ACTIVITY bits.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → Master is idle

0x1 → Master not idle

4 RFF: Receive FIFO Completely Full. When the receive FIFO is completely full,

this bit is set. When the receive FIFO contains one or more empty location, this

bit is cleared. - 0: Receive FIFO is not full - 1: Receive FIFO is full Reset value:

0x0

RO 0x0

Enumerated values:

0x0 → Rx FIFO not full

0x1 → Rx FIFO is full

3 RFNE: Receive FIFO Not Empty. This bit is set when the receive FIFO contains

one or more entries; it is cleared when the receive FIFO is empty. - 0: Receive

FIFO is empty - 1: Receive FIFO is not empty Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → Rx FIFO is empty

0x1 → Rx FIFO not empty

2 TFE: Transmit FIFO Completely Empty. When the transmit FIFO is completely

empty, this bit is set. When it contains one or more valid entries, this bit is

cleared. This bit field does not request an interrupt. - 0: Transmit FIFO is not

empty - 1: Transmit FIFO is empty Reset value: 0x1

RO 0x1

Enumerated values:

0x0 → Tx FIFO not empty

0x1 → Tx FIFO is empty

1 TFNF: Transmit FIFO Not Full. Set when the transmit FIFO contains one or

more empty locations, and is cleared when the FIFO is full. - 0: Transmit FIFO

is full - 1: Transmit FIFO is not full Reset value: 0x1

RO 0x1

Enumerated values:
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Bits Description Type Reset

0x0 → Tx FIFO is full

0x1 → Tx FIFO not full

0 ACTIVITY: I2C Activity Status. Reset value: 0x0 RO 0x0

Enumerated values:

0x0 → I2C is idle

0x1 → I2C is active

I2C: IC_TXFLR Register

Offset: 0x74

Description

I2C Transmit FIFO Level Register This register contains the number of valid data entries in the transmit FIFO buffer.

It is cleared whenever: - The I2C is disabled - There is a transmit abort - that is, TX_ABRT bit is set in the

IC_RAW_INTR_STAT register - The slave bulk transmit mode is aborted The register increments whenever data is

placed into the transmit FIFO and decrements when data is taken from the transmit FIFO.

Table 1079. IC_TXFLR

Register
Bits Description Type Reset

31:5 Reserved. - -

4:0 TXFLR: Transmit FIFO Level. Contains the number of valid data entries in the

transmit FIFO.

Reset value: 0x0

RO 0x00

I2C: IC_RXFLR Register

Offset: 0x78

Description

I2C Receive FIFO Level Register This register contains the number of valid data entries in the receive FIFO buffer. It

is cleared whenever: - The I2C is disabled - Whenever there is a transmit abort caused by any of the events tracked

in IC_TX_ABRT_SOURCE The register increments whenever data is placed into the receive FIFO and decrements

when data is taken from the receive FIFO.

Table 1080. IC_RXFLR

Register
Bits Description Type Reset

31:5 Reserved. - -

4:0 RXFLR: Receive FIFO Level. Contains the number of valid data entries in the

receive FIFO.

Reset value: 0x0

RO 0x00

I2C: IC_SDA_HOLD Register

Offset: 0x7c

Description

I2C SDA Hold Time Length Register

The bits [15:0] of this register are used to control the hold time of SDA during transmit in both slave and master mode

(after SCL goes from HIGH to LOW).

The bits [23:16] of this register are used to extend the SDA transition (if any) whenever SCL is HIGH in the receiver in
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either master or slave mode.

Writes to this register succeed only when IC_ENABLE[0]=0.

The values in this register are in units of ic_clk period. The value programmed in IC_SDA_TX_HOLD must be greater than

the minimum hold time in each mode (one cycle in master mode, seven cycles in slave mode) for the value to be

implemented.

The programmed SDA hold time during transmit (IC_SDA_TX_HOLD) cannot exceed at any time the duration of the low

part of scl. Therefore the programmed value cannot be larger than N_SCL_LOW-2, where N_SCL_LOW is the duration of

the low part of the scl period measured in ic_clk cycles.

Table 1081.

IC_SDA_HOLD

Register

Bits Description Type Reset

31:24 Reserved. - -

23:16 IC_SDA_RX_HOLD: Sets the required SDA hold time in units of ic_clk period,

when DW_apb_i2c acts as a receiver.

Reset value: IC_DEFAULT_SDA_HOLD[23:16].

RW 0x00

15:0 IC_SDA_TX_HOLD: Sets the required SDA hold time in units of ic_clk period,

when DW_apb_i2c acts as a transmitter.

Reset value: IC_DEFAULT_SDA_HOLD[15:0].

RW 0x0001

I2C: IC_TX_ABRT_SOURCE Register

Offset: 0x80

Description

I2C Transmit Abort Source Register

This register has 32 bits that indicate the source of the TX_ABRT bit. Except for Bit 9, this register is cleared whenever

the IC_CLR_TX_ABRT register or the IC_CLR_INTR register is read. To clear Bit 9, the source of the

ABRT_SBYTE_NORSTRT must be fixed first; RESTART must be enabled (IC_CON[5]=1), the SPECIAL bit must be cleared

(IC_TAR[11]), or the GC_OR_START bit must be cleared (IC_TAR[10]).

Once the source of the ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same manner as other bits in

this register. If the source of the ABRT_SBYTE_NORSTRT is not fixed before attempting to clear this bit, Bit 9 clears for

one cycle and is then re-asserted.

Table 1082.

IC_TX_ABRT_SOURCE

Register

Bits Description Type Reset

31:23 TX_FLUSH_CNT: This field indicates the number of Tx FIFO Data Commands

which are flushed due to TX_ABRT interrupt. It is cleared whenever I2C is

disabled.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter or Slave-Transmitter

RO 0x000

22:17 Reserved. - -

16 ABRT_USER_ABRT: This is a master-mode-only bit. Master has detected the

transfer abort (IC_ENABLE[1])

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter

RO 0x0

Enumerated values:
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Bits Description Type Reset

0x0 → Transfer abort detected by master- scenario not present

0x1 → Transfer abort detected by master

15 ABRT_SLVRD_INTX: 1: When the processor side responds to a slave mode

request for data to be transmitted to a remote master and user writes a 1 in

CMD (bit 8) of IC_DATA_CMD register.

Reset value: 0x0

Role of DW_apb_i2c: Slave-Transmitter

RO 0x0

Enumerated values:

0x0 → Slave trying to transmit to remote master in read mode- scenario not

present

0x1 → Slave trying to transmit to remote master in read mode

14 ABRT_SLV_ARBLOST: This field indicates that a Slave has lost the bus while

transmitting data to a remote master. IC_TX_ABRT_SOURCE[12] is set at the

same time. Note: Even though the slave never 'owns' the bus, something could

go wrong on the bus. This is a fail safe check. For instance, during a data

transmission at the low-to-high transition of SCL, if what is on the data bus is

not what is supposed to be transmitted, then DW_apb_i2c no longer own the

bus.

Reset value: 0x0

Role of DW_apb_i2c: Slave-Transmitter

RO 0x0

Enumerated values:

0x0 → Slave lost arbitration to remote master- scenario not present

0x1 → Slave lost arbitration to remote master

13 ABRT_SLVFLUSH_TXFIFO: This field specifies that the Slave has received a

read command and some data exists in the TX FIFO, so the slave issues a

TX_ABRT interrupt to flush old data in TX FIFO.

Reset value: 0x0

Role of DW_apb_i2c: Slave-Transmitter

RO 0x0

Enumerated values:

0x0 → Slave flushes existing data in TX-FIFO upon getting read command-

scenario not present

0x1 → Slave flushes existing data in TX-FIFO upon getting read command

12 ARB_LOST: This field specifies that the Master has lost arbitration, or if

IC_TX_ABRT_SOURCE[14] is also set, then the slave transmitter has lost

arbitration.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter or Slave-Transmitter

RO 0x0

Enumerated values:
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Bits Description Type Reset

0x0 → Master or Slave-Transmitter lost arbitration- scenario not present

0x1 → Master or Slave-Transmitter lost arbitration

11 ABRT_MASTER_DIS: This field indicates that the User tries to initiate a Master

operation with the Master mode disabled.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter or Master-Receiver

RO 0x0

Enumerated values:

0x0 → User initiating master operation when MASTER disabled- scenario not

present

0x1 → User initiating master operation when MASTER disabled

10 ABRT_10B_RD_NORSTRT: This field indicates that the restart is disabled

(IC_RESTART_EN bit (IC_CON[5]) =0) and the master sends a read command

in 10-bit addressing mode.

Reset value: 0x0

Role of DW_apb_i2c: Master-Receiver

RO 0x0

Enumerated values:

0x0 → Master not trying to read in 10Bit addressing mode when RESTART

disabled

0x1 → Master trying to read in 10Bit addressing mode when RESTART

disabled

9 ABRT_SBYTE_NORSTRT: To clear Bit 9, the source of the

ABRT_SBYTE_NORSTRT must be fixed first; restart must be enabled

(IC_CON[5]=1), the SPECIAL bit must be cleared (IC_TAR[11]), or the

GC_OR_START bit must be cleared (IC_TAR[10]). Once the source of the

ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same

manner as other bits in this register. If the source of the

ABRT_SBYTE_NORSTRT is not fixed before attempting to clear this bit, bit 9

clears for one cycle and then gets reasserted. When this field is set to 1, the

restart is disabled (IC_RESTART_EN bit (IC_CON[5]) =0) and the user is trying

to send a START Byte.

Reset value: 0x0

Role of DW_apb_i2c: Master

RO 0x0

Enumerated values:

0x0 → User trying to send START byte when RESTART disabled- scenario not

present

0x1 → User trying to send START byte when RESTART disabled

RP2350 Datasheet

12.2. I2C 1024



Bits Description Type Reset

8 ABRT_HS_NORSTRT: This field indicates that the restart is disabled

(IC_RESTART_EN bit (IC_CON[5]) =0) and the user is trying to use the master

to transfer data in High Speed mode.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter or Master-Receiver

RO 0x0

Enumerated values:

0x0 → User trying to switch Master to HS mode when RESTART disabled-

scenario not present

0x1 → User trying to switch Master to HS mode when RESTART disabled

7 ABRT_SBYTE_ACKDET: This field indicates that the Master has sent a START

Byte and the START Byte was acknowledged (wrong behavior).

Reset value: 0x0

Role of DW_apb_i2c: Master

RO 0x0

Enumerated values:

0x0 → ACK detected for START byte- scenario not present

0x1 → ACK detected for START byte

6 ABRT_HS_ACKDET: This field indicates that the Master is in High Speed mode

and the High Speed Master code was acknowledged (wrong behavior).

Reset value: 0x0

Role of DW_apb_i2c: Master

RO 0x0

Enumerated values:

0x0 → HS Master code ACKed in HS Mode- scenario not present

0x1 → HS Master code ACKed in HS Mode

5 ABRT_GCALL_READ: This field indicates that DW_apb_i2c in the master mode

has sent a General Call but the user programmed the byte following the

General Call to be a read from the bus (IC_DATA_CMD[9] is set to 1).

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter

RO 0x0

Enumerated values:

0x0 → GCALL is followed by read from bus-scenario not present

0x1 → GCALL is followed by read from bus

4 ABRT_GCALL_NOACK: This field indicates that DW_apb_i2c in master mode

has sent a General Call and no slave on the bus acknowledged the General

Call.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter

RO 0x0
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Bits Description Type Reset

Enumerated values:

0x0 → GCALL not ACKed by any slave-scenario not present

0x1 → GCALL not ACKed by any slave

3 ABRT_TXDATA_NOACK: This field indicates the master-mode only bit. When

the master receives an acknowledgement for the address, but when it sends

data byte(s) following the address, it did not receive an acknowledge from the

remote slave(s).

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter

RO 0x0

Enumerated values:

0x0 → Transmitted data non-ACKed by addressed slave-scenario not present

0x1 → Transmitted data not ACKed by addressed slave

2 ABRT_10ADDR2_NOACK: This field indicates that the Master is in 10-bit

address mode and that the second address byte of the 10-bit address was not

acknowledged by any slave.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter or Master-Receiver

RO 0x0

Enumerated values:

0x0 → This abort is not generated

0x1 → Byte 2 of 10Bit Address not ACKed by any slave

1 ABRT_10ADDR1_NOACK: This field indicates that the Master is in 10-bit

address mode and the first 10-bit address byte was not acknowledged by any

slave.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter or Master-Receiver

RO 0x0

Enumerated values:

0x0 → This abort is not generated

0x1 → Byte 1 of 10Bit Address not ACKed by any slave

0 ABRT_7B_ADDR_NOACK: This field indicates that the Master is in 7-bit

addressing mode and the address sent was not acknowledged by any slave.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter or Master-Receiver

RO 0x0

Enumerated values:

0x0 → This abort is not generated

0x1 → This abort is generated because of NOACK for 7-bit address

I2C: IC_SLV_DATA_NACK_ONLY Register
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Offset: 0x84

Description

Generate Slave Data NACK Register

The register is used to generate a NACK for the data part of a transfer when DW_apb_i2c is acting as a slave-receiver.

This register only exists when the IC_SLV_DATA_NACK_ONLY parameter is set to 1. When this parameter disabled, this

register does not exist and writing to the register’s address has no effect.

A write can occur on this register if both of the following conditions are met: - DW_apb_i2c is disabled (IC_ENABLE[0] =

0) - Slave part is inactive (IC_STATUS[6] = 0) Note: The IC_STATUS[6] is a register read-back location for the internal

slv_activity signal; the user should poll this before writing the ic_slv_data_nack_only bit.

Table 1083.

IC_SLV_DATA_NACK_

ONLY Register

Bits Description Type Reset

31:1 Reserved. - -

0 NACK: Generate NACK. This NACK generation only occurs when DW_apb_i2c

is a slave-receiver. If this register is set to a value of 1, it can only generate a

NACK after a data byte is received; hence, the data transfer is aborted and the

data received is not pushed to the receive buffer.

When the register is set to a value of 0, it generates NACK/ACK, depending on

normal criteria. - 1: generate NACK after data byte received - 0: generate

NACK/ACK normally Reset value: 0x0

RW 0x0

Enumerated values:

0x0 → Slave receiver generates NACK normally

0x1 → Slave receiver generates NACK upon data reception only

I2C: IC_DMA_CR Register

Offset: 0x88

Description

DMA Control Register

The register is used to enable the DMA Controller interface operation. There is a separate bit for transmit and receive.

This can be programmed regardless of the state of IC_ENABLE.

Table 1084.

IC_DMA_CR Register
Bits Description Type Reset

31:2 Reserved. - -

1 TDMAE: Transmit DMA Enable. This bit enables/disables the transmit FIFO

DMA channel. Reset value: 0x0

RW 0x0

Enumerated values:

0x0 → transmit FIFO DMA channel disabled

0x1 → Transmit FIFO DMA channel enabled

0 RDMAE: Receive DMA Enable. This bit enables/disables the receive FIFO DMA

channel. Reset value: 0x0

RW 0x0

Enumerated values:

0x0 → Receive FIFO DMA channel disabled

0x1 → Receive FIFO DMA channel enabled

I2C: IC_DMA_TDLR Register

RP2350 Datasheet

12.2. I2C 1027



Offset: 0x8c

Description

DMA Transmit Data Level Register

Table 1085.

IC_DMA_TDLR

Register

Bits Description Type Reset

31:4 Reserved. - -

3:0 DMATDL: Transmit Data Level. This bit field controls the level at which a DMA

request is made by the transmit logic. It is equal to the watermark level; that is,

the dma_tx_req signal is generated when the number of valid data entries in

the transmit FIFO is equal to or below this field value, and TDMAE = 1.

Reset value: 0x0

RW 0x0

I2C: IC_DMA_RDLR Register

Offset: 0x90

Description

I2C Receive Data Level Register

Table 1086.

IC_DMA_RDLR

Register

Bits Description Type Reset

31:4 Reserved. - -

3:0 DMARDL: Receive Data Level. This bit field controls the level at which a DMA

request is made by the receive logic. The watermark level = DMARDL+1; that

is, dma_rx_req is generated when the number of valid data entries in the

receive FIFO is equal to or more than this field value + 1, and RDMAE =1. For

instance, when DMARDL is 0, then dma_rx_req is asserted when 1 or more

data entries are present in the receive FIFO.

Reset value: 0x0

RW 0x0

I2C: IC_SDA_SETUP Register

Offset: 0x94

Description

I2C SDA Setup Register

This register controls the amount of time delay (in terms of number of ic_clk clock periods) introduced in the rising edge

of SCL - relative to SDA changing - when DW_apb_i2c services a read request in a slave-transmitter operation. The

relevant I2C requirement is tSU:DAT (note 4) as detailed in the I2C Bus Specification. This register must be programmed

with a value equal to or greater than 2.

Writes to this register succeed only when IC_ENABLE[0] = 0.

Note: The length of setup time is calculated using [(IC_SDA_SETUP - 1) * (ic_clk_period)], so if the user requires 10 ic_clk

periods of setup time, they should program a value of 11. The IC_SDA_SETUP register is only used by the DW_apb_i2c

when operating as a slave transmitter.
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Table 1087.

IC_SDA_SETUP

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 SDA_SETUP: SDA Setup. It is recommended that if the required delay is

1000ns, then for an ic_clk frequency of 10 MHz, IC_SDA_SETUP should be

programmed to a value of 11. IC_SDA_SETUP must be programmed with a

minimum value of 2.

RW 0x64

I2C: IC_ACK_GENERAL_CALL Register

Offset: 0x98

Description

I2C ACK General Call Register

The register controls whether DW_apb_i2c responds with a ACK or NACK when it receives an I2C General Call address.

This register is applicable only when the DW_apb_i2c is in slave mode.

Table 1088.

IC_ACK_GENERAL_CA

LL Register

Bits Description Type Reset

31:1 Reserved. - -

0 ACK_GEN_CALL: ACK General Call. When set to 1, DW_apb_i2c responds with

a ACK (by asserting ic_data_oe) when it receives a General Call. Otherwise,

DW_apb_i2c responds with a NACK (by negating ic_data_oe).

RW 0x1

Enumerated values:

0x0 → Generate NACK for a General Call

0x1 → Generate ACK for a General Call

I2C: IC_ENABLE_STATUS Register

Offset: 0x9c

Description

I2C Enable Status Register

The register is used to report the DW_apb_i2c hardware status when the IC_ENABLE[0] register is set from 1 to 0; that is,

when DW_apb_i2c is disabled.

If IC_ENABLE[0] has been set to 1, bits 2:1 are forced to 0, and bit 0 is forced to 1.

If IC_ENABLE[0] has been set to 0, bits 2:1 is only be valid as soon as bit 0 is read as '0'.

Note: When IC_ENABLE[0] has been set to 0, a delay occurs for bit 0 to be read as 0 because disabling the DW_apb_i2c

depends on I2C bus activities.

Table 1089.

IC_ENABLE_STATUS

Register

Bits Description Type Reset

31:3 Reserved. - -
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Bits Description Type Reset

2 SLV_RX_DATA_LOST: Slave Received Data Lost. This bit indicates if a Slave-

Receiver operation has been aborted with at least one data byte received from

an I2C transfer due to the setting bit 0 of IC_ENABLE from 1 to 0. When read

as 1, DW_apb_i2c is deemed to have been actively engaged in an aborted I2C

transfer (with matching address) and the data phase of the I2C transfer has

been entered, even though a data byte has been responded with a NACK.

Note: If the remote I2C master terminates the transfer with a STOP condition

before the DW_apb_i2c has a chance to NACK a transfer, and IC_ENABLE[0]

has been set to 0, then this bit is also set to 1.

When read as 0, DW_apb_i2c is deemed to have been disabled without being

actively involved in the data phase of a Slave-Receiver transfer.

Note: The CPU can safely read this bit when IC_EN (bit 0) is read as 0.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → Slave RX Data is not lost

0x1 → Slave RX Data is lost

1 SLV_DISABLED_WHILE_BUSY: Slave Disabled While Busy (Transmit, Receive).

This bit indicates if a potential or active Slave operation has been aborted due

to the setting bit 0 of the IC_ENABLE register from 1 to 0. This bit is set when

the CPU writes a 0 to the IC_ENABLE register while:

(a) DW_apb_i2c is receiving the address byte of the Slave-Transmitter

operation from a remote master;

OR,

(b) address and data bytes of the Slave-Receiver operation from a remote

master.

When read as 1, DW_apb_i2c is deemed to have forced a NACK during any

part of an I2C transfer, irrespective of whether the I2C address matches the

slave address set in DW_apb_i2c (IC_SAR register) OR if the transfer is

completed before IC_ENABLE is set to 0 but has not taken effect.

Note: If the remote I2C master terminates the transfer with a STOP condition

before the DW_apb_i2c has a chance to NACK a transfer, and IC_ENABLE[0]

has been set to 0, then this bit will also be set to 1.

When read as 0, DW_apb_i2c is deemed to have been disabled when there is

master activity, or when the I2C bus is idle.

Note: The CPU can safely read this bit when IC_EN (bit 0) is read as 0.

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → Slave is disabled when it is idle
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Bits Description Type Reset

0x1 → Slave is disabled when it is active

0 IC_EN: ic_en Status. This bit always reflects the value driven on the output port

ic_en. - When read as 1, DW_apb_i2c is deemed to be in an enabled state. -

When read as 0, DW_apb_i2c is deemed completely inactive. Note: The CPU

can safely read this bit anytime. When this bit is read as 0, the CPU can safely

read SLV_RX_DATA_LOST (bit 2) and SLV_DISABLED_WHILE_BUSY (bit 1).

Reset value: 0x0

RO 0x0

Enumerated values:

0x0 → I2C disabled

0x1 → I2C enabled

I2C: IC_FS_SPKLEN Register

Offset: 0xa0

Description

I2C SS, FS or FM+ spike suppression limit

This register is used to store the duration, measured in ic_clk cycles, of the longest spike that is filtered out by the spike

suppression logic when the component is operating in SS, FS or FM+ modes. The relevant I2C requirement is tSP (table

4) as detailed in the I2C Bus Specification. This register must be programmed with a minimum value of 1.

Table 1090.

IC_FS_SPKLEN

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 IC_FS_SPKLEN: This register must be set before any I2C bus transaction can

take place to ensure stable operation. This register sets the duration,

measured in ic_clk cycles, of the longest spike in the SCL or SDA lines that will

be filtered out by the spike suppression logic. This register can be written only

when the I2C interface is disabled which corresponds to the IC_ENABLE[0]

register being set to 0. Writes at other times have no effect. The minimum

valid value is 1; hardware prevents values less than this being written, and if

attempted results in 1 being set. or more information, refer to 'Spike

Suppression'.

RW 0x07

I2C: IC_CLR_RESTART_DET Register

Offset: 0xa8

Description

Clear RESTART_DET Interrupt Register
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Table 1091.

IC_CLR_RESTART_DET

Register

Bits Description Type Reset

31:1 Reserved. - -

0 CLR_RESTART_DET: Read this register to clear the RESTART_DET interrupt

(bit 12) of IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_COMP_PARAM_1 Register

Offset: 0xf4

Description

Component Parameter Register 1

Note This register is not implemented and therefore reads as 0. If it was implemented it would be a constant read-only

register that contains encoded information about the component’s parameter settings. Fields shown below are the

settings for those parameters

Table 1092.

IC_COMP_PARAM_1

Register

Bits Description Type Reset

31:24 Reserved. - -

23:16 TX_BUFFER_DEPTH: TX Buffer Depth = 16 RO 0x00

15:8 RX_BUFFER_DEPTH: RX Buffer Depth = 16 RO 0x00

7 ADD_ENCODED_PARAMS: Encoded parameters not visible RO 0x0

6 HAS_DMA: DMA handshaking signals are enabled RO 0x0

5 INTR_IO: COMBINED Interrupt outputs RO 0x0

4 HC_COUNT_VALUES: Programmable count values for each mode. RO 0x0

3:2 MAX_SPEED_MODE: MAX SPEED MODE = FAST MODE RO 0x0

1:0 APB_DATA_WIDTH: APB data bus width is 32 bits RO 0x0

I2C: IC_COMP_VERSION Register

Offset: 0xf8

Description

I2C Component Version Register

Table 1093.

IC_COMP_VERSION

Register

Bits Description Type Reset

31:0 IC_COMP_VERSION RO 0x3230312a

I2C: IC_COMP_TYPE Register

Offset: 0xfc

Description

I2C Component Type Register
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Table 1094.

IC_COMP_TYPE

Register

Bits Description Type Reset

31:0 IC_COMP_TYPE: Designware Component Type number = 0x44_57_01_40. This

assigned unique hex value is constant and is derived from the two ASCII

letters 'DW' followed by a 16-bit unsigned number.

RO 0x44570140

12.3. SPI

Arm Documentation

Excerpted from the ARM PrimeCell Synchronous Serial Port (PL022) Technical Reference Manual. Used

with permission.

RP2350 has two identical SPI controllers, both based on an Arm Primecell Synchronous Serial Port (SSP) (PL022)

(Revision r1p4). This is distinct from the QSPI memory interface covered in Section 12.14.

Each controller supports the following features:

• Master or Slave modes

◦ Motorola SPI-compatible interface

◦ Texas Instruments synchronous serial interface

◦ National Semiconductor Microwire interface

• 8-location TX and RX FIFOs

• Interrupt generation to service FIFOs or indicate error conditions

• Can be driven from DMA

• Programmable clock rate

• Programmable data size 4-16 bits

Each controller can be connected to a number of GPIO pins as defined in the Bank 0 GPIO function table, Table 643

(Section 9.4).

The entries in the GPIO function table, such as "SPI0 TX", specify the SPI instance and the SPI signal for that instance

which are available on that GPIO. The signals in the table are described as:

SCK

Serial clock. Connects to the SPI peripheral clock signals described as SSPCLKOUT and SSPCLKIN in the following

sections. These pins are inputs in slave mode, and outputs in master mode.

TX

Serial data output. Connects to the SPI peripheral SSPTXD (data out) and nSSPOE (output enable) signals described in

the following sections. This is always a data output, independent of the bus role. The SPI peripheral controls

tristating depending on chip select status.

RX

Serial data input. Connects to the SPI peripheral SSPRXD data input described in the following sections. This is always

a data input, independent of the bus role.

CSn

Active-low chip select. Connects to the SPI peripheral signals SSPFSSOUT and SSPFSSIN described in the followinsg

sections. These pins are inputs in slave mode, and outputs in master mode.

The SPI uses clk_peri as its reference clock for SPI timing, and is referred to as SSPCLK in the following sections. clk_sys

is used as the bus clock, and is referred to as PCLK in the following sections (also see Figure 32).
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12.3.1. Changes from RP2040

The output enable of the SSPTXD data output (connecting to pins listed as SPI0 TX and SPI1 TX in the GPIO function

tables) is controlled by the SPI peripheral nSSPOE signal. The peripheral automatically tristates its output when

deselected in slave mode. This makes software control of the output enable unnecessary even when multiple slaves

share the data lines.

12.3.2. Overview

The PrimeCell SSP is a master or slave interface for synchronous serial communication with peripheral devices that

have Motorola SPI, National Semiconductor Microwire, or Texas Instruments synchronous serial interfaces.

The PrimeCell SSP performs serial-to-parallel conversion on data received from a peripheral device. The CPU accesses

data, control, and status information through the AMBA APB interface. The transmit and receive paths are buffered with

internal FIFO memories, enabling up to eight 16-bit values to be stored independently in both transmit and receive

modes. Serial data transmits on SSPTXD and is received on SSPRXD.

The PrimeCell SSP includes a programmable bit rate clock divider and prescaler to generate the serial output clock,

SSPCLKOUT, from the input clock, SSPCLK. Bit rates are supported to 2MHz and higher, subject to choice of frequency for

SSPCLK, and the maximum bit rate is determined by peripheral devices.

You can use the control registers SSPCR0 and SSPCR1 to program the PrimeCell SSP operating mode, frame format, and

size.

The following individually maskable interrupts are generated:

• SSPTXINTR requests servicing of the transmit buffer

• SSPRXINTR requests servicing of the receive buffer

• SSPRORINTR indicates an overrun condition in the receive FIFO

• SSPRTINTR indicates that a timeout period expired while data was present in the receive FIFO.

A single combined interrupt is asserted if any of the individual interrupts are asserted and unmasked. This interrupt is

connected to the processor interrupt controllers in RP2350.

In addition to the above interrupts, a set of DMA signals are provided for interfacing with a DMA controller.

Depending on the operating mode selected, the SSPFSSOUT output operates as:

• an active-HIGH frame synchronization output for Texas Instruments synchronous serial frame format

• an active-LOW slave select for SPI and Microwire.

12.3.3. Functional Description
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Figure 90. PrimeCell

SSP block diagram.

For clarity, does not

show the test logic.

12.3.3.1. AMBA APB interface

The AMBA APB interface generates read and write decodes for accesses to status and control registers, and transmit

and receive FIFO memories.

12.3.3.2. Register block

The register block stores data written, or to be read, across the AMBA APB interface.

12.3.3.3. Clock prescaler

When configured as a master, an internal prescaler, comprising two free-running reloadable serially linked counters,

provides the serial output clock SSPCLKOUT.

You can program the clock prescaler, using the SSPCPSR register, to divide SSPCLK by a factor of 2-254 in steps of two. By

not utilizing the least significant bit of the SSPCPSR register, division by an odd number is not possible which ensures that

a symmetrical, equal mark space ratio, clock is generated. See SSPCPSR.

The output of the prescaler is divided again by a factor of 1-256, by programming the SSPCR0 control register, to give

the final master output clock SSPCLKOUT.

 NOTE

The PCLK and SSPCLK clock inputs in Figure 90 are connected to the clk_sys and clk_peri system-level clock nets on

RP2350, respectively. By default, clk_peri attaches directly to the system clock. However, you can detach it to

maintain constant SPI frequency if the system clock is varied dynamically. See Figure 32 for an overview of the

RP2350 clock architecture.

12.3.3.4. Transmit FIFO

The common transmit (TX) FIFO is a 16-bit wide, 8-location deep memory buffer. CPU data written across the AMBA
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APB interface is stored in the buffer until read out by the transmit logic.

When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial conversion, and

transmission to the attached slave or master respectively, through the SSPTXD pin.

12.3.3.5. Receive FIFO

The common receive (RX) FIFO is a 16-bit wide, 8-location deep memory buffer. Received data from the serial interface

is stored in the buffer until read out by the CPU across the AMBA APB interface.

When configured as a master or slave, serial data received through the SSPRXD pin is registered prior to parallel loading

into the attached slave or master receive FIFO respectively.

12.3.3.6. Transmit and receive logic

When configured as a master, the clock for the attached slaves is derived from a divided-down version of SSPCLK through

the previously described prescaler operations. The master transmit logic successively reads a value from its transmit

FIFO and performs parallel to serial conversion on it. Then, the serial data stream and frame control signal,

synchronized to SSPCLKOUT, outputs through the SSPTXD pin to the attached slaves. The master receive logic performs

serial to parallel conversion on the incoming synchronous SSPRXD data stream, extracting and storing values into its

receive FIFO for subsequent reading through the APB interface.

When configured as a slave, the SSPCLKIN clock is provided by an attached master and used to time transmission and

reception sequences. The slave transmit logic, under control of the master clock, successively:

1. Reads a value from its transmit FIFO.

2. Performs parallel to serial conversion.

3. Outputs the serial data stream and frame control signal through the slave SSPTXD pin.

The slave receive logic performs serial to parallel conversion on the incoming SSPRXD data stream, extracting and storing

values into its receive FIFO, for subsequent reading through the APB interface.

12.3.3.7. Interrupt generation logic

The PrimeCell SSP generates four individual maskable, active-HIGH interrupts. A combined interrupt output is generated

as an OR function of the individual interrupt requests.

The transmit and receive dynamic data-flow interrupts, SSPTXINTR and SSPRXINTR, are separated from the status interrupts

so that data can be read or written in response to the FIFO trigger levels.

12.3.3.8. DMA interface

The PrimeCell SSP provides an interface to connect to a DMA controller, see Section 12.3.4.16.

12.3.3.9. Synchronizing registers and logic

The PrimeCell SSP supports both asynchronous and synchronous operation of the clocks, PCLK and SSPCLK.

Synchronization registers and handshaking logic have been implemented, and are active at all times. Synchronization of

control signals is performed on both directions of data flow, that is:

• from the PCLK to the SSPCLK domain

• from the SSPCLK to the PCLK domain.

RP2350 Datasheet

12.3. SPI 1036



12.3.4. Operation

12.3.4.1. Interface reset

The PrimeCell SSP is reset by the global reset signal, PRESETn, and a block-specific reset signal, nSSPRST. The device reset

controller asserts nSSPRST asynchronously and negates it synchronously to SSPCLK.

12.3.4.2. Configuring the SSP

Following reset, the PrimeCell SSP logic is disabled and must be configured when in this state. It is necessary to

program control registers SSPCR0 and SSPCR1 to configure the peripheral as a master or slave operating under one of the

following protocols:

• Motorola SPI

• Texas Instruments SSI

• National Semiconductor

The bit rate, derived from the external SSPCLK, requires the programming of the clock prescale register SSPCPSR.

12.3.4.3. Enable PrimeCell SSP operation

You can either prime the transmit FIFO, by writing up to eight 16-bit values when the PrimeCell SSP is disabled, or permit

the transmit FIFO service request to interrupt the CPU. Once enabled, transmission or reception of data begins on the

transmit, SSPTXD, and receive, SSPRXD, pins.

12.3.4.4. Clock ratios

There is a constraint on the ratio of the frequencies of PCLK to SSPCLK. The frequency of SSPCLK must be less than or equal

to that of PCLK. This ensures that control signals from the SSPCLK domain to the PCLK domain are guaranteed to get

synchronized before one frame duration:

.

In the slave mode of operation, the SSPCLKIN signal from the external master is double-synchronized and then delayed to

detect an edge. It takes three SSPCLKs to detect an edge on SSPCLKIN. SSPTXD has less setup time to the falling edge of

SSPCLKIN on which the master is sampling the line.

The setup and hold times on SSPRXD, with reference to SSPCLKIN, must be more conservative to ensure that it is at the right

value when the actual sampling occurs within the SSPMS. To ensure correct device operation, SSPCLK must be at least 12

times faster than the maximum expected frequency of SSPCLKIN.

The frequency selected for SSPCLK must accommodate the desired range of bit clock rates. The ratio of minimum SSPCLK

frequency to SSPCLKOUT maximum frequency in the case of the slave mode is 12, and for the master mode, it is two.

For example, at the maximum SSPCLK (clk_peri) frequency on RP2350 of 150MHz, the maximum peak bit rate in master

mode is 70.5Mb/s. This is achieved with the SSPCPSR register programmed with a value of 2, and the SCR[7:0] field in the

SSPCR0 register programmed with a value of 0.

In slave mode, the same maximum SSPCLK frequency of 150MHz can achieve a peak bit rate of 150 / 12 = 12.5Mb/s. The

SSPCPSR register can be programmed with a value of 12, and the SCR[7:0] field in the SSPCR0 register can be programmed

with a value of 0. Similarly, the ratio of SSPCLK maximum frequency to SSPCLKOUT minimum frequency is 254 × 256.

The minimum frequency of SSPCLK is governed by the following inequalities, both of which must be satisfied:

, for master mode
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, for slave mode.

The maximum frequency of SSPCLK is governed by the following inequalities, both of which must be satisfied:

, for master mode

, for slave mode.

12.3.4.5. Programming the SSPCR0 Control Register

The SSPCR0 register is used to:

• program the serial clock rate

• select one of the three protocols

• select the data word size, where applicable.

The Serial Clock Rate (SCR) value, in conjunction with the SSPCPSR clock prescale divisor value, CPSDVSR, is used to derive

the PrimeCell SSP transmit and receive bit rate from the external SSPCLK.

The frame format is programmed through the FRF bits, and the data word size through the DSS bits.

Bit phase and polarity, applicable to Motorola SPI format only, are programmed through the SPH and SPO bits.

12.3.4.6. Programming the SSPCR1 Control Register

The SSPCR1 register is used to:

• select master or slave mode

• enable a loop back test feature

• enable the PrimeCell SSP peripheral.

To configure the PrimeCell SSP as a master, clear the SSPCR1 register master or slave selection bit, MS, to 0. This is the

default value on reset.

Setting the SSPCR1 register MS bit to 1 configures the PrimeCell SSP as a slave. When configured as a slave, use the

SSPCR1 slave mode SSPTXD output disable bit (SOD) to enable or disable of the PrimeCell SSP SSPTXD signal. You can use this

in some multi-slave environments where masters might parallel broadcast.

To enable the PrimeCell SSP, set the Synchronous Serial Port Enable (SSE) bit to 1.

12.3.4.6.1. Bit rate generation

The serial bit rate is derived by dividing down the input clock, SSPCLK. The clock is first divided by an even prescale value

CPSDVSR in the range 2-254, and is programmed in SSPCPSR. The clock is divided again by a value in the range 1-256, that is

1 + SCR, where SCR is the value programmed in SSPCR0.

The following equation defines the frequency of the output signal bit clock, SSPCLKOUT:

For example, if SSPCLK is 125MHz, and CPSDVSR = 2, then SSPCLKOUT has a frequency range from 244kHz - 62.5MHz.

12.3.4.7. Frame format

Each data frame is between 4-16 bits long, depending on the size of data programmed, and is transmitted starting with

the MSB. You can select the following basic frame types:
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• Texas Instruments synchronous serial

• Motorola SPI

• National Semiconductor Microwire.

For all formats, the serial clock, SSPCLKOUT, is held inactive while the PrimeCell SSP is idle, and transitions at the

programmed frequency only during active transmission or reception of data. The idle state of SSPCLKOUT is utilized to

provide a receive timeout indication that occurs when the receive FIFO still contains data after a timeout period.

For Motorola SPI and National Semiconductor Microwire frame formats, the serial frame, SSPFSSOUT, pin is active-LOW,

and is asserted, pulled-down, during the entire transmission of the frame.

For Texas Instruments synchronous serial frame format, the SSPFSSOUT pin is pulsed for one serial clock period, starting

at its rising edge, prior to the transmission of each frame. For this frame format, both the PrimeCell SSP and the off-chip

slave device drive their output data on the rising edge of SSPCLKOUT, and latch data from the other device on the falling

edge.

Unlike the full-duplex transmission of the other two frame formats, the National Semiconductor Microwire format uses a

special master-slave messaging technique that operates at half-duplex. In this mode, when a frame begins, an 8-bit

control message is transmitted to the off-chip slave. During this transmit, the SSS receives no incoming data. After the

message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit

control message has been sent, responds with the requested data. The returned data can be 4-16 bits in length, making

the total frame length in the range 13-25 bits.

12.3.4.8. Texas Instruments synchronous serial frame format

Figure 91 shows the Texas Instruments synchronous serial frame format for a single transmitted frame.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPTXD/SSPRXD

nSSPOE

MSB LSB

4 to 16 bits

Figure 91. Texas

Instruments

synchronous serial

frame format, single

transfer

In this mode, SSPCLKOUT and SSPFSSOUT are forced LOW, and the transmit data line, SSPTXD is tristated whenever the

PrimeCell SSP is idle. When the bottom entry of the transmit FIFO contains data, SSPFSSOUT is pulsed HIGH for one

SSPCLKOUT period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the

transmit logic. On the next rising edge of SSPCLKOUT, the MSB of the 4-bit to 16-bit data frame is shifted out on the SSPTXD

pin. In a similar way, the MSB of the received data is shifted onto the SSPRXD pin by the off-chip serial slave device.

Both the PrimeCell SSP and the off-chip serial slave device then clock each data bit into their serial shifter on the falling

edge of each SSPCLKOUT. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge

of PCLK after the LSB has been latched.

Figure 92 shows the Texas Instruments synchronous serial frame format when back-to-back frames are transmitted.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPTXD/SSPRXD

nSSPOE (=0)

MSB LSB

4 to 16 bits

Figure 92. Texas

Instruments

synchronous serial

frame format,

continuous transfer
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12.3.4.9. Motorola SPI frame format

The Motorola SPI interface is a four-wire interface where the SSPFSSOUT signal behaves as a slave select. The main

feature of the Motorola SPI format is that you can program the inactive state and phase of the SSPCLKOUT signal using the

SPO and SPH bits of the SSPSCR0 control register.

12.3.4.9.1. SPO, clock polarity

When the SPO clock polarity control bit is LOW, it produces a steady state LOW value on the SSPCLKOUT pin. If the SPO clock

polarity control bit is HIGH, a steady state HIGH value is placed on the SSPCLKOUT pin when data is not being transferred.

12.3.4.9.2. SPH, clock phase

The SPH control bit selects the clock edge that captures data and enables it to change state. It has the most impact on

the first bit transmitted by either permitting or not permitting a clock transition before the first data capture edge.

When the SPH phase control bit is LOW, data is captured on the first clock edge transition.

When the SPH clock phase control bit is HIGH, data is captured on the second clock edge transition.

12.3.4.10. Motorola SPI Format with SPO=0, SPH=0

Figure 93 and Figure 94 shows a continuous transmission signal sequence for Motorola SPI frame format with SPO=0,

SPH=0. Figure 93 shows a single transmission signal sequence for Motorola SPI frame format with SPO=0, SPH=0.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPRXD MSB LSB Q

SSPRXD MSB LSB

4 to 16 bits

nSSPOE

Figure 93. Motorola

SPI frame format,

single transfer, with

SPO=0 and SPH=0

Figure 94 shows a continuous transmission signal sequence for Motorola SPI frame format with SPO=0, SPH=0.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPTXD/SSPRXD

nSSPOE (=0)

MSBLSB LSB MSB

4 to 16 bits

Figure 94. Motorola

SPI frame format,

single transfer, with

SPO=0 and SPH=0

In this configuration, during idle periods:

• the SSPCLKOUT signal is forced LOW

• the SSPFSSOUT signal is forced HIGH

• the transmit data line SSPTXD is arbitrarily forced LOW

• the nSSPOE pad enable signal is forced HIGH (this is not connected to the pad in RP2350)

• when the PrimeCell SSP is configured as a master, the nSSPCTLOE line is driven LOW, enabling the SSPCLKOUT pad,

active-LOW enable

• when the PrimeCell SSP is configured as a slave, the nSSPCTLOE line is driven HIGH, disabling the SSPCLKOUT pad,

active-LOW enable
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If the PrimeCell SSP is enable, and there is valid data within the transmit FIFO, the start of transmission is signified by

the SSPFSSOUT master signal being driven LOW. This causes slave data to be enabled onto the SSPRXD input line of the

master. The nSSPOE line is driven LOW, enabling the master SSPTXD output pad.

One-half SSPCLKOUT period later, valid master data is transferred to the SSPTXD pin. Now that both the master and slave

data have been set, the SSPCLKOUT master clock pin goes HIGH after one additional half SSPCLKOUT period.

The data is now captured on the rising and propagated on the falling edges of the SSPCLKOUT signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the SSPFSSOUT line is

returned to its idle HIGH state one SSPCLKOUT period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSPFSSOUT signal pulse HIGH between each data

word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not permit it

to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSPFSSIN pin of the slave device

between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the

SSPFSSOUT pin is returned to its idle state one SSPCLKOUT period after the last bit has been captured.

12.3.4.11. Motorola SPI Format with SPO=0, SPH=1

Figure 95 shows the transfer signal sequence for Motorola SPI format with SPO=0, SPH=1, and it covers both single and

continuous transfers.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPRXD MSB LSBQ Q

SSPRXD MSB LSB

4 to 16 bits

nSSPOE

Figure 95. Motorola

SPI frame format with

SPO=0 and SPH=1,

single and continuous

transfers

In this configuration, during idle periods:

• the SSPCLKOUT signal is forced LOW

• The SSPFSSOUT signal is forced HIGH

• the transmit data line SSPTXD is arbitrarily forced LOW

• the nSSPOE pad enable signal is forced HIGH (not connected to the pad in RP2350)

• when the PrimeCell SSP is configured as a master, the nSSPCTLOE line is driven LOW, enabling the SSPCLKOUT pad,

active-LOW enable

• when the PrimeCell SSP is configured as a slave, the nSSPCTLOE line is driven HIGH, disabling the SSPCLKOUT pad,

active-LOW enable

If the PrimeCell SSP is enabled, and there is valid data within the transmit FIFO, the start of transmission is signified by

the SSPFSSOUT master signal being driven LOW. The nSSPOE line is driven LOW, enabling the master SSPTXD output pad. After

an additional one half SSPCLKOUT period, both master and slave valid data is enabled onto their respective transmission

lines. At the same time, the SSPCLKOUT is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SSPCLKOUT signal.

In the case of a single word transfer, after all bits have been transferred, the SSPFSSOUT line is returned to its idle HIGH

state one SSPCLKOUT period after the last bit has been captured. For continuous back-to-back transfers, the SSPFSSOUT pin is

held LOW between successive data words and termination is the same as that of the single word transfer.
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12.3.4.12. Motorola SPI Format with SPO=1, SPH=0

Figure 96 and Figure 97 show single and continuous transmission signal sequences for Motorola SPI format with

SPO=1, SPH=0.

Figure 96 shows a single transmission signal sequence for Motorola SPI format with SPO=1, SPH=0.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPRXD MSB LSB Q

SSPRXD MSB LSB

4 to 16 bits

nSSPOE

Figure 96. Motorola

SPI frame format,

single transfer, with

SPO=1 and SPH=0

Figure 97 shows a continuous transmission signal sequence for Motorola SPI format with SPO=1, SPH=0.

 NOTE

In Figure 96, Q is an undefined signal.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPTXD/SSPRXD

nSSPOE (=0)

MSBLSB LSB MSB

4 to 16 bits

Figure 97. Motorola

SPI frame format,

continuous transfer,

with SPO=1 and

SPH=0

In this configuration, during idle periods:

• the SSPCLKOUT signal is forced HIGH

• the SSPFSSOUT signal is forced HIGH

• the transmit data line SSPTXD is arbitrarily forced LOW

• the nSSPOE pad enable signal is forced HIGH (not connected to the pad in RP2350)

• when the PrimeCell SSP is configured as a master, the nSSPCTLOE line is driven LOW, enabling the SSPCLKOUT pad,

active-LOW enable

• when the PrimeCell SSP is configured as a slave, the nSSPCTLOE line is driven HIGH, disabling the SSPCLKOUT pad,

active-LOW enable

If the PrimeCell SSP is enabled, and there is valid data within the transmit FIFO, the start of transmission is signified by

the SSPFSSOUT master signal being driven LOW, and this causes slave data to be immediately transferred onto the SSPRXD

line of the master. The nSSPOE line is driven LOW, enabling the master SSPTXD output pad.

One half period later, valid master data is transferred to the SSPTXD line. Now that both the master and slave data have

been set, the SSPCLKOUT master clock pin becomes LOW after one additional half SSPCLKOUT period. This means that data is

captured on the falling edges and be propagated on the rising edges of the SSPCLKOUT signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSPFSSOUT line is returned to

its idle HIGH state one SSPCLKOUT period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSPFSSOUT signal must be pulsed HIGH between each

data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not

permit it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSPFSSIN pin of the slave

device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer,

the SSPFSSOUT pin is returned to its idle state one SSPCLKOUT period after the last bit has been captured.

RP2350 Datasheet

12.3. SPI 1042



12.3.4.13. Motorola SPI Format with SPO=1, SPH=1

Figure 98 shows the transfer signal sequence for Motorola SPI format with SPO=1, SPH=1, and it covers both single and

continuous transfers.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPRXD MSB LSBQ Q

SSPRXD MSB LSB

4 to 16 bits

nSSPOE

Figure 98. Motorola

SPI frame format with

SPO=1 and SPH=1,

single and continuous

transfers

 NOTE

In Figure 98, Q is an undefined signal.

In this configuration, during idle periods:

• the SSPCLKOUT signal is forced HIGH

• the SSPFSSOUT signal is forced HIGH

• the transmit data line SSPTXD is arbitrarily forced LOW

• the nSSPOE pad enable signal is forced HIGH (not connected to the pad in RP2350)

• when the PrimeCell SSP is configured as a master, the nSSPCTLOE line is driven LOW, enabling the SSPCLKOUT pad,

active-LOW enable

• when the PrimeCell SSP is configured as a slave, the nSSPCTLOE line is driven HIGH, disabling the SSPCLKOUT pad,

active-LOW enable.

If the PrimeCell SSP is enabled, and there is valid data within the transmit FIFO, the start of transmission is signified by

the SSPFSSOUT master signal being driven LOW. The nSSPOE line is driven LOW, enabling the master SSPTXD output pad.

After an additional one half SSPCLKOUT period, both master and slave data are enabled onto their respective transmission

lines. At the same time, the SSPCLKOUT is enabled with a falling edge transition. Data is then captured on the rising edges

and propagated on the falling edges of the SSPCLKOUT signal.

After all bits have been transferred, in the case of a single word transmission, the SSPFSSOUT line is returned to its idle

HIGH state one SSPCLKOUT period after the last bit has been captured.

For continuous back-to-back transmissions, the SSPFSSOUT pin remains in its active-LOW state, until the final bit of the last

word has been captured, and then returns to its idle state as the previous section describes.

For continuous back-to-back transfers, the SSPFSSOUT pin is held LOW between successive data words and termination is

the same as that of the single word transfer.

12.3.4.14. National Semiconductor Microwire frame format

Figure 99 shows the National Semiconductor Microwire frame format for a single frame. Figure 100 shows the same

format when back to back frames are transmitted.
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SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPTXD

SSPRXD

nSSPOE

MSB LSB

MSB0 LSB

8-bit control

4 to 16 bits output data

Figure 99. Microwire

frame format, single

transfer

Microwire format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a

master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted

from the PrimeCell SSP to the off-chip slave device. During this transmission, the PrimeCell SSP receives no incoming

data. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit

of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bits in length,

making the total frame length in the range 13-25 bits.

In this configuration, during idle periods:

• SSPCLKOUT is forced LOW

• SSPFSSOUT is forced HIGH

• the transmit data line, SSPTXD, is arbitrarily forced LOW

• the nSSPOE pad enable signal is forced HIGH (not connected to the pad in RP2350)

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSPFSSOUT causes the value

contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and

the MSB of the 8-bit control frame to be shifted out onto the SSPTXD pin. SSPFSSOUT remains LOW for the duration of the

frame transmission. The SSPRXD pin remains tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SSPCLKOUT. After

the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave

responds by transmitting data back to the PrimeCell SSP. Each bit is driven onto SSPRXD line on the falling edge of

SSPCLKOUT. The PrimeCell SSP in turn latches each bit on the rising edge of SSPCLKOUT. At the end of the frame, for single

transfers, the SSPFSSOUT signal is pulled HIGH one clock period after the last bit has been latched in the receive serial

shifter, that causes the data to be transferred to the receive FIFO.

 NOTE

The off-chip slave device can tristate the receive line either on the falling edge of SSPCLKOUT after the LSB has been

latched by the receive shifter, or when the SSPFSSOUT pin goes HIGH.

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the

SSPFSSOUT line is continuously asserted, held LOW, and transmission of data occurs back-to-back. The control byte of the

next frame follows directly after the LSB of the received data from the current frame. Each of the received values is

transferred from the receive shifter on the falling edge SSPCLKOUT, after the LSB of the frame has been latched into the

PrimeCell SSP.

Figure 100 shows the National Semiconductor Microwire frame format when back-to-back frames are transmitted.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPTXD

SSPRXD

nSSPOE

MSB LSBLSB

MSB0 MSBLSB

8-bit control

4 to 16 bits output data

Figure 100. Microwire

frame format,

continuous transfers

In Microwire mode, the PrimeCell SSP slave samples the first bit of receive data on the rising edge of SSPCLKIN after

SSPFSSIN has gone LOW. Masters that drive a free-running SSPCKLIN must ensure that the SSPFSSIN signal has sufficient

setup and hold margins with respect to the rising edge of SSPCLKIN.

Figure 101 shows these setup and hold time requirements.
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With respect to the SSPCLKIN rising edge on which the first bit of receive data is to be sampled by the PrimeCell SSP

slave, SSPFSSIN must have a setup of at least two times the period of SSPCLK on which the PrimeCell SSP operates.

With respect to the SSPCLKIN rising edge previous to this edge, SSPFSSIN must have a hold of at least one SSPCLK period.

SSPCLKIN

SSPFSSIN

SSPRXD

t
Hold

=t
SSPCLK

t
Setup

=(2×t
SSPCLK

)

First RX data bit to be 
sampled by SSP slave

Figure 101. Microwire

frame format,

SSPFSSIN input setup

and hold requirements

12.3.4.15. Examples of master and slave configurations

Figure 102, Figure 103, and Figure 104 shows how you can connect the PrimeCell SSP (PL022) peripheral to other

synchronous serial peripherals, when it is configured as a master or a slave.

 NOTE

The SSP (PL022) does not support dynamic switching between master and slave in a system. Each instance is

configured and connected either as a master or slave.

Figure 102 shows the PrimeCell SSP (PL022) instanced twice, as a single master and one slave. The master can

broadcast to the slave through the master SSPTXD line. In response, the slave drives its nSSPOE signal HIGH, enabling its

SSPTXD data onto the SSPRXD line of the master.

PL022 configured 

as master

PL022 configured 

as slave

SSPRXD

nSSPOE

SSPTXD

SSPFSSIN

SSPFSSOUT

SSPCLKIN

nSSPCTLOE

SSPCLKOUT

SSPTXD

nSSPOE

SSPRXD

SSPFSSOUT

SSPFSSIN

SSPCLKOUT

nSSPCTLOE

SSPCLKIN

OV

OV

Figure 102. PrimeCell

SSP master coupled to

a PL022 slave

Figure 103 shows how an PrimeCell SSP (PL022), configured as master, interfaces to a Motorola SPI slave. The SPI Slave

Select (SS) signal is permanently tied LOW and configures it as a slave. Similar to the above operation, the master can

broadcast to the slave through the master PrimeCell SSP SSPTXD line. In response, the slave drives its SPI MISO port onto

the SSPRXD line of the master.
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PL022 configured 

as master

SPI slave

MOSI

MISO

SCK

SS

SSPTXD

nSSPOE

SSPRXD

SSPFSSOUT

SSPFSSIN

SSPCLKOUT

nSSPCTLOE

SSPCLKIN

OV

OV

Figure 103. PrimeCell

SSP master coupled to

an SPI slave

Figure 104 shows a Motorola SPI configured as a master and interfaced to an instance of a PrimeCell SSP (PL022)

configured as a slave. In this case, the slave Select Signal (SS) is permanently tied HIGH to configure it as a master. The

master can broadcast to the slave through the master SPI MOSI line and in response, the slave drives its nSSPOE signal

LOW. This enables its SSPTXD data onto the MISO line of the master.

SPI master PL022 configured 

as slave

MOSI

MISO

SCK

SS

SSPRXD

nSSPOE

SSPTXD

OV

SSPFSSIN

SSPFSSOUT

SSPCLKIN

nSSPCTLOE

SSPCLKOUT

Vdd

Figure 104. SPI master

coupled to a PrimeCell

SSP slave

12.3.4.16. PrimeCell DMA interface

The PrimeCell SSP provides an interface to connect to the DMA controller. The PrimeCell SSP DMA control register,

SSPDMACR controls the DMA operation of the PrimeCell SSP.

The DMA interface includes the following signals, for receive:

SSPRXDMASREQ

Single-character DMA transfer request, asserted by the SSP. This signal is asserted when the receive FIFO contains

at least one character.

SSPRXDMABREQ

Burst DMA transfer request, asserted by the SSP. This signal is asserted when the receive FIFO contains four or

more characters.

SSPRXDMACLR

DMA request clear, asserted by the DMA controller to clear the receive request signals. If DMA burst transfer is

requested, the clear signal is asserted during the transfer of the last data in the burst.

The DMA interface includes the following signals, for transmit:
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SSPTXDMASREQ

Single-character DMA transfer request, asserted by the SSP. This signal is asserted when there is at least one

empty location in the transmit FIFO.

SSPTXDMABREQ

Burst DMA transfer request, asserted by the SSP. This signal is asserted when the transmit FIFO contains four

characters or fewer.

SSPTXDMACLR

DMA request clear, asserted by the DMA controller, to clear the transmit request signals. If a DMA burst transfer is

requested, the clear signal is asserted during the transfer of the last data in the burst.

The burst transfer and single transfer request signals are not mutually exclusive. They can both be asserted at the same

time. For example, when there is more data than the watermark level of four in the receive FIFO, the burst transfer

request, and the single transfer request, are asserted. When the amount of data left in the receive FIFO is less than the

watermark level, the single request only is asserted. This is useful for situations where the number of characters left to

be received in the stream is less than a burst.

For example, if 19 characters must be received, the DMA controller then transfers four bursts of four characters, and

three single transfers to complete the stream.

 NOTE

For the remaining three characters, the PrimeCell SSP does not assert the burst request.

Each request signal remains asserted until the relevant DMA clear signal is asserted. After the request clear signal is de-

asserted, a request signal can become active again, depending on the conditions that previous sections describe. All

request signals are de-asserted if the PrimeCell SSP is disabled, or the DMA enable signal is cleared.

Table 1095 shows the trigger points for DMABREQ, for both the transmit and receive FIFOs.

Table 1095. DMA

trigger points for the

transmit and receive

FIFOs

Burst length

Watermark level Transmit, number of empty locations Receive, number of filled locations

1/2 4 4

Figure 105 shows the timing diagram for both a single transfer request, and a burst transfer request, with the

appropriate DMA clear signal. The signals are all synchronous to PCLK.

PCLK

DMABREQ

DMASREQ

DMACLR

Figure 105. DMA

transfer waveforms

12.3.5. List of Registers

The SPI0 and SPI1 registers start at base addresses of 0x40080000 and 0x40088000 respectively (defined as SPI0_BASE and

SPI1_BASE in SDK).

Table 1096. List of SPI

registers
Offset Name Info

0x000 SSPCR0 Control register 0, SSPCR0 on page 3-4

0x004 SSPCR1 Control register 1, SSPCR1 on page 3-5

0x008 SSPDR Data register, SSPDR on page 3-6

0x00c SSPSR Status register, SSPSR on page 3-7

0x010 SSPCPSR Clock prescale register, SSPCPSR on page 3-8
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Offset Name Info

0x014 SSPIMSC Interrupt mask set or clear register, SSPIMSC on page 3-9

0x018 SSPRIS Raw interrupt status register, SSPRIS on page 3-10

0x01c SSPMIS Masked interrupt status register, SSPMIS on page 3-11

0x020 SSPICR Interrupt clear register, SSPICR on page 3-11

0x024 SSPDMACR DMA control register, SSPDMACR on page 3-12

0xfe0 SSPPERIPHID0 Peripheral identification registers, SSPPeriphID0-3 on page 3-13

0xfe4 SSPPERIPHID1 Peripheral identification registers, SSPPeriphID0-3 on page 3-13

0xfe8 SSPPERIPHID2 Peripheral identification registers, SSPPeriphID0-3 on page 3-13

0xfec SSPPERIPHID3 Peripheral identification registers, SSPPeriphID0-3 on page 3-13

0xff0 SSPPCELLID0 PrimeCell identification registers, SSPPCellID0-3 on page 3-16

0xff4 SSPPCELLID1 PrimeCell identification registers, SSPPCellID0-3 on page 3-16

0xff8 SSPPCELLID2 PrimeCell identification registers, SSPPCellID0-3 on page 3-16

0xffc SSPPCELLID3 PrimeCell identification registers, SSPPCellID0-3 on page 3-16

SPI: SSPCR0 Register

Offset: 0x000

Description

Control register 0, SSPCR0 on page 3-4

Table 1097. SSPCR0

Register
Bits Description Type Reset

31:16 Reserved. - -

15:8 SCR: Serial clock rate. The value SCR is used to generate the transmit and

receive bit rate of the PrimeCell SSP. The bit rate is: F SSPCLK CPSDVSR x

(1+SCR) where CPSDVSR is an even value from 2-254, programmed through

the SSPCPSR register and SCR is a value from 0-255.

RW 0x00

7 SPH: SSPCLKOUT phase, applicable to Motorola SPI frame format only. See

Motorola SPI frame format on page 2-10.

RW 0x0

6 SPO: SSPCLKOUT polarity, applicable to Motorola SPI frame format only. See

Motorola SPI frame format on page 2-10.

RW 0x0

5:4 FRF: Frame format: 00 Motorola SPI frame format. 01 TI synchronous serial

frame format. 10 National Microwire frame format. 11 Reserved, undefined

operation.

RW 0x0

3:0 DSS: Data Size Select: 0000 Reserved, undefined operation. 0001 Reserved,

undefined operation. 0010 Reserved, undefined operation. 0011 4-bit data.

0100 5-bit data. 0101 6-bit data. 0110 7-bit data. 0111 8-bit data. 1000 9-bit

data. 1001 10-bit data. 1010 11-bit data. 1011 12-bit data. 1100 13-bit data.

1101 14-bit data. 1110 15-bit data. 1111 16-bit data.

RW 0x0

SPI: SSPCR1 Register

Offset: 0x004

Description

Control register 1, SSPCR1 on page 3-5
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Table 1098. SSPCR1

Register
Bits Description Type Reset

31:4 Reserved. - -

3 SOD: Slave-mode output disable. This bit is relevant only in the slave mode,

MS=1. In multiple-slave systems, it is possible for an PrimeCell SSP master to

broadcast a message to all slaves in the system while ensuring that only one

slave drives data onto its serial output line. In such systems the RXD lines

from multiple slaves could be tied together. To operate in such systems, the

SOD bit can be set if the PrimeCell SSP slave is not supposed to drive the

SSPTXD line: 0 SSP can drive the SSPTXD output in slave mode. 1 SSP must

not drive the SSPTXD output in slave mode.

RW 0x0

2 MS: Master or slave mode select. This bit can be modified only when the

PrimeCell SSP is disabled, SSE=0: 0 Device configured as master, default. 1

Device configured as slave.

RW 0x0

1 SSE: Synchronous serial port enable: 0 SSP operation disabled. 1 SSP

operation enabled.

RW 0x0

0 LBM: Loop back mode: 0 Normal serial port operation enabled. 1 Output of

transmit serial shifter is connected to input of receive serial shifter internally.

RW 0x0

SPI: SSPDR Register

Offset: 0x008

Description

Data register, SSPDR on page 3-6

Table 1099. SSPDR

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 DATA: Transmit/Receive FIFO: Read Receive FIFO. Write Transmit FIFO. You

must right-justify data when the PrimeCell SSP is programmed for a data size

that is less than 16 bits. Unused bits at the top are ignored by transmit logic.

The receive logic automatically right-justifies.

RWF -

SPI: SSPSR Register

Offset: 0x00c

Description

Status register, SSPSR on page 3-7

Table 1100. SSPSR

Register
Bits Description Type Reset

31:5 Reserved. - -

4 BSY: PrimeCell SSP busy flag, RO: 0 SSP is idle. 1 SSP is currently transmitting

and/or receiving a frame or the transmit FIFO is not empty.

RO 0x0

3 RFF: Receive FIFO full, RO: 0 Receive FIFO is not full. 1 Receive FIFO is full. RO 0x0

2 RNE: Receive FIFO not empty, RO: 0 Receive FIFO is empty. 1 Receive FIFO is

not empty.

RO 0x0

1 TNF: Transmit FIFO not full, RO: 0 Transmit FIFO is full. 1 Transmit FIFO is not

full.

RO 0x1

0 TFE: Transmit FIFO empty, RO: 0 Transmit FIFO is not empty. 1 Transmit FIFO

is empty.

RO 0x1
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SPI: SSPCPSR Register

Offset: 0x010

Description

Clock prescale register, SSPCPSR on page 3-8

Table 1101. SSPCPSR

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 CPSDVSR: Clock prescale divisor. Must be an even number from 2-254,

depending on the frequency of SSPCLK. The least significant bit always

returns zero on reads.

RW 0x00

SPI: SSPIMSC Register

Offset: 0x014

Description

Interrupt mask set or clear register, SSPIMSC on page 3-9

Table 1102. SSPIMSC

Register
Bits Description Type Reset

31:4 Reserved. - -

3 TXIM: Transmit FIFO interrupt mask: 0 Transmit FIFO half empty or less

condition interrupt is masked. 1 Transmit FIFO half empty or less condition

interrupt is not masked.

RW 0x0

2 RXIM: Receive FIFO interrupt mask: 0 Receive FIFO half full or less condition

interrupt is masked. 1 Receive FIFO half full or less condition interrupt is not

masked.

RW 0x0

1 RTIM: Receive timeout interrupt mask: 0 Receive FIFO not empty and no read

prior to timeout period interrupt is masked. 1 Receive FIFO not empty and no

read prior to timeout period interrupt is not masked.

RW 0x0

0 RORIM: Receive overrun interrupt mask: 0 Receive FIFO written to while full

condition interrupt is masked. 1 Receive FIFO written to while full condition

interrupt is not masked.

RW 0x0

SPI: SSPRIS Register

Offset: 0x018

Description

Raw interrupt status register, SSPRIS on page 3-10

Table 1103. SSPRIS

Register
Bits Description Type Reset

31:4 Reserved. - -

3 TXRIS: Gives the raw interrupt state, prior to masking, of the SSPTXINTR

interrupt

RO 0x1

2 RXRIS: Gives the raw interrupt state, prior to masking, of the SSPRXINTR

interrupt

RO 0x0

1 RTRIS: Gives the raw interrupt state, prior to masking, of the SSPRTINTR

interrupt

RO 0x0
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Bits Description Type Reset

0 RORRIS: Gives the raw interrupt state, prior to masking, of the SSPRORINTR

interrupt

RO 0x0

SPI: SSPMIS Register

Offset: 0x01c

Description

Masked interrupt status register, SSPMIS on page 3-11

Table 1104. SSPMIS

Register
Bits Description Type Reset

31:4 Reserved. - -

3 TXMIS: Gives the transmit FIFO masked interrupt state, after masking, of the

SSPTXINTR interrupt

RO 0x0

2 RXMIS: Gives the receive FIFO masked interrupt state, after masking, of the

SSPRXINTR interrupt

RO 0x0

1 RTMIS: Gives the receive timeout masked interrupt state, after masking, of the

SSPRTINTR interrupt

RO 0x0

0 RORMIS: Gives the receive over run masked interrupt status, after masking, of

the SSPRORINTR interrupt

RO 0x0

SPI: SSPICR Register

Offset: 0x020

Description

Interrupt clear register, SSPICR on page 3-11

Table 1105. SSPICR

Register
Bits Description Type Reset

31:2 Reserved. - -

1 RTIC: Clears the SSPRTINTR interrupt WC 0x0

0 RORIC: Clears the SSPRORINTR interrupt WC 0x0

SPI: SSPDMACR Register

Offset: 0x024

Description

DMA control register, SSPDMACR on page 3-12

Table 1106.

SSPDMACR Register
Bits Description Type Reset

31:2 Reserved. - -

1 TXDMAE: Transmit DMA Enable. If this bit is set to 1, DMA for the transmit

FIFO is enabled.

RW 0x0

0 RXDMAE: Receive DMA Enable. If this bit is set to 1, DMA for the receive FIFO

is enabled.

RW 0x0

SPI: SSPPERIPHID0 Register

Offset: 0xfe0
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Description

Peripheral identification registers, SSPPeriphID0-3 on page 3-13

Table 1107.

SSPPERIPHID0

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 PARTNUMBER0: These bits read back as 0x22 RO 0x22

SPI: SSPPERIPHID1 Register

Offset: 0xfe4

Description

Peripheral identification registers, SSPPeriphID0-3 on page 3-13

Table 1108.

SSPPERIPHID1

Register

Bits Description Type Reset

31:8 Reserved. - -

7:4 DESIGNER0: These bits read back as 0x1 RO 0x1

3:0 PARTNUMBER1: These bits read back as 0x0 RO 0x0

SPI: SSPPERIPHID2 Register

Offset: 0xfe8

Description

Peripheral identification registers, SSPPeriphID0-3 on page 3-13

Table 1109.

SSPPERIPHID2

Register

Bits Description Type Reset

31:8 Reserved. - -

7:4 REVISION: These bits return the peripheral revision RO 0x3

3:0 DESIGNER1: These bits read back as 0x4 RO 0x4

SPI: SSPPERIPHID3 Register

Offset: 0xfec

Description

Peripheral identification registers, SSPPeriphID0-3 on page 3-13

Table 1110.

SSPPERIPHID3

Register

Bits Description Type Reset

31:8 Reserved. - -

7:0 CONFIGURATION: These bits read back as 0x00 RO 0x00

SPI: SSPPCELLID0 Register

Offset: 0xff0

Description

PrimeCell identification registers, SSPPCellID0-3 on page 3-16
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Table 1111.

SSPPCELLID0 Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 SSPPCELLID0: These bits read back as 0x0D RO 0x0d

SPI: SSPPCELLID1 Register

Offset: 0xff4

Description

PrimeCell identification registers, SSPPCellID0-3 on page 3-16

Table 1112.

SSPPCELLID1 Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 SSPPCELLID1: These bits read back as 0xF0 RO 0xf0

SPI: SSPPCELLID2 Register

Offset: 0xff8

Description

PrimeCell identification registers, SSPPCellID0-3 on page 3-16

Table 1113.

SSPPCELLID2 Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 SSPPCELLID2: These bits read back as 0x05 RO 0x05

SPI: SSPPCELLID3 Register

Offset: 0xffc

Description

PrimeCell identification registers, SSPPCellID0-3 on page 3-16

Table 1114.

SSPPCELLID3 Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 SSPPCELLID3: These bits read back as 0xB1 RO 0xb1

12.4. ADC and Temperature Sensor

RP2350 has an internal analogue-digital converter (ADC) with the following features:

• SAR ADC (see Section 12.4.3)

• 500 kS/s (using an independent 48 MHz clock)

• 12-bit with 9.2 ENOB (see Section 12.4.4)

• Five or nine input mux:

◦ Four inputs available on QFN-60 package pins shared with GPIO[29:26]

◦ Eight inputs available on QFN-80 package pins shared with GPIO[47:40]

◦ One input dedicated to the internal temperature sensor (see Section 12.4.6)
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• Eight element receive sample FIFO

• Interrupt generation

• DMA interface (see Section 12.4.3.5)

Figure 106 shows the arrangement of ADC channels in the QFN-60 package. Figure 107 shows the same for QFN-80.

Figure 106. ADC

Connection Diagram

for QFN-60. This

package features four

external ADC inputs (0

through 3), on Bank 0

GPIOs 26 through 29.

The internal

temperature sensor

connects to a fifth

channel (channel 4).

This is functionally the

same ADC

arrangement as

RP2040, although the

underlying hardware is

different, to support

the additional

channels on QFN-80.
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Figure 107. ADC

Connection Diagram

for QFN-80. This

package features

eight external ADC

inputs (0 through 7),

on Bank 0 GPIOs 40

through 47. The

internal temperature

sensor connects to a

ninth channel (channel

8). Like in QFN-60,

each ADC input shares

a package pin with a

digital Bank 0 GPIO:

generally the digital

functions are disabled

when the ADC is in

use.

When using an ADC input shared with a GPIO pin, always disable the pin’s digital functions by setting IE low and OD high

in the pin’s pad control register. See Section 9.11.3, “Pad Control - User Bank” for details.

The maximum ADC input voltage is determined by the digital IO supply voltage (IOVDD), not the ADC supply voltage

(ADC_AVDD). For example, if IOVDD is powered at 1.8 V, the voltage on the ADC inputs should not exceed 1.8 V + 10% even if

ADC_AVDD is powered at 3.3 V. Voltages greater than IOVDD will result in leakage currents through the ESD protection

diodes. See Section 14.9, “Electrical Specifications” for details.

12.4.1. Changes from RP2040

• Removed spikes in differential nonlinearity at codes 0x200, 0x600, 0xa00 and 0xe00, as documented by erratum

RP2040-E11, improving the ADC’s precision by around 0.5 ENOB.
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• Increased the number of external ADC input channels from 4 to 8 channels, in the QFN-80 package only.

12.4.2. ADC controller

A digital controller manages the details of operating the RP2350 ADC, and provides additional functionality:

• One-shot or free-running capture mode

• Sample FIFO with DMA interface

• Pacing timer (16 integer bits, 8 fractional bits) for setting free-running sample rate

• Round-robin sampling of multiple channels in free-running capture mode

• Optional right-shift to 8 bits in free-running capture mode, so samples can be DMA’d to a byte buffer in system

memory

12.4.2.1. Channel connections

The ADC channels are connected to the following GPIOs in QFN-60

Table 1115. ADC

channel connections

on QFN-60

Channel Connection

0 GPIO[26]

1 GPIO[27]

2 GPIO[28]

3 GPIO[29]

4 Temperature Sensor

The ADC channels are connected to the following GPIOs in QFN-80

Table 1116. ADC

channel connections

on QFN-80

Channel Connection

0 GPIO[40]

1 GPIO[41]

2 GPIO[42]

3 GPIO[43]

4 GPIO[44]

5 GPIO[45]

6 GPIO[46]

7 GPIO[47]

8 Temperature Sensor

12.4.3. SAR ADC

The Successive Approximation Register Analogue to Digital Converter (SAR ADC) is a combination of digital controller

and analogue circuit as shown in Figure 108 and Figure 109 .
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Figure 108. SAR ADC

Block diagram QFN-60
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Figure 109. SAR ADC

Block diagram QFN-80

The ADC requires a 48 MHz clock (clk_adc), which could come from the USB PLL. Capturing a sample takes 96 clock

cycles (96 × 1/48 MHz) = 2 μs per sample (500 kS/s). The clock must be set up correctly before enabling the ADC.

Once the ADC block is provided with a clock, and its reset has been removed, writing a 1 to CS.EN will start a short

internal power-up sequence for the ADC’s analogue hardware. After a few clock cycles, CS.READY will go high,

indicating the ADC is ready to start its first conversion.

To save power, you can disable the ADC at any time by clearing CS.EN. CS.EN does not enable the temperature sensor

bias source; it is controlled separately, see Section 12.4.6 for details.

The ADC input is capacitive. When sampling, the ADC places about 1pF across the input. Packaging, PCB routing, and

other external factors introduce additional capacitance. The effective impedance, even when sampling at 500 kS/s, is

over 100 kΩ. DC measurements have no need to buffer.

12.4.3.1. One-shot Sample

To select an ADC input, write to to CS.AINSEL:

• On QFN-60, there are 4 external inputs, with an AINSEL value of 0 → 3 mapping to the ADC input on GPIO26 →
GPIO29. Set AINSEL to 4 to select the internal temperature sensor.

• On QFN-80, there are 8 external inputs, with an AINSEL value of 0 → 7 mapping to the ADC input on GPIO40 →
GPIO47. Set AINSEL to 8 to select the internal temperature sensor.

Switching AINSEL requires no settling time.

Write a 1 to CS.START_ONCE to immediately start a new conversion. CS.READY will go low to show that a conversion is

currently in progress. After 96 cycles of clk_adc, CS.READY will go high. The 12-bit conversion result is available in

RESULT.
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12.4.3.2. Free-running Sampling

When CS.START_MANY is set, the ADC automatically starts new conversions at regular intervals. The most recent

conversion result is always available in RESULT, but for IRQ or DMA-driven streaming of samples, you must enable the

ADC FIFO (Section 12.4.3.4).

By default (DIV = 0), new conversions start immediately after the previous conversion finishes, producing a new sample

every 96 cycles. At a clock frequency of 48 MHz, this produces 500 kS/s.

Set DIV.INT to a positive value n to trigger the ADC once per n + 1 cycles. The ADC ignores this if a conversion is

currently in progress, so generally n will be ≥ 96. For example, setting DIV.INT to 47999 runs the ADC at 1 kS/s, if running

from a 48 MHz clock.

The pacing timer supports fractional-rate division (first order delta sigma). When setting DIV.FRAC to a non-zero value,

the ADC starts a new conversion once per  cycles on average, by changing the sample interval

between  and .

12.4.3.3. Sampling Multiple Inputs

CS.RROBIN allows the ADC to sample multiple inputs in an interleaved fashion while performing free-running sampling.

Each bit in RROBIN corresponds to one of the five possible values of CS.AINSEL. When the ADC completes a conversion,

CS.AINSEL automatically cycles to the next input whose corresponding bit is set in RROBIN.

To disable the round-robin sampling feature, write all-zeroes to CS.RROBIN.

For example, if AINSEL is initially 0, and RROBIN is set to 0x06 (bits 1 and 2 are set), the ADC samples channels in the

following order:

1. Channel 0

2. Channel 1

3. Channel 2

4. Channel 1

5. Channel 2

6. Channel 1

7. Channel 2

The ADC continues to sample channels 1 and 2 indefinitely.

 NOTE

The initial value of AINSEL does not need to correspond with a set bit in RROBIN.

12.4.3.4. Sample FIFO

You can read ADC samples directly from the RESULT register or store them in a local 8-entry FIFO and read out from

FIFO. Use the FCS register to control FIFO operation.

When FCS.EN is set, the ADC writes each conversion result to the FIFO. A software interrupt handler or the RP2350 DMA

can read this sample from the FIFO when notified by the ADC’s IRQ or DREQ signals. Alternatively, software can poll the

status bits in FCS to wait for each sample to become available.

If the FIFO is full when a conversion completes, the sticky error flag FCS.OVER is set. When the FIFO is full, the current

FIFO contents do not change, so any conversions that complete during this time are lost.

Two flags control the data written to the FIFO by the ADC:
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• FCS.SHIFT right-shifts the FIFO data to eight bits in size (i.e. FIFO bits 7:0 are conversion result bits 11:4). This is

suitable for 8-bit DMA transfer to a byte buffer in memory, allowing deeper capture buffers, at the cost of some

precision.

• FCS.ERR sets the FIFO.ERR flag of each FIFO value, showing that a conversion error took place, i.e. the SAR failed

to converge.

Conversion errors indicate that the comparison of one or more bits failed to complete in the time allowed. Conversion

errors are typically caused by comparator metastability: the closer to the comparator threshold the input signal is, the

longer it takes to make a decision. The higher the comparator gain, the lower the probability of conversion errors.

 CAUTION

Because conversion errors produce undefined results, you should always discard samples that contain conversion

errors.

12.4.3.5. DMA

The RP2350 DMA (Section 12.6) can fetch ADC samples from the sample FIFO, by performing a normal memory-

mapped read on the FIFO register, paced by the ADC_DREQ system data request signal. Before you can use the DMA to

fetch ADC samples, you must:

• Enable the sample FIFO (FCS.EN) so that samples are written to it; the FIFO is disabled by default so that it does

not inadvertently fill when the ADC is used for one-shot conversions. Configure the ADC sample rate (Section

12.4.3.2) before starting the ADC.

• Enable the ADC’s data request handshake (DREQ) via FCS.DREQ_EN.

• In the DMA channel used for the transfer, select the DREQ_ADC data request signal (Section 12.6.4.1).

• Set the threshold for DREQ assertion (FCS.THRESH) to 1, so that the DMA transfers as soon as a single sample is

present in the FIFO. This is also the threshold used for IRQ assertion, so non-DMA use cases might prefer a higher

value for less frequent interrupts.

• If the DMA transfer size is set to 8 bits (so that the DMA transfers to a byte array in memory), set FCS.SHIFT to pre-

shift the FIFO samples to 8 bits of significance.

• To sample multiple input channels, write a mask of those channels to CS.RROBIN. Additionally, select the first

channel to sample with CS.AINSEL.

Once the ADC is suitably configured, start the DMA channel first, then the ADC conversion via CS.START_MANY. Once

the DMA completes, you can halt the ADC if you are finished sampling, or promptly start a new DMA transfer before the

FIFO fills up. After clearing CS.START_MANY to halt the ADC, software should poll CS.READY to make sure the last

conversion has finished, then drain any stray samples from the FIFO.

12.4.3.6. Interrupts

Use INTE to generate an interrupt when the FIFO level reaches a threshold defined in FCS.THRESH.

Use INTS to read the interrupt status. To clear the interrupt, drain the FIFO to a level lower than FCS.THRESH.

12.4.3.7. Supply

RP2350 separates the ADC supply out on its own pin to allow noise filtering.
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12.4.4. ADC ENOB

ADC ENOB details are shown in Table 1435.

12.4.5. INL and DNL

Details to follow.

12.4.6. Temperature Sensor

The temperature sensor measures the Vbe voltage of a biased bipolar diode, connected to the fifth ADC channel (

AINSEL=4) on QFN-60 or the ninth ADC channel (AINSEL=8) on QFN-80. Typically, Vbe = 0.706 V at 27 °C, with a slope of

-1.721 mV per degree. Therefore the temperature in °C can be approximated as follows:

As the Vbe and the Vbe slope can vary over the temperature range, and from device to device, some user calibration may

be required if accurate measurements are required.

The temperature sensor’s bias source must be enabled before use, via CS.TS_EN. This increases current consumption

on ADC_AVDD by approximately 40 μA.

 NOTE

The on board temperature sensor is very sensitive to errors in reference voltage. At 3.3 V, a value of 891 returned by

the ADC corresponds to a temperature of 20.1°C. At a reference voltage 1% lower than 3.3 V, the same reading of

891 correspond to a temperature of 24.3°C: a temperature change of over 4°C. To improve the accuracy of the

internal temperature sensor, consider adding an external reference voltage.

12.4.7. List of Registers

The ADC registers start at a base address of 0x400a0000 (defined as ADC_BASE in SDK).

Table 1117. List of

ADC registers
Offset Name Info

0x00 CS ADC Control and Status

0x04 RESULT Result of most recent ADC conversion

0x08 FCS FIFO control and status

0x0c FIFO Conversion result FIFO

0x10 DIV Clock divider. If non-zero, CS_START_MANY will start

conversions

at regular intervals rather than back-to-back.

The divider is reset when either of these fields are written.

Total period is 1 + INT + FRAC / 256

0x14 INTR Raw Interrupts

0x18 INTE Interrupt Enable

0x1c INTF Interrupt Force

0x20 INTS Interrupt status after masking & forcing
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ADC: CS Register

Offset: 0x00

Description

ADC Control and Status

Table 1118. CS

Register
Bits Description Type Reset

31:25 Reserved. - -

24:16 RROBIN: Round-robin sampling. 1 bit per channel. Set all bits to 0 to disable.

Otherwise, the ADC will cycle through each enabled channel in a round-robin

fashion.

The first channel to be sampled will be the one currently indicated by AINSEL.

AINSEL will be updated after each conversion with the newly-selected channel.

RW 0x000

15:12 AINSEL: Select analog mux input. Updated automatically in round-robin mode.

This is corrected for the package option so only ADC channels which are

bonded are available, and in the correct order

RW 0x0

11 Reserved. - -

10 ERR_STICKY: Some past ADC conversion encountered an error. Write 1 to

clear.

WC 0x0

9 ERR: The most recent ADC conversion encountered an error; result is

undefined or noisy.

RO 0x0

8 READY: 1 if the ADC is ready to start a new conversion. Implies any previous

conversion has completed.

0 whilst conversion in progress.

RO 0x0

7:4 Reserved. - -

3 START_MANY: Continuously perform conversions whilst this bit is 1. A new

conversion will start immediately after the previous finishes.

RW 0x0

2 START_ONCE: Start a single conversion. Self-clearing. Ignored if start_many is

asserted.

SC 0x0

1 TS_EN: Power on temperature sensor. 1 - enabled. 0 - disabled. RW 0x0

0 EN: Power on ADC and enable its clock.

1 - enabled. 0 - disabled.

RW 0x0

ADC: RESULT Register

Offset: 0x04

Table 1119. RESULT

Register
Bits Description Type Reset

31:12 Reserved. - -

11:0 Result of most recent ADC conversion RO 0x000

ADC: FCS Register

Offset: 0x08

Description

FIFO control and status
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Table 1120. FCS

Register
Bits Description Type Reset

31:28 Reserved. - -

27:24 THRESH: DREQ/IRQ asserted when level >= threshold RW 0x0

23:20 Reserved. - -

19:16 LEVEL: The number of conversion results currently waiting in the FIFO RO 0x0

15:12 Reserved. - -

11 OVER: 1 if the FIFO has been overflowed. Write 1 to clear. WC 0x0

10 UNDER: 1 if the FIFO has been underflowed. Write 1 to clear. WC 0x0

9 FULL RO 0x0

8 EMPTY RO 0x0

7:4 Reserved. - -

3 DREQ_EN: If 1: assert DMA requests when FIFO contains data RW 0x0

2 ERR: If 1: conversion error bit appears in the FIFO alongside the result RW 0x0

1 SHIFT: If 1: FIFO results are right-shifted to be one byte in size. Enables DMA

to byte buffers.

RW 0x0

0 EN: If 1: write result to the FIFO after each conversion. RW 0x0

ADC: FIFO Register

Offset: 0x0c

Description

Conversion result FIFO

Table 1121. FIFO

Register
Bits Description Type Reset

31:16 Reserved. - -

15 ERR: 1 if this particular sample experienced a conversion error. Remains in the

same location if the sample is shifted.

RF -

14:12 Reserved. - -

11:0 VAL RF -

ADC: DIV Register

Offset: 0x10

Description

Clock divider. If non-zero, CS_START_MANY will start conversions

at regular intervals rather than back-to-back.

The divider is reset when either of these fields are written.

Total period is 1 + INT + FRAC / 256

Table 1122. DIV

Register
Bits Description Type Reset

31:24 Reserved. - -

23:8 INT: Integer part of clock divisor. RW 0x0000

7:0 FRAC: Fractional part of clock divisor. First-order delta-sigma. RW 0x00
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ADC: INTR Register

Offset: 0x14

Description

Raw Interrupts

Table 1123. INTR

Register
Bits Description Type Reset

31:1 Reserved. - -

0 FIFO: Triggered when the sample FIFO reaches a certain level.

This level can be programmed via the FCS_THRESH field.

RO 0x0

ADC: INTE Register

Offset: 0x18

Description

Interrupt Enable

Table 1124. INTE

Register
Bits Description Type Reset

31:1 Reserved. - -

0 FIFO: Triggered when the sample FIFO reaches a certain level.

This level can be programmed via the FCS_THRESH field.

RW 0x0

ADC: INTF Register

Offset: 0x1c

Description

Interrupt Force

Table 1125. INTF

Register
Bits Description Type Reset

31:1 Reserved. - -

0 FIFO: Triggered when the sample FIFO reaches a certain level.

This level can be programmed via the FCS_THRESH field.

RW 0x0

ADC: INTS Register

Offset: 0x20

Description

Interrupt status after masking & forcing

Table 1126. INTS

Register
Bits Description Type Reset

31:1 Reserved. - -

0 FIFO: Triggered when the sample FIFO reaches a certain level.

This level can be programmed via the FCS_THRESH field.

RO 0x0

12.5. PWM
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12.5.1. Overview

Pulse width modulation (PWM) smoothly varies the average voltage of a digital signal using controlled-width positive

pulses at regular intervals. The fraction of time spent high is known as the duty cycle. This may be used to approximate

an analogue output or control switchmode power electronics.

The RP2350 PWM block has 12 identical slices. Each slice can drive two PWM output signals, or measure the frequency

or duty cycle of an input signal. The two outputs on each slice have the same period, but independently varying duty

cycles, so this gives a total of 24 controllable PWM outputs in the QFN-80 package.

Figure 110. A single

PWM slice. A 16-bit

counter counts from 0

up to some

programmed value,

and then wraps to

zero, or counts back

down again,

depending on PWM

mode. The A and B

outputs transition high

and low based on the

current count value

and the

preprogrammed A and

B thresholds. The

counter advances

based on a number of

events: it may be free-

running, or gated by

level or edge of an

input signal on the B

pin. A fractional

divider slows the

overall count rate for

finer control of output

frequency.

Each PWM slice is equipped with the following:

• 16-bit counter

• 8.4 fractional clock divider

• Two independent output channels, duty cycle from 0% to 100% inclusive

• Dual slope and trailing edge modulation

• Edge-sensitive input mode for frequency measurement

• Level-sensitive input mode for duty cycle measurement

• Configurable counter wrap value

◦ Wrap and level registers are double buffered and can be changed race-free while PWM is running

• Interrupt request and DMA request on counter wrap

• Phase can be precisely advanced or retarded while running (increments of one count)

Slices can be enabled or disabled simultaneously via a single global control register. Slices then run in lockstep, so that

more complex power circuitry can be switched by the outputs of multiple slices.

12.5.1.1. Changes from RP2040

• Increased the number of slices from 8 to 12, with the 4 additional slices available on GPIOs 32 through 47 in the

QFN-80 package.

• Added a second shared interrupt line (controlled by IRQ1_INTE), to aid use of PWM slices as simple repeating

timers.

12.5.2. Programmer’s Model

All GPIO pins on RP2350 can be used for PWM:
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Table 1127. Mapping

of PWM channels to

GPIO pins on RP2350.

This is also shown in

the main GPIO

function table, Table

643

GPIO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PWM Channel 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B

GPIO 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PWM Channel 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B

GPIO 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

PWM Channel 8A 8B 9A 9B 10A 10B 11A 11B 8A 8B 9A 9B 10A 10B 11A 11B

• The first 16 PWM channels (8 × 2-channel slices) appear on GPIOs 0 through 15, in the order PWM0 A, PWM0 B, PWM1 A,

and so on.

• This pattern repeats for GPIOs 16 through 31. GPIO16 is PWM0 A, GPIO17 is PWM0 B, and so on up to PWM7 B on GPIO31.

GPIO30 and above are available only in the QFN-80 package.

• The remaining 8 PWM channels (4 × 2-channel slices) appear on GPIOs 32 through 39, and then repeat on GPIOs

40 through 47.

• If you select the same PWM output on two GPIO pins, the same signal appears on both.

• If you use B pin as an input and select it on multiple GPIO pins, the PWM slice sees the logical OR of those two

GPIO inputs.

 NOTE

GPIOs 0 through 29 have the same channel assignment as RP2040 for pinout compatibility. This reduces the

maximum number of independent PWM outputs in the QFN-60 package option of RP2350, but you can still use

slices 8 through 11 for repeating timer interrupts in this package.

12.5.2.1. Pulse Width Modulation

The PWM hardware continuously compares an input value to a free-running counter. This produces a toggling output;

the amount of time spent at the high output level corresponds to the input value. The fraction of time spent at the high

signal level is known as the duty cycle of the signal.

The counting period is controlled by the TOP register, with a maximum possible period of 65536 cycles, as the counter

and TOP are 16 bits in size. Use the CC register to configure input values.
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Figure 111. The

counter repeatedly

counts from 0 to TOP,

forming a sawtooth

shape. The counter is

continuously

compared with some

input value. When the

input value is higher

than the counter, the

output is driven high.

Otherwise, the output

is low. The output

period T is defined by

the TOP value of the

counter, and how fast

the counter is

configured to count.

The average output

voltage, as a fraction

of the IO power

supply, is the input

value divided by the

counter period (TOP +

1)

This example shows the counting period and the A and B counter compare levels being configured on one of RP2350’s

PWM slices.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pwm/hello_pwm/hello_pwm.c Lines 14 - 29

14     // Tell GPIO 0 and 1 they are allocated to the PWM
15     gpio_set_function(0, GPIO_FUNC_PWM);
16     gpio_set_function(1, GPIO_FUNC_PWM);
17 
18     // Find out which PWM slice is connected to GPIO 0 (it's slice 0)
19     uint slice_num = pwm_gpio_to_slice_num(0);
20 
21     // Set period of 4 cycles (0 to 3 inclusive)
22     pwm_set_wrap(slice_num, 3);
23     // Set channel A output high for one cycle before dropping
24     pwm_set_chan_level(slice_num, PWM_CHAN_A, 1);
25     // Set initial B output high for three cycles before dropping
26     pwm_set_chan_level(slice_num, PWM_CHAN_B, 3);
27     // Set the PWM running
28     pwm_set_enabled(slice_num, true);

Figure 112 shows how the PWM hardware operates once it has been configured.

A

B

Count 0 1 2 3 0 1 2 3 0 1 2 3

Figure 112. The slice

counts repeatedly

from 0 to 3, which is

configured as the TOP

value. The output

waves therefore have

a period of 4. Output A

is high for 1 cycle in 4,

so the average output

voltage is 1/4 of the

IO supply voltage.

Output B is high for 3

cycles in every 4. Note

the rising edges of A

and B are always

aligned.

By default, PWM slices count upward until they reach the value of the TOP register. After they reach the TOP value, they

wrap to 0. Alternatively, set CSR_PH_CORRECT to 1 to enable phase-correct mode, where the counter counts downward after

reaching TOP, until it reaches 0 again.

Phase-correct mode centres the pulse on the same point no matter the duty cycle; its phase is not a function of duty

cycle. When phase-correct mode is enabled, the output frequency is halved. The slice spends two cycles at a count of

TOP and two cycles at a count of 0 each PWM period.
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Figure 113. In phase-

correct mode, the

counter counts back

down from TOP to 0

once it reaches TOP.

12.5.2.2. 0% and 100% Duty Cycle

The RP2350 PWM can produce toggle-free 0% and 100% duty cycle output.

TOP

Input (Count)
Count

Counter compare level

Counter

0
T 2T 3T

t

IOVDD

Output (Pulse)
V

GPIO pulse output

0
T 2T 3T

t

Figure 114. Glitch-free

0% duty cycle output

for CC = 0, and glitch-

free 100% duty cycle

output for CC = TOP +

1

A CC value of 0 produces a 0% output: the output signal is always low. A CC value of TOP + 1 (equal to the period when not

phase-corrected) produces a 100% output. If TOP is 254, the counter has a period of 255 cycles, and CC values in the

range of 0 to 255 inclusive will produce duty cycles in the range 0% to 100% inclusive.

Glitch-free output at 0% and 100% helps avoid switching losses, for instance, when a MOSFET is controlled at its

minimum and maximum current levels.

12.5.2.3. Double Buffering

Figure 115 shows how a change in input value produces a change in output duty cycle. This can approximate analogue

waveforms such as a sine wave.
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Figure 115. The input

value varies with each

counter period: first

TOP / 3, then 2 × TOP

/ 3, and finally TOP + 1

for 100% duty cycle.

Each increase in the

input value causes a

corresponding

increase in the output

duty cycle.

In Figure 115, the input value only changes at the instant where the counter wraps through 0. Figure 116 shows what

happens if the input value is allowed to change at any other time: an unwanted glitch is produced at the output.

TOP

Count

IOVDD

TOP/3

2×TOP/3

V

Input (Count)

Counter compare level

Counter

0
T 2T 3T

t

Output (Pulse)

GPIO pulse output

0
T 5T/3T/3 2T 3T

t

Figure 116. The input

value changes whilst

the counter is mid-

ramp. This produces

additional toggling at

the output.

The behaviour becomes even more perplexing if the TOP register is also modified. It would be difficult for software to

write to CC or TOP with the correct timing. To solve this, each slice has two copies of the CC and TOP registers: one copy

which software can modify, and another, internal copy which is updated from the first register at the instant the counter

wraps. Software can modify its copy of the register at will, but the changes are not captured by the PWM output until the

next wrap.

Figure 117 shows the sequence of events where a software interrupt handler changes the value of CC_A each time the

counter wraps.
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Counter at top

0 1 2 3

IRQ

CC_A

0 1 2CC_A latched

Figure 117. Each

counter wrap causes

the interrupt request

signal to assert. The

processor enters its

interrupt handler,

writes to its copy of

the CC register, and

clears the interrupt.

When the counter

wraps again, the

latched version of the

CC register is

instantaneously

updated with the most

recent value written by

software, and this

value controls the duty

cycle for the next

period. The IRQ is

reasserted so that

software can write

another fresh value to

its copy of the CC

register.

There is no limitation on what values can be written to CC or TOP, or when they are written. In normal PWM mode

(CSR_PH_CORRECT is 0), the latched copies update when the counter wraps to 0, which occurs once every TOP + 1 cycles. In

phase-correct mode (CSR_PH_CORRECT is 1), the latched copies update on the 0 to 0 count transition, when the counter

stops counting downward and begins to count upward again.

12.5.2.4. Clock Divider

Each slice has a 8 integer bit, 4 fractional bit fractional clock divider configured by the DIV register. The clock divider

allows you to slow the count rate by a factor of up to 256. To do this, the PWM generates an enable signal that gates

counter operation. This allows you to achieve output frequencies significantly lower than the system clock. For

instance, from a 125MHz system clock, the clock divider can slow the count rate to approximately 7.5Hz. Lower

frequencies than this require a system timer interrupt (Section 12.8).

.0DIV_FRAC

1DIV_INT

.0DIV_FRAC

Counter enable

3DIV_INT

Counter enable

.5DIV_FRAC

Counter enable

2DIV_INT

Figure 118. The clock

divider generates an

enable signal. The

counter only counts on

cycles where this

signal is high. A clock

divisor of 1 causes the

enable to be asserted

on every cycle, so the

counter counts by one

on every system clock

cycle. Higher divisors

cause the count

enable to be asserted

less frequently.

Fractional division

achieves an average

fractional counting

rate by spacing some

enable pulses further

apart than others.

The fractional divider is a first-order delta-sigma type.

The clock divider also extends the effective count range when using level-sensitive or edge-sensitive modes to take duty

cycle or frequency measurements.

12.5.2.5. Level-sensitive and Edge-sensitive Triggering

The PWM provides the following counter modes:

• Default free-running, counting continuously whenever the slice is enabled (free-running)

• Count continuously when a high level is detected on the B pin (level sensitive)

• Count once with each rising edge detected on the B pin (rising edge-sensitive)

• Count once with each falling edge detected on the B pin (falling edge-sensitive)
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Figure 119. PWM slice

event selection. The

counter advances

when its enable input

is high. This enable is

generated by two

sequential stages.

First, any one of four

event types (always

on, pin B high, pin B

rise, pin B fall) can

generate enable

pulses for the

fractional clock

divider. The divider

can reduce the rate of

the enable pulses,

before passing them

on to the counter.

Use the DIVMODE field in each slice’s CSR to select a mode. In free-running mode, the A and B pins are both outputs. In any

other mode, the B pin becomes an input that controls counter operation. CC_B is ignored when not in free-running mode.

You can measure the duty cycle or frequency of an input signal by running the slice for a fixed amount of time in level-

sensitive or edge-sensitive mode. Due to the type of edge-detect circuit used, the low period and high period of the

measured signal must both be strictly greater than the system clock period when taking frequency measurements.

The clock divider still operates in level-sensitive and edge-sensitive modes. At maximum division (DIV_INT is 0), the

counter only advances once per 256 high input cycles in level-sensitive modes, or once per 256 edges in edge-sensitive

mode. This allows you to take longer-running measurements, although the resolution is still 16 bits.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pwm/measure_duty_cycle/measure_duty_cycle.c Lines 19 - 37

19 float measure_duty_cycle(uint gpio) {
20     // Only the PWM B pins can be used as inputs.
21     assert(pwm_gpio_to_channel(gpio) == PWM_CHAN_B);
22     uint slice_num = pwm_gpio_to_slice_num(gpio);
23 
24     // Count once for every 100 cycles the PWM B input is high
25     pwm_config cfg = pwm_get_default_config();
26     pwm_config_set_clkdiv_mode(&cfg, PWM_DIV_B_HIGH);
27     pwm_config_set_clkdiv(&cfg, 100);
28     pwm_init(slice_num, &cfg, false);
29     gpio_set_function(gpio, GPIO_FUNC_PWM);
30 
31     pwm_set_enabled(slice_num, true);
32     sleep_ms(10);
33     pwm_set_enabled(slice_num, false);
34     float counting_rate = clock_get_hz(clk_sys) / 100;
35     float max_possible_count = counting_rate * 0.01;
36     return pwm_get_counter(slice_num) / max_possible_count;
37 }

12.5.2.6. Configuring PWM Period

When free-running, use the following three parameters to control the period of a PWM slice’s output (measured in

system clock cycles):

• The TOP register, which controls the maximum value of the counting period

• The CSR_PH_CORRECT bit, which enables phase-correct mode

• The DIV register, which controls the clock divider

The slice counts from 0 to TOP, then either wraps or begins counting backward, depending on the setting of

CSR_PH_CORRECT. The clock divider slows the rate of counting, with a maximum speed of one count per cycle, and a

minimum speed of one count per 256 cycles. Calculate the period in clock cycles with the following equation:
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To determine the output frequency based on the system clock frequency, use the following equation:

Set DIV_INT to 0 to divide the count rate by the maximum possible value of 256. You must not set any DIV_FRAC bits when

DIV_INT is 0.

12.5.2.7. Interrupt Request (IRQ) and DMA Data Request (DREQ)

The PWM block has two IRQ outputs. The interrupt status registers INTR, INTS0, INTS1, INTE0 and INTE1 allow software to:

• control which slices assert each of the two IRQs

• check which slices caused the assertion of an IRQ

• clear and acknowledge the interrupt

A slice generates an interrupt request each time its counter wraps (or, in phase-correct mode, each time the counter

returns to 0). This sets the flag corresponding to this slice in the raw interrupt status register, INTR. If this slice’s interrupt

is enabled in INTE, this flag causes the PWM block’s IRQ to be asserted, and the flag also appears in the masked

interrupt status register INTS.

To clear flags, write a mask back to INTR. This is demonstrated in the LED fade SDK example below:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pwm/led_fade/pwm_led_fade.c

 1 /**
 2  * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3  *
 4  * SPDX-License-Identifier: BSD-3-Clause
 5  */
 6 
 7 // Fade an LED between low and high brightness. An interrupt handler updates
 8 // the PWM slice's output level each time the counter wraps.
 9 
10 #include "pico/stdlib.h"
11 #include <stdio.h>
12 #include "pico/time.h"
13 #include "hardware/irq.h"
14 #include "hardware/pwm.h"
15 
16 void on_pwm_wrap() {
17     static int fade = 0;
18     static bool going_up = true;
19     // Clear the interrupt flag that brought us here
20     pwm_clear_irq(pwm_gpio_to_slice_num(PICO_DEFAULT_LED_PIN));
21 
22     if (going_up) {
23         ++fade;
24         if (fade > 255) {
25             fade = 255;
26             going_up = false;
27         }
28     } else {
29         --fade;
30         if (fade < 0) {
31             fade = 0;
32             going_up = true;
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33         }
34     }
35     // Square the fade value to make the LED's brightness appear more linear
36     // Note this range matches with the wrap value
37     pwm_set_gpio_level(PICO_DEFAULT_LED_PIN, fade * fade);
38 }
39 
40 int main() {
41 #ifndef PICO_DEFAULT_LED_PIN
42 #warning pwm/led_fade example requires a board with a regular LED
43 #else
44     // Tell the LED pin that the PWM is in charge of its value.
45     gpio_set_function(PICO_DEFAULT_LED_PIN, GPIO_FUNC_PWM);
46     // Figure out which slice we just connected to the LED pin
47     uint slice_num = pwm_gpio_to_slice_num(PICO_DEFAULT_LED_PIN);
48 
49     // Mask our slice's IRQ output into the PWM block's single interrupt line,
50     // and register our interrupt handler
51     pwm_clear_irq(slice_num);
52     pwm_set_irq_enabled(slice_num, true);
53     irq_set_exclusive_handler(PWM_DEFAULT_IRQ_NUM(), on_pwm_wrap);
54     irq_set_enabled(PWM_DEFAULT_IRQ_NUM(), true);
55 
56     // Get some sensible defaults for the slice configuration. By default, the
57     // counter is allowed to wrap over its maximum range (0 to 2**16-1)
58     pwm_config config = pwm_get_default_config();
59     // Set divider, reduces counter clock to sysclock/this value
60     pwm_config_set_clkdiv(&config, 4.f);
61     // Load the configuration into our PWM slice, and set it running.
62     pwm_init(slice_num, &config, true);
63 
64     // Everything after this point happens in the PWM interrupt handler, so we
65     // can twiddle our thumbs
66     while (1)
67         tight_loop_contents();
68 #endif
69 }

This scheme allows multiple slices to generate interrupts concurrently. A system interrupt handler determines which

slices caused the most recent interruption, and handles them appropriately. Normally, this means reloading those slices'

TOP or CC registers, but the PWM block can also be used as a source of regular interrupt requests for non-PWM purposes.

The same pulse which sets the interrupt flag in INTR is also available as a one-cycle data request to the RP2350 system

DMA. For each cycle the DMA sees a DREQ asserted, it makes one data transfer to its programmed location in as timely

a manner as possible. Combined with the double-buffered behaviour of CC and TOP, the DMA can efficiently stream data

to a PWM slice at a rate of one transfer per counter period. Alternatively, a PWM slice could serve as a pacing timer for

DMA transfers to some other memory-mapped hardware.

12.5.2.8. On-the-fly Phase Adjustment

For some applications, it is necessary to control the phase relationship between two PWM outputs on different slices.

The global enable register EN contains an alias of the CSR_EN flag for each slice. Use this register to start and stop several

slices simultaneously. If two slices with the same output frequency start at the same time, they run in perfect lockstep,

with a fixed phase relationship determined by the initial counter values.

The CSR_PH_ADV and CSR_PH_RET fields advance or retard a slice’s output phase by one count whilst it is running. They do so

by inserting or deleting pulses from the clock enable (the output of the clock divider), as shown in Figure 120.
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Figure 120. The clock

enable signal, output

by the clock divider,

controls the rate of

counting. Phase

advance forces the

clock enable high on

cycles where it is low,

causing the counter to

jump forward by one

count. Phase retard

forces the clock

enable low when it

would be high, holding

the counter back by

one count.

The counter cannot count faster than once per cycle, so PH_ADV requires DIV_INT > 1 or DIV_FRAC > 0. Likewise, the counter

will not start to count backward if PH_RET is asserted when the clock enable is permanently low.

To advance or retard the phase by one count, software writes 1 to PH_ADV or PH_RET. Once an enable pulse has been

inserted or deleted, the PH_ADV or PH_RET register bit returns to 0. Software can poll CSR until this happens. PH_ADV always

inserts a pulse into the next available gap; PH_RET always deletes the next available pulse.

12.5.3. List of Registers

The PWM registers start at a base address of 0x400a8000 (defined as PWM_BASE in the SDK).

Table 1128. List of

PWM registers
Offset Name Info

0x000 CH0_CSR Control and status register

0x004 CH0_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x008 CH0_CTR Direct access to the PWM counter

0x00c CH0_CC Counter compare values

0x010 CH0_TOP Counter wrap value

0x014 CH1_CSR Control and status register

0x018 CH1_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x01c CH1_CTR Direct access to the PWM counter

0x020 CH1_CC Counter compare values

0x024 CH1_TOP Counter wrap value

0x028 CH2_CSR Control and status register

0x02c CH2_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.
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Offset Name Info

0x030 CH2_CTR Direct access to the PWM counter

0x034 CH2_CC Counter compare values

0x038 CH2_TOP Counter wrap value

0x03c CH3_CSR Control and status register

0x040 CH3_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x044 CH3_CTR Direct access to the PWM counter

0x048 CH3_CC Counter compare values

0x04c CH3_TOP Counter wrap value

0x050 CH4_CSR Control and status register

0x054 CH4_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x058 CH4_CTR Direct access to the PWM counter

0x05c CH4_CC Counter compare values

0x060 CH4_TOP Counter wrap value

0x064 CH5_CSR Control and status register

0x068 CH5_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x06c CH5_CTR Direct access to the PWM counter

0x070 CH5_CC Counter compare values

0x074 CH5_TOP Counter wrap value

0x078 CH6_CSR Control and status register

0x07c CH6_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x080 CH6_CTR Direct access to the PWM counter

0x084 CH6_CC Counter compare values

0x088 CH6_TOP Counter wrap value

0x08c CH7_CSR Control and status register

0x090 CH7_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x094 CH7_CTR Direct access to the PWM counter

0x098 CH7_CC Counter compare values

0x09c CH7_TOP Counter wrap value

0x0a0 CH8_CSR Control and status register
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Offset Name Info

0x0a4 CH8_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x0a8 CH8_CTR Direct access to the PWM counter

0x0ac CH8_CC Counter compare values

0x0b0 CH8_TOP Counter wrap value

0x0b4 CH9_CSR Control and status register

0x0b8 CH9_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x0bc CH9_CTR Direct access to the PWM counter

0x0c0 CH9_CC Counter compare values

0x0c4 CH9_TOP Counter wrap value

0x0c8 CH10_CSR Control and status register

0x0cc CH10_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x0d0 CH10_CTR Direct access to the PWM counter

0x0d4 CH10_CC Counter compare values

0x0d8 CH10_TOP Counter wrap value

0x0dc CH11_CSR Control and status register

0x0e0 CH11_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x0e4 CH11_CTR Direct access to the PWM counter

0x0e8 CH11_CC Counter compare values

0x0ec CH11_TOP Counter wrap value

0x0f0 EN This register aliases the CSR_EN bits for all channels.

Writing to this register allows multiple channels to be enabled

or disabled simultaneously, so they can run in perfect sync.

For each channel, there is only one physical EN register bit,

which can be accessed through here or CHx_CSR.

0x0f4 INTR Raw Interrupts

0x0f8 IRQ0_INTE Interrupt Enable for irq0

0x0fc IRQ0_INTF Interrupt Force for irq0

0x100 IRQ0_INTS Interrupt status after masking & forcing for irq0

0x104 IRQ1_INTE Interrupt Enable for irq1

0x108 IRQ1_INTF Interrupt Force for irq1

0x10c IRQ1_INTS Interrupt status after masking & forcing for irq1
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PWM: CH0_CSR, CH1_CSR, …, CH10_CSR, CH11_CSR Registers

Offsets: 0x000, 0x014, …, 0x0c8, 0x0dc

Description

Control and status register

Table 1129. CH0_CSR,

CH1_CSR, …,

CH10_CSR, CH11_CSR

Registers

Bits Description Type Reset

31:8 Reserved. - -

7 PH_ADV: Advance the phase of the counter by 1 count, while it is running.

Self-clearing. Write a 1, and poll until low. Counter must be running

at less than full speed (div_int + div_frac / 16 > 1)

SC 0x0

6 PH_RET: Retard the phase of the counter by 1 count, while it is running.

Self-clearing. Write a 1, and poll until low. Counter must be running.

SC 0x0

5:4 DIVMODE RW 0x0

Enumerated values:

0x0 → Free-running counting at rate dictated by fractional divider

0x1 → Fractional divider operation is gated by the PWM B pin.

0x2 → Counter advances with each rising edge of the PWM B pin.

0x3 → Counter advances with each falling edge of the PWM B pin.

3 B_INV: Invert output B RW 0x0

2 A_INV: Invert output A RW 0x0

1 PH_CORRECT: 1: Enable phase-correct modulation. 0: Trailing-edge RW 0x0

0 EN: Enable the PWM channel. RW 0x0

PWM: CH0_DIV, CH1_DIV, …, CH10_DIV, CH11_DIV Registers

Offsets: 0x004, 0x018, …, 0x0cc, 0x0e0

Description

INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

Table 1130. CH0_DIV,

CH1_DIV, …,

CH10_DIV, CH11_DIV

Registers

Bits Description Type Reset

31:12 Reserved. - -

11:4 INT RW 0x01

3:0 FRAC RW 0x0

PWM: CH0_CTR, CH1_CTR, …, CH10_CTR, CH11_CTR Registers

Offsets: 0x008, 0x01c, …, 0x0d0, 0x0e4
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Table 1131. CH0_CTR,

CH1_CTR, …,

CH10_CTR, CH11_CTR

Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Direct access to the PWM counter RW 0x0000

PWM: CH0_CC, CH1_CC, …, CH10_CC, CH11_CC Registers

Offsets: 0x00c, 0x020, …, 0x0d4, 0x0e8

Description

Counter compare values

Table 1132. CH0_CC,

CH1_CC, …, CH10_CC,

CH11_CC Registers

Bits Description Type Reset

31:16 B RW 0x0000

15:0 A RW 0x0000

PWM: CH0_TOP, CH1_TOP, …, CH10_TOP, CH11_TOP Registers

Offsets: 0x010, 0x024, …, 0x0d8, 0x0ec

Table 1133. CH0_TOP,

CH1_TOP, …,

CH10_TOP, CH11_TOP

Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Counter wrap value RW 0xffff

PWM: EN Register

Offset: 0x0f0

Description

This register aliases the CSR_EN bits for all channels.

Writing to this register allows multiple channels to be enabled

or disabled simultaneously, so they can run in perfect sync.

For each channel, there is only one physical EN register bit,

which can be accessed through here or CHx_CSR.

Table 1134. EN

Register
Bits Description Type Reset

31:12 Reserved. - -

11 CH11 RW 0x0

10 CH10 RW 0x0

9 CH9 RW 0x0

8 CH8 RW 0x0

7 CH7 RW 0x0

6 CH6 RW 0x0

5 CH5 RW 0x0

4 CH4 RW 0x0

3 CH3 RW 0x0

2 CH2 RW 0x0

1 CH1 RW 0x0
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Bits Description Type Reset

0 CH0 RW 0x0

PWM: INTR Register

Offset: 0x0f4

Description

Raw Interrupts

Table 1135. INTR

Register
Bits Description Type Reset

31:12 Reserved. - -

11 CH11 WC 0x0

10 CH10 WC 0x0

9 CH9 WC 0x0

8 CH8 WC 0x0

7 CH7 WC 0x0

6 CH6 WC 0x0

5 CH5 WC 0x0

4 CH4 WC 0x0

3 CH3 WC 0x0

2 CH2 WC 0x0

1 CH1 WC 0x0

0 CH0 WC 0x0

PWM: IRQ0_INTE Register

Offset: 0x0f8

Description

Interrupt Enable for irq0

Table 1136.

IRQ0_INTE Register
Bits Description Type Reset

31:12 Reserved. - -

11 CH11 RW 0x0

10 CH10 RW 0x0

9 CH9 RW 0x0

8 CH8 RW 0x0

7 CH7 RW 0x0

6 CH6 RW 0x0

5 CH5 RW 0x0

4 CH4 RW 0x0

3 CH3 RW 0x0

2 CH2 RW 0x0
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Bits Description Type Reset

1 CH1 RW 0x0

0 CH0 RW 0x0

PWM: IRQ0_INTF Register

Offset: 0x0fc

Description

Interrupt Force for irq0

Table 1137.

IRQ0_INTF Register
Bits Description Type Reset

31:12 Reserved. - -

11 CH11 RW 0x0

10 CH10 RW 0x0

9 CH9 RW 0x0

8 CH8 RW 0x0

7 CH7 RW 0x0

6 CH6 RW 0x0

5 CH5 RW 0x0

4 CH4 RW 0x0

3 CH3 RW 0x0

2 CH2 RW 0x0

1 CH1 RW 0x0

0 CH0 RW 0x0

PWM: IRQ0_INTS Register

Offset: 0x100

Description

Interrupt status after masking & forcing for irq0

Table 1138.

IRQ0_INTS Register
Bits Description Type Reset

31:12 Reserved. - -

11 CH11 RO 0x0

10 CH10 RO 0x0

9 CH9 RO 0x0

8 CH8 RO 0x0

7 CH7 RO 0x0

6 CH6 RO 0x0

5 CH5 RO 0x0

4 CH4 RO 0x0

3 CH3 RO 0x0
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Bits Description Type Reset

2 CH2 RO 0x0

1 CH1 RO 0x0

0 CH0 RO 0x0

PWM: IRQ1_INTE Register

Offset: 0x104

Description

Interrupt Enable for irq1

Table 1139.

IRQ1_INTE Register
Bits Description Type Reset

31:12 Reserved. - -

11 CH11 RW 0x0

10 CH10 RW 0x0

9 CH9 RW 0x0

8 CH8 RW 0x0

7 CH7 RW 0x0

6 CH6 RW 0x0

5 CH5 RW 0x0

4 CH4 RW 0x0

3 CH3 RW 0x0

2 CH2 RW 0x0

1 CH1 RW 0x0

0 CH0 RW 0x0

PWM: IRQ1_INTF Register

Offset: 0x108

Description

Interrupt Force for irq1

Table 1140.

IRQ1_INTF Register
Bits Description Type Reset

31:12 Reserved. - -

11 CH11 RW 0x0

10 CH10 RW 0x0

9 CH9 RW 0x0

8 CH8 RW 0x0

7 CH7 RW 0x0

6 CH6 RW 0x0

5 CH5 RW 0x0

4 CH4 RW 0x0
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Bits Description Type Reset

3 CH3 RW 0x0

2 CH2 RW 0x0

1 CH1 RW 0x0

0 CH0 RW 0x0

PWM: IRQ1_INTS Register

Offset: 0x10c

Description

Interrupt status after masking & forcing for irq1

Table 1141.

IRQ1_INTS Register
Bits Description Type Reset

31:12 Reserved. - -

11 CH11 RO 0x0

10 CH10 RO 0x0

9 CH9 RO 0x0

8 CH8 RO 0x0

7 CH7 RO 0x0

6 CH6 RO 0x0

5 CH5 RO 0x0

4 CH4 RO 0x0

3 CH3 RO 0x0

2 CH2 RO 0x0

1 CH1 RO 0x0

0 CH0 RO 0x0

12.6. DMA

The RP2350 Direct Memory Access (DMA) controller performs bulk data transfers on a processor’s behalf. This leaves

processors free to attend to other tasks or enter low-power sleep states. The DMA dual bus manager ports can issue

one read and one write access per cycle. The data throughput is therefore far greater than one of RP2350’s processors.
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Figure 121. DMA

Architecture Overview.

The read manager can

read data from some

address every clock

cycle. Likewise, the

write manager can

write to another

address. The address

generator produces

matched pairs of read

and write addresses,

which the managers

consume through the

address FIFOs. The

DMA can run up to 16

transfer sequences

simultaneously,

supervised by

software via the

control and status

registers.

The DMA can perform one read access and one write access, up to 32 bits in size, every clock cycle. There are 16

independent channels, each of which supervises a sequence of bus transfers in one of the following scenarios:

Memory-to-peripheral

a peripheral signals the DMA when it needs more data to transmit. The DMA reads data from an array in RAM or

flash, and writes to the peripheral’s data FIFO.

Peripheral-to-memory

a peripheral signals the DMA when it has received data. The DMA reads this data from the peripheral’s data FIFO,

and writes it to an array in RAM.

Memory-to-memory

the DMA transfers data between two buffers in RAM, as fast as possible.

Each channel has its own control and status registers (CSRs) that software can use to program and monitor the

channel’s progress. When multiple channels are active at the same time, the DMA shares bandwidth evenly between the

channels, with round-robin over all channels which are currently requesting data transfers.

The transfer size can be either 32, 16, or 8 bits. This is configured once per channel: source transfer size and

destination transfer size are the same. The DMA performs byte lane replication on narrow writes, so byte data is

available in all 4 bytes of the databus, and halfword data in both halfwords.

Channels can be combined in varied ways for more sophisticated behaviour and greater autonomy. For example, one

channel can configure another, loading configuration data from a sequence of control blocks in memory, and the

second can then call back to the first via the CHAIN_TO option when it needs to be reconfigured.

Making the DMA more autonomous means that much less processor supervision is required: overall this allows the

system to do more at once, or to dissipate less power.

12.6.1. Changes from RP2040

The following new features have been added:

• Increased the number of DMA channels from 12 to 16.

• Increased the number of shared IRQ outputs from 2 to 4.

• Channels can be assigned to security domains using SECCFG_CH0 through SECCFG_CH15.

• The DMA now filters bus accesses using the built-in memory protection unit (Section 12.6.6.3).

• Interrupts can be assigned to security domains using SECCFG_IRQ0 through SECCFG_IRQ3.

• Pacing timers and the CRC sniffer can be assigned to security domains using the SECCFG_MISC register.

• The four most-significant bits of TRANS_COUNT (CH0_TRANS_COUNT) are redefined as the MODE field, which defines

what happens when TRANS_COUNT reaches zero:
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◦ This backward-incompatible change reduces the maximum transfers in one sequence from 232-1 to 228-1.

◦ Mode 0x0 has the same behaviour as RP2040, so there is no need to modify software that performs less than

256 million transfers at a time.

◦ Mode 0x1, "trigger self", allows a channel to automatically restart itself after finishing a transfer sequence, in

addition to the usual end-of-sequence actions like raising an interrupt or triggering other channels. This can

be used for example to get periodic interrupts from streaming ring buffer transfers.

◦ Mode 0xf, "endless", allows a channel to run forever: TRANS_COUNT does not decrement.

• New CH0_CTRL_TRIG.INCR_READ_REV and CH0_CTRL_TRIG.INCR_WRITE_REV fields allow addresses to

decrement rather than increment, or to increment by two.

Some existing behaviour has been refined:

• The logic which adjusts values read from WRITE_ADDR and READ_ADDR according to the number of in-flight transfers is

disabled for address-wrapping and non-incrementing transfers (erratum RP2040-E12).

• You can now poll the ABORT register to wait for completion of an aborted channel (erratum RP2040-E13).

• DMA completion actions such as CHAIN_TO are now strictly ordered against the last write completion, so a CHAIN_TO

on a channel whose registers you write to is a well-defined operation.

◦ This enables the use of control blocks which do not include one of the four trigger register aliases.

◦ Previously, a channel was considered to complete on the first cycle of its last write’s data phase. Now, a

channel is considered to complete on the last cycle of its last write’s data phase. This is usually the same

cycle, but it can be later when the DMA encounters a write data-phase bus stall.

• Previously, the DMA’s internal arbitration logic inserted an idle cycle after completing a round of active high-priority

channels (CH0_CTRL_TRIG.HIGH_PRIORITY), even if there were no active low-priority requests. This reduced DMA

throughput when lightly loaded. This idle cycle has been removed, eliminating lost throughput.

• IRQ assertion latency has been reduced by one cycle.

12.6.2. Configuring Channels

Each channel has four control/status registers:

• READ_ADDR (CH0_READ_ADDR) is the address of the next memory location to read.

• WRITE_ADDR (CH0_WRITE_ADDR) is the address of the next memory location to write.

• TRANS_COUNT (CH0_TRANS_COUNT) shows the number of transfers remaining in the current transfer sequence and

programs the number of transfers in the next transfer sequence (see Section 12.6.2.2).

• CTRL (CH0_CTRL_TRIG) configures all other aspects of the channel’s behaviour, enables/disables the channel, and

provides completion status.

To directly instruct the DMA channel to perform a data transfer, software writes to these four registers, and then

triggers the channel (Section 12.6.3). To make the DMA more autonomous, you can also program one DMA channel to

write to another channel’s configuration registers, queueing up many transfer sequences in advance.

All four are live registers; they update their status continuously as the channel progresses.

12.6.2.1. Read and Write Addresses

READ_ADDR and WRITE_ADDR contain the address the channel will next read from, and write to, respectively. These registers

update automatically after each read/write access, incrementing to the next read/write address as required. The size of

the increment varies according to:

• the transfer size: 1, 2 or 4 byte bus accesses as per CH0_CTRL_TRIG.DATA_SIZE
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• the increment enable for each address register: CH0_CTRL_TRIG.INCR_READ and CH0_CTRL_TRIG.INCR_WRITE

• the increment direction: CH0_CTRL_TRIG.INCR_READ_REV and CH0_CTRL_TRIG.INCR_WRITE_REV

Software should generally program these registers with new start addresses each time a new transfer sequence starts.

If READ_ADDR and WRITE_ADDR are not reprogrammed, the DMA will use the current values as start addresses for the next

transfer. For example:

• If the address does not increment (e.g. it is the address of a peripheral FIFO), and the next transfer sequence is

to/from that same address, there is no need to write to the register again.

• When transferring to/from a consecutive series of buffers in memory (e.g. scattering and gathering), an address

register will already have incremented to the start of the next buffer at the completion of a transfer.

By not programming all four CSRs for each transfer sequence, software can use shorter interrupt handlers, and more

compact control block formats when used with channel chaining (see register aliases in Section 12.6.3.1, chaining in

Section 12.6.3.2).

12.6.2.1.1. Address Alignment

READ_ADDR and WRITE_ADDR must be aligned to the transfer size, specified in CH0_CTRL_TRIG.DATA_SIZE. For 32-bit

transfers, the address must be a multiple of four, and for 16-bit transfers, the address must be a multiple of two.

Software is responsible for correctly aligning addresses written to READ_ADDR and WRITE_ADDR: the DMA does not enforce

alignment.

If software initially writes a correctly aligned address, the address will remain correctly aligned throughout the transfer

sequence, because the DMA always increments READ_ADDR and WRITE_ADDR by a multiple of the transfer size. Specifically, it

increments by transfer size times -1, 0, 1 or 2, depending on the values of CH0_CTRL_TRIG.INCR_READ,

CH0_CTRL_TRIG.INCR_WRITE, CH0_CTRL_TRIG.INCR_READ_REV and CH0_CTRL_TRIG.INCR_WRITE_REV.

The DMA MPU and system-level bus security filters perform protection checks on the lowest byte address of all bytes

transferred on a given cycle (i.e. to the present value of READ_ADDR/WRITE_ADDR). RP2350 memory hardware ensures

unaligned bus accesses do not cause data to be read/written from the other side of a protection boundary. This means

that unaligned access can not be used to violate the memory protection model. Other than this, the result of an

unaligned access is unspecified.

12.6.2.2. Transfer Count

Reading TRANS_COUNT (CH0_TRANS_COUNT) returns the number of transfers remaining in the current transfer sequence.

This value updates continuously as the channel progresses. Writing to TRANS_COUNT sets the length of the next transfer

sequence. Up to 228-1 transfers can be performed in one sequence (0x0fffffff, approximately 256 million).

Each time the channel starts a new transfer sequence, the most recent value written to TRANS_COUNT is copied to the live

transfer counter, which will then start to decrement again as the new transfer sequence makes progress. For debugging

purposes, the DBG_TCR (TRANS_COUNT reload value) registers display the last value written to each channel’s TRANS_COUNT.

If the channel is triggered multiple times without intervening writes to TRANS_COUNT, it performs the same number of

transfers each time. For example, when chained to, one channel might load a fixed-size control block into another

channel’s CSRs. TRANS_COUNT would be programmed once by software, and then reload automatically every time.

Alternatively, TRANS_COUNT can be written with a new value before starting each transfer sequence. If TRANS_COUNT is the

channel trigger (see Section 12.6.3.1), the channel will start immediately, and the value just written will be used, not the

value currently in the reload register.
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 NOTE

The TRANS_COUNT is the number of transfers to be performed. The total number of bytes transferred is TRANS_COUNT

times the size of each transfer in bytes, given by CTRL.DATA_SIZE.

12.6.2.2.1. Count Modes

The four most-significant bits of TRANS_COUNT contain the MODE field (CH0_TRANS_COUNT.MODE), which modifies the

counting behaviour of TRANS_COUNT. Mode 0x0 is the default: TRANS_COUNT decrements once for every bus transfer, and the

channel halts once TRANS_COUNT reaches zero and all in-flight transfers have finished. The value of 0x0 is chosen for

backward-compatibility with RP2040 software, which expects the TRANS_COUNT register to contain a 32-bit count rather

than a 4-bit mode and a 28-bit count. There are few use cases for a finite number of transfers greater than 228, which is

why the four most-significant bits have been reallocated for use with endless transfers.

Mode 0x1, TRIGGER_SELF, behaves the same as mode 0x0, except that rather than halting upon completion, the channel

immediately re-triggers itself. This is equivalent to a trigger performed by any other mechanism (Section 12.6.3):

TRANS_COUNT is reloaded, and the channel resumes from the current READ_ADDR and WRITE_ADDR addresses. A completion

interrupt is still raised (if CTRL.IRQ_QUIET is not set) and the specified CHAIN_TO operation is still performed. The main use

for this mode is streaming through SRAM ring buffers, where some action is required at regular intervals, for example

requesting the processor to refill an audio buffer once it is half-empty.

Mode 0xf, ENDLESS, disables the decrement of TRANS_COUNT. This means a channel will generally run indefinitely without

pause, though triggering a channel with a mode of 0xf and a count of 0x0 will result in the channel halting immediately.

All other values are reserved for future use and their effect is unspecified.

12.6.2.3. Control/Status

The CTRL register (CH0_CTRL_TRIG) has more, smaller fields than the other 3 registers. Among other things, CTRL is used

to:

• Configure the size of this channel’s data transfers, via the DATA_SIZE field. Reads are always the same size as

writes.

• Configure if and how READ_ADDR and WRITE_ADDR increment after each read or write, via the INCR_READ, INCR_READ_REV,

INCR_WRITE, INCR_WRITE_REV, RING_SEL and RING_SIZE fields. Ring transfers are available, where one of the address

pointers wraps at some power-of-2 boundary.

• Select another channel (or none) to trigger when this channel completes, via the CHAIN_TO field.

• Select a peripheral data request (DREQ) signal to pace this channel’s transfers, via the TREQ_SEL field.

• See when the channel is idle, using the BUSY flag.

• See if the channel has encountered a bus error the READ_ERROR and WRITE_ERROR flags, or the combined error status in

the AHB_ERROR flag.

12.6.3. Triggering Channels

Once a channel has been correctly configured, you must trigger it. This instructs the channel to begin scheduling bus

accesses, either paced by a peripheral data request signal (DREQ) or as fast as possible. The following events can

trigger a channel:

• A write to a channel trigger register.

• Completion of another channel whose CHAIN_TO points to this channel.

• A write to the MULTI_CHAN_TRIGGER register (can trigger multiple channels at once).

Each trigger mechanism covers different use cases. For example, trigger registers are simple and efficient when
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configuring and starting a channel in an interrupt service routine because the channel is triggered by the last

configuration write. CHAIN_TO allows one channel to callback to another channel, which can then reconfigure the first

channel. MULTI_CHAN_TRIGGER allows software to simply start a channel without touching any of its configuration

registers.

Once triggered, the channel sets its CTRL.BUSY flag to indicate it is actively scheduling transfers. This remains set until the

transfer count reaches zero, or the channel is aborted via the CHAN_ABORT register (Section 12.6.8.3).

When a channel is already running, indicated by BUSY = 1, it ignores additional triggers. A channel which is disabled

(CTRL.EN is clear) also ignores triggers.

12.6.3.1. Aliases and Triggers

Table 1142. Control

register aliases. Each

channel has four

control/status

registers. Each

register can be

accessed at multiple

different addresses. In

each naturally-aligned

group of four, all four

registers appear, in

different orders.

Offset +0x0 +0x4 +0x8 +0xc (Trigger)

0x00 (Alias 0) READ_ADDR WRITE_ADDR TRANS_COUNT CTRL_TRIG

0x10 (Alias 1) CTRL READ_ADDR WRITE_ADDR TRANS_COUNT_TRIG

0x20 (Alias 2) CTRL TRANS_COUNT READ_ADDR WRITE_ADDR_TRIG

0x30 (Alias 3) CTRL WRITE_ADDR TRANS_COUNT READ_ADD_TRIG

The four CSRs are aliased multiple times in memory. Each of the four aliases exposes the same four physical registers,

but in a different order. The final register in each alias (at offset +0xc, highlighted) is a trigger register. Writing to the

trigger register starts the channel.

Often, only alias 0 is used, and aliases 1 through 3 can be ignored. To configure and start the channel, write READ_ADDR,

WRITE_ADDR, TRANS_COUNT, and finally CTRL. Since CTRL is the trigger register in alias 0, this starts the channel.

The other aliases allow more compact control block lists when using one channel to configure another, and more

efficient reconfiguration and launch in interrupt handlers:

• Each CSR is a trigger register in one of the aliases:

◦ When gathering fixed-size buffers into a peripheral, the DMA channel can be configured and launched by

writing only READ_ADDR_TRIG.

◦ When scattering from a peripheral to fixed-size buffers, the channel can be configured and launched by

writing only WRITE_ADDR_TRIG.

• Useful combinations of registers appear as naturally-aligned tuples which contain a trigger register. In conjunction

with channel chaining and address wrapping, these implement compressed control block formats, e.g.:

◦ (WRITE_ADDR, TRANS_COUNT_TRIG) for peripheral scatter operations

◦ (TRANS_COUNT, READ_ADDR_TRIG) for peripheral gather operations, or calculating CRCs on a list of buffers

◦ (READ_ADDR, WRITE_ADDR_TRIG) for manipulating fixed-size buffers in memory

Trigger registers do not start the channel if:

• The channel is disabled via CTRL.EN (if the trigger is CTRL, the just-written value of EN is used, not the value currently

in the CTRL register)

• The channel is already running

• The value 0 is written to the trigger register (useful for ending control block chains, see null triggers (Section

12.6.3.3))

• The bus access has a security level lower than the channel’s security level (Section 12.6.6.1)
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12.6.3.2. Chaining

When a channel completes, it can name a different channel to immediately be triggered. This can be used as a callback

for the second channel to reconfigure and restart the first.

This feature is configured through the CHAIN_TO field in the channel CTRL register. This 4-bit value selects a channel that

will start when this one finishes. A channel cannot chain to itself. Setting CHAIN_TO to a channel’s own index prevents

chaining.

Chain triggers behave the same as triggers from other sources, such as trigger registers. For example, they cause

TRANS_COUNT to reload, and they are ignored if the targeted channel is already running.

One application for CHAIN_TO is for a channel to request reconfiguration by another channel from a sequence of control

blocks in memory. Channel A is configured to perform a wrapped transfer from memory to channel B’s control registers

(including a trigger register), and channel B is configured to chain back to channel A when it completes each transfer

sequence. This is shown explicitly in the DMA control blocks example (Section 12.6.9.2).

Use of the register aliases (Section 12.6.3.1) enables compact formats for DMA control blocks: as little as one word, in

some cases.

Another use of chaining is a ping-pong configuration, where two channels each trigger one another. The processor can

respond to the channel completion interrupts and reconfigure each channel after it completes. However, the chained

channel, which has already been configured, starts immediately. In other words, channel configuration and channel

operation are pipelined. This can improve performance dramatically when a usage pattern requires many short transfer

sequences.

The Section 12.6.9 goes into more detail on the possibilities of chain triggers in the real world.

12.6.3.3. Null Triggers and Chain Interrupts

As mentioned in Section 12.6.3.1, writing all-zeroes to a trigger register does not start the channel. This is called a null

trigger, and it has two purposes:

• Cause a halt at the end of an array of control blocks, by appending an all-zeroes block.

• Reduce the number of interrupts generated when using control blocks.

By default, channels generate an interrupt each time they finish a transfer sequence, unless that channel’s IRQ is

masked in INTE0 through INTE3. The rate of interrupts can be excessive, particularly as processor attention is generally

not required while a sequence of control blocks are in progress. However, processor attention is required at the end of a

chain.

The channel CTRL register has a field called IRQ_QUIET. Its default value is 0. When this set to 1, channels generate an

interrupt when they receive a null trigger, but not on normal completion of a transfer sequence. The interrupt is

generated by the channel which receives the trigger.

12.6.4. Data Request (DREQ)

Peripherals produce or consume data at their own pace. If the DMA transferred data as fast as possible, loss or

corruption of data would ensue. DREQs are a communication channel between peripherals and the DMA which enables

the DMA to pace transfers according to the needs of the peripheral.

The CTRL.TREQ_SEL (transfer request) field selects an external DREQ. It can also be used to select one of the internal

pacing timers, or select no TREQ at all (the transfer proceeds as fast as possible), e.g. for memory-to-memory transfers.

12.6.4.1. System DREQ Table

DREQ numbers use the following global assignment to peripheral DREQ channels:
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Table 1143. DREQs
DREQ DREQ Channel DREQ DREQ Channel DREQ DREQ Channel DREQ DREQ Channel

0 DREQ_PIO0_TX0 14 DREQ_PIO1_RX2 28 DREQ_UART0_TX 42 DREQ_PWM_WRAP10

1 DREQ_PIO0_TX1 15 DREQ_PIO1_RX3 29 DREQ_UART0_RX 43 DREQ_PWM_WRAP11

2 DREQ_PIO0_TX2 16 DREQ_PIO2_TX0 30 DREQ_UART1_TX 44 DREQ_I2C0_TX

3 DREQ_PIO0_TX3 17 DREQ_PIO2_TX1 31 DREQ_UART1_RX 45 DREQ_I2C0_RX

4 DREQ_PIO0_RX0 18 DREQ_PIO2_TX2 32 DREQ_PWM_WRAP0 46 DREQ_I2C1_TX

5 DREQ_PIO0_RX1 19 DREQ_PIO2_TX3 33 DREQ_PWM_WRAP1 47 DREQ_I2C1_RX

6 DREQ_PIO0_RX2 20 DREQ_PIO2_RX0 34 DREQ_PWM_WRAP2 48 DREQ_ADC

7 DREQ_PIO0_RX3 21 DREQ_PIO2_RX1 35 DREQ_PWM_WRAP3 49 DREQ_XIP_STREAM

8 DREQ_PIO1_TX0 22 DREQ_PIO2_RX2 36 DREQ_PWM_WRAP4 50 DREQ_XIP_QMITX

9 DREQ_PIO1_TX1 23 DREQ_PIO2_RX3 37 DREQ_PWM_WRAP5 51 DREQ_XIP_QMIRX

10 DREQ_PIO1_TX2 24 DREQ_SPI0_TX 38 DREQ_PWM_WRAP6 52 DREQ_HSTX

11 DREQ_PIO1_TX3 25 DREQ_SPI0_RX 39 DREQ_PWM_WRAP7 53 DREQ_CORESIGHT

12 DREQ_PIO1_RX0 26 DREQ_SPI1_TX 40 DREQ_PWM_WRAP8 54 DREQ_SHA256

13 DREQ_PIO1_RX1 27 DREQ_SPI1_RX 41 DREQ_PWM_WRAP9

12.6.4.2. Credit-based DREQ Scheme

The RP2350 DMA is designed for systems where:

• The area and power cost of large peripheral data FIFOs is prohibitive.

• The bandwidth demands of individual peripherals may be high, e.g. >50% bus injection rate for short periods.

• Bus latency is low, but multiple managers may compete for bus access.

In addition, the DMA’s transfer FIFOs and dual-manager-port structure permit multiple accesses to the same peripheral

to be in-flight at once to improve throughput. Choice of DREQ mechanism is therefore critical:

• The traditional "turn on the tap" method can cause overflow if multiple writes are backed up in the TDF. Some

systems solve this by over-provisioning peripheral FIFOs and setting the DREQ threshold below the full level at the

expense of precious area and power.

• The Arm-style single and burst handshake does not permit additional requests to be registered while the current

request is being served. This limits performance when FIFOs are very shallow.

The RP2350 DMA uses a credit-based DREQ mechanism. For each peripheral, the DMA attempts to keep as many

transfers in-flight as the peripheral has capacity for. This enables full bus throughput (1 word per clock) through an 8-

deep peripheral FIFO with no possibility of overflow or underflow in the absence of fabric latency or contention.

For each channel, the DMA maintains a counter. Each 1-clock pulse on the dreq signal increments this counter. When

non-zero, the channel requests a transfer from the DMA’s internal arbiter. The counter decrements when the transfer is

issued to the address FIFOs. At this point the transfer is in flight, but has not yet necessarily completed.

The counter is saturating, and six bits in size. The counter ignores increments at the maximum value or decrements at

zero. The six-bit counter size supports counts up to the depth of any FIFO on RP2350.
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The effect is to upper bound the number of in-flight transfers based on the amount of room or data available in the

peripheral FIFO. In the steady state, this gives maximum throughput, but can’t underflow or underflow. This approach

has the following caveats:

• The user must not access a FIFO currently being serviced by the DMA. This causes the channel and peripheral to

become desynchronised, and can cause corruption or loss of data.

• Multiple channels must not be connected to the same DREQ.

12.6.5. Interrupts

Each channel can generate interrupts; these can be masked on a per-channel basis using one of the four identical

interrupt enable registers, INTE0 through INTE3. There are three circumstances where a channel raises an interrupt

request:

• On the completion of each transfer sequence, if CTRL.IRQ_QUIET is disabled

• On receiving a null trigger, if CTRL.IRQ_QUIET is enabled

• On a read or write bus error

The masked interrupt status is visible in the INTS registers; there is one bit for each channel. Interrupts are cleared by

writing a bit mask to INTS. One idiom for acknowledging interrupts is to read INTS, then write the same value back, so

only enabled interrupts are cleared.

The RP2350 DMA provides four system IRQs, with independent masking and status registers (e.g. INTE0, INTE1). Any

combination of channel interrupt requests can be routed to each system IRQ, though generally software only routes

each channel interrupt to a single system IRQ. For example:

• Some channels can be given a higher priority in the system interrupt controller, if they have particularly tight timing

requirements.

• In multiprocessor systems, different channel interrupts can be routed independently to different cores.

• When channels are assigned to a mixture of security domains, IRQs can also be assigned, so that software in each

security domain can get interrupts from its own channels.

For debugging purposes, the INTF registers can force any channel interrupt to be asserted, which will cause assertion of

any system IRQs which have that channel interrupt’s enable bit set in their respective INTE registers.

12.6.6. Security

RP2350’s processors support partitioning of memory and peripherals into multiple security domains. This partitioning is

extended into the DMA, so that different security contexts can safely use their assigned channels without breaking any

of the security invariants laid out by the processor security model. For example, an Arm processor in the Non-secure

state must not be able to use the DMA to access memory or peripherals owned by Secure software.

The DMA defines four security levels which map onto Arm or RISC-V processor security states:

• 3: SP (secure and privileged)

◦ Equivalent to Arm processors in the Secure, Privileged state

◦ Equivalent to RISC-V processors in Machine mode

• 2: SU (secure and unprivileged)
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◦ Equivalent to Arm processors in the Secure, Normal state

• 1: NSP (nonsecure and privileged)

◦ Equivalent to Arm processors in the Non-secure, Privileged state

◦ Equivalent to RISC-V processors in Supervisor mode

• 0: NSU (nonsecure and unprivileged)

◦ Equivalent to Arm processors in the Non-secure, Normal state

◦ Equivalent to RISC-V processors in User mode

So that the DMA can compare different security levels in a consistent way, they are considered ordered, with SP > SU >

NSP > NSU. For example, when we say that a channel requires a minimum of SU to access its registers, this means that

SP and SU are acceptable, and NSP and NSU are not. As a rule, every action has a reaction that is at or below the

security level of the original action, and so the DMA can not be used to escalate accesses to a higher security level.

Software assigns internal DMA resources, like channels, interrupts, pacing timers and the CRC sniffer, to one of the four

possible security levels. These resources are then accessible only at and above that level. Channel assignment in

particular is discussed in Section 12.6.6.1.

The DMA memory protection unit (Section 12.6.6.3) defines the minimum security level required to access up to eight

programmable address ranges, so that channels of a given security level can not access memory beyond their means.

This MPU is intended to mirror the SRAM and XIP memory protection boundaries configured in the processor SAU or

PMP. In addition to the internal filtering performed by the DMA MPU, accesses are filtered by the system bus according

to the ACCESSCTRL filter rules described in Section 10.6.2.

The combination of these features allows the DMA to be safely shared by software running in different security

domains. If this is not desired, the entire DMA block can instead be assigned wholesale to a single security domain

using the ACCESSCTRL DMA register.

12.6.6.1. Channel Security Assignment

Channels are assigned to security domains using the channel SECCFG registers, SECCFG_CH0 through SECCFG_CH15.

There is one register per channel. Each register contains a 2-bit security level, and a lock bit which prevents that SECCFG

register from being changed once configured. At reset, all channels are assigned to the SP security level, which is the

highest.

The security level of a channel defines:

• The security level of bus transfers performed by this channel, which is checked against both the DMA memory

protection unit and the ACCESSCTRL bus-level filters described in Section 10.6.2

• The minimum security level required to read or write this channel’s registers: access from a lower level returns a

bus fault

• The minimum security level which must be defined on a shared IRQ line for that IRQ to be able to observe this

channel’s interrupts (Section 12.6.6.2), or for this channel’s interrupt to be set/cleared through that IRQ’s registers

• The minimum bus security level required to clear this channel’s interrupts through the INTR register

• Which DREQs a channel can observe: channels assigned to the NSP or NSU security levels can not observe DREQs

of Secure-only peripherals (as defined by the ACCESSCTRL peripheral configuration)

• Which pacing timer TREQs can be observed: pacing timer security levels are configured by SECCFG_MISC and

must be no higher than the channel security level in order for the channel to observe the TREQ

• Whether the channel is visible to the CRC sniffer: the sniffer’s security level is configured by SECCFG_MISC and

must be no lower than the observed channel’s security level

• Which channels this channel can trigger with a CHAIN_TO: chaining from lower to higher security levels is not

permitted
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• The minimum bus security level required to trigger this channel with a write to MULTI_CHAN_TRIGGER

The channel SECCFG registers require privileged writes (SP/NSP), and will generate a bus fault on an attempted

unprivileged write (SU/NSU). Additionally, the S bit (MSB of the security level) and the LOCK bit are writable only by SP,

whilst the P bit (LSB of the security level) is also writable by NSP, if and only if the S bit is clear. Reads are always

allowed: it is always possible to query which channels are assigned to you by reading the channel SECCFG registers.

Each channel SECCFG register can be locked manually by writing a one to the LOCK bit in that register, and will also lock

automatically upon a successful write to one of the channel’s control registers such as CH0_CTRL_TRIG. This

automatic locking avoids any race conditions that may arise from a channel’s security level changing after it has already

started making transfers, or from leaking secure pointers that have been written to its control registers. Once a channel

SECCFG register has been locked, it becomes read-only. LOCK bits can be cleared only by a full reset of the DMA block.

Note that SECCFG registers can be written multiple times before being locked, so the full assignment does not have to be

known up front: for example, Secure Arm software can set spare channels to NSP before launching the Non-secure

software context, and Non-secure, Privileged software can then set the remaining channels it does not need to NSU

before returning to the Non-secure, Normal context.

12.6.6.2. Interrupt Security Assignment

The RP2350 DMA has four system-level interrupt request lines (IRQs), each of which can be asserted on any

combination of channel interrupts, as defined by the channel masks in the interrupt enable registers INTE0 through

INTE3. Because the timing of interrupts may leak information, and because it is possible to cause software to

malfunction by deliberately manipulating its interrupts, access to the channel interrupt flags must be controlled.

The interrupt security configuration registers, SECCFG_IRQ0 through SECCFG_IRQ3, define the security level for each

interrupt. This is one of the four security levels laid out in Section 12.6.6. The security level of an IRQ defines:

• Which channels are visible in this IRQ’s status registers: channels of a level higher than the IRQ’s will read back as

zero

• Whether a bus access to this IRQ’s control and status registers is permitted: bus accesses below this IRQ’s

security level will return bus faults and have no effect on the DMA

• Which channels will assert this IRQ: channels of a level higher than this IRQ’s level will not cause the interrupt to

assert, even if relevant INTE bit is set

• Whether a channel’s interrupt can be cleared through this IRQ’s INTS register, or set through this channel’s INTF

register: the interrupt flags of channels of higher security level than the IRQ can not be set or cleared

Note that the INTR register is shared between all IRQs, so it does not respect any of the IRQ security levels. Instead, it

follows the security level of the bus access: reads of INTR will return the interrupt flags of all channels at or below the

security level of the bus access (with higher-level channels reading back as zeroes), and writes to INTR have write-one-

clear behaviour on channels which are at or below the security level of the bus access.

12.6.6.3. Memory Protection Unit

The DMA memory protection unit (MPU) monitors the addresses of all read/write transfers performed by the DMA, and

notes the security level of the originating channel. The MPU is configured in advance with a user-defined security

address map, which specifies the minimum security level required to access up to eight dynamically configured regions.

This is one of the four security levels defined in Section 12.6.6.

Transfers which fail to meet the minimum security level for their address are shot down before reaching the system

bus, and a bus error is returned to the originating channel. This will be reported as either a read or write bus error in the

channel’s CTRL register, depending on whether it was a read or write address that failed the security check.

The intended use for the DMA MPU is to mirror the security definitions of SRAM and XIP memory from the processor

SAU or PMP. The number of DMA MPU regions is not sufficient for assigning individual peripherals, so the

ACCESSCTRL bus access registers (Section 10.6.2) are provided for this purpose.
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Each of the eight MPU regions is configured with a base address, MPU_BAR0 through MPU_BAR7 for each region, and a

limit address, MPU_LAR0 through MPU_LAR7.

MPU regions have a granularity of 32 bytes, so the base/limit addresses are configured by the 27 most-significant bits

of each BAR/LAR register (bits 31:5). Addresses match MPU regions when the 27 most-significant bits of the address are

greater than or equal to the BAR address bits, and less than or equal to the LAR address bits. For example, when

MPU_BAR0 and MPU_LAR0 both have the value 0x10000000, MPU region 0 matches on a 32-byte region extending from

byte address 0x10000000 to 0x1000001f (inclusive). Regions can be enabled or disabled using the LAR.EN bits — if a region is

disabled, it matches no addresses.

The minimum security level required to access each region is defined by the S and P bits in the LSBs of that region’s LAR

register. When an address matches multiple regions, the lowest-numbered region applies. This matches the tie-break

rules for the RISC-V PMP, but is different from the Arm SAU tie-break rules, so care must be taken when mirroring SAU

mappings with overlapping regions. When none of the MPU regions are matched, the security level is defined by the

global MPU_CTRL.S and MPU_CTRL.P bits.

The MPU configuration registers (MPU_CTRL, MPU_BAR0 through MPU_BAR7 and MPU_LAR0 through MPU_LAR7) do

not permit unprivileged access. Bus accesses at the SU and NSU security levels will return a bus fault and have no other

effect.

The MPU registers are also mostly read-only to NSP accesses, with the sole exception being the region P bits which are

NSP-writable if and only if the corresponding region’s S bit is clear. This delegates to Privileged, Non-secure software

the decision of whether Non-secure regions are NSU-accessible.

12.6.7. Bus Error Handling

A bus error is an error condition flagged to one of the DMA’s manager ports in response to an attempted read or write

transfer, indicating the transfer was rejected for one of the following reasons:

• The DMA MPU forbids access to this address at the originating channel’s security level (Section 12.6.6.3).

• The bus fabric failed to decode the address; the address did not match any known memory location (for example

SIO is not visible from the DMA bus ports as it is tightly coupled to the processors).

• ACCESSCTRL forbids access to the addressed region at the originating channel’s privilege level (Section 10.6.2).

• ACCESSCTRL forbids DMA access to the addressed region, irrespective of privilege.

• The APB bridge returned a timeout fault for a transfer exceeding 65535 cycles (e.g. accessed ADC whilst clk_adc

was stopped).

• The downstream bus port returned an error response for any other device-specific reason, e.g. attempting to

access configuration registers for a DMA channel with higher security level (Section 12.6.6.1).

12.6.7.1. Response to Bus Errors

Upon encountering a bus error, the DMA halts the offending channel and reports the error through the channel’s

CH0_CTRL_TRIG.READ_ERROR and WRITE_ERROR flags. The channel stops scheduling bus accesses.

Bus errors are exceptional events which usually indicate misconfiguration of the DMA or some other system hardware.

Therefore the DMA refuses to restart the offending channel until its error status is cleared by writing 1 to the relevant

error flag. Other channels are not affected, and continue their transfer sequences uninterrupted.

A channel which encounters a bus error does not CHAIN_TO other channels.

Bus errors always cause the channel’s interrupt request to be asserted. Whether or not this causes a system-level IRQ

depends on the channel masks configured in interrupt enable registers INTE0 through INTE3.
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12.6.7.2. Recovery after Bus Errors

If an error is reported through READ_ERR/WRITE_ERR then, before restarting the channel, software must:

1. Poll for a low BUSY status to ensure that all in-flight transfers for this channel have been flushed from the DMA’s bus

pipeline.

2. Clear the error flags by writing 1 to each flag.

Generally the BUSY flag will already be low long before the processor enters its interrupt handler and checks the error

status, but it is possible for these events to overlap when the DMA is accessing a slow device such as XIP with a high

SCK divisor and processors are executing from SRAM.

READ_ADDR and WRITE_ADDR contain the approximate address where the bus error was encountered. This may be useful for

the programmer to understand why the bus error occurred, and fix the software to avoid it in future.

Since the DMA performs reads and writes in parallel, it is possible for a channel to encounter both a read and write error

simultaneously, and in this case the DMA sets both READ_ERR and WRITE_ERR. You must clear both.

12.6.7.3. Halt Timing

The DMA halts the channel as soon as possible following a bus error. This suppresses future reads and writes. Because

the request to access the bus is masked, the bus access has no side effects on the system. The timing relationships are

not straightforward due to the DMA’s pipelining and buffering. The DMA provides the following ordering guarantees

between transfers originating from one channel:

• Read error → read suppression:

◦ Any reads scheduled to occur after a faulting read will be suppressed, but may still increment READ_ADDR up to

two times total

• Write error → write suppression:

◦ Any writes scheduled to occur after a faulting write will be suppressed, but may still increment WRITE_ADDR up

to four times total

• Read error → write suppression:

◦ Any write paired with a faulting read will be suppressed, but will increment WRITE_ADDR

◦ Any write following the first write paired with a faulting read will be suppressed, but may increment WRITE_ADDR

up to three times total

◦ Up to three writes immediately preceding the first write paired with a faulting read may be suppressed, but will

increment WRITE_ADDR

• Write error → read suppression:

◦ Reads paired with writes before the first faulting write will not be suppressed, and will increment READ_ADDR.

◦ Up to two read transfers paired with writes after the first faulting write may be suppressed, and may

increment READ_ADDR

"Paired with" in the above paragraph refers to the write access which writes data originating from a particular read

transfer, or vice versa. The DMA always schedules read and write accesses in matched pairs.

Slight variability in halt behaviour is due to the buffering of in-flight transfers, and the parallel operation of the read and

write bus ports. The values of READ_ADDR/WRITE_ADDR following a bus error may be slightly beyond the address that

experienced the first error, but the difference is bounded, and usually this is still sufficient to diagnose the reason for the

fault. Additionally, READ_ADDR and WRITE_ADDR are guaranteed to over-increment by the same amount, since reads and

writes are always scheduled in pairs.

Note in addition to the increments mentioned above, READ_ADDR/WRITE_ADDR always point to the next address to be written,

so always point slightly past the faulting address if address increment is enabled.
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12.6.8. Additional Features

12.6.8.1. Pacing Timers

These allow transfer of data roughly once every n clk_sys clocks instead of using external peripheral DREQ to trigger

transfers. A fractional (X/Y) divider is used, and will generate a maximum of 1 request per clk_sys cycle.

There are 4 timers available in RP2350. Each DMA channel is able to select any of these in CTRL.TREQ_SEL. There is one

register used to configure the pacing coefficients for each timer, TIMER0 through TIMER3.

Each timer’s security level is defined by a register field in SECCFG_MISC. This defines the minimum bus security level

required to configure that timer (lower levels will get a bus fault), and the minimum channel security level required to

observe that timer’s TREQ.

12.6.8.2. CRC Calculation

The DMA can watch data from a given channel passing through the data FIFO, and calculate checksums based on this

data. This a purely passive affair: the data is not altered by this hardware, only observed.

The feature is controlled via the SNIFF_CTRL and SNIFF_DATA registers, and can be enabled/disabled per DMA transfer via

the CTRL.SNIFF_EN field.

As this hardware cannot place back-pressure on the FIFO, it must keep up with the DMA’s maximum transfer rate of 32

bits per clock.

The supported checksums are:

• CRC-32, MSB-first and LSB-first

• CRC-16-CCITT, MSB-first and LSB-first

• Simple summation (add to 32-bit accumulator)

• Even parity

The result register is both readable and writable, so that the initial seed value can be set.

Bit/byte manipulations are available on the result which may aid specific use cases:

• Bit inversion

• Bit reversal

• Byte swap

These manipulations do not affect the CRC calculation, just how the data is presented in the result register.

The sniffer’s security level is configured by the SECCFG_MISC.SNIFF_S and SECCFG_MISC.SNIFF_P bits. This

determines the minimum bus security level required to access the sniffer’s control registers, as well as the maximum

channel security level which the sniffer can observe.

12.6.8.3. Channel Abort

It is possible for a channel to get into an irrecoverable state. If commanded to transfer more data than a peripheral will

ever request, the channel will never complete. Clearing the CTRL.EN bit pauses the channel, but does not solve the

problem. This should not occur under normal circumstances, but it is important that there is a mechanism to recover

without simply hard-resetting the entire DMA block.

In such a situation, use the CHAN_ABORT register to force the channel to complete early. There is one bit for each

channel. Writing a 1 to the corresponding bit terminates the channel. This clears the transfer counter and forces the

channel into an inactive state.
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At the time an abort is triggered, a channel may have bus transfers currently in flight between the read and write

manager. These transfers cannot be revoked. The CTRL.BUSY flag stays high until these transfers complete, and the

channel reaches a safe state. This generally takes only a few cycles. The channel must not be restarted until its

CTRL.BUSY flag de-asserts. Starting a new sequence of transfers whilst transfers from an old sequence are still in flight

will cause unpredictable behaviour.

The sequence to abort one or more channels in an unknown state (also accounting for the behaviour described in

RP2350-E5 is:

1. Clear the EN bit and disable CHAIN_TO for all channels to be aborted.

2. Write the CHAN_ABORT register with a bitmap of those same channels.

3. Poll the ABORT register until all bits set by the previous write are clear.

When aborting a channel involved in a CHAIN_TO, it is recommended to simultaneously abort all other channels involved in

the chain.

12.6.8.4. Debug

Debug registers are available for each DMA channel to show the dreq counter DBG_CTDREQ and next transfer count DBG_TCR.

These can also be used to reset a DMA channel if required.

12.6.9. Example Use Cases

12.6.9.1. Using Interrupts to Reconfigure a Channel

When a channel finishes a block of transfers, it becomes available for making more transfers. Software detects that the

channel is no longer busy, and reconfigures and restarts the channel. One approach is to poll the CTRL_BUSY bit until the

channel is done, but this loses one of the key advantages of the DMA, namely that it does not have to operate in

lockstep with a processor. By setting the correct bit in INTE0 through INTE3, you can instruct the DMA to raise one of its

four interrupt request lines when a given channel completes. Rather than repeatedly asking if a channel is done, you are

told.

 NOTE

Having four system interrupt lines allows different channel completion interrupts to be routed to different cores, or

to pre-empt one another on the same core if one channel is more time-critical. It also allows channel interrupts to

target different security domains.

When the interrupt is asserted, the processor can be configured to drop whatever it is doing and call a user-specified

handler function. The handler can reconfigure and restart the channel. When the handler exits, the processor returns to

the interrupted code running in the foreground.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/dma/channel_irq/channel_irq.c Lines 35 - 52

35 void dma_handler() {
36     static int pwm_level = 0;
37     static uint32_t wavetable[N_PWM_LEVELS];
38     static bool first_run = true;
39     // Entry number `i` has `i` one bits and `(32 - i)` zero bits.
40     if (first_run) {
41         first_run = false;
42         for (int i = 0; i < N_PWM_LEVELS; ++i)
43             wavetable[i] = ~(~0u << i);
44     }
45 
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46     // Clear the interrupt request.
47     dma_hw->ints0 = 1u << dma_chan;
48     // Give the channel a new wave table entry to read from, and re-trigger it
49     dma_channel_set_read_addr(dma_chan, &wavetable[pwm_level], true);
50 
51     pwm_level = (pwm_level + 1) % N_PWM_LEVELS;
52 }

In many cases, most of the configuration can be done the first time the channel starts. This way, only addresses and

transfer lengths need reprogramming in the interrupt handler.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/dma/channel_irq/channel_irq.c Lines 54 - 94

54 int main() {
55 #ifndef PICO_DEFAULT_LED_PIN
56 #warning dma/channel_irq example requires a board with a regular LED
57 #else
58     // Set up a PIO state machine to serialise our bits
59     uint offset = pio_add_program(pio0, &pio_serialiser_program);
60     pio_serialiser_program_init(pio0, 0, offset, PICO_DEFAULT_LED_PIN, PIO_SERIAL_CLKDIV);
61 
62     // Configure a channel to write the same word (32 bits) repeatedly to PIO0
63     // SM0's TX FIFO, paced by the data request signal from that peripheral.
64     dma_chan = dma_claim_unused_channel(true);
65     dma_channel_config c = dma_channel_get_default_config(dma_chan);
66     channel_config_set_transfer_data_size(&c, DMA_SIZE_32);
67     channel_config_set_read_increment(&c, false);
68     channel_config_set_dreq(&c, DREQ_PIO0_TX0);
69 
70     dma_channel_configure(
71         dma_chan,
72         &c,
73         &pio0_hw->txf[0], // Write address (only need to set this once)
74         NULL,             // Don't provide a read address yet
75         PWM_REPEAT_COUNT, // Write the same value many times, then halt and interrupt
76         false             // Don't start yet
77     );
78 
79     // Tell the DMA to raise IRQ line 0 when the channel finishes a block
80     dma_channel_set_irq0_enabled(dma_chan, true);
81 
82     // Configure the processor to run dma_handler() when DMA IRQ 0 is asserted
83     irq_set_exclusive_handler(DMA_IRQ_0, dma_handler);
84     irq_set_enabled(DMA_IRQ_0, true);
85 
86     // Manually call the handler once, to trigger the first transfer
87     dma_handler();
88 
89     // Everything else from this point is interrupt-driven. The processor has
90     // time to sit and think about its early retirement -- maybe open a bakery?
91     while (true)
92         tight_loop_contents();
93 #endif
94 }

One disadvantage of this technique is that you don’t start to reconfigure the channel until some time after the channel

makes its last transfer. If there is heavy interrupt activity on the processor, this may be quite a long time, and quite a

large gap in transfers. This makes it difficult to sustain a high data throughput.

This is solved by using two channels, with their CHAIN_TO fields crossed over, so that channel A triggers channel B when it

completes, and vice versa. At any point in time, one of the channels is transferring data. The other is either already
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configured to start the next transfer immediately when the current one finishes, or it is in the process of being

reconfigured. When channel A completes, it immediately starts the cued-up transfer on channel B. At the same time, the

interrupt is fired, and the handler reconfigures channel A so that it is ready when channel B completes.

12.6.9.2. DMA Control Blocks

Frequently, multiple smaller buffers must be gathered together and sent to the same peripheral. To address this use

case, the RP2350 DMA can execute a long and complex sequence of transfers without processor control. One channel

repeatedly reconfigures a second channel, and the second channel restarts the first each time it completes block of

transfers.

Because the first DMA channel transfers data directly from memory to the second channel’s control registers, the

format of the control blocks in memory must match those registers. Each time, the last register written to will be one of

the trigger registers (Section 12.6.3.1), which will start the second channel on its programmed block of transfers. The

register aliases (Section 12.6.3.1) give some flexibility for the block layout, and more importantly allow some registers

to be omitted from the blocks, so they occupy less memory and can be loaded more quickly.

This example shows how multiple buffers can be gathered and transferred to the UART, by reprogramming TRANS_COUNT

and READ_ADDR_TRIG:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/dma/control_blocks/control_blocks.c

  1 /**
  2  * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
  3  *
  4  * SPDX-License-Identifier: BSD-3-Clause
  5  */
  6 
  7 // Use two DMA channels to make a programmed sequence of data transfers to the
  8 // UART (a data gather operation). One channel is responsible for transferring
  9 // the actual data, the other repeatedly reprograms that channel.
 10 
 11 #include <stdio.h>
 12 #include "pico/stdlib.h"
 13 #include "hardware/dma.h"
 14 #include "hardware/structs/uart.h"
 15 
 16 // These buffers will be DMA'd to the UART, one after the other.
 17 
 18 const char word0[] = "Transferring ";
 19 const char word1[] = "one ";
 20 const char word2[] = "word ";
 21 const char word3[] = "at ";
 22 const char word4[] = "a ";
 23 const char word5[] = "time.\n";
 24 
 25 // Note the order of the fields here: it's important that the length is before
 26 // the read address, because the control channel is going to write to the last
 27 // two registers in alias 3 on the data channel:
 28 //           +0x0        +0x4          +0x8          +0xC (Trigger)
 29 // Alias 0:  READ_ADDR   WRITE_ADDR    TRANS_COUNT   CTRL
 30 // Alias 1:  CTRL        READ_ADDR     WRITE_ADDR    TRANS_COUNT
 31 // Alias 2:  CTRL        TRANS_COUNT   READ_ADDR     WRITE_ADDR
 32 // Alias 3:  CTRL        WRITE_ADDR    TRANS_COUNT   READ_ADDR
 33 //
 34 // This will program the transfer count and read address of the data channel,
 35 // and trigger it. Once the data channel completes, it will restart the
 36 // control channel (via CHAIN_TO) to load the next two words into its control
 37 // registers.
 38 
 39 const struct {uint32_t len; const char *data;} control_blocks[] = {
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 40     {count_of(word0) - 1, word0}, // Skip null terminator
 41     {count_of(word1) - 1, word1},
 42     {count_of(word2) - 1, word2},
 43     {count_of(word3) - 1, word3},
 44     {count_of(word4) - 1, word4},
 45     {count_of(word5) - 1, word5},
 46     {0, NULL}                     // Null trigger to end chain.
 47 };
 48 
 49 int main() {
 50 #ifndef uart_default
 51 #warning dma/control_blocks example requires a UART
 52 #else
 53     stdio_init_all();
 54     puts("DMA control block example:");
 55 
 56     // ctrl_chan loads control blocks into data_chan, which executes them.
 57     int ctrl_chan = dma_claim_unused_channel(true);
 58     int data_chan = dma_claim_unused_channel(true);
 59 
 60     // The control channel transfers two words into the data channel's control
 61     // registers, then halts. The write address wraps on a two-word
 62     // (eight-byte) boundary, so that the control channel writes the same two
 63     // registers when it is next triggered.
 64 
 65     dma_channel_config c = dma_channel_get_default_config(ctrl_chan);
 66     channel_config_set_transfer_data_size(&c, DMA_SIZE_32);
 67     channel_config_set_read_increment(&c, true);
 68     channel_config_set_write_increment(&c, true);
 69     channel_config_set_ring(&c, true, 3); // 1 << 3 byte boundary on write ptr
 70 
 71     dma_channel_configure(
 72         ctrl_chan,
 73         &c,
 74         &dma_hw->ch[data_chan].al3_transfer_count, // Initial write address
 75         &control_blocks[0],                        // Initial read address
 76         2,                                         // Halt after each control block
 77         false                                      // Don't start yet
 78     );
 79 
 80     // The data channel is set up to write to the UART FIFO (paced by the
 81     // UART's TX data request signal) and then chain to the control channel
 82     // once it completes. The control channel programs a new read address and
 83     // data length, and retriggers the data channel.
 84 
 85     c = dma_channel_get_default_config(data_chan);
 86     channel_config_set_transfer_data_size(&c, DMA_SIZE_8);
 87     channel_config_set_dreq(&c, uart_get_dreq(uart_default, true));
 88     // Trigger ctrl_chan when data_chan completes
 89     channel_config_set_chain_to(&c, ctrl_chan);
 90     // Raise the IRQ flag when 0 is written to a trigger register (end of chain):
 91     channel_config_set_irq_quiet(&c, true);
 92 
 93     dma_channel_configure(
 94         data_chan,
 95         &c,
 96         &uart_get_hw(uart_default)->dr,
 97         NULL,           // Initial read address and transfer count are unimportant;
 98         0,              // the control channel will reprogram them each time.
 99         false           // Don't start yet.
100     );
101 
102     // Everything is ready to go. Tell the control channel to load the first
103     // control block. Everything is automatic from here.
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104     dma_start_channel_mask(1u << ctrl_chan);
105 
106     // The data channel will assert its IRQ flag when it gets a null trigger,
107     // indicating the end of the control block list. We're just going to wait
108     // for the IRQ flag instead of setting up an interrupt handler.
109     while (!(dma_hw->intr & 1u << data_chan))
110         tight_loop_contents();
111     dma_hw->ints0 = 1u << data_chan;
112 
113     puts("DMA finished.");
114 #endif
115 }

12.6.10. List of Registers

The DMA registers start at a base address of 0x50000000 (defined as DMA_BASE in SDK).

Table 1144. List of

DMA registers
Offset Name Info

0x000 CH0_READ_ADDR DMA Channel 0 Read Address pointer

0x004 CH0_WRITE_ADDR DMA Channel 0 Write Address pointer

0x008 CH0_TRANS_COUNT DMA Channel 0 Transfer Count

0x00c CH0_CTRL_TRIG DMA Channel 0 Control and Status

0x010 CH0_AL1_CTRL Alias for channel 0 CTRL register

0x014 CH0_AL1_READ_ADDR Alias for channel 0 READ_ADDR register

0x018 CH0_AL1_WRITE_ADDR Alias for channel 0 WRITE_ADDR register

0x01c CH0_AL1_TRANS_COUNT_TRIG Alias for channel 0 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x020 CH0_AL2_CTRL Alias for channel 0 CTRL register

0x024 CH0_AL2_TRANS_COUNT Alias for channel 0 TRANS_COUNT register

0x028 CH0_AL2_READ_ADDR Alias for channel 0 READ_ADDR register

0x02c CH0_AL2_WRITE_ADDR_TRIG Alias for channel 0 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x030 CH0_AL3_CTRL Alias for channel 0 CTRL register

0x034 CH0_AL3_WRITE_ADDR Alias for channel 0 WRITE_ADDR register

0x038 CH0_AL3_TRANS_COUNT Alias for channel 0 TRANS_COUNT register

0x03c CH0_AL3_READ_ADDR_TRIG Alias for channel 0 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x040 CH1_READ_ADDR DMA Channel 1 Read Address pointer

0x044 CH1_WRITE_ADDR DMA Channel 1 Write Address pointer

0x048 CH1_TRANS_COUNT DMA Channel 1 Transfer Count

0x04c CH1_CTRL_TRIG DMA Channel 1 Control and Status
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0x050 CH1_AL1_CTRL Alias for channel 1 CTRL register

0x054 CH1_AL1_READ_ADDR Alias for channel 1 READ_ADDR register

0x058 CH1_AL1_WRITE_ADDR Alias for channel 1 WRITE_ADDR register

0x05c CH1_AL1_TRANS_COUNT_TRIG Alias for channel 1 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x060 CH1_AL2_CTRL Alias for channel 1 CTRL register

0x064 CH1_AL2_TRANS_COUNT Alias for channel 1 TRANS_COUNT register

0x068 CH1_AL2_READ_ADDR Alias for channel 1 READ_ADDR register

0x06c CH1_AL2_WRITE_ADDR_TRIG Alias for channel 1 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x070 CH1_AL3_CTRL Alias for channel 1 CTRL register

0x074 CH1_AL3_WRITE_ADDR Alias for channel 1 WRITE_ADDR register

0x078 CH1_AL3_TRANS_COUNT Alias for channel 1 TRANS_COUNT register

0x07c CH1_AL3_READ_ADDR_TRIG Alias for channel 1 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x080 CH2_READ_ADDR DMA Channel 2 Read Address pointer

0x084 CH2_WRITE_ADDR DMA Channel 2 Write Address pointer

0x088 CH2_TRANS_COUNT DMA Channel 2 Transfer Count

0x08c CH2_CTRL_TRIG DMA Channel 2 Control and Status

0x090 CH2_AL1_CTRL Alias for channel 2 CTRL register

0x094 CH2_AL1_READ_ADDR Alias for channel 2 READ_ADDR register

0x098 CH2_AL1_WRITE_ADDR Alias for channel 2 WRITE_ADDR register

0x09c CH2_AL1_TRANS_COUNT_TRIG Alias for channel 2 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x0a0 CH2_AL2_CTRL Alias for channel 2 CTRL register

0x0a4 CH2_AL2_TRANS_COUNT Alias for channel 2 TRANS_COUNT register

0x0a8 CH2_AL2_READ_ADDR Alias for channel 2 READ_ADDR register

0x0ac CH2_AL2_WRITE_ADDR_TRIG Alias for channel 2 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x0b0 CH2_AL3_CTRL Alias for channel 2 CTRL register

0x0b4 CH2_AL3_WRITE_ADDR Alias for channel 2 WRITE_ADDR register

0x0b8 CH2_AL3_TRANS_COUNT Alias for channel 2 TRANS_COUNT register

0x0bc CH2_AL3_READ_ADDR_TRIG Alias for channel 2 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.
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0x0c0 CH3_READ_ADDR DMA Channel 3 Read Address pointer

0x0c4 CH3_WRITE_ADDR DMA Channel 3 Write Address pointer

0x0c8 CH3_TRANS_COUNT DMA Channel 3 Transfer Count

0x0cc CH3_CTRL_TRIG DMA Channel 3 Control and Status

0x0d0 CH3_AL1_CTRL Alias for channel 3 CTRL register

0x0d4 CH3_AL1_READ_ADDR Alias for channel 3 READ_ADDR register

0x0d8 CH3_AL1_WRITE_ADDR Alias for channel 3 WRITE_ADDR register

0x0dc CH3_AL1_TRANS_COUNT_TRIG Alias for channel 3 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x0e0 CH3_AL2_CTRL Alias for channel 3 CTRL register

0x0e4 CH3_AL2_TRANS_COUNT Alias for channel 3 TRANS_COUNT register

0x0e8 CH3_AL2_READ_ADDR Alias for channel 3 READ_ADDR register

0x0ec CH3_AL2_WRITE_ADDR_TRIG Alias for channel 3 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x0f0 CH3_AL3_CTRL Alias for channel 3 CTRL register

0x0f4 CH3_AL3_WRITE_ADDR Alias for channel 3 WRITE_ADDR register

0x0f8 CH3_AL3_TRANS_COUNT Alias for channel 3 TRANS_COUNT register

0x0fc CH3_AL3_READ_ADDR_TRIG Alias for channel 3 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x100 CH4_READ_ADDR DMA Channel 4 Read Address pointer

0x104 CH4_WRITE_ADDR DMA Channel 4 Write Address pointer

0x108 CH4_TRANS_COUNT DMA Channel 4 Transfer Count

0x10c CH4_CTRL_TRIG DMA Channel 4 Control and Status

0x110 CH4_AL1_CTRL Alias for channel 4 CTRL register

0x114 CH4_AL1_READ_ADDR Alias for channel 4 READ_ADDR register

0x118 CH4_AL1_WRITE_ADDR Alias for channel 4 WRITE_ADDR register

0x11c CH4_AL1_TRANS_COUNT_TRIG Alias for channel 4 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x120 CH4_AL2_CTRL Alias for channel 4 CTRL register

0x124 CH4_AL2_TRANS_COUNT Alias for channel 4 TRANS_COUNT register

0x128 CH4_AL2_READ_ADDR Alias for channel 4 READ_ADDR register

0x12c CH4_AL2_WRITE_ADDR_TRIG Alias for channel 4 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x130 CH4_AL3_CTRL Alias for channel 4 CTRL register
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0x134 CH4_AL3_WRITE_ADDR Alias for channel 4 WRITE_ADDR register

0x138 CH4_AL3_TRANS_COUNT Alias for channel 4 TRANS_COUNT register

0x13c CH4_AL3_READ_ADDR_TRIG Alias for channel 4 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x140 CH5_READ_ADDR DMA Channel 5 Read Address pointer

0x144 CH5_WRITE_ADDR DMA Channel 5 Write Address pointer

0x148 CH5_TRANS_COUNT DMA Channel 5 Transfer Count

0x14c CH5_CTRL_TRIG DMA Channel 5 Control and Status

0x150 CH5_AL1_CTRL Alias for channel 5 CTRL register

0x154 CH5_AL1_READ_ADDR Alias for channel 5 READ_ADDR register

0x158 CH5_AL1_WRITE_ADDR Alias for channel 5 WRITE_ADDR register

0x15c CH5_AL1_TRANS_COUNT_TRIG Alias for channel 5 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x160 CH5_AL2_CTRL Alias for channel 5 CTRL register

0x164 CH5_AL2_TRANS_COUNT Alias for channel 5 TRANS_COUNT register

0x168 CH5_AL2_READ_ADDR Alias for channel 5 READ_ADDR register

0x16c CH5_AL2_WRITE_ADDR_TRIG Alias for channel 5 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x170 CH5_AL3_CTRL Alias for channel 5 CTRL register

0x174 CH5_AL3_WRITE_ADDR Alias for channel 5 WRITE_ADDR register

0x178 CH5_AL3_TRANS_COUNT Alias for channel 5 TRANS_COUNT register

0x17c CH5_AL3_READ_ADDR_TRIG Alias for channel 5 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x180 CH6_READ_ADDR DMA Channel 6 Read Address pointer

0x184 CH6_WRITE_ADDR DMA Channel 6 Write Address pointer

0x188 CH6_TRANS_COUNT DMA Channel 6 Transfer Count

0x18c CH6_CTRL_TRIG DMA Channel 6 Control and Status

0x190 CH6_AL1_CTRL Alias for channel 6 CTRL register

0x194 CH6_AL1_READ_ADDR Alias for channel 6 READ_ADDR register

0x198 CH6_AL1_WRITE_ADDR Alias for channel 6 WRITE_ADDR register

0x19c CH6_AL1_TRANS_COUNT_TRIG Alias for channel 6 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x1a0 CH6_AL2_CTRL Alias for channel 6 CTRL register

0x1a4 CH6_AL2_TRANS_COUNT Alias for channel 6 TRANS_COUNT register
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0x1a8 CH6_AL2_READ_ADDR Alias for channel 6 READ_ADDR register

0x1ac CH6_AL2_WRITE_ADDR_TRIG Alias for channel 6 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x1b0 CH6_AL3_CTRL Alias for channel 6 CTRL register

0x1b4 CH6_AL3_WRITE_ADDR Alias for channel 6 WRITE_ADDR register

0x1b8 CH6_AL3_TRANS_COUNT Alias for channel 6 TRANS_COUNT register

0x1bc CH6_AL3_READ_ADDR_TRIG Alias for channel 6 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x1c0 CH7_READ_ADDR DMA Channel 7 Read Address pointer

0x1c4 CH7_WRITE_ADDR DMA Channel 7 Write Address pointer

0x1c8 CH7_TRANS_COUNT DMA Channel 7 Transfer Count

0x1cc CH7_CTRL_TRIG DMA Channel 7 Control and Status

0x1d0 CH7_AL1_CTRL Alias for channel 7 CTRL register

0x1d4 CH7_AL1_READ_ADDR Alias for channel 7 READ_ADDR register

0x1d8 CH7_AL1_WRITE_ADDR Alias for channel 7 WRITE_ADDR register

0x1dc CH7_AL1_TRANS_COUNT_TRIG Alias for channel 7 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x1e0 CH7_AL2_CTRL Alias for channel 7 CTRL register

0x1e4 CH7_AL2_TRANS_COUNT Alias for channel 7 TRANS_COUNT register

0x1e8 CH7_AL2_READ_ADDR Alias for channel 7 READ_ADDR register

0x1ec CH7_AL2_WRITE_ADDR_TRIG Alias for channel 7 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x1f0 CH7_AL3_CTRL Alias for channel 7 CTRL register

0x1f4 CH7_AL3_WRITE_ADDR Alias for channel 7 WRITE_ADDR register

0x1f8 CH7_AL3_TRANS_COUNT Alias for channel 7 TRANS_COUNT register

0x1fc CH7_AL3_READ_ADDR_TRIG Alias for channel 7 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x200 CH8_READ_ADDR DMA Channel 8 Read Address pointer

0x204 CH8_WRITE_ADDR DMA Channel 8 Write Address pointer

0x208 CH8_TRANS_COUNT DMA Channel 8 Transfer Count

0x20c CH8_CTRL_TRIG DMA Channel 8 Control and Status

0x210 CH8_AL1_CTRL Alias for channel 8 CTRL register

0x214 CH8_AL1_READ_ADDR Alias for channel 8 READ_ADDR register

0x218 CH8_AL1_WRITE_ADDR Alias for channel 8 WRITE_ADDR register
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0x21c CH8_AL1_TRANS_COUNT_TRIG Alias for channel 8 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x220 CH8_AL2_CTRL Alias for channel 8 CTRL register

0x224 CH8_AL2_TRANS_COUNT Alias for channel 8 TRANS_COUNT register

0x228 CH8_AL2_READ_ADDR Alias for channel 8 READ_ADDR register

0x22c CH8_AL2_WRITE_ADDR_TRIG Alias for channel 8 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x230 CH8_AL3_CTRL Alias for channel 8 CTRL register

0x234 CH8_AL3_WRITE_ADDR Alias for channel 8 WRITE_ADDR register

0x238 CH8_AL3_TRANS_COUNT Alias for channel 8 TRANS_COUNT register

0x23c CH8_AL3_READ_ADDR_TRIG Alias for channel 8 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x240 CH9_READ_ADDR DMA Channel 9 Read Address pointer

0x244 CH9_WRITE_ADDR DMA Channel 9 Write Address pointer

0x248 CH9_TRANS_COUNT DMA Channel 9 Transfer Count

0x24c CH9_CTRL_TRIG DMA Channel 9 Control and Status

0x250 CH9_AL1_CTRL Alias for channel 9 CTRL register

0x254 CH9_AL1_READ_ADDR Alias for channel 9 READ_ADDR register

0x258 CH9_AL1_WRITE_ADDR Alias for channel 9 WRITE_ADDR register

0x25c CH9_AL1_TRANS_COUNT_TRIG Alias for channel 9 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x260 CH9_AL2_CTRL Alias for channel 9 CTRL register

0x264 CH9_AL2_TRANS_COUNT Alias for channel 9 TRANS_COUNT register

0x268 CH9_AL2_READ_ADDR Alias for channel 9 READ_ADDR register

0x26c CH9_AL2_WRITE_ADDR_TRIG Alias for channel 9 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x270 CH9_AL3_CTRL Alias for channel 9 CTRL register

0x274 CH9_AL3_WRITE_ADDR Alias for channel 9 WRITE_ADDR register

0x278 CH9_AL3_TRANS_COUNT Alias for channel 9 TRANS_COUNT register

0x27c CH9_AL3_READ_ADDR_TRIG Alias for channel 9 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x280 CH10_READ_ADDR DMA Channel 10 Read Address pointer

0x284 CH10_WRITE_ADDR DMA Channel 10 Write Address pointer

0x288 CH10_TRANS_COUNT DMA Channel 10 Transfer Count
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0x28c CH10_CTRL_TRIG DMA Channel 10 Control and Status

0x290 CH10_AL1_CTRL Alias for channel 10 CTRL register

0x294 CH10_AL1_READ_ADDR Alias for channel 10 READ_ADDR register

0x298 CH10_AL1_WRITE_ADDR Alias for channel 10 WRITE_ADDR register

0x29c CH10_AL1_TRANS_COUNT_TRIG Alias for channel 10 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x2a0 CH10_AL2_CTRL Alias for channel 10 CTRL register

0x2a4 CH10_AL2_TRANS_COUNT Alias for channel 10 TRANS_COUNT register

0x2a8 CH10_AL2_READ_ADDR Alias for channel 10 READ_ADDR register

0x2ac CH10_AL2_WRITE_ADDR_TRIG Alias for channel 10 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x2b0 CH10_AL3_CTRL Alias for channel 10 CTRL register

0x2b4 CH10_AL3_WRITE_ADDR Alias for channel 10 WRITE_ADDR register

0x2b8 CH10_AL3_TRANS_COUNT Alias for channel 10 TRANS_COUNT register

0x2bc CH10_AL3_READ_ADDR_TRIG Alias for channel 10 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x2c0 CH11_READ_ADDR DMA Channel 11 Read Address pointer

0x2c4 CH11_WRITE_ADDR DMA Channel 11 Write Address pointer

0x2c8 CH11_TRANS_COUNT DMA Channel 11 Transfer Count

0x2cc CH11_CTRL_TRIG DMA Channel 11 Control and Status

0x2d0 CH11_AL1_CTRL Alias for channel 11 CTRL register

0x2d4 CH11_AL1_READ_ADDR Alias for channel 11 READ_ADDR register

0x2d8 CH11_AL1_WRITE_ADDR Alias for channel 11 WRITE_ADDR register

0x2dc CH11_AL1_TRANS_COUNT_TRIG Alias for channel 11 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x2e0 CH11_AL2_CTRL Alias for channel 11 CTRL register

0x2e4 CH11_AL2_TRANS_COUNT Alias for channel 11 TRANS_COUNT register

0x2e8 CH11_AL2_READ_ADDR Alias for channel 11 READ_ADDR register

0x2ec CH11_AL2_WRITE_ADDR_TRIG Alias for channel 11 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x2f0 CH11_AL3_CTRL Alias for channel 11 CTRL register

0x2f4 CH11_AL3_WRITE_ADDR Alias for channel 11 WRITE_ADDR register

0x2f8 CH11_AL3_TRANS_COUNT Alias for channel 11 TRANS_COUNT register
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0x2fc CH11_AL3_READ_ADDR_TRIG Alias for channel 11 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x300 CH12_READ_ADDR DMA Channel 12 Read Address pointer

0x304 CH12_WRITE_ADDR DMA Channel 12 Write Address pointer

0x308 CH12_TRANS_COUNT DMA Channel 12 Transfer Count

0x30c CH12_CTRL_TRIG DMA Channel 12 Control and Status

0x310 CH12_AL1_CTRL Alias for channel 12 CTRL register

0x314 CH12_AL1_READ_ADDR Alias for channel 12 READ_ADDR register

0x318 CH12_AL1_WRITE_ADDR Alias for channel 12 WRITE_ADDR register

0x31c CH12_AL1_TRANS_COUNT_TRIG Alias for channel 12 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x320 CH12_AL2_CTRL Alias for channel 12 CTRL register

0x324 CH12_AL2_TRANS_COUNT Alias for channel 12 TRANS_COUNT register

0x328 CH12_AL2_READ_ADDR Alias for channel 12 READ_ADDR register

0x32c CH12_AL2_WRITE_ADDR_TRIG Alias for channel 12 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x330 CH12_AL3_CTRL Alias for channel 12 CTRL register

0x334 CH12_AL3_WRITE_ADDR Alias for channel 12 WRITE_ADDR register

0x338 CH12_AL3_TRANS_COUNT Alias for channel 12 TRANS_COUNT register

0x33c CH12_AL3_READ_ADDR_TRIG Alias for channel 12 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x340 CH13_READ_ADDR DMA Channel 13 Read Address pointer

0x344 CH13_WRITE_ADDR DMA Channel 13 Write Address pointer

0x348 CH13_TRANS_COUNT DMA Channel 13 Transfer Count

0x34c CH13_CTRL_TRIG DMA Channel 13 Control and Status

0x350 CH13_AL1_CTRL Alias for channel 13 CTRL register

0x354 CH13_AL1_READ_ADDR Alias for channel 13 READ_ADDR register

0x358 CH13_AL1_WRITE_ADDR Alias for channel 13 WRITE_ADDR register

0x35c CH13_AL1_TRANS_COUNT_TRIG Alias for channel 13 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x360 CH13_AL2_CTRL Alias for channel 13 CTRL register

0x364 CH13_AL2_TRANS_COUNT Alias for channel 13 TRANS_COUNT register

0x368 CH13_AL2_READ_ADDR Alias for channel 13 READ_ADDR register
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0x36c CH13_AL2_WRITE_ADDR_TRIG Alias for channel 13 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x370 CH13_AL3_CTRL Alias for channel 13 CTRL register

0x374 CH13_AL3_WRITE_ADDR Alias for channel 13 WRITE_ADDR register

0x378 CH13_AL3_TRANS_COUNT Alias for channel 13 TRANS_COUNT register

0x37c CH13_AL3_READ_ADDR_TRIG Alias for channel 13 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x380 CH14_READ_ADDR DMA Channel 14 Read Address pointer

0x384 CH14_WRITE_ADDR DMA Channel 14 Write Address pointer

0x388 CH14_TRANS_COUNT DMA Channel 14 Transfer Count

0x38c CH14_CTRL_TRIG DMA Channel 14 Control and Status

0x390 CH14_AL1_CTRL Alias for channel 14 CTRL register

0x394 CH14_AL1_READ_ADDR Alias for channel 14 READ_ADDR register

0x398 CH14_AL1_WRITE_ADDR Alias for channel 14 WRITE_ADDR register

0x39c CH14_AL1_TRANS_COUNT_TRIG Alias for channel 14 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x3a0 CH14_AL2_CTRL Alias for channel 14 CTRL register

0x3a4 CH14_AL2_TRANS_COUNT Alias for channel 14 TRANS_COUNT register

0x3a8 CH14_AL2_READ_ADDR Alias for channel 14 READ_ADDR register

0x3ac CH14_AL2_WRITE_ADDR_TRIG Alias for channel 14 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x3b0 CH14_AL3_CTRL Alias for channel 14 CTRL register

0x3b4 CH14_AL3_WRITE_ADDR Alias for channel 14 WRITE_ADDR register

0x3b8 CH14_AL3_TRANS_COUNT Alias for channel 14 TRANS_COUNT register

0x3bc CH14_AL3_READ_ADDR_TRIG Alias for channel 14 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x3c0 CH15_READ_ADDR DMA Channel 15 Read Address pointer

0x3c4 CH15_WRITE_ADDR DMA Channel 15 Write Address pointer

0x3c8 CH15_TRANS_COUNT DMA Channel 15 Transfer Count

0x3cc CH15_CTRL_TRIG DMA Channel 15 Control and Status

0x3d0 CH15_AL1_CTRL Alias for channel 15 CTRL register

0x3d4 CH15_AL1_READ_ADDR Alias for channel 15 READ_ADDR register

0x3d8 CH15_AL1_WRITE_ADDR Alias for channel 15 WRITE_ADDR register
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0x3dc CH15_AL1_TRANS_COUNT_TRIG Alias for channel 15 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x3e0 CH15_AL2_CTRL Alias for channel 15 CTRL register

0x3e4 CH15_AL2_TRANS_COUNT Alias for channel 15 TRANS_COUNT register

0x3e8 CH15_AL2_READ_ADDR Alias for channel 15 READ_ADDR register

0x3ec CH15_AL2_WRITE_ADDR_TRIG Alias for channel 15 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x3f0 CH15_AL3_CTRL Alias for channel 15 CTRL register

0x3f4 CH15_AL3_WRITE_ADDR Alias for channel 15 WRITE_ADDR register

0x3f8 CH15_AL3_TRANS_COUNT Alias for channel 15 TRANS_COUNT register

0x3fc CH15_AL3_READ_ADDR_TRIG Alias for channel 15 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x400 INTR Interrupt Status (raw)

0x404 INTE0 Interrupt Enables for IRQ 0

0x408 INTF0 Force Interrupts

0x40c INTS0 Interrupt Status for IRQ 0

0x414 INTE1 Interrupt Enables for IRQ 1

0x418 INTF1 Force Interrupts

0x41c INTS1 Interrupt Status for IRQ 1

0x424 INTE2 Interrupt Enables for IRQ 2

0x428 INTF2 Force Interrupts

0x42c INTS2 Interrupt Status for IRQ 2

0x434 INTE3 Interrupt Enables for IRQ 3

0x438 INTF3 Force Interrupts

0x43c INTS3 Interrupt Status for IRQ 3

0x440 TIMER0 Pacing timer (generate periodic TREQs)

0x444 TIMER1 Pacing timer (generate periodic TREQs)

0x448 TIMER2 Pacing timer (generate periodic TREQs)

0x44c TIMER3 Pacing timer (generate periodic TREQs)

0x450 MULTI_CHAN_TRIGGER Trigger one or more channels simultaneously

0x454 SNIFF_CTRL Sniffer Control

0x458 SNIFF_DATA Data accumulator for sniff hardware

0x460 FIFO_LEVELS Debug RAF, WAF, TDF levels

0x464 CHAN_ABORT Abort an in-progress transfer sequence on one or more channels
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0x468 N_CHANNELS The number of channels this DMA instance is equipped with.

This DMA supports up to 16 hardware channels, but can be

configured with as few as one, to minimise silicon area.

0x480 SECCFG_CH0 Security level configuration for channel 0.

0x484 SECCFG_CH1 Security level configuration for channel 1.

0x488 SECCFG_CH2 Security level configuration for channel 2.

0x48c SECCFG_CH3 Security level configuration for channel 3.

0x490 SECCFG_CH4 Security level configuration for channel 4.

0x494 SECCFG_CH5 Security level configuration for channel 5.

0x498 SECCFG_CH6 Security level configuration for channel 6.

0x49c SECCFG_CH7 Security level configuration for channel 7.

0x4a0 SECCFG_CH8 Security level configuration for channel 8.

0x4a4 SECCFG_CH9 Security level configuration for channel 9.

0x4a8 SECCFG_CH10 Security level configuration for channel 10.

0x4ac SECCFG_CH11 Security level configuration for channel 11.

0x4b0 SECCFG_CH12 Security level configuration for channel 12.

0x4b4 SECCFG_CH13 Security level configuration for channel 13.

0x4b8 SECCFG_CH14 Security level configuration for channel 14.

0x4bc SECCFG_CH15 Security level configuration for channel 15.

0x4c0 SECCFG_IRQ0 Security configuration for IRQ 0. Control whether the IRQ permits

configuration by Non-secure/Unprivileged contexts, and whether

it can observe Secure/Privileged channel interrupt flags.

0x4c4 SECCFG_IRQ1 Security configuration for IRQ 1. Control whether the IRQ permits

configuration by Non-secure/Unprivileged contexts, and whether

it can observe Secure/Privileged channel interrupt flags.

0x4c8 SECCFG_IRQ2 Security configuration for IRQ 2. Control whether the IRQ permits

configuration by Non-secure/Unprivileged contexts, and whether

it can observe Secure/Privileged channel interrupt flags.

0x4cc SECCFG_IRQ3 Security configuration for IRQ 3. Control whether the IRQ permits

configuration by Non-secure/Unprivileged contexts, and whether

it can observe Secure/Privileged channel interrupt flags.

0x4d0 SECCFG_MISC Miscellaneous security configuration

0x500 MPU_CTRL Control register for DMA MPU. Accessible only from a Privileged

context.

0x504 MPU_BAR0 Base address register for MPU region 0. Writable only from a

Secure, Privileged context.

0x508 MPU_LAR0 Limit address register for MPU region 0. Writable only from a

Secure, Privileged context, with the exception of the P bit.

0x50c MPU_BAR1 Base address register for MPU region 1. Writable only from a

Secure, Privileged context.
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0x510 MPU_LAR1 Limit address register for MPU region 1. Writable only from a

Secure, Privileged context, with the exception of the P bit.

0x514 MPU_BAR2 Base address register for MPU region 2. Writable only from a

Secure, Privileged context.

0x518 MPU_LAR2 Limit address register for MPU region 2. Writable only from a

Secure, Privileged context, with the exception of the P bit.

0x51c MPU_BAR3 Base address register for MPU region 3. Writable only from a

Secure, Privileged context.

0x520 MPU_LAR3 Limit address register for MPU region 3. Writable only from a

Secure, Privileged context, with the exception of the P bit.

0x524 MPU_BAR4 Base address register for MPU region 4. Writable only from a

Secure, Privileged context.

0x528 MPU_LAR4 Limit address register for MPU region 4. Writable only from a

Secure, Privileged context, with the exception of the P bit.

0x52c MPU_BAR5 Base address register for MPU region 5. Writable only from a

Secure, Privileged context.

0x530 MPU_LAR5 Limit address register for MPU region 5. Writable only from a

Secure, Privileged context, with the exception of the P bit.

0x534 MPU_BAR6 Base address register for MPU region 6. Writable only from a

Secure, Privileged context.

0x538 MPU_LAR6 Limit address register for MPU region 6. Writable only from a

Secure, Privileged context, with the exception of the P bit.

0x53c MPU_BAR7 Base address register for MPU region 7. Writable only from a

Secure, Privileged context.

0x540 MPU_LAR7 Limit address register for MPU region 7. Writable only from a

Secure, Privileged context, with the exception of the P bit.

0x800 CH0_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x804 CH0_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0x840 CH1_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x844 CH1_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0x880 CH2_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x884 CH2_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer
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0x8c0 CH3_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x8c4 CH3_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0x900 CH4_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x904 CH4_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0x940 CH5_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x944 CH5_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0x980 CH6_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x984 CH6_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0x9c0 CH7_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x9c4 CH7_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0xa00 CH8_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0xa04 CH8_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0xa40 CH9_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0xa44 CH9_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0xa80 CH10_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.
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0xa84 CH10_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0xac0 CH11_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0xac4 CH11_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0xb00 CH12_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0xb04 CH12_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0xb40 CH13_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0xb44 CH13_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0xb80 CH14_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0xb84 CH14_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0xbc0 CH15_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0xbc4 CH15_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

DMA: CH0_READ_ADDR, CH1_READ_ADDR, …, CH14_READ_ADDR,

CH15_READ_ADDR Registers

Offsets: 0x000, 0x040, …, 0x380, 0x3c0

Description

DMA Channel N Read Address pointer

Table 1145.

CH0_READ_ADDR,

CH1_READ_ADDR, …,

CH14_READ_ADDR,

CH15_READ_ADDR

Registers

Bits Description Type Reset

31:0 This register updates automatically each time a read completes. The current

value is the next address to be read by this channel.

RW 0x00000000

DMA: CH0_WRITE_ADDR, CH1_WRITE_ADDR, …, CH14_WRITE_ADDR,

CH15_WRITE_ADDR Registers

Offsets: 0x004, 0x044, …, 0x384, 0x3c4
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Description

DMA Channel N Write Address pointer

Table 1146.

CH0_WRITE_ADDR,

CH1_WRITE_ADDR, …,

CH14_WRITE_ADDR,

CH15_WRITE_ADDR

Registers

Bits Description Type Reset

31:0 This register updates automatically each time a write completes. The current

value is the next address to be written by this channel.

RW 0x00000000

DMA: CH0_TRANS_COUNT, CH1_TRANS_COUNT, …, CH14_TRANS_COUNT,

CH15_TRANS_COUNT Registers

Offsets: 0x008, 0x048, …, 0x388, 0x3c8

Description

DMA Channel N Transfer Count

Table 1147.

CH0_TRANS_COUNT,

CH1_TRANS_COUNT,

…,

CH14_TRANS_COUNT,

CH15_TRANS_COUNT

Registers

Bits Description Type Reset

31:28 MODE: When MODE is 0x0, the transfer count decrements with each transfer

until 0, and then the channel triggers the next channel indicated by

CTRL_CHAIN_TO.

When MODE is 0x1, the transfer count decrements with each transfer until 0,

and then the channel re-triggers itself, in addition to the trigger indicated by

CTRL_CHAIN_TO. This is useful for e.g. an endless ring-buffer DMA with

periodic interrupts.

When MODE is 0xf, the transfer count does not decrement. The DMA channel

performs an endless sequence of transfers, never triggering other channels or

raising interrupts, until an ABORT is raised.

All other values are reserved.

RW 0x0

Enumerated values:

0x0 → NORMAL

0x1 → TRIGGER_SELF

0xf → ENDLESS

27:0 COUNT: 28-bit transfer count (256 million transfers maximum).

Program the number of bus transfers a channel will perform before halting.

Note that, if transfers are larger than one byte in size, this is not equal to the

number of bytes transferred (see CTRL_DATA_SIZE).

When the channel is active, reading this register shows the number of

transfers remaining, updating automatically each time a write transfer

completes.

Writing this register sets the RELOAD value for the transfer counter. Each time

this channel is triggered, the RELOAD value is copied into the live transfer

counter. The channel can be started multiple times, and will perform the same

number of transfers each time, as programmed by most recent write.

The RELOAD value can be observed at CHx_DBG_TCR. If TRANS_COUNT is

used as a trigger, the written value is used immediately as the length of the

new transfer sequence, as well as being written to RELOAD.

RW 0x0000000
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DMA: CH0_CTRL_TRIG, CH1_CTRL_TRIG, …, CH14_CTRL_TRIG,

CH15_CTRL_TRIG Registers

Offsets: 0x00c, 0x04c, …, 0x38c, 0x3cc

Description

DMA Channel N Control and Status

Table 1148.

CH0_CTRL_TRIG,

CH1_CTRL_TRIG, …,

CH14_CTRL_TRIG,

CH15_CTRL_TRIG

Registers

Bits Description Type Reset

31 AHB_ERROR: Logical OR of the READ_ERROR and WRITE_ERROR flags. The

channel halts when it encounters any bus error, and always raises its channel

IRQ flag.

RO 0x0

30 READ_ERROR: If 1, the channel received a read bus error. Write one to clear.

READ_ADDR shows the approximate address where the bus error was

encountered (will not be earlier, or more than 3 transfers later)

WC 0x0

29 WRITE_ERROR: If 1, the channel received a write bus error. Write one to clear.

WRITE_ADDR shows the approximate address where the bus error was

encountered (will not be earlier, or more than 5 transfers later)

WC 0x0

28:27 Reserved. - -

26 BUSY: This flag goes high when the channel starts a new transfer sequence,

and low when the last transfer of that sequence completes. Clearing EN while

BUSY is high pauses the channel, and BUSY will stay high while paused.

To terminate a sequence early (and clear the BUSY flag), see CHAN_ABORT.

RO 0x0

25 SNIFF_EN: If 1, this channel’s data transfers are visible to the sniff hardware,

and each transfer will advance the state of the checksum. This only applies if

the sniff hardware is enabled, and has this channel selected.

This allows checksum to be enabled or disabled on a per-control- block basis.

RW 0x0

24 BSWAP: Apply byte-swap transformation to DMA data.

For byte data, this has no effect. For halfword data, the two bytes of each

halfword are swapped. For word data, the four bytes of each word are

swapped to reverse order.

RW 0x0

23 IRQ_QUIET: In QUIET mode, the channel does not generate IRQs at the end of

every transfer block. Instead, an IRQ is raised when NULL is written to a trigger

register, indicating the end of a control block chain.

This reduces the number of interrupts to be serviced by the CPU when

transferring a DMA chain of many small control blocks.

RW 0x0

22:17 TREQ_SEL: Select a Transfer Request signal.

The channel uses the transfer request signal to pace its data transfer rate.

Sources for TREQ signals are internal (TIMERS) or external (DREQ, a Data

Request from the system).

0x0 to 0x3a → select DREQ n as TREQ

RW 0x00

Enumerated values:

0x3b → Select Timer 0 as TREQ

0x3c → Select Timer 1 as TREQ

0x3d → Select Timer 2 as TREQ (Optional)

0x3e → Select Timer 3 as TREQ (Optional)
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0x3f → Permanent request, for unpaced transfers.

16:13 CHAIN_TO: When this channel completes, it will trigger the channel indicated

by CHAIN_TO. Disable by setting CHAIN_TO = (this channel).

Note this field resets to 0, so channels 1 and above will chain to channel 0 by

default. Set this field to avoid this behaviour.

RW 0x0

12 RING_SEL: Select whether RING_SIZE applies to read or write addresses.

If 0, read addresses are wrapped on a (1 << RING_SIZE) boundary. If 1, write

addresses are wrapped.

RW 0x0

11:8 RING_SIZE: Size of address wrap region. If 0, don’t wrap. For values n > 0, only

the lower n bits of the address will change. This wraps the address on a (1 <<

n) byte boundary, facilitating access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This can apply to either

read or write addresses, based on value of RING_SEL.

RW 0x0

Enumerated values:

0x0 → RING_NONE

7 INCR_WRITE_REV: If 1, and INCR_WRITE is 1, the write address is

decremented rather than incremented with each transfer.

If 1, and INCR_WRITE is 0, this otherwise-unused combination causes the

write address to be incremented by twice the transfer size, i.e. skipping over

alternate addresses.

RW 0x0

6 INCR_WRITE: If 1, the write address increments with each transfer. If 0, each

write is directed to the same, initial address.

Generally this should be disabled for memory-to-peripheral transfers.

RW 0x0

5 INCR_READ_REV: If 1, and INCR_READ is 1, the read address is decremented

rather than incremented with each transfer.

If 1, and INCR_READ is 0, this otherwise-unused combination causes the read

address to be incremented by twice the transfer size, i.e. skipping over

alternate addresses.

RW 0x0

4 INCR_READ: If 1, the read address increments with each transfer. If 0, each

read is directed to the same, initial address.

Generally this should be disabled for peripheral-to-memory transfers.

RW 0x0

3:2 DATA_SIZE: Set the size of each bus transfer (byte/halfword/word).

READ_ADDR and WRITE_ADDR advance by this amount (1/2/4 bytes) with

each transfer.

RW 0x0

Enumerated values:

0x0 → SIZE_BYTE

0x1 → SIZE_HALFWORD

0x2 → SIZE_WORD
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Bits Description Type Reset

1 HIGH_PRIORITY: HIGH_PRIORITY gives a channel preferential treatment in

issue scheduling: in each scheduling round, all high priority channels are

considered first, and then only a single low priority channel, before returning to

the high priority channels.

This only affects the order in which the DMA schedules channels. The DMA’s

bus priority is not changed. If the DMA is not saturated then a low priority

channel will see no loss of throughput.

RW 0x0

0 EN: DMA Channel Enable.

When 1, the channel will respond to triggering events, which will cause it to

become BUSY and start transferring data. When 0, the channel will ignore

triggers, stop issuing transfers, and pause the current transfer sequence (i.e.

BUSY will remain high if already high)

RW 0x0

DMA: CH0_AL1_CTRL, CH1_AL1_CTRL, …, CH14_AL1_CTRL, CH15_AL1_CTRL

Registers

Offsets: 0x010, 0x050, …, 0x390, 0x3d0

Table 1149.

CH0_AL1_CTRL,

CH1_AL1_CTRL, …,

CH14_AL1_CTRL,

CH15_AL1_CTRL

Registers

Bits Description Type Reset

31:0 Alias for channel N CTRL register RW -

DMA: CH0_AL1_READ_ADDR, CH1_AL1_READ_ADDR, …,

CH14_AL1_READ_ADDR, CH15_AL1_READ_ADDR Registers

Offsets: 0x014, 0x054, …, 0x394, 0x3d4

Table 1150.

CH0_AL1_READ_ADDR

,

CH1_AL1_READ_ADDR

, …,

CH14_AL1_READ_ADD

R,

CH15_AL1_READ_ADD

R Registers

Bits Description Type Reset

31:0 Alias for channel N READ_ADDR register RW -

DMA: CH0_AL1_WRITE_ADDR, CH1_AL1_WRITE_ADDR, …,

CH14_AL1_WRITE_ADDR, CH15_AL1_WRITE_ADDR Registers

Offsets: 0x018, 0x058, …, 0x398, 0x3d8

Table 1151.

CH0_AL1_WRITE_ADD

R,

CH1_AL1_WRITE_ADD

R, …,

CH14_AL1_WRITE_AD

DR,

CH15_AL1_WRITE_AD

DR Registers

Bits Description Type Reset

31:0 Alias for channel N WRITE_ADDR register RW -

DMA: CH0_AL1_TRANS_COUNT_TRIG, CH1_AL1_TRANS_COUNT_TRIG, …,

CH14_AL1_TRANS_COUNT_TRIG, CH15_AL1_TRANS_COUNT_TRIG Registers

Offsets: 0x01c, 0x05c, …, 0x39c, 0x3dc

Table 1152.

CH0_AL1_TRANS_COU

NT_TRIG,

CH1_AL1_TRANS_COU

NT_TRIG, …,

CH14_AL1_TRANS_CO

UNT_TRIG,

CH15_AL1_TRANS_CO

UNT_TRIG Registers

Bits Description Type Reset

31:0 Alias for channel N TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

RW -

DMA: CH0_AL2_CTRL, CH1_AL2_CTRL, …, CH14_AL2_CTRL, CH15_AL2_CTRL

Registers
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Offsets: 0x020, 0x060, …, 0x3a0, 0x3e0

Table 1153.

CH0_AL2_CTRL,

CH1_AL2_CTRL, …,

CH14_AL2_CTRL,

CH15_AL2_CTRL

Registers

Bits Description Type Reset

31:0 Alias for channel N CTRL register RW -

DMA: CH0_AL2_TRANS_COUNT, CH1_AL2_TRANS_COUNT, …,

CH14_AL2_TRANS_COUNT, CH15_AL2_TRANS_COUNT Registers

Offsets: 0x024, 0x064, …, 0x3a4, 0x3e4

Table 1154.

CH0_AL2_TRANS_COU

NT,

CH1_AL2_TRANS_COU

NT, …,

CH14_AL2_TRANS_CO

UNT,

CH15_AL2_TRANS_CO

UNT Registers

Bits Description Type Reset

31:0 Alias for channel N TRANS_COUNT register RW -

DMA: CH0_AL2_READ_ADDR, CH1_AL2_READ_ADDR, …,

CH14_AL2_READ_ADDR, CH15_AL2_READ_ADDR Registers

Offsets: 0x028, 0x068, …, 0x3a8, 0x3e8

Table 1155.

CH0_AL2_READ_ADDR

,

CH1_AL2_READ_ADDR

, …,

CH14_AL2_READ_ADD

R,

CH15_AL2_READ_ADD

R Registers

Bits Description Type Reset

31:0 Alias for channel N READ_ADDR register RW -

DMA: CH0_AL2_WRITE_ADDR_TRIG, CH1_AL2_WRITE_ADDR_TRIG, …,

CH14_AL2_WRITE_ADDR_TRIG, CH15_AL2_WRITE_ADDR_TRIG Registers

Offsets: 0x02c, 0x06c, …, 0x3ac, 0x3ec

Table 1156.

CH0_AL2_WRITE_ADD

R_TRIG,

CH1_AL2_WRITE_ADD

R_TRIG, …,

CH14_AL2_WRITE_AD

DR_TRIG,

CH15_AL2_WRITE_AD

DR_TRIG Registers

Bits Description Type Reset

31:0 Alias for channel N WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

RW -

DMA: CH0_AL3_CTRL, CH1_AL3_CTRL, …, CH14_AL3_CTRL, CH15_AL3_CTRL

Registers

Offsets: 0x030, 0x070, …, 0x3b0, 0x3f0

Table 1157.

CH0_AL3_CTRL,

CH1_AL3_CTRL, …,

CH14_AL3_CTRL,

CH15_AL3_CTRL

Registers

Bits Description Type Reset

31:0 Alias for channel N CTRL register RW -

DMA: CH0_AL3_WRITE_ADDR, CH1_AL3_WRITE_ADDR, …,

CH14_AL3_WRITE_ADDR, CH15_AL3_WRITE_ADDR Registers

Offsets: 0x034, 0x074, …, 0x3b4, 0x3f4

Table 1158.

CH0_AL3_WRITE_ADD

R,

CH1_AL3_WRITE_ADD

R, …,

CH14_AL3_WRITE_AD

DR,

CH15_AL3_WRITE_AD

DR Registers

Bits Description Type Reset

31:0 Alias for channel N WRITE_ADDR register RW -

DMA: CH0_AL3_TRANS_COUNT, CH1_AL3_TRANS_COUNT, …,

CH14_AL3_TRANS_COUNT, CH15_AL3_TRANS_COUNT Registers

Offsets: 0x038, 0x078, …, 0x3b8, 0x3f8
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Table 1159.

CH0_AL3_TRANS_COU

NT,

CH1_AL3_TRANS_COU

NT, …,

CH14_AL3_TRANS_CO

UNT,

CH15_AL3_TRANS_CO

UNT Registers

Bits Description Type Reset

31:0 Alias for channel N TRANS_COUNT register RW -

DMA: CH0_AL3_READ_ADDR_TRIG, CH1_AL3_READ_ADDR_TRIG, …,

CH14_AL3_READ_ADDR_TRIG, CH15_AL3_READ_ADDR_TRIG Registers

Offsets: 0x03c, 0x07c, …, 0x3bc, 0x3fc

Table 1160.

CH0_AL3_READ_ADDR

_TRIG,

CH1_AL3_READ_ADDR

_TRIG, …,

CH14_AL3_READ_ADD

R_TRIG,

CH15_AL3_READ_ADD

R_TRIG Registers

Bits Description Type Reset

31:0 Alias for channel N READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

RW -

DMA: INTR Register

Offset: 0x400

Description

Interrupt Status (raw)

Table 1161. INTR

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Raw interrupt status for DMA Channels 0..15. Bit n corresponds to channel n.

Ignores any masking or forcing. Channel interrupts can be cleared by writing a

bit mask to INTR or INTS0/1/2/3.

Channel interrupts can be routed to either of four system-level IRQs based on

INTE0, INTE1, INTE2 and INTE3.

The multiple system-level interrupts might be used to allow NVIC IRQ

preemption for more time-critical channels, to spread IRQ load across

different cores, or to target IRQs to different security domains.

It is also valid to ignore the multiple IRQs, and just use INTE0/INTS0/IRQ 0.

If this register is accessed at a security/privilege level less than that of a given

channel (as defined by that channel’s SECCFG_CHx register), then that

channel’s interrupt status will read as 0, ignore writes.

WC 0x0000

DMA: INTE0 Register

Offset: 0x404

Description

Interrupt Enables for IRQ 0
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Table 1162. INTE0

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Set bit n to pass interrupts from channel n to DMA IRQ 0.

Note this bit has no effect if the channel security/privilege level, defined by

SECCFG_CHx, is greater than the IRQ security/privilege defined by

SECCFG_IRQ0.

RW 0x0000

DMA: INTF0 Register

Offset: 0x408

Description

Force Interrupts

Table 1163. INTF0

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Write 1s to force the corresponding bits in INTS0. The interrupt remains

asserted until INTF0 is cleared.

RW 0x0000

DMA: INTS0 Register

Offset: 0x40c

Description

Interrupt Status for IRQ 0

Table 1164. INTS0

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Indicates active channel interrupt requests which are currently causing IRQ 0

to be asserted.

Channel interrupts can be cleared by writing a bit mask here.

Channels with a security/privilege (SECCFG_CHx) greater SECCFG_IRQ0) read

as 0 in this register, and ignore writes.

WC 0x0000

DMA: INTE1 Register

Offset: 0x414

Description

Interrupt Enables for IRQ 1
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Table 1165. INTE1

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Set bit n to pass interrupts from channel n to DMA IRQ 1.

Note this bit has no effect if the channel security/privilege level, defined by

SECCFG_CHx, is greater than the IRQ security/privilege defined by

SECCFG_IRQ1.

RW 0x0000

DMA: INTF1 Register

Offset: 0x418

Description

Force Interrupts

Table 1166. INTF1

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Write 1s to force the corresponding bits in INTS1. The interrupt remains

asserted until INTF1 is cleared.

RW 0x0000

DMA: INTS1 Register

Offset: 0x41c

Description

Interrupt Status for IRQ 1

Table 1167. INTS1

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Indicates active channel interrupt requests which are currently causing IRQ 1

to be asserted.

Channel interrupts can be cleared by writing a bit mask here.

Channels with a security/privilege (SECCFG_CHx) greater SECCFG_IRQ1) read

as 0 in this register, and ignore writes.

WC 0x0000

DMA: INTE2 Register

Offset: 0x424

Description

Interrupt Enables for IRQ 2
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Table 1168. INTE2

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Set bit n to pass interrupts from channel n to DMA IRQ 2.

Note this bit has no effect if the channel security/privilege level, defined by

SECCFG_CHx, is greater than the IRQ security/privilege defined by

SECCFG_IRQ2.

RW 0x0000

DMA: INTF2 Register

Offset: 0x428

Description

Force Interrupts

Table 1169. INTF2

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Write 1s to force the corresponding bits in INTS2. The interrupt remains

asserted until INTF2 is cleared.

RW 0x0000

DMA: INTS2 Register

Offset: 0x42c

Description

Interrupt Status for IRQ 2

Table 1170. INTS2

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Indicates active channel interrupt requests which are currently causing IRQ 2

to be asserted.

Channel interrupts can be cleared by writing a bit mask here.

Channels with a security/privilege (SECCFG_CHx) greater SECCFG_IRQ2) read

as 0 in this register, and ignore writes.

WC 0x0000

DMA: INTE3 Register

Offset: 0x434

Description

Interrupt Enables for IRQ 3
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Table 1171. INTE3

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Set bit n to pass interrupts from channel n to DMA IRQ 3.

Note this bit has no effect if the channel security/privilege level, defined by

SECCFG_CHx, is greater than the IRQ security/privilege defined by

SECCFG_IRQ3.

RW 0x0000

DMA: INTF3 Register

Offset: 0x438

Description

Force Interrupts

Table 1172. INTF3

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Write 1s to force the corresponding bits in INTS3. The interrupt remains

asserted until INTF3 is cleared.

RW 0x0000

DMA: INTS3 Register

Offset: 0x43c

Description

Interrupt Status for IRQ 3

Table 1173. INTS3

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Indicates active channel interrupt requests which are currently causing IRQ 3

to be asserted.

Channel interrupts can be cleared by writing a bit mask here.

Channels with a security/privilege (SECCFG_CHx) greater SECCFG_IRQ3) read

as 0 in this register, and ignore writes.

WC 0x0000

DMA: TIMER0, TIMER1, TIMER2, TIMER3 Registers

Offsets: 0x440, 0x444, 0x448, 0x44c

Description

Pacing (X/Y) fractional timer

The pacing timer produces TREQ assertions at a rate set by ((X/Y) * sys_clk). This equation is evaluated every

sys_clk cycles and therefore can only generate TREQs at a rate of 1 per sys_clk (i.e. permanent TREQ) or less.

Table 1174. TIMER0,

TIMER1, TIMER2,

TIMER3 Registers

Bits Description Type Reset

31:16 X: Pacing Timer Dividend. Specifies the X value for the (X/Y) fractional timer. RW 0x0000

15:0 Y: Pacing Timer Divisor. Specifies the Y value for the (X/Y) fractional timer. RW 0x0000

DMA: MULTI_CHAN_TRIGGER Register

Offset: 0x450
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Description

Trigger one or more channels simultaneously

Table 1175.

MULTI_CHAN_TRIGGE

R Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 Each bit in this register corresponds to a DMA channel. Writing a 1 to the

relevant bit is the same as writing to that channel’s trigger register; the

channel will start if it is currently enabled and not already busy.

SC 0x0000

DMA: SNIFF_CTRL Register

Offset: 0x454

Description

Sniffer Control

Table 1176.

SNIFF_CTRL Register
Bits Description Type Reset

31:12 Reserved. - -

11 OUT_INV: If set, the result appears inverted (bitwise complement) when read.

This does not affect the way the checksum is calculated; the result is

transformed on-the-fly between the result register and the bus.

RW 0x0

10 OUT_REV: If set, the result appears bit-reversed when read. This does not

affect the way the checksum is calculated; the result is transformed on-the-fly

between the result register and the bus.

RW 0x0

9 BSWAP: Locally perform a byte reverse on the sniffed data, before feeding into

checksum.

Note that the sniff hardware is downstream of the DMA channel byteswap

performed in the read master: if channel CTRL_BSWAP and

SNIFF_CTRL_BSWAP are both enabled, their effects cancel from the sniffer’s

point of view.

RW 0x0

8:5 CALC RW 0x0

Enumerated values:

0x0 → Calculate a CRC-32 (IEEE802.3 polynomial)

0x1 → Calculate a CRC-32 (IEEE802.3 polynomial) with bit reversed data

0x2 → Calculate a CRC-16-CCITT

0x3 → Calculate a CRC-16-CCITT with bit reversed data

0xe → XOR reduction over all data. == 1 if the total 1 population count is odd.

0xf → Calculate a simple 32-bit checksum (addition with a 32 bit accumulator)

4:1 DMACH: DMA channel for Sniffer to observe RW 0x0

0 EN: Enable sniffer RW 0x0

DMA: SNIFF_DATA Register

Offset: 0x458

Description

Data accumulator for sniff hardware
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Table 1177.

SNIFF_DATA Register
Bits Description Type Reset

31:0 Write an initial seed value here before starting a DMA transfer on the channel

indicated by SNIFF_CTRL_DMACH. The hardware will update this register each

time it observes a read from the indicated channel. Once the channel

completes, the final result can be read from this register.

RW 0x00000000

DMA: FIFO_LEVELS Register

Offset: 0x460

Description

Debug RAF, WAF, TDF levels

Table 1178.

FIFO_LEVELS Register
Bits Description Type Reset

31:24 Reserved. - -

23:16 RAF_LVL: Current Read-Address-FIFO fill level RO 0x00

15:8 WAF_LVL: Current Write-Address-FIFO fill level RO 0x00

7:0 TDF_LVL: Current Transfer-Data-FIFO fill level RO 0x00

DMA: CHAN_ABORT Register

Offset: 0x464

Description

Abort an in-progress transfer sequence on one or more channels

Table 1179.

CHAN_ABORT

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 Each bit corresponds to a channel. Writing a 1 aborts whatever transfer

sequence is in progress on that channel. The bit will remain high until any in-

flight transfers have been flushed through the address and data FIFOs.

After writing, this register must be polled until it returns all-zero. Until this

point, it is unsafe to restart the channel.

SC 0x0000

DMA: N_CHANNELS Register

Offset: 0x468

Table 1180.

N_CHANNELS Register
Bits Description Type Reset

31:5 Reserved. - -

4:0 The number of channels this DMA instance is equipped with. This DMA

supports up to 16 hardware channels, but can be configured with as few as

one, to minimise silicon area.

RO -

DMA: SECCFG_CH0, SECCFG_CH1, …, SECCFG_CH14, SECCFG_CH15

Registers

Offsets: 0x480, 0x484, …, 0x4b8, 0x4bc

Description

Security configuration for channel N. Control whether this channel performs Secure/Non-secure and

Privileged/Unprivileged bus accesses.
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If this channel generates bus accesses of some security level, an access of at least that level (in the order S+P > S+U >

NS+P > NS+U) is required to program, trigger, abort, check the status of, interrupt on or acknowledge the interrupt of

this channel.

This register automatically locks down (becomes read-only) once software starts to configure the channel.

This register is world-readable, but is writable only from a Secure, Privileged context.

Table 1181.

SECCFG_CH0,

SECCFG_CH1, …,

SECCFG_CH14,

SECCFG_CH15

Registers

Bits Description Type Reset

31:3 Reserved. - -

2 LOCK: LOCK is 0 at reset, and is set to 1 automatically upon a successful write

to this channel’s control registers. That is, a write to CTRL, READ_ADDR,

WRITE_ADDR, TRANS_COUNT and their aliases.

Once its LOCK bit is set, this register becomes read-only.

A failed write, for example due to the write’s privilege being lower than that

specified in the channel’s SECCFG register, will not set the LOCK bit.

RW 0x0

1 S: Secure channel. If 1, this channel performs Secure bus accesses. If 0, it

performs Non-secure bus accesses.

If 1, this channel is controllable only from a Secure context.

RW 0x1

0 P: Privileged channel. If 1, this channel performs Privileged bus accesses. If 0,

it performs Unprivileged bus accesses.

If 1, this channel is controllable only from a Privileged context of the same

Secure/Non-secure level, or any context of a higher Secure/Non-secure level.

RW 0x1

DMA: SECCFG_IRQ0, SECCFG_IRQ1, SECCFG_IRQ2, SECCFG_IRQ3 Registers

Offsets: 0x4c0, 0x4c4, 0x4c8, 0x4cc

Description

Security configuration for IRQ N. Control whether the IRQ permits configuration by Non-secure/Unprivileged

contexts, and whether it can observe Secure/Privileged channel interrupt flags.

Table 1182.

SECCFG_IRQ0,

SECCFG_IRQ1,

SECCFG_IRQ2,

SECCFG_IRQ3

Registers

Bits Description Type Reset

31:2 Reserved. - -

1 S: Secure IRQ. If 1, this IRQ’s control registers can only be accessed from a

Secure context.

If 0, this IRQ’s control registers can be accessed from a Non-secure context,

but Secure channels (as per SECCFG_CHx) are masked from the IRQ status,

and this IRQ’s registers can not be used to acknowledge the channel interrupts

of Secure channels.

RW 0x1

0 P: Privileged IRQ. If 1, this IRQ’s control registers can only be accessed from a

Privileged context.

If 0, this IRQ’s control registers can be accessed from an Unprivileged context,

but Privileged channels (as per SECCFG_CHx) are masked from the IRQ status,

and this IRQ’s registers can not be used to acknowledge the channel interrupts

of Privileged channels.

RW 0x1

DMA: SECCFG_MISC Register
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Offset: 0x4d0

Description

Miscellaneous security configuration

Table 1183.

SECCFG_MISC

Register

Bits Description Type Reset

31:10 Reserved. - -

9 TIMER3_S: If 1, the TIMER3 register is only accessible from a Secure context,

and timer DREQ 3 is only visible to Secure channels.

RW 0x1

8 TIMER3_P: If 1, the TIMER3 register is only accessible from a Privileged (or

more Secure) context, and timer DREQ 3 is only visible to Privileged (or more

Secure) channels.

RW 0x1

7 TIMER2_S: If 1, the TIMER2 register is only accessible from a Secure context,

and timer DREQ 2 is only visible to Secure channels.

RW 0x1

6 TIMER2_P: If 1, the TIMER2 register is only accessible from a Privileged (or

more Secure) context, and timer DREQ 2 is only visible to Privileged (or more

Secure) channels.

RW 0x1

5 TIMER1_S: If 1, the TIMER1 register is only accessible from a Secure context,

and timer DREQ 1 is only visible to Secure channels.

RW 0x1

4 TIMER1_P: If 1, the TIMER1 register is only accessible from a Privileged (or

more Secure) context, and timer DREQ 1 is only visible to Privileged (or more

Secure) channels.

RW 0x1

3 TIMER0_S: If 1, the TIMER0 register is only accessible from a Secure context,

and timer DREQ 0 is only visible to Secure channels.

RW 0x1

2 TIMER0_P: If 1, the TIMER0 register is only accessible from a Privileged (or

more Secure) context, and timer DREQ 0 is only visible to Privileged (or more

Secure) channels.

RW 0x1

1 SNIFF_S: If 1, the sniffer can see data transfers from Secure channels, and can

itself only be accessed from a Secure context.

If 0, the sniffer can be accessed from either a Secure or Non-secure context,

but can not see data transfers of Secure channels.

RW 0x1

0 SNIFF_P: If 1, the sniffer can see data transfers from Privileged channels, and

can itself only be accessed from a privileged context, or from a Secure context

when SNIFF_S is 0.

If 0, the sniffer can be accessed from either a Privileged or Unprivileged

context (with sufficient security level) but can not see transfers from

Privileged channels.

RW 0x1

DMA: MPU_CTRL Register

Offset: 0x500

Description

Control register for DMA MPU. Accessible only from a Privileged context.

Table 1184.

MPU_CTRL Register
Bits Description Type Reset

31:4 Reserved. - -
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Bits Description Type Reset

3 NS_HIDE_ADDR: By default, when a region’s S bit is clear, Non-secure-

Privileged reads can see the region’s base address and limit address. Set this

bit to make the addresses appear as 0 to Non-secure reads, even when the

region is Non-secure, to avoid leaking information about the processor SAU

map.

RW 0x0

2 S: Determine whether an address not covered by an active MPU region is

Secure (1) or Non-secure (0)

RW 0x0

1 P: Determine whether an address not covered by an active MPU region is

Privileged (1) or Unprivileged (0)

RW 0x0

0 Reserved. - -

DMA: MPU_BAR0, MPU_BAR1, …, MPU_BAR6, MPU_BAR7 Registers

Offsets: 0x504, 0x50c, …, 0x534, 0x53c

Description

Base address register for MPU region N. Writable only from a Secure, Privileged context.

Table 1185.

MPU_BAR0,

MPU_BAR1, …,

MPU_BAR6,

MPU_BAR7 Registers

Bits Description Type Reset

31:5 ADDR: This MPU region matches addresses where addr[31:5] (the 27 most

significant bits) are greater than or equal to BAR_ADDR, and less than or equal

to LAR_ADDR.

Readable from any Privileged context, if and only if this region’s S bit is clear,

and MPU_CTRL_NS_HIDE_ADDR is clear. Otherwise readable only from a

Secure, Privileged context.

RW 0x0000000

4:0 Reserved. - -

DMA: MPU_LAR0, MPU_LAR1, …, MPU_LAR6, MPU_LAR7 Registers

Offsets: 0x508, 0x510, …, 0x538, 0x540

Description

Limit address register for MPU region N. Writable only from a Secure, Privileged context, with the exception of the P

bit.

Table 1186.

MPU_LAR0,

MPU_LAR1, …,

MPU_LAR6,

MPU_LAR7 Registers

Bits Description Type Reset

31:5 ADDR: Limit address bits 31:5. Readable from any Privileged context, if and

only if this region’s S bit is clear, and MPU_CTRL_NS_HIDE_ADDR is clear.

Otherwise readable only from a Secure, Privileged context.

RW 0x0000000

4:3 Reserved. - -

2 S: Determines the Secure/Non-secure (=1/0) status of addresses matching

this region, if this region is enabled.

RW 0x0

1 P: Determines the Privileged/Unprivileged (=1/0) status of addresses

matching this region, if this region is enabled. Writable from any Privileged

context, if and only if the S bit is clear. Otherwise, writable only from a Secure,

Privileged context.

RW 0x0
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Bits Description Type Reset

0 EN: Region enable. If 1, any address within range specified by the base

address (BAR_ADDR) and limit address (LAR_ADDR) has the attributes

specified by S and P.

RW 0x0

DMA: CH0_DBG_CTDREQ, CH1_DBG_CTDREQ, …, CH14_DBG_CTDREQ,

CH15_DBG_CTDREQ Registers

Offsets: 0x800, 0x840, …, 0xb80, 0xbc0

Table 1187.

CH0_DBG_CTDREQ,

CH1_DBG_CTDREQ, …,

CH14_DBG_CTDREQ,

CH15_DBG_CTDREQ

Registers

Bits Description Type Reset

31:6 Reserved. - -

5:0 Read: get channel DREQ counter (i.e. how many accesses the DMA expects it

can perform on the peripheral without overflow/underflow. Write any value:

clears the counter, and cause channel to re-initiate DREQ handshake.

WC 0x00

DMA: CH0_DBG_TCR, CH1_DBG_TCR, …, CH14_DBG_TCR, CH15_DBG_TCR

Registers

Offsets: 0x804, 0x844, …, 0xb84, 0xbc4

Table 1188.

CH0_DBG_TCR,

CH1_DBG_TCR, …,

CH14_DBG_TCR,

CH15_DBG_TCR

Registers

Bits Description Type Reset

31:0 Read to get channel TRANS_COUNT reload value, i.e. the length of the next

transfer

RO 0x00000000

12.7. USB

12.7.1. Overview

 NOTE

Prerequisite knowledge required

This section requires knowledge of the USB protocol. If you aren’t yet familiar with the USB protocol, we recommend

USB Made Simple. For formal definitions of the terminology used in this section, see the USB 2.0 Specification.

RP2350 contains a USB 2.0 controller that can operate as either:

• a Full Speed (FS) device (12 Mb/s)

• a host that can communicate with both Low Speed (LS) (1.5 Mb/s) and Full Speed devices, including multiple

downstream devices connected to a USB hub

There is an integrated USB 1.1 PHY which interfaces the USB controller with the DP and DM pins of the chip. You may use

this as 3.3 V GPIO when the USB controller is not in use.

12.7.1.1. Features

The USB controller hardware handles the low level USB protocol. The programmer must configure the controller, provide

data buffers, and consume or provide data buffers in response to events on the bus. The controller interrupts the

processor when it needs attention. The USB controller has 4 kB of dual-port SRAM (DPSRAM) used for configuration

RP2350 Datasheet

12.7. USB 1128

http://www.usbmadesimple.co.uk/
https://www.usb.org/document-library/usb-20-specification


and data buffers.

12.7.1.1.1. Device Mode

In Device Mode, the USB controller has the following characteristics:

• USB 2.0-compatible Full Speed device (12 Mb/s)

• Supports up to 32 endpoints (Endpoints 0 → 15 in both in and out directions)

• Supports Control, Isochronous (ISO), Bulk, and Interrupt endpoint types

• Supports double buffering

• 3840 bytes of usable buffer space in DPSRAM. This is equivalent to 60 × 64-byte buffers

12.7.1.1.2. Host Mode

In Host Mode, the USB controller can:

• communicate with Full Speed (12 Mb/s) devices and Low Speed devices (1.5 Mb/s)

• communicate with multiple devices via a USB hub, including Low Speed devices connected to a Full Speed hub

• poll up to 15 interrupt endpoints in hardware (used by hubs to notify the host of connect/disconnect events, used

by mice to notify the host of movement, etc.)

12.7.1.1.3. USB DPRAM

The USB controller uses 4 kB of dual-port SRAM (DPSRAM) to exchange data and control information with the

controller. This is also referred to as dual-port RAM (DPRAM). One port is accessible from the system bus, clocked by

clk_sys. The other port is accessible from the controller, clocked by clk_usb. The DPRAM is mapped in the system

address space starting from 0x50100000, USBCTRL_DPRAM_BASE.

The USB DPRAM supports 32-bit, 16-bit and 8-bit reads and writes. Writes complete in one cycle. Reads complete in two

cycles.

You can store general user data in USB DPRAM space not required for USB controller operation. When the controller is

disabled, all 4 kB of DPRAM is available. Before accessing the DPRAM, you must take the USB controller out of reset.

Since the USB controller is in the peripheral address space, it is not accessible for processor instruction fetch.

Attempting to fetch instructions from USB DPRAM unconditionally returns a bus error response, no matter the

configuration of the processor SAU/MPU/PMP or the system ACCESSCTRL registers.

As peripheral addresses are marked Exempt in the IDAU (Section 10.2.2), the SAU configuration for this address range

is ignored. Accesses to USB DPRAM are controlled only by the processor MPU/PMP and the ACCESSCTRL USBCTRL

register.

12.7.2. Changes from RP2040

All changes from RP2040 are a superset of the RP2040 features. Existing software for the RP2040 USB controller will

continue to work with one exception: you must clear the MAIN_CTRL.PHY_ISO bit at startup and after power down

events. We recommend leaving the LINESTATE_TUNING register at its reset value. Software should not clear this

register.

12.7.2.1. Errata Fixes

RP2350 fixes all RP2040 USB errata. This includes fixes for the following RP2040B0 and B1 errata which are also fixed
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by RP2040B2:

• RP2040-E2: USB device endpoint abort is not cleared

• RP2040-E5: USB device fails to exit RESET state on busy USB bus

For more information about RP2040B2, see the RP2040 datasheet.

RP2350 fixes the following RP2040B2 errata, which require software workarounds on RP2040B2:

• RP2040-E3: USB host: interrupt endpoint buffer done flag can be set with incorrect buffer select

• RP2040-E4: USB host writes to upper half of buffer status in single buffered mode

• RP2040-E15: USB Device controller will hang if certain bus errors occur during an IN transfer (see Section

12.7.2.2.4)

12.7.2.2. New Features

12.7.2.2.1. General

• The USB PHY DP and DM can be used as regular GPIO pins. See the GPIO muxing Table 643 in Section 9.4..

• A MAIN_CTRL.PHY_ISO control isolates the PHY from the switched core power domain while the switched core

domain is powered down. The isolation control resets to 1, meaning the MAIN_CTRL.PHY_ISO bit needs to be

cleared before the PHY can be used. For more information on isolation, see Chapter 9.

• SIE_CTRL.PULLDOWN_EN defaults to a 1 to match the reset state of isolation latches in the USB PHY. Pulling the

DP and DM pins down by default saves power by preventing them from floating when unused.

• The USB_MUXING.TO_PHY bit defaults to a 1 to match the reset state of isolation latches.

• Added SM_STATE, which exposes the internal state of the controller’s modules.

12.7.2.2.2. Host

• You can now optionally stop a transaction if a NAK is received. This allows the USB host to stop a bulk transaction if

the device is not able to transfer data. Some devices using bulk endpoints, such as a UART, will return NAKs until a

character is received. Stopping the transaction in hardware rather than using software means the host can get a

NAK and guarantee no data has been dropped. RP2350 adds two register bits and an interrupt to support this:

◦ The NAK_POLL.STOP_EPX_ON_NAK control, which enables and disables the feature.

◦ The NAK_POLL.EPX_STOPPED_ON_NAK status bit, which also has an associated interrupt

INTS.EPX_STOPPED_ON_NAK.

• RP2350 increases inter-packet and turnaround timeouts to accommodate worst-case hub delays. This issue, only

seen with long chains of USB hubs, was never seen in practice. Timings in the host state machine have been

corrected to match USB spec. This fix is enabled by LINESTATE_TUNING.MULTI_HUB_FIX.

12.7.2.2.3. Device

• Added wake from suspend fix: Any bus activity (defined as K or SE0) should cause a wake from suspend, not just a

qualified period of resume signalling. This fix is enabled by default and can be disabled with

LINESTATE_TUNING.DEV_LS_WAKE_FIX (LS means line state in this instance, not low speed).

• Added DPSRAM double read feature to ensure data consistency. This avoids the need to set the AVAILABLE bit in the

buffer control register separate to the rest of the buffer information. This feature is enabled by default and

controlled by LINESTATE_TUNING.DEV_BUFF_CONTROL_DOUBLE_READ_FIX.

• Added ability to stop DEVICE OUT FROM HOST when a short packet is received. For EP0 this is controlled by

SIE_CTRL.EP0_STOP_ON_SHORT_PACKET. This is done by stopping the transaction and then not toggling the
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buffer if in double buffered mode. Also added short_packet interrupt to notify software that a short packet has been

received (INTS.RX_SHORT_PACKET)

12.7.2.2.4. Device error handling

• Added DEV_RX_ERR_QUIESCE feature: the device endpoint error count replicates the host’s internal Cerr count so

software can detect if the host has probably halted the endpoint after three consecutive errors. The various stages

of RX decode generate their own error signals that propagate to the top level. These error signals arrive at different

times, so two error interrupts generate for every failed transfer. Added an optional override for this behaviour by

forcing the device RX controller to idle after the first instance of an error during a transfer. This fix is enabled with

LINESTATE_TUNING.DEV_RX_ERR_QUIESCE.

• Added SIE_RX_CHATTER_SE0_FIX: the existing error recovery implementation waits for 8 FS idle bit-times before

signalling a framing error and returning to idle. This works OK for random bus errors, but when a hub terminates a

downstream packet, the hub forces a bit-stuff error followed by EOP. A valid token from the host may immediately

follow this, but the device controller may ignore it due to the enforced delay. Optionally waits for either a valid EOP

or 8 idle bit times before signalling a framing error. To enable the fix, use

LINESTATE_TUNING.SIE_RX_CHATTER_SE0_FIX.

• Fix RP2040-E15: the receive state machine doesn’t always handle cases where the bitstream deserialiser can abort

a transfer. If decoding terminates due to bitstuff errors during the middle phases of a packet, the device controller

can lock up. Unconditionally disables RX if the deserialiser has flagged a bitstuff error and subsequently signalled

framing error after linestate returns to idle. To enable this fix, use LINESTATE_TUNING.SIE_RX_BITSTUFF_FIX.

• Device state machine watchdog: added a watchdog so that if the device state machine gets stuck for a certain

amount of time it can be forced to idle. This is to handle any other error cases not anticipated by the above fixes.

To enable the watchdog, use DEV_SM_WATCHDOG.

12.7.3. Architecture

12.7.3.1. Clock speed

This controller requires clk_usb to be running at 48MHz. clk_sys must also be running at >= 48MHz.

12.7.3.2. Overview

Figure 123. A

simplified overview of

the USB controller

architecture.

The USB controller is an area-efficient design that muxes a device controller or host controller onto a common set of

components. Each component is detailed below.
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12.7.3.3. USB PHY

The USB PHY provides the electrical interface between the USB DP and DM pins and the digital logic of the controller. The

DP and DM pins are a differential pair, meaning the values are always the inverse of each other, except to encode a

specific line state (e.g. SE0). The USB PHY drives the DP and DM pins to transmit data and performs a differential receive

of any incoming data. The USB PHY provides both single-ended and differential receive data to the line state detection

module.

The USB PHY has built in pull-up and pull-down resistors. When the controller acts as a Full Speed device, the DP pin is

pulled up to indicate to the host that a Full Speed device has been connected. In host mode, a weak pull-down is applied

to DP and DM so that the lines are pulled to a logical zero until the device pulls up DP for Full Speed or DM for Low Speed.

12.7.3.4. Line State Detection

The USB 2.0 Specification defines several line states (Bus Reset, Connected, Suspend, Resume, Data 1, Data 0, etc.) that

need to be detected. The line state detection module has several state machines to detect these states and signal

events to the other hardware components. There is no shared clock signal in USB, so the RX data must be sampled by

an internal clock. The maximum data rate of USB Full Speed is 12 Mb/s. The RX data is sampled at 48MHz, giving 4

clock cycles to capture and filter the bus state. The line state detection module distributes the filtered RX data to the

Serial RX Engine.

12.7.3.5. Serial RX Engine

The serial receive (RX) engine decodes receive data captured by the line state detection module. It produces the

following information:

• The PID of the incoming data packet

• The device address for the incoming data

• The device endpoint for the incoming data

• Data bytes

The serial receive engine also detects errors in RX data by performing a CRC check on the incoming data. Any errors are

signalled to the other hardware blocks and can raise an interrupt.

 NOTE

If you disconnect the USB cable during packet transfer in either host or device mode, the hardware will raise errors.

Software must account for this scenario if you enable error interrupts.

12.7.3.6. Serial TX Engine

The serial transmit (TX) engine is a mirror of the serial receive engine. It is connected to the currently active controller

(either device or host). It creates TOKEN and DATA packets, calculates the CRC, and transmits them on the bus.

12.7.3.7. DPSRAM

The USB controller uses 4 kB (4096 bytes) of Dual Port SRAM (DPSRAM) to store control registers and data buffers. The

DPSRAM is accessible as a 32-bit wide memory at address 0 of the USB controller (0x50100000).

The DPSRAM has the following characteristics, which differ from most registers on RP2350:

• Supports 8-bit, 16-bit, and 32-bit accesses (typically, RP2350 registers only support 32-bit accesses)
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• Does not support set/clear aliases. (typically, RP2350 registers support these)

Data Buffers are typically 64 bytes long, as this is the maximum normal packet size for most Full Speed packets.

Isochronous endpoints support a maximum buffer size of 1023 bytes. For other packet types, the maximum size is 64

bytes per buffer.

12.7.3.7.1. Concurrent access

The DPSRAM in the USB controller is asynchronous. The dual port part of the name indicates that both the processor

and the USB controller have ports to read and write, and these two ports are in different clock domains. As a result, the

processor and USB controller can access the same memory address at the same time. One could write and one could

read simultaneously. This could result in inconsistent data reads. You can avoid this scenario by following the rules

outlined in this section.

The AVAILABLE bit in the buffer control register indicates who has ownership of a buffer. Set this bit to 1 from the

processor to give the controller ownership of the buffer. When it has finished using the buffer, the controller sets the bit

back to 0. Set the AVAILABLE bit separately from the rest of the data in the buffer control register so that the rest of the

data in the buffer control register is accurate when the AVAILABLE bit is set.

This is necessary because the processor clock clk_sys can run several times faster than the clk_usb clock. Therefore

clk_sys can update the data during a USB controller read on a slower clock. The correct process is:

1. Write buffer information (length, etc.) to the buffer control register.

2. nop for some clk_sys cycles to ensure that at least one clk_usb cycle passes. Consider a scenario where clk_sys runs

at 125MHz and clk_usb runs at 48MHz. Because , you should issue 3 nop instructions between the writes

to guarantee that at least one clk_usb cycle has passed.

3. Set the AVAILABLE bit.

If clk_sys and clk_usb run at the same frequency, then it is not necessary to set the AVAILABLE bit separately.

 NOTE

When the USB controller writes the status back to the DPSRAM, it does a 16-bit write to the lower 2 bytes for buffer 0

and the upper 2 bytes for buffer 1. When using double-buffered mode, always treat the buffer control register as two

16-bit registers when updating it in software.

12.7.3.7.2. Layout

Addresses 0x0 → 0xff are used for control registers containing configuration data. The remaining space, addresses

0x100 → 0xfff (3840 bytes) can be used for data buffers. The controller has control registers that start at address

0x10000.

The memory layout depends on the USB controller mode:

• In Device mode, the host can access multiple endpoints, so each endpoint must have endpoint control and buffer

control registers.

• In Host mode, the host software running on the processor decides which endpoints and devices to access. This

only requires one set of endpoint control and buffer control registers. As well as software-driven transfers, the host

controller can poll up to 15 interrupt endpoints and has a register for each of these interrupt endpoints.

Table 1189. DPSRAM

layout
Offset Device Function Host Function

0x0 Setup packet (8 bytes)

0x8 EP1 in control Interrupt endpoint control 1

0xc EP1 out control Spare

0x10 EP2 in control Interrupt endpoint control 2
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Offset Device Function Host Function

0x14 EP2 out control Spare

0x18 EP3 in control Interrupt endpoint control 3

0x1c EP3 out control Spare

0x20 EP4 in control Interrupt endpoint control 4

0x24 EP4 out control Spare

0x28 EP5 in control Interrupt endpoint control 5

0x2c EP5 out control Spare

0x30 EP6 in control Interrupt endpoint control 6

0x34 EP6 out control Spare

0x38 EP7 in control Interrupt endpoint control 7

0x3c EP7 out control Spare

0x40 EP8 in control Interrupt endpoint control 8

0x44 EP8 out control Spare

0x48 EP9 in control Interrupt endpoint control 9

0x4c EP9 out control Spare

0x50 EP10 in control Interrupt endpoint control 10

0x54 EP10 out control Spare

0x58 EP11 in control Interrupt endpoint control 11

0x5c EP11 out control Spare

0x60 EP12 in control Interrupt endpoint control 12

0x64 EP12 out control Spare

0x68 EP13 in control Interrupt endpoint control 13

0x6c EP13 out control Spare

0x70 EP14 in control Interrupt endpoint control 14

0x74 EP14 out control Spare

0x78 EP15 in control Interrupt endpoint control 15

0x7c EP15 out control Spare

0x80 EP0 in buffer control EPx buffer control

0x84 EP0 out buffer control Spare

0x88 EP1 in buffer control Interrupt endpoint buffer control 1

0x8c EP1 out buffer control Spare

0x90 EP2 in buffer control Interrupt endpoint buffer control 2

0x94 EP2 out buffer control Spare

0x98 EP3 in buffer control Interrupt endpoint buffer control 3

0x9c EP3 out buffer control Spare

0xa0 EP4 in buffer control Interrupt endpoint buffer control 4
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Offset Device Function Host Function

0xa4 EP4 out buffer control Spare

0xa8 EP5 in buffer control Interrupt endpoint buffer control 5

0xac EP5 out buffer control Spare

0xb0 EP6 in buffer control Interrupt endpoint buffer control 6

0xb4 EP6 out buffer control Spare

0xb8 EP7 in buffer control Interrupt endpoint buffer control 7

0xbc EP7 out buffer control Spare

0xc0 EP8 in buffer control Interrupt endpoint buffer control 8

0xc4 EP8 out buffer control Spare

0xc8 EP9 in buffer control Interrupt endpoint buffer control 9

0xcc EP9 out buffer control Spare

0xd0 EP10 in buffer control Interrupt endpoint buffer control 10

0xd4 EP10 out buffer control Spare

0xd8 EP11 in buffer control Interrupt endpoint buffer control 11

0xdc EP11 out buffer control Spare

0xe0 EP12 in buffer control Interrupt endpoint buffer control 12

0xe4 EP12 out buffer control Spare

0xe8 EP13 in buffer control Interrupt endpoint buffer control 13

0xec EP13 out buffer control Spare

0xf0 EP14 in buffer control Interrupt endpoint buffer control 14

0xf4 EP14 out buffer control Spare

0xf8 EP15 in buffer control Interrupt endpoint buffer control 15

0xfc EP15 out buffer control Spare

0x100 EP0 buffer 0 (shared between in and

out)

EPx control

0x140 Optional EP0 buffer 1 Spare

0x180 Data buffers

12.7.3.7.3. Endpoint Control Register

The endpoint control register is used to configure an endpoint. It defines:

• The endpoint type

• The base address of the endpoint’s data buffer (or data buffers if double-buffered)

• Which endpoint events trigger the controller interrupt output

A device must support Endpoint 0 so that it can reply to SETUP packets and be enumerated. As a result, there is no

endpoint control register for EP0. Its buffers begin at 0x100. All other endpoints can have either single or dual buffers and

are mapped at the base address programmed. As EP0 has no endpoint control register, the interrupt enable controls for

EP0 come from SIE_CTRL.

RP2350 Datasheet

12.7. USB 1135



Table 1190. Endpoint

control register layout
Bit(s) Device Function Host Function

31 Endpoint enable

30 Single buffered (64 bytes) = 0, Double buffered (64 bytes × 2) = 1

29 Enable interrupt for every transferred buffer

28 Enable interrupt for every 2 transferred buffers (valid for double-buffered only)

27:26 Endpoint Type: Control = 0, Isochronous = 1, Bulk = 2, Interrupt = 3

25:18 N/A The interval the host controller should poll this

endpoint. Only applicable for interrupt

endpoints. Specified in ms - 1. For example: a

value of 9 would poll the endpoint every 10ms.

17 Interrupt on STALL

16 Interrupt on NAK

15:6 Address base offset in DPSRAM of data buffer(s)

 NOTE

The data buffer base address must be 64-byte aligned, since bits 0 through 5 are ignored.

12.7.3.7.4. Buffer Control Register

The buffer control register contains information about the state of the data buffers for that endpoint. It is shared

between the processor and the controller. If the endpoint is configured to be single-buffered, only the first half (bits 0

through 15) of the buffer are used.

If double buffering, the buffer select starts at buffer 0. From then on, the buffer select flips between buffer 0 and 1

unless the reset buffer select bit is set (which resets the buffer select to buffer 0). The value of the buffer select is

internal to the controller and not accessible by the processor.

For host interrupt and isochronous packets on EPx, the buffer full bit will be set on completion even if the transfer was

unsuccessful. To determine the error, read the error bits in the SIE_STATUS register.

Table 1191. Buffer

control register layout
Bit(s) Function

31 Buffer 1 full. Should be set to 1 by the processor for an IN transaction and 0 for an OUT

transaction. The controller sets this to 1 for an OUT transaction because it has filled the buffer.

The controller sets it to 0 for an IN transaction because it has emptied the buffer. Only valid

when double buffering.

30 Last buffer of transfer for buffer 1. Only valid when double buffering.

29 Data PID for buffer 1 - DATA0 = 0, DATA1 = 1. Only valid when double buffering.

27:28 Double buffer offset for isochronous mode (0 = 128, 1 = 256, 2 = 512, 3 = 1024).

26 Buffer 1 available. Whether the buffer can be used by the controller for a transfer. The

processor sets this to 1 when the buffer is configured. The controller sets this to 0 after it has

sent the data to the host for an IN transaction, or filled the buffer with data from the host for an

OUT transaction. Only valid when double buffering.

25:16 Buffer 1 transfer length. Only valid when double buffering.

15 Buffer 0 full. Should be set to 1 by the processor for an IN transaction and 0 for an OUT

transaction. The controller sets this to 1 for an OUT transaction because it has filled the buffer.

The controller sets it to 0 for an IN transaction because it has emptied the buffer.

14 Last buffer of transfer for buffer 0.

13 Data PID for buffer 0 - DATA0 = 0, DATA1 = 1.
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Bit(s) Function

12 Reset buffer select to buffer 0 - cleared at end of transfer. For device only.

11 Send STALL for device, STALL received for host.

10 Buffer 0 available. Indicates whether the buffer can be used by the controller for a transfer.

The processor sets this to 1 when the buffer is configured. The controller sets this to 0 after it

has sent the data to the host for an IN transaction or filled the buffer with data from the host

for an OUT transaction.

9:0 Buffer 0 transfer length.

 WARNING

If you run clk_sys and clk_usb at different speeds, set the available and stall bits after the other data in the buffer

control register. Otherwise, the controller may initiate a transaction with data from a previous packet. The controller

could see the available bit set, but get the data PID or length from the previous packet.

12.7.3.8. Device Controller

This section details how the device controller operates when it receives various packet types from the host.

12.7.3.8.1. SETUP

The device controller MUST always accept a SETUP packet from the host. DPSRAM dedicates its first 8 bytes to the setup

packet.

The USB 2.0 Specification states that receiving a setup packet also clears any stall bits on EP0. For this reason, the stall

bits for EP0 are gated with two bits in the EP_STALL_ARM register. These bits are cleared when a setup packet is

received. This means that to send a stall on EP0, you must set both the stall bit in the buffer control register and the

appropriate bit in EP_STALL_ARM.

Barring any errors, the setup packet will be put into the setup packet buffer at DPSRAM offset 0x0. The device controller

will then reply with an ACK.

Finally, SIE_STATUS.SETUP_REC is set to indicate that a setup packet has been received. This will trigger an interrupt if

the programmer has enabled the SETUP_REC interrupt (see INTE).

12.7.3.8.2. IN

From the device’s point of view, an IN transfer means transferring data into the host. When an IN token is received from

the host, the request is handled as follows:

TOKEN phase:

1. If STALL is set in the buffer control register (and if EP0, the appropriate EP_STALL_ARM bit is set), send a STALL

response and go to idle.

2. If AVAILABLE and FULL bits are set in buffer control, go to the DATA phase.

3. If this is an isochronous endpoint, go to idle.

◦ Otherwise, send NAK and go to the DATA phase.

DATA phase:

1. Send data.

2. If this is an isochronous endpoint, go to idle.
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◦ Otherwise, go to the ACK phase.

ACK phase:

1. Wait for ACK packet from host.

2. If there is a timeout, raise a timeout error.

3. If ACK is received, the packet is done, so go to STATUS phase.

STATUS phase:

1. If this was the last buffer in the transfer (i.e. if the LAST_BUFFER bit in the buffer control register was set), set

SIE_STATUS.TRANS_COMPLETE.

2. If the endpoint is double buffered, flip the buffer select to the other buffer.

3. Set a bit in BUFF_STATUS to indicate the buffer is done. When handling this event, the programmer should read

BUFF_CPU_SHOULD_HANDLE to see if it is buffer 0 or buffer 1 that is finished. If the endpoint is double-buffered,

both buffers could be done. The cleared BUFF_STATUS bit will be set again, and BUFF_CPU_SHOULD_HANDLE will

change in this instance.

4. Update status in the appropriate half of the buffer control register: length, pid, and last_buff are set. Everything else

is written to zero.

If the host receives a NAK, the host will retry again later.

12.7.3.8.3. OUT

When an OUT token is received from the host, the request is handled as follows:

TOKEN phase:

1. If this is not an Isochronous endpoint and the data PID does not match the buffer control register, raise

SIE_STATUS.DATA_SEQ_ERROR (isochronous data is always sent with a DATA0 pid).

2. If the AVAILABLE bit is set and the FULL bit is clear, go to the DATA phase, unless the STALL bit is set in which case the

device controller will reply with a STALL.

DATA phase:

1. Store received data in buffer. If this is an isochronous endpoint, go to the STATUS phase. Otherwise, go to the ACK

phase.

ACK phase:

1. Send ACK. Go to the STATUS phase.

STATUS phase:

See IN STATUS phase: [usb-device-in-status-phase]. There is one difference: the FULL bit is set in the buffer control register

to indicate that data has been received. In the IN phase, the FULL bit is cleared to indicate that data has been sent.

12.7.3.8.4. Suspend and Resume

The USB device controller supports suspend, resume, and device-initiated remote resume (triggered with

SIE_CTRL.RESUME). There is an interrupt / status bit in SIE_STATUS. It is not necessary to enable the suspend and

resume interrupts, since suspend and resume are irrelevant to most devices.

The device goes into suspend when it does not see any start of frame packets (transmitted every 1ms) from the host.
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 NOTE

If you enable the suspend interrupt, it is likely you will see a suspend interrupt when the device first connects, but the

bus is idle. The bus can be idle for a few milliseconds before the host begins sending start of frame packets. If you

do not have a VBUS detect circuit connected, you will also see a suspend interrupt when the device disconnects.

Without VBUS detection, it is impossible to tell the difference between being disconnected and suspended.

12.7.3.9. Host Controller

The host controller design is similar to the device controller. The host starts all transactions, so the host always deals

with transactions it has started. For this reason, there is only one set of endpoint control and endpoint buffer control

registers. The host controller also contains additional hardware to poll interrupt endpoints in the background when there

are no software controlled transactions taking place.

The host needs to send keep-alive packets to the device every 1ms to keep the device from suspending. Full Speed

mode uses a SOF (start of frame) packet. Low Speed mode uses an EOP (end of packet) instead. Set

SIE_CTRL.KEEP_ALIVE_EN and SIE_CTRL.SOF_EN to enable these packets.

Several bits in SIE_CTRL are used to begin a host transaction:

• SEND_SETUP - Send a setup packet. Typically used with RECEIVE_TRANS, so the setup packet will be sent followed by the

additional data transaction expected from the device.

• SEND_TRANS - This transfer is OUT from the host.

• RECEIVE_TRANS - This transfer is IN to the host.

• START_TRANS - Start the transfer (non-latching).

• STOP_TRANS - Stop the current transfer (non-latching).

• PREAMBLE_ENABLE - Used to send a packet to a Low Speed device on a Full Speed hub. Sends a PRE token packet

before every packet the host sends (i.e. PRE, TOKEN, PRE, DATA, pre, ACK).

• SOF_SYNC - Used to delay the transaction until after the next SOF. Useful for interrupt and isochronous endpoints. The

host controller prevents a transaction of 64 bytes from clashing with the SOF packets. For longer isochronous

packets, software is responsible for preventing collisions. To prevent collisions in software, use SOF_SYNC and limit

the number of packets sent in one frame. If a transaction is set up with multiple packets, SOF_SYNC only applies to

the first packet.

The START_TRANS bit is synchronised separately from other control bits in the SIE_CTRL register because the processor

clock clk_sys can be asynchronous to the clk_usb clock. Always set the START_TRANS bit separately from the rest of the

data in the SIE_CTRL register. Always ensure that at least two clk_usb cycles pass between writing to START_TRANS and other

bits in SIE_CTRL. This ensures that the register contents are stable when the controller is prompted to start a transfer.

Consider a scenario where clk_sys runs at 125MHz and clk_usb runs at 48MHz. Because , you should issue

6 nop instructions between the writes to guarantee that at least two clk_usb cycles have passed.

12.7.3.9.1. SETUP

The SETUP packet sent from the host always comes from the dedicated 8 bytes of space at offset 0x0 of the DPSRAM.

Like the device controller, there are no control registers associated with the setup packet. The parameters are hard-

coded and loaded into the hardware when you write to START_TRANS with the SEND_SETUP bit set. Once the setup packet has

been sent, the host state machine waits for an ACK from the device. If there is a timeout, an RX_TIMEOUT error will be raised.

If the SEND_TRANS bit is set, the host state machine will move to the OUT phase. Typically, the SEND_SETUP packet is used with

the RECEIVE_TRANS bit, so the controller moves to the IN phase after sending a setup packet.
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12.7.3.9.2. IN

An IN transfer is triggered with the RECEIVE_TRANS bit set when the START_TRANS bit is set. If the SEND_SETUP bit was set, this

may be preceded by a SETUP packet.

CONTROL phase:

1. Read the EPx control register located at 0x80 to get the following endpoint information:

◦ Is it double buffered?

◦ What interrupts are enabled?

◦ Base address of the data buffer (data buffers if in double-buffered mode)

◦ What is the endpoint type?

2. Read the EPx buffer control register at 0x100 to get endpoint buffer information, such as transfer length and data

PID.

3. Set the AVAILABLE bit (the host state machine checks for it).

4. Clear the FULL bit.

TOKEN phase:

1. Send the IN token packet to the device. The target device address and endpoint come from the ADDR_ENDP

register.

DATA phase:

1. Receive the first data packet from the device.

2. Raise RX timeout error if the device doesn’t reply.

3. If this is not an Isochronous endpoint and the data PID does not match the buffer control register, raise

SIE_STATUS.DATA_SEQ_ERROR (isochronous data is always sent with a DATA0 pid).

ACK phase:

1. Send ACK to device.

STATUS phase:

1. Set the BUFF_STATUS bit and update the buffer control register.

2. Set FULL, DATA_PID, WR_LEN, and LAST_BUFF if applicable.

3. If this is the last buffer in the transfer, set TRANS_COMPLETE.

CONTROL phase (continued):

The host state machine performs IN transactions until LAST_BUFF is seen in the buffer_control register.

If the host is in double buffered mode, the host controller toggles between the BUF0 and BUF1 sections of the buffer

control register.

Otherwise, the controller reads the buffer control register for buffer 0, then waits for FULL to be clear and AVAILABLE to be

set before starting the next IN transaction, waiting in the CONTROL phase.

If the host receives a zero length packet, the device has no more data. The host state machine stops listening for more

data regardless of if the LAST_BUFF flag was set or not. To detect this from host software, check BUFF_DONE for a data

length of 0 in the buffer control register.

12.7.3.9.3. OUT

An OUT transfer is triggered with the SEND_TRANS bit set when the START_TRANS bit is set. This may be preceded by a SETUP

packet if the SEND_SETUP bit was set.

CONTROL phase:
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1. Read the EPx control register to get endpoint information (same as Section 12.7.3.9.2).

2. Read the EPx buffer control register to get the transfer length and data PID. AVAILABLE and FULL must be set before

the transfer can start.

TOKEN phase

1. Send an OUT packet to the device. The target device address and endpoint come from the ADDR_ENDP register.

DATA phase:

1. Send the first data packet to the device. If the endpoint type is isochronous, there is no ACK phase, so the host

controller goes straight to status phase. If ACK is received, go to status phase. Otherwise:

◦ If the host receives no reply, raise SIE_STATUS.RX_TIMEOUT.

◦ If the host receives NAK, raise SIE_STATUS.NAK_REC and send the data packet again.

◦ If the host receives STALL, raise SIE_STATUS.STALL_REC and go to idle.

STATUS phase:

1. Set the BUFF_STATUS bit and update the buffer control register. FULL will be set to 0. TRANS_COMPLETE will be set if

this is the last buffer in the transfer.

CONTROL phase (continued):

1. If this isn’t the last buffer in the transfer, wait for FULL and AVAILABLE to be set in the EPx buffer control register again.

12.7.3.9.4. Interrupt Endpoints

The host controller can poll interrupt endpoints on a maximum of 15 endpoints. To enable interrupt endpoints, the

programmer must:

• Pick the next free interrupt endpoint slot on the host controller (starting at 1, to a maximum of 15).

• Program the appropriate endpoint control register and buffer control register like you would with a normal IN or OUT

transfer. Because interrupt endpoints are single-buffered, the BUF1 part of the buffer control register is invalid.

• Set the address and endpoint of the device in the appropriate ADDR_ENDP register (ADDR_ENDP1 to ADDR_ENDP15).

If the device is Low Speed but attached to a Full Speed hub, the preamble bit should be set. The endpoint direction

bit should also be set.

• Set the corresponding interrupt endpoint active bit (one of bits 1 through 15) in INT_EP_CTRL.

Typically, interrupt endpoints use an IN transfer. The host might poll a USB hub to see if the state of any of its ports have

changed. If there is no change, the hub replies with a NAK to the controller, and nothing happens. Similarly, a mouse

replies with a NAK unless the mouse has been moved since the last time the interrupt endpoint was polled.

Interrupt endpoints are polled by the controller once a SOF packet has been sent by the host controller.

The controller loops from 1 to 15 and attempts to poll any interrupt endpoint with the EP_ACTIVE bit set to 1 in

INT_EP_CTRL. The controller will then read the endpoint control register and the buffer control register to see if there is

an available buffer (i.e. FULL + AVAILABLE if an OUT transfer and NOT FULL + AVAILABLE for an IN transfer). If not, the controller

will move onto the next interrupt endpoint slot.

If there is an available buffer, the transfer is dealt with the same as a normal IN or OUT transfer and the BUFF_DONE flag in

BUFF_STATUS will be set when the interrupt endpoint has a valid buffer.

12.7.3.10. VBUS Control

The USB controller can be connected to GPIO pins (see Chapter 9) for the following VBUS controls:

• VBUS enable, used to enable VBUS in host mode. Set in SIE_CTRL.
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• VBUS detect, used to detect that VBUS is present in device mode. Set via a bit in SIE_STATUS. Can also raise a

VBUS_DETECT interrupt enabled in INTE.

• VBUS overcurrent, used to detect an overcurrent event. Applicable to both device and host. VBUS overcurrent is a

bit in SIE_STATUS.

It is not necessary to connect up any of these pins to GPIO. The host can permanently supply VBUS and detect a device

being connected when either the DP or DM pin is pulled high. VBUS detect can be forced in USB_PWR.

12.7.4. Programmer’s Model

12.7.4.1. TinyUSB

The RP2350 TinyUSB port is the reference implementation for this USB controller. This port can be found in the

following files of the pico-sdk GitHub repository:

dcd_rp2040.c

hcd_rp2040.c

rp2040_usb.h

12.7.4.2. Standalone Device Example

A standalone USB device example, dev_lowlevel, makes it easier to understand how to interact with the USB controller

without needing to understand the TinyUSB abstractions. In addition to endpoint 0, the standalone device has two bulk

endpoints: EP1 OUT and EP2 IN. The device is designed to send whatever data it receives on EP1 to EP2. The example comes

with a small Python script that writes "Hello World" into EP1 and checks that it is correctly received on EP2.

The code included in this section explains setting up the USB device controller to receive. It also shows how software

responds to a setup packet received from the host.

Figure 124. USB

analyser trace of the

dev_lowlevel USB

device example. The

control transfers are

the device

enumeration. The first

bulk OUT (out from the

host) transfer,

highlighted in blue, is

the host sending

"Hello World" to the

device. The second

bulk transfer IN (in to

the host), is the device

returning "Hello World"

to the host.

12.7.4.2.1. Device Controller Initialisation

The following code initialises the USB device:
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Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/usb/device/dev_lowlevel/dev_lowlevel.c Lines 183 - 217

183 void usb_device_init() {
184     // Reset usb controller
185     reset_unreset_block_num_wait_blocking(RESET_USBCTRL);
186 
187     // Clear any previous state in dpram just in case
188     memset(usb_dpram, 0, sizeof(*usb_dpram)); ①
189 
190     // Enable USB interrupt at processor
191     irq_set_enabled(USBCTRL_IRQ, true);
192 
193     // Mux the controller to the onboard usb phy
194     usb_hw->muxing = USB_USB_MUXING_TO_PHY_BITS | USB_USB_MUXING_SOFTCON_BITS;
195 
196     // Force VBUS detect so the device thinks it is plugged into a host
197     usb_hw->pwr = USB_USB_PWR_VBUS_DETECT_BITS | USB_USB_PWR_VBUS_DETECT_OVERRIDE_EN_BITS;
198 
199     // Enable the USB controller in device mode.
200     usb_hw->main_ctrl = USB_MAIN_CTRL_CONTROLLER_EN_BITS;
201 
202     // Enable an interrupt per EP0 transaction
203     usb_hw->sie_ctrl = USB_SIE_CTRL_EP0_INT_1BUF_BITS; ②
204 
205     // Enable interrupts for when a buffer is done, when the bus is reset,
206     // and when a setup packet is received
207     usb_hw->inte = USB_INTS_BUFF_STATUS_BITS |
208                    USB_INTS_BUS_RESET_BITS |
209                    USB_INTS_SETUP_REQ_BITS;
210 
211     // Set up endpoints (endpoint control registers)
212     // described by device configuration
213     usb_setup_endpoints();
214 
215     // Present full speed device by enabling pull up on DP
216     usb_hw_set->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS;
217 }

12.7.4.2.2. Configuring the Endpoint Control Registers for EP1 and EP2

The function usb_configure_endpoints loops through each endpoint defined in the device configuration (including EP0 in

and EP0 out, which don’t have an endpoint control register defined) and calls the usb_configure_endpoint function. This

sets up the endpoint control register for that endpoint:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/usb/device/dev_lowlevel/dev_lowlevel.c Lines 149 - 164

149 void usb_setup_endpoint(const struct usb_endpoint_configuration *ep) {
150     printf("Set up endpoint 0x%x with buffer address 0x%p\n", ep->descriptor-
    >bEndpointAddress, ep->data_buffer);
151 
152     // EP0 doesn't have one so return if that is the case
153     if (!ep->endpoint_control) {
154         return;
155     }
156 
157     // Get the data buffer as an offset of the USB controller's DPRAM
158     uint32_t dpram_offset = usb_buffer_offset(ep->data_buffer);
159     uint32_t reg = EP_CTRL_ENABLE_BITS
160                    | EP_CTRL_INTERRUPT_PER_BUFFER
161                    | (ep->descriptor->bmAttributes << EP_CTRL_BUFFER_TYPE_LSB)
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162                    | dpram_offset;
163     *ep->endpoint_control = reg;
164 }

12.7.4.2.3. Receiving a Setup Packet

An interrupt is raised when a setup packet is received, so the interrupt handler must handle this event:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/usb/device/dev_lowlevel/dev_lowlevel.c Lines 494 - 504

494 void isr_usbctrl(void) {
495     // USB interrupt handler
496     uint32_t status = usb_hw->ints;
497     uint32_t handled = 0;
498 
499     // Setup packet received
500     if (status & USB_INTS_SETUP_REQ_BITS) {
501         handled |= USB_INTS_SETUP_REQ_BITS;
502         usb_hw_clear->sie_status = USB_SIE_STATUS_SETUP_REC_BITS;
503         usb_handle_setup_packet();
504     }

The controller writes the SETUP packet to the first 8 bytes of the DPSRAM, so the setup packet handler casts that area of

memory to struct usb_setup_packet *:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/usb/device/dev_lowlevel/dev_lowlevel.c Lines 383 - 427

383 void usb_handle_setup_packet(void) {
384     volatile struct usb_setup_packet *pkt = (volatile struct usb_setup_packet *) &usb_dpram
    ->setup_packet;
385     uint8_t req_direction = pkt->bmRequestType;
386     uint8_t req = pkt->bRequest;
387 
388     // Reset PID to 1 for EP0 IN
389     usb_get_endpoint_configuration(EP0_IN_ADDR)->next_pid = 1u;
390 
391     if (req_direction == USB_DIR_OUT) {
392         if (req == USB_REQUEST_SET_ADDRESS) {
393             usb_set_device_address(pkt);
394         } else if (req == USB_REQUEST_SET_CONFIGURATION) {
395             usb_set_device_configuration(pkt);
396         } else {
397             usb_acknowledge_out_request();
398             printf("Other OUT request (0x%x)\r\n", pkt->bRequest);
399         }
400     } else if (req_direction == USB_DIR_IN) {
401         if (req == USB_REQUEST_GET_DESCRIPTOR) {
402             uint16_t descriptor_type = pkt->wValue >> 8;
403 
404             switch (descriptor_type) {
405                 case USB_DT_DEVICE:
406                     usb_handle_device_descriptor(pkt);
407                     printf("GET DEVICE DESCRIPTOR\r\n");
408                     break;
409 
410                 case USB_DT_CONFIG:
411                     usb_handle_config_descriptor(pkt);
412                     printf("GET CONFIG DESCRIPTOR\r\n");
413                     break;
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414 
415                 case USB_DT_STRING:
416                     usb_handle_string_descriptor(pkt);
417                     printf("GET STRING DESCRIPTOR\r\n");
418                     break;
419 
420                 default:
421                     printf("Unhandled GET_DESCRIPTOR type 0x%x\r\n", descriptor_type);
422             }
423         } else {
424             printf("Other IN request (0x%x)\r\n", pkt->bRequest);
425         }
426     }
427 }

12.7.4.2.4. Replying to a Setup Packet on EP0 IN

The host first requests the device descriptor. The following code handles that setup request:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/usb/device/dev_lowlevel/dev_lowlevel.c Lines 266 - 273

266 void usb_handle_device_descriptor(volatile struct usb_setup_packet *pkt) {
267     const struct usb_device_descriptor *d = dev_config.device_descriptor;
268     // EP0 in
269     struct usb_endpoint_configuration *ep = usb_get_endpoint_configuration(EP0_IN_ADDR);
270     // Always respond with pid 1
271     ep->next_pid = 1;
272     usb_start_transfer(ep, (uint8_t *) d, MIN(sizeof(struct usb_device_descriptor), pkt-
    >wLength));
273 }

The usb_start_transfer function copies data to be sent into the appropriate hardware buffer and configures the buffer

control register. Once the buffer control register has been written to, the device controller responds to the host with the

data. Before this point, the device replies with a NAK:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/usb/device/dev_lowlevel/dev_lowlevel.c Lines 238 - 260

238 void usb_start_transfer(struct usb_endpoint_configuration *ep, uint8_t *buf, uint16_t len) {
239     // We are asserting that the length is <= 64 bytes for simplicity of the example.
240     // For multi packet transfers see the tinyusb port.
241     assert(len <= 64);
242 
243     printf("Start transfer of len %d on ep addr 0x%x\n", len, ep->descriptor-
    >bEndpointAddress);
244 
245     // Prepare buffer control register value
246     uint32_t val = len | USB_BUF_CTRL_AVAIL;
247 
248     if (ep_is_tx(ep)) {
249         // Need to copy the data from the user buffer to the usb memory
250         memcpy((void *) ep->data_buffer, (void *) buf, len);
251         // Mark as full
252         val |= USB_BUF_CTRL_FULL;
253     }
254 
255     // Set pid and flip for next transfer
256     val |= ep->next_pid ? USB_BUF_CTRL_DATA1_PID : USB_BUF_CTRL_DATA0_PID;
257     ep->next_pid ^= 1u;
258 
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259     *ep->buffer_control = val;
260 }

12.7.5. List of Registers

The USB registers start at a base address of 0x50110000 (defined as USBCTRL_REGS_BASE in SDK).

Table 1192. List of

USB registers
Offset Name Info

0x000 ADDR_ENDP Device address and endpoint control

0x004 ADDR_ENDP1 Interrupt endpoint 1. Only valid for HOST mode.

0x008 ADDR_ENDP2 Interrupt endpoint 2. Only valid for HOST mode.

0x00c ADDR_ENDP3 Interrupt endpoint 3. Only valid for HOST mode.

0x010 ADDR_ENDP4 Interrupt endpoint 4. Only valid for HOST mode.

0x014 ADDR_ENDP5 Interrupt endpoint 5. Only valid for HOST mode.

0x018 ADDR_ENDP6 Interrupt endpoint 6. Only valid for HOST mode.

0x01c ADDR_ENDP7 Interrupt endpoint 7. Only valid for HOST mode.

0x020 ADDR_ENDP8 Interrupt endpoint 8. Only valid for HOST mode.

0x024 ADDR_ENDP9 Interrupt endpoint 9. Only valid for HOST mode.

0x028 ADDR_ENDP10 Interrupt endpoint 10. Only valid for HOST mode.

0x02c ADDR_ENDP11 Interrupt endpoint 11. Only valid for HOST mode.

0x030 ADDR_ENDP12 Interrupt endpoint 12. Only valid for HOST mode.

0x034 ADDR_ENDP13 Interrupt endpoint 13. Only valid for HOST mode.

0x038 ADDR_ENDP14 Interrupt endpoint 14. Only valid for HOST mode.

0x03c ADDR_ENDP15 Interrupt endpoint 15. Only valid for HOST mode.

0x040 MAIN_CTRL Main control register

0x044 SOF_WR Set the SOF (Start of Frame) frame number in the host controller.

The SOF packet is sent every 1ms and the host will increment the

frame number by 1 each time.

0x048 SOF_RD Read the last SOF (Start of Frame) frame number seen. In device

mode the last SOF received from the host. In host mode the last

SOF sent by the host.

0x04c SIE_CTRL SIE control register

0x050 SIE_STATUS SIE status register

0x054 INT_EP_CTRL interrupt endpoint control register

0x058 BUFF_STATUS Buffer status register. A bit set here indicates that a buffer has

completed on the endpoint (if the buffer interrupt is enabled). It

is possible for 2 buffers to be completed, so clearing the buffer

status bit may instantly re set it on the next clock cycle.

0x05c BUFF_CPU_SHOULD_HANDLE Which of the double buffers should be handled. Only valid if

using an interrupt per buffer (i.e. not per 2 buffers). Not valid for

host interrupt endpoint polling because they are only single

buffered.
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Offset Name Info

0x060 EP_ABORT Device only: Can be set to ignore the buffer control register for

this endpoint in case you would like to revoke a buffer. A NAK

will be sent for every access to the endpoint until this bit is

cleared. A corresponding bit in EP_ABORT_DONE is set when it is safe

to modify the buffer control register.

0x064 EP_ABORT_DONE Device only: Used in conjunction with EP_ABORT. Set once an

endpoint is idle so the programmer knows it is safe to modify the

buffer control register.

0x068 EP_STALL_ARM Device: this bit must be set in conjunction with the STALL bit in the

buffer control register to send a STALL on EP0. The device

controller clears these bits when a SETUP packet is received

because the USB spec requires that a STALL condition is cleared

when a SETUP packet is received.

0x06c NAK_POLL Used by the host controller. Sets the wait time in microseconds

before trying again if the device replies with a NAK.

0x070 EP_STATUS_STALL_NAK Device: bits are set when the IRQ_ON_NAK or IRQ_ON_STALL bits are

set. For EP0 this comes from SIE_CTRL. For all other endpoints it

comes from the endpoint control register.

0x074 USB_MUXING Where to connect the USB controller. Should be to_phy by

default.

0x078 USB_PWR Overrides for the power signals in the event that the VBUS

signals are not hooked up to GPIO. Set the value of the override

and then the override enable to switch over to the override value.

0x07c USBPHY_DIRECT This register allows for direct control of the USB phy. Use in

conjunction with usbphy_direct_override register to enable each

override bit.

0x080 USBPHY_DIRECT_OVERRIDE Override enable for each control in usbphy_direct

0x084 USBPHY_TRIM Used to adjust trim values of USB phy pull down resistors.

0x088 LINESTATE_TUNING Used for debug only.

0x08c INTR Raw Interrupts

0x090 INTE Interrupt Enable

0x094 INTF Interrupt Force

0x098 INTS Interrupt status after masking & forcing

0x100 SOF_TIMESTAMP_RAW Device only. Raw value of free-running PHY clock counter

@48MHz. Used to calculate time between SOF events.

0x104 SOF_TIMESTAMP_LAST Device only. Value of free-running PHY clock counter @48MHz

when last SOF event occured.

0x108 SM_STATE

0x10c EP_TX_ERROR TX error count for each endpoint. Write to each field to reset the

counter to 0.

0x110 EP_RX_ERROR RX error count for each endpoint. Write to each field to reset the

counter to 0.
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Offset Name Info

0x114 DEV_SM_WATCHDOG Watchdog that forces the device state machine to idle and raises

an interrupt if the device stays in a state that isn’t idle for the

configured limit. The counter is reset on every state transition.

Set limit while enable is low and then set the enable.

USB: ADDR_ENDP Register

Offset: 0x000

Description

Device address and endpoint control

Table 1193.

ADDR_ENDP Register
Bits Description Type Reset

31:20 Reserved. - -

19:16 ENDPOINT: Device endpoint to send data to. Only valid for HOST mode. RW 0x0

15:7 Reserved. - -

6:0 ADDRESS: In device mode, the address that the device should respond to. Set

in response to a SET_ADDR setup packet from the host. In host mode set to

the address of the device to communicate with.

RW 0x00

USB: ADDR_ENDP1, ADDR_ENDP2, …, ADDR_ENDP14, ADDR_ENDP15

Registers

Offsets: 0x004, 0x008, …, 0x038, 0x03c

Description

Interrupt endpoint N. Only valid for HOST mode.

Table 1194.

ADDR_ENDP1,

ADDR_ENDP2, …,

ADDR_ENDP14,

ADDR_ENDP15

Registers

Bits Description Type Reset

31:27 Reserved. - -

26 INTEP_PREAMBLE: Interrupt EP requires preamble (is a low speed device on a

full speed hub)

RW 0x0

25 INTEP_DIR: Direction of the interrupt endpoint. In=0, Out=1 RW 0x0

24:20 Reserved. - -

19:16 ENDPOINT: Endpoint number of the interrupt endpoint RW 0x0

15:7 Reserved. - -

6:0 ADDRESS: Device address RW 0x00

USB: MAIN_CTRL Register

Offset: 0x040

Description

Main control register

Table 1195.

MAIN_CTRL Register
Bits Description Type Reset

31 SIM_TIMING: Reduced timings for simulation RW 0x0

30:3 Reserved. - -
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Bits Description Type Reset

2 PHY_ISO: Isolates USB phy after controller power-up

Remove isolation once software has configured the controller

Not isolated = 0, Isolated = 1

RW 0x1

1 HOST_NDEVICE: Device mode = 0, Host mode = 1 RW 0x0

0 CONTROLLER_EN: Enable controller RW 0x0

USB: SOF_WR Register

Offset: 0x044

Description

Set the SOF (Start of Frame) frame number in the host controller. The SOF packet is sent every 1ms and the host

will increment the frame number by 1 each time.

Table 1196. SOF_WR

Register
Bits Description Type Reset

31:11 Reserved. - -

10:0 COUNT WF 0x000

USB: SOF_RD Register

Offset: 0x048

Description

Read the last SOF (Start of Frame) frame number seen. In device mode the last SOF received from the host. In host

mode the last SOF sent by the host.

Table 1197. SOF_RD

Register
Bits Description Type Reset

31:11 Reserved. - -

10:0 COUNT RO 0x000

USB: SIE_CTRL Register

Offset: 0x04c

Description

SIE control register

Table 1198. SIE_CTRL

Register
Bits Description Type Reset

31 EP0_INT_STALL: Device: Set bit in EP_STATUS_STALL_NAK when EP0 sends

a STALL

RW 0x0

30 EP0_DOUBLE_BUF: Device: EP0 single buffered = 0, double buffered = 1 RW 0x0

29 EP0_INT_1BUF: Device: Set bit in BUFF_STATUS for every buffer completed on

EP0

RW 0x0

28 EP0_INT_2BUF: Device: Set bit in BUFF_STATUS for every 2 buffers completed

on EP0

RW 0x0

27 EP0_INT_NAK: Device: Set bit in EP_STATUS_STALL_NAK when EP0 sends a

NAK

RW 0x0

26 DIRECT_EN: Direct bus drive enable RW 0x0

25 DIRECT_DP: Direct control of DP RW 0x0
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Bits Description Type Reset

24 DIRECT_DM: Direct control of DM RW 0x0

23:20 Reserved. - -

19 EP0_STOP_ON_SHORT_PACKET: Device: Stop EP0 on a short packet. RW 0x0

18 TRANSCEIVER_PD: Power down bus transceiver RW 0x0

17 RPU_OPT: Device: Pull-up strength (0=1K2, 1=2k3) RW 0x0

16 PULLUP_EN: Device: Enable pull up resistor RW 0x0

15 PULLDOWN_EN: Host: Enable pull down resistors RW 0x1

14 Reserved. - -

13 RESET_BUS: Host: Reset bus SC 0x0

12 RESUME: Device: Remote wakeup. Device can initiate its own resume after

suspend.

SC 0x0

11 VBUS_EN: Host: Enable VBUS RW 0x0

10 KEEP_ALIVE_EN: Host: Enable keep alive packet (for low speed bus) RW 0x0

9 SOF_EN: Host: Enable SOF generation (for full speed bus) RW 0x0

8 SOF_SYNC: Host: Delay packet(s) until after SOF RW 0x0

7 Reserved. - -

6 PREAMBLE_EN: Host: Preable enable for LS device on FS hub RW 0x0

5 Reserved. - -

4 STOP_TRANS: Host: Stop transaction SC 0x0

3 RECEIVE_DATA: Host: Receive transaction (IN to host) RW 0x0

2 SEND_DATA: Host: Send transaction (OUT from host) RW 0x0

1 SEND_SETUP: Host: Send Setup packet RW 0x0

0 START_TRANS: Host: Start transaction SC 0x0

USB: SIE_STATUS Register

Offset: 0x050

Description

SIE status register

Table 1199.

SIE_STATUS Register
Bits Description Type Reset

31 DATA_SEQ_ERROR: Data Sequence Error.

The device can raise a sequence error in the following conditions:

* A SETUP packet is received followed by a DATA1 packet (data phase should

always be DATA0) * An OUT packet is received from the host but doesn’t

match the data pid in the buffer control register read from DPSRAM

The host can raise a data sequence error in the following conditions:

* An IN packet from the device has the wrong data PID

WC 0x0
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Bits Description Type Reset

30 ACK_REC: ACK received. Raised by both host and device. WC 0x0

29 STALL_REC: Host: STALL received WC 0x0

28 NAK_REC: Host: NAK received WC 0x0

27 RX_TIMEOUT: RX timeout is raised by both the host and device if an ACK is

not received in the maximum time specified by the USB spec.

WC 0x0

26 RX_OVERFLOW: RX overflow is raised by the Serial RX engine if the incoming

data is too fast.

WC 0x0

25 BIT_STUFF_ERROR: Bit Stuff Error. Raised by the Serial RX engine. WC 0x0

24 CRC_ERROR: CRC Error. Raised by the Serial RX engine. WC 0x0

23 ENDPOINT_ERROR: An endpoint has encounted an error. Read the ep_rx_error

and ep_tx_error registers to find out which endpoint had an error.

WC 0x0

22:20 Reserved. - -

19 BUS_RESET: Device: bus reset received WC 0x0

18 TRANS_COMPLETE: Transaction complete.

Raised by device if:

* An IN or OUT packet is sent with the LAST_BUFF bit set in the buffer control

register

Raised by host if:

* A setup packet is sent when no data in or data out transaction follows * An

IN packet is received and the LAST_BUFF bit is set in the buffer control register *

An IN packet is received with zero length * An OUT packet is sent and the

LAST_BUFF bit is set

WC 0x0

17 SETUP_REC: Device: Setup packet received WC 0x0

16 CONNECTED: Device: connected RO 0x0

15:13 Reserved. - -

12 RX_SHORT_PACKET: Device or Host has received a short packet. This is when

the data recieved is less than configured in the buffer control register. Device:

If using double buffered mode on device the buffer select will not be toggled

after writing status back to the buffer control register. This is to prevent any

further transactions on that endpoint until the user has reset the buffer control

registers. Host: the current transfer will be stopped early.

WC 0x0

11 RESUME: Host: Device has initiated a remote resume. Device: host has

initiated a resume.

WC 0x0

10 VBUS_OVER_CURR: VBUS over current detected RO 0x0

9:8 SPEED: Host: device speed. Disconnected = 00, LS = 01, FS = 10 RO 0x0

7:5 Reserved. - -

4 SUSPENDED: Bus in suspended state. Valid for device and host. Host and

device will go into suspend if neither Keep Alive / SOF frames are enabled.

RO 0x0

3:2 LINE_STATE: USB bus line state RO 0x0
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Bits Description Type Reset

1 Reserved. - -

0 VBUS_DETECTED: Device: VBUS Detected RO 0x0

USB: INT_EP_CTRL Register

Offset: 0x054

Description

interrupt endpoint control register

Table 1200.

INT_EP_CTRL Register
Bits Description Type Reset

31:16 Reserved. - -

15:1 INT_EP_ACTIVE: Host: Enable interrupt endpoint 1 → 15 RW 0x0000

0 Reserved. - -

USB: BUFF_STATUS Register

Offset: 0x058

Description

Buffer status register. A bit set here indicates that a buffer has completed on the endpoint (if the buffer interrupt is

enabled). It is possible for 2 buffers to be completed, so clearing the buffer status bit may instantly re set it on the

next clock cycle.

Table 1201.

BUFF_STATUS

Register

Bits Description Type Reset

31 EP15_OUT WC 0x0

30 EP15_IN WC 0x0

29 EP14_OUT WC 0x0

28 EP14_IN WC 0x0

27 EP13_OUT WC 0x0

26 EP13_IN WC 0x0

25 EP12_OUT WC 0x0

24 EP12_IN WC 0x0

23 EP11_OUT WC 0x0

22 EP11_IN WC 0x0

21 EP10_OUT WC 0x0

20 EP10_IN WC 0x0

19 EP9_OUT WC 0x0

18 EP9_IN WC 0x0

17 EP8_OUT WC 0x0

16 EP8_IN WC 0x0

15 EP7_OUT WC 0x0

14 EP7_IN WC 0x0
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Bits Description Type Reset

13 EP6_OUT WC 0x0

12 EP6_IN WC 0x0

11 EP5_OUT WC 0x0

10 EP5_IN WC 0x0

9 EP4_OUT WC 0x0

8 EP4_IN WC 0x0

7 EP3_OUT WC 0x0

6 EP3_IN WC 0x0

5 EP2_OUT WC 0x0

4 EP2_IN WC 0x0

3 EP1_OUT WC 0x0

2 EP1_IN WC 0x0

1 EP0_OUT WC 0x0

0 EP0_IN WC 0x0

USB: BUFF_CPU_SHOULD_HANDLE Register

Offset: 0x05c

Description

Which of the double buffers should be handled. Only valid if using an interrupt per buffer (i.e. not per 2 buffers). Not

valid for host interrupt endpoint polling because they are only single buffered.

Table 1202.

BUFF_CPU_SHOULD_H

ANDLE Register

Bits Description Type Reset

31 EP15_OUT RO 0x0

30 EP15_IN RO 0x0

29 EP14_OUT RO 0x0

28 EP14_IN RO 0x0

27 EP13_OUT RO 0x0

26 EP13_IN RO 0x0

25 EP12_OUT RO 0x0

24 EP12_IN RO 0x0

23 EP11_OUT RO 0x0

22 EP11_IN RO 0x0

21 EP10_OUT RO 0x0

20 EP10_IN RO 0x0

19 EP9_OUT RO 0x0

18 EP9_IN RO 0x0

17 EP8_OUT RO 0x0

16 EP8_IN RO 0x0
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Bits Description Type Reset

15 EP7_OUT RO 0x0

14 EP7_IN RO 0x0

13 EP6_OUT RO 0x0

12 EP6_IN RO 0x0

11 EP5_OUT RO 0x0

10 EP5_IN RO 0x0

9 EP4_OUT RO 0x0

8 EP4_IN RO 0x0

7 EP3_OUT RO 0x0

6 EP3_IN RO 0x0

5 EP2_OUT RO 0x0

4 EP2_IN RO 0x0

3 EP1_OUT RO 0x0

2 EP1_IN RO 0x0

1 EP0_OUT RO 0x0

0 EP0_IN RO 0x0

USB: EP_ABORT Register

Offset: 0x060

Description

Device only: Can be set to ignore the buffer control register for this endpoint in case you would like to revoke a

buffer. A NAK will be sent for every access to the endpoint until this bit is cleared. A corresponding bit in

EP_ABORT_DONE is set when it is safe to modify the buffer control register.

Table 1203.

EP_ABORT Register
Bits Description Type Reset

31 EP15_OUT RW 0x0

30 EP15_IN RW 0x0

29 EP14_OUT RW 0x0

28 EP14_IN RW 0x0

27 EP13_OUT RW 0x0

26 EP13_IN RW 0x0

25 EP12_OUT RW 0x0

24 EP12_IN RW 0x0

23 EP11_OUT RW 0x0

22 EP11_IN RW 0x0

21 EP10_OUT RW 0x0

20 EP10_IN RW 0x0

19 EP9_OUT RW 0x0
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Bits Description Type Reset

18 EP9_IN RW 0x0

17 EP8_OUT RW 0x0

16 EP8_IN RW 0x0

15 EP7_OUT RW 0x0

14 EP7_IN RW 0x0

13 EP6_OUT RW 0x0

12 EP6_IN RW 0x0

11 EP5_OUT RW 0x0

10 EP5_IN RW 0x0

9 EP4_OUT RW 0x0

8 EP4_IN RW 0x0

7 EP3_OUT RW 0x0

6 EP3_IN RW 0x0

5 EP2_OUT RW 0x0

4 EP2_IN RW 0x0

3 EP1_OUT RW 0x0

2 EP1_IN RW 0x0

1 EP0_OUT RW 0x0

0 EP0_IN RW 0x0

USB: EP_ABORT_DONE Register

Offset: 0x064

Description

Device only: Used in conjunction with EP_ABORT. Set once an endpoint is idle so the programmer knows it is safe to

modify the buffer control register.

Table 1204.

EP_ABORT_DONE

Register

Bits Description Type Reset

31 EP15_OUT WC 0x0

30 EP15_IN WC 0x0

29 EP14_OUT WC 0x0

28 EP14_IN WC 0x0

27 EP13_OUT WC 0x0

26 EP13_IN WC 0x0

25 EP12_OUT WC 0x0

24 EP12_IN WC 0x0

23 EP11_OUT WC 0x0

22 EP11_IN WC 0x0

21 EP10_OUT WC 0x0
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Bits Description Type Reset

20 EP10_IN WC 0x0

19 EP9_OUT WC 0x0

18 EP9_IN WC 0x0

17 EP8_OUT WC 0x0

16 EP8_IN WC 0x0

15 EP7_OUT WC 0x0

14 EP7_IN WC 0x0

13 EP6_OUT WC 0x0

12 EP6_IN WC 0x0

11 EP5_OUT WC 0x0

10 EP5_IN WC 0x0

9 EP4_OUT WC 0x0

8 EP4_IN WC 0x0

7 EP3_OUT WC 0x0

6 EP3_IN WC 0x0

5 EP2_OUT WC 0x0

4 EP2_IN WC 0x0

3 EP1_OUT WC 0x0

2 EP1_IN WC 0x0

1 EP0_OUT WC 0x0

0 EP0_IN WC 0x0

USB: EP_STALL_ARM Register

Offset: 0x068

Description

Device: this bit must be set in conjunction with the STALL bit in the buffer control register to send a STALL on EP0.

The device controller clears these bits when a SETUP packet is received because the USB spec requires that a

STALL condition is cleared when a SETUP packet is received.

Table 1205.

EP_STALL_ARM

Register

Bits Description Type Reset

31:2 Reserved. - -

1 EP0_OUT RW 0x0

0 EP0_IN RW 0x0

USB: NAK_POLL Register

Offset: 0x06c

Description

Used by the host controller. Sets the wait time in microseconds before trying again if the device replies with a NAK.

RP2350 Datasheet

12.7. USB 1156



Table 1206.

NAK_POLL Register
Bits Description Type Reset

31:28 RETRY_COUNT_HI: Bits 9:6 of nak_retry count RO 0x0

27 EPX_STOPPED_ON_NAK: EPX polling has stopped because a nak was

received

WC 0x0

26 STOP_EPX_ON_NAK: Stop polling epx when a nak is received RW 0x0

25:16 DELAY_FS: NAK polling interval for a full speed device RW 0x010

15:10 RETRY_COUNT_LO: Bits 5:0 of nak_retry_count RO 0x00

9:0 DELAY_LS: NAK polling interval for a low speed device RW 0x010

USB: EP_STATUS_STALL_NAK Register

Offset: 0x070

Description

Device: bits are set when the IRQ_ON_NAK or IRQ_ON_STALL bits are set. For EP0 this comes from SIE_CTRL. For all other

endpoints it comes from the endpoint control register.

Table 1207.

EP_STATUS_STALL_N

AK Register

Bits Description Type Reset

31 EP15_OUT WC 0x0

30 EP15_IN WC 0x0

29 EP14_OUT WC 0x0

28 EP14_IN WC 0x0

27 EP13_OUT WC 0x0

26 EP13_IN WC 0x0

25 EP12_OUT WC 0x0

24 EP12_IN WC 0x0

23 EP11_OUT WC 0x0

22 EP11_IN WC 0x0

21 EP10_OUT WC 0x0

20 EP10_IN WC 0x0

19 EP9_OUT WC 0x0

18 EP9_IN WC 0x0

17 EP8_OUT WC 0x0

16 EP8_IN WC 0x0

15 EP7_OUT WC 0x0

14 EP7_IN WC 0x0

13 EP6_OUT WC 0x0

12 EP6_IN WC 0x0

11 EP5_OUT WC 0x0

10 EP5_IN WC 0x0

9 EP4_OUT WC 0x0
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Bits Description Type Reset

8 EP4_IN WC 0x0

7 EP3_OUT WC 0x0

6 EP3_IN WC 0x0

5 EP2_OUT WC 0x0

4 EP2_IN WC 0x0

3 EP1_OUT WC 0x0

2 EP1_IN WC 0x0

1 EP0_OUT WC 0x0

0 EP0_IN WC 0x0

USB: USB_MUXING Register

Offset: 0x074

Description

Where to connect the USB controller. Should be to_phy by default.

Table 1208.

USB_MUXING Register
Bits Description Type Reset

31 SWAP_DPDM: Swap the USB PHY DP and DM pins and all related controls and

flip receive differential data. Can be used to switch USB DP/DP on the PCB.

This is done at a low level so overrides all other controls.

RW 0x0

30:5 Reserved. - -

4 USBPHY_AS_GPIO: Use the usb DP and DM pins as GPIO pins instead of

connecting them to the USB controller.

RW 0x0

3 SOFTCON RW 0x0

2 TO_DIGITAL_PAD RW 0x0

1 TO_EXTPHY RW 0x0

0 TO_PHY RW 0x1

USB: USB_PWR Register

Offset: 0x078

Description

Overrides for the power signals in the event that the VBUS signals are not hooked up to GPIO. Set the value of the

override and then the override enable to switch over to the override value.

Table 1209. USB_PWR

Register
Bits Description Type Reset

31:6 Reserved. - -

5 OVERCURR_DETECT_EN RW 0x0

4 OVERCURR_DETECT RW 0x0

3 VBUS_DETECT_OVERRIDE_EN RW 0x0

2 VBUS_DETECT RW 0x0

1 VBUS_EN_OVERRIDE_EN RW 0x0
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Bits Description Type Reset

0 VBUS_EN RW 0x0

USB: USBPHY_DIRECT Register

Offset: 0x07c

Description

This register allows for direct control of the USB phy. Use in conjunction with usbphy_direct_override register to

enable each override bit.

Table 1210.

USBPHY_DIRECT

Register

Bits Description Type Reset

31:26 Reserved. - -

25 RX_DM_OVERRIDE: Override rx_dm value into controller RW 0x0

24 RX_DP_OVERRIDE: Override rx_dp value into controller RW 0x0

23 RX_DD_OVERRIDE: Override rx_dd value into controller RW 0x0

22 DM_OVV: DM over voltage RO 0x0

21 DP_OVV: DP over voltage RO 0x0

20 DM_OVCN: DM overcurrent RO 0x0

19 DP_OVCN: DP overcurrent RO 0x0

18 RX_DM: DPM pin state RO 0x0

17 RX_DP: DPP pin state RO 0x0

16 RX_DD: Differential RX RO 0x0

15 TX_DIFFMODE: TX_DIFFMODE=0: Single ended mode

TX_DIFFMODE=1: Differential drive mode (TX_DM, TX_DM_OE ignored)

RW 0x0

14 TX_FSSLEW: TX_FSSLEW=0: Low speed slew rate

TX_FSSLEW=1: Full speed slew rate

RW 0x0

13 TX_PD: TX power down override (if override enable is set). 1 = powered down. RW 0x0

12 RX_PD: RX power down override (if override enable is set). 1 = powered down. RW 0x0

11 TX_DM: Output data. TX_DIFFMODE=1, Ignored

TX_DIFFMODE=0, Drives DPM only. TX_DM_OE=1 to enable drive.

DPM=TX_DM

RW 0x0

10 TX_DP: Output data. If TX_DIFFMODE=1, Drives DPP/DPM diff pair.

TX_DP_OE=1 to enable drive. DPP=TX_DP, DPM=~TX_DP

If TX_DIFFMODE=0, Drives DPP only. TX_DP_OE=1 to enable drive.

DPP=TX_DP

RW 0x0

9 TX_DM_OE: Output enable. If TX_DIFFMODE=1, Ignored.

If TX_DIFFMODE=0, OE for DPM only. 0 - DPM in Hi-Z state; 1 - DPM driving

RW 0x0

8 TX_DP_OE: Output enable. If TX_DIFFMODE=1, OE for DPP/DPM diff pair. 0 -

DPP/DPM in Hi-Z state; 1 - DPP/DPM driving

If TX_DIFFMODE=0, OE for DPP only. 0 - DPP in Hi-Z state; 1 - DPP driving

RW 0x0

7 Reserved. - -

6 DM_PULLDN_EN: DM pull down enable RW 0x0

5 DM_PULLUP_EN: DM pull up enable RW 0x0
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Bits Description Type Reset

4 DM_PULLUP_HISEL: Enable the second DM pull up resistor. 0 - Pull = Rpu2; 1 -

Pull = Rpu1 + Rpu2

RW 0x0

3 Reserved. - -

2 DP_PULLDN_EN: DP pull down enable RW 0x0

1 DP_PULLUP_EN: DP pull up enable RW 0x0

0 DP_PULLUP_HISEL: Enable the second DP pull up resistor. 0 - Pull = Rpu2; 1 -

Pull = Rpu1 + Rpu2

RW 0x0

USB: USBPHY_DIRECT_OVERRIDE Register

Offset: 0x080

Description

Override enable for each control in usbphy_direct

Table 1211.

USBPHY_DIRECT_OVE

RRIDE Register

Bits Description Type Reset

31:19 Reserved. - -

18 RX_DM_OVERRIDE_EN RW 0x0

17 RX_DP_OVERRIDE_EN RW 0x0

16 RX_DD_OVERRIDE_EN RW 0x0

15 TX_DIFFMODE_OVERRIDE_EN RW 0x0

14:13 Reserved. - -

12 DM_PULLUP_OVERRIDE_EN RW 0x0

11 TX_FSSLEW_OVERRIDE_EN RW 0x0

10 TX_PD_OVERRIDE_EN RW 0x0

9 RX_PD_OVERRIDE_EN RW 0x0

8 TX_DM_OVERRIDE_EN RW 0x0

7 TX_DP_OVERRIDE_EN RW 0x0

6 TX_DM_OE_OVERRIDE_EN RW 0x0

5 TX_DP_OE_OVERRIDE_EN RW 0x0

4 DM_PULLDN_EN_OVERRIDE_EN RW 0x0

3 DP_PULLDN_EN_OVERRIDE_EN RW 0x0

2 DP_PULLUP_EN_OVERRIDE_EN RW 0x0

1 DM_PULLUP_HISEL_OVERRIDE_EN RW 0x0

0 DP_PULLUP_HISEL_OVERRIDE_EN RW 0x0

USB: USBPHY_TRIM Register

Offset: 0x084

Description

Used to adjust trim values of USB phy pull down resistors.
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Table 1212.

USBPHY_TRIM

Register

Bits Description Type Reset

31:13 Reserved. - -

12:8 DM_PULLDN_TRIM: Value to drive to USB PHY

DM pulldown resistor trim control

Experimental data suggests that the reset value will work, but this register

allows adjustment if required

RW 0x1f

7:5 Reserved. - -

4:0 DP_PULLDN_TRIM: Value to drive to USB PHY

DP pulldown resistor trim control

Experimental data suggests that the reset value will work, but this register

allows adjustment if required

RW 0x1f

USB: LINESTATE_TUNING Register

Offset: 0x088

Description

Used for debug only.

Table 1213.

LINESTATE_TUNING

Register

Bits Description Type Reset

31:12 Reserved. - -

11:8 SPARE_FIX RW 0x0

7 DEV_LS_WAKE_FIX: Device - exit suspend on any non-idle signalling, not

qualified with a 1ms timer

RW 0x1

6 DEV_RX_ERR_QUIESCE: Device - suppress repeated errors until the device

FSM is next in the process of decoding an inbound packet.

RW 0x1

5 SIE_RX_CHATTER_SE0_FIX: RX - when recovering from line chatter or bitstuff

errors, treat SE0 as the end of chatter as well as

8 consecutive idle bits.

RW 0x1

4 SIE_RX_BITSTUFF_FIX: RX - when a bitstuff error is signalled by rx_dasm,

unconditionally terminate RX decode to

avoid a hang during certain packet phases.

RW 0x1

3 DEV_BUFF_CONTROL_DOUBLE_READ_FIX: Device - the controller FSM

performs two reads of the buffer status memory address to

avoid sampling metastable data. An enabled buffer is only used if both reads

match.

RW 0x1

2 MULTI_HUB_FIX: Host - increase inter-packet and turnaround timeouts to

accommodate worst-case hub delays.

RW 0x0

1 LINESTATE_DELAY: Device/Host - add an extra 1-bit debounce of linestate

sampling.

RW 0x0

0 RCV_DELAY: Device - register the received data to account for hub bit dribble

before EOP. Only affects certain hubs.

RW 0x0

USB: INTR Register

Offset: 0x08c

Description

Raw Interrupts
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Table 1214. INTR

Register
Bits Description Type Reset

31:24 Reserved. - -

23 EPX_STOPPED_ON_NAK: Source: NAK_POLL.EPX_STOPPED_ON_NAK RO 0x0

22 DEV_SM_WATCHDOG_FIRED: Source: DEV_SM_WATCHDOG.FIRED RO 0x0

21 ENDPOINT_ERROR: Source: SIE_STATUS.ENDPOINT_ERROR RO 0x0

20 RX_SHORT_PACKET: Source: SIE_STATUS.RX_SHORT_PACKET RO 0x0

19 EP_STALL_NAK: Raised when any bit in EP_STATUS_STALL_NAK is set. Clear

by clearing all bits in EP_STATUS_STALL_NAK.

RO 0x0

18 ABORT_DONE: Raised when any bit in ABORT_DONE is set. Clear by clearing

all bits in ABORT_DONE.

RO 0x0

17 DEV_SOF: Set every time the device receives a SOF (Start of Frame) packet.

Cleared by reading SOF_RD

RO 0x0

16 SETUP_REQ: Device. Source: SIE_STATUS.SETUP_REC RO 0x0

15 DEV_RESUME_FROM_HOST: Set when the device receives a resume from the

host. Cleared by writing to SIE_STATUS.RESUME

RO 0x0

14 DEV_SUSPEND: Set when the device suspend state changes. Cleared by

writing to SIE_STATUS.SUSPENDED

RO 0x0

13 DEV_CONN_DIS: Set when the device connection state changes. Cleared by

writing to SIE_STATUS.CONNECTED

RO 0x0

12 BUS_RESET: Source: SIE_STATUS.BUS_RESET RO 0x0

11 VBUS_DETECT: Source: SIE_STATUS.VBUS_DETECTED RO 0x0

10 STALL: Source: SIE_STATUS.STALL_REC RO 0x0

9 ERROR_CRC: Source: SIE_STATUS.CRC_ERROR RO 0x0

8 ERROR_BIT_STUFF: Source: SIE_STATUS.BIT_STUFF_ERROR RO 0x0

7 ERROR_RX_OVERFLOW: Source: SIE_STATUS.RX_OVERFLOW RO 0x0

6 ERROR_RX_TIMEOUT: Source: SIE_STATUS.RX_TIMEOUT RO 0x0

5 ERROR_DATA_SEQ: Source: SIE_STATUS.DATA_SEQ_ERROR RO 0x0

4 BUFF_STATUS: Raised when any bit in BUFF_STATUS is set. Clear by clearing

all bits in BUFF_STATUS.

RO 0x0

3 TRANS_COMPLETE: Raised every time SIE_STATUS.TRANS_COMPLETE is

set. Clear by writing to this bit.

RO 0x0

2 HOST_SOF: Host: raised every time the host sends a SOF (Start of Frame).

Cleared by reading SOF_RD

RO 0x0

1 HOST_RESUME: Host: raised when a device wakes up the host. Cleared by

writing to SIE_STATUS.RESUME

RO 0x0

0 HOST_CONN_DIS: Host: raised when a device is connected or disconnected

(i.e. when SIE_STATUS.SPEED changes). Cleared by writing to

SIE_STATUS.SPEED

RO 0x0

USB: INTE Register

Offset: 0x090
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Description

Interrupt Enable

Table 1215. INTE

Register
Bits Description Type Reset

31:24 Reserved. - -

23 EPX_STOPPED_ON_NAK: Source: NAK_POLL.EPX_STOPPED_ON_NAK RW 0x0

22 DEV_SM_WATCHDOG_FIRED: Source: DEV_SM_WATCHDOG.FIRED RW 0x0

21 ENDPOINT_ERROR: Source: SIE_STATUS.ENDPOINT_ERROR RW 0x0

20 RX_SHORT_PACKET: Source: SIE_STATUS.RX_SHORT_PACKET RW 0x0

19 EP_STALL_NAK: Raised when any bit in EP_STATUS_STALL_NAK is set. Clear

by clearing all bits in EP_STATUS_STALL_NAK.

RW 0x0

18 ABORT_DONE: Raised when any bit in ABORT_DONE is set. Clear by clearing

all bits in ABORT_DONE.

RW 0x0

17 DEV_SOF: Set every time the device receives a SOF (Start of Frame) packet.

Cleared by reading SOF_RD

RW 0x0

16 SETUP_REQ: Device. Source: SIE_STATUS.SETUP_REC RW 0x0

15 DEV_RESUME_FROM_HOST: Set when the device receives a resume from the

host. Cleared by writing to SIE_STATUS.RESUME

RW 0x0

14 DEV_SUSPEND: Set when the device suspend state changes. Cleared by

writing to SIE_STATUS.SUSPENDED

RW 0x0

13 DEV_CONN_DIS: Set when the device connection state changes. Cleared by

writing to SIE_STATUS.CONNECTED

RW 0x0

12 BUS_RESET: Source: SIE_STATUS.BUS_RESET RW 0x0

11 VBUS_DETECT: Source: SIE_STATUS.VBUS_DETECTED RW 0x0

10 STALL: Source: SIE_STATUS.STALL_REC RW 0x0

9 ERROR_CRC: Source: SIE_STATUS.CRC_ERROR RW 0x0

8 ERROR_BIT_STUFF: Source: SIE_STATUS.BIT_STUFF_ERROR RW 0x0

7 ERROR_RX_OVERFLOW: Source: SIE_STATUS.RX_OVERFLOW RW 0x0

6 ERROR_RX_TIMEOUT: Source: SIE_STATUS.RX_TIMEOUT RW 0x0

5 ERROR_DATA_SEQ: Source: SIE_STATUS.DATA_SEQ_ERROR RW 0x0

4 BUFF_STATUS: Raised when any bit in BUFF_STATUS is set. Clear by clearing

all bits in BUFF_STATUS.

RW 0x0

3 TRANS_COMPLETE: Raised every time SIE_STATUS.TRANS_COMPLETE is

set. Clear by writing to this bit.

RW 0x0

2 HOST_SOF: Host: raised every time the host sends a SOF (Start of Frame).

Cleared by reading SOF_RD

RW 0x0

1 HOST_RESUME: Host: raised when a device wakes up the host. Cleared by

writing to SIE_STATUS.RESUME

RW 0x0

0 HOST_CONN_DIS: Host: raised when a device is connected or disconnected

(i.e. when SIE_STATUS.SPEED changes). Cleared by writing to

SIE_STATUS.SPEED

RW 0x0

USB: INTF Register
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Offset: 0x094

Description

Interrupt Force

Table 1216. INTF

Register
Bits Description Type Reset

31:24 Reserved. - -

23 EPX_STOPPED_ON_NAK: Source: NAK_POLL.EPX_STOPPED_ON_NAK RW 0x0

22 DEV_SM_WATCHDOG_FIRED: Source: DEV_SM_WATCHDOG.FIRED RW 0x0

21 ENDPOINT_ERROR: Source: SIE_STATUS.ENDPOINT_ERROR RW 0x0

20 RX_SHORT_PACKET: Source: SIE_STATUS.RX_SHORT_PACKET RW 0x0

19 EP_STALL_NAK: Raised when any bit in EP_STATUS_STALL_NAK is set. Clear

by clearing all bits in EP_STATUS_STALL_NAK.

RW 0x0

18 ABORT_DONE: Raised when any bit in ABORT_DONE is set. Clear by clearing

all bits in ABORT_DONE.

RW 0x0

17 DEV_SOF: Set every time the device receives a SOF (Start of Frame) packet.

Cleared by reading SOF_RD

RW 0x0

16 SETUP_REQ: Device. Source: SIE_STATUS.SETUP_REC RW 0x0

15 DEV_RESUME_FROM_HOST: Set when the device receives a resume from the

host. Cleared by writing to SIE_STATUS.RESUME

RW 0x0

14 DEV_SUSPEND: Set when the device suspend state changes. Cleared by

writing to SIE_STATUS.SUSPENDED

RW 0x0

13 DEV_CONN_DIS: Set when the device connection state changes. Cleared by

writing to SIE_STATUS.CONNECTED

RW 0x0

12 BUS_RESET: Source: SIE_STATUS.BUS_RESET RW 0x0

11 VBUS_DETECT: Source: SIE_STATUS.VBUS_DETECTED RW 0x0

10 STALL: Source: SIE_STATUS.STALL_REC RW 0x0

9 ERROR_CRC: Source: SIE_STATUS.CRC_ERROR RW 0x0

8 ERROR_BIT_STUFF: Source: SIE_STATUS.BIT_STUFF_ERROR RW 0x0

7 ERROR_RX_OVERFLOW: Source: SIE_STATUS.RX_OVERFLOW RW 0x0

6 ERROR_RX_TIMEOUT: Source: SIE_STATUS.RX_TIMEOUT RW 0x0

5 ERROR_DATA_SEQ: Source: SIE_STATUS.DATA_SEQ_ERROR RW 0x0

4 BUFF_STATUS: Raised when any bit in BUFF_STATUS is set. Clear by clearing

all bits in BUFF_STATUS.

RW 0x0

3 TRANS_COMPLETE: Raised every time SIE_STATUS.TRANS_COMPLETE is

set. Clear by writing to this bit.

RW 0x0

2 HOST_SOF: Host: raised every time the host sends a SOF (Start of Frame).

Cleared by reading SOF_RD

RW 0x0

1 HOST_RESUME: Host: raised when a device wakes up the host. Cleared by

writing to SIE_STATUS.RESUME

RW 0x0

0 HOST_CONN_DIS: Host: raised when a device is connected or disconnected

(i.e. when SIE_STATUS.SPEED changes). Cleared by writing to

SIE_STATUS.SPEED

RW 0x0
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USB: INTS Register

Offset: 0x098

Description

Interrupt status after masking & forcing

Table 1217. INTS

Register
Bits Description Type Reset

31:24 Reserved. - -

23 EPX_STOPPED_ON_NAK: Source: NAK_POLL.EPX_STOPPED_ON_NAK RO 0x0

22 DEV_SM_WATCHDOG_FIRED: Source: DEV_SM_WATCHDOG.FIRED RO 0x0

21 ENDPOINT_ERROR: Source: SIE_STATUS.ENDPOINT_ERROR RO 0x0

20 RX_SHORT_PACKET: Source: SIE_STATUS.RX_SHORT_PACKET RO 0x0

19 EP_STALL_NAK: Raised when any bit in EP_STATUS_STALL_NAK is set. Clear

by clearing all bits in EP_STATUS_STALL_NAK.

RO 0x0

18 ABORT_DONE: Raised when any bit in ABORT_DONE is set. Clear by clearing

all bits in ABORT_DONE.

RO 0x0

17 DEV_SOF: Set every time the device receives a SOF (Start of Frame) packet.

Cleared by reading SOF_RD

RO 0x0

16 SETUP_REQ: Device. Source: SIE_STATUS.SETUP_REC RO 0x0

15 DEV_RESUME_FROM_HOST: Set when the device receives a resume from the

host. Cleared by writing to SIE_STATUS.RESUME

RO 0x0

14 DEV_SUSPEND: Set when the device suspend state changes. Cleared by

writing to SIE_STATUS.SUSPENDED

RO 0x0

13 DEV_CONN_DIS: Set when the device connection state changes. Cleared by

writing to SIE_STATUS.CONNECTED

RO 0x0

12 BUS_RESET: Source: SIE_STATUS.BUS_RESET RO 0x0

11 VBUS_DETECT: Source: SIE_STATUS.VBUS_DETECTED RO 0x0

10 STALL: Source: SIE_STATUS.STALL_REC RO 0x0

9 ERROR_CRC: Source: SIE_STATUS.CRC_ERROR RO 0x0

8 ERROR_BIT_STUFF: Source: SIE_STATUS.BIT_STUFF_ERROR RO 0x0

7 ERROR_RX_OVERFLOW: Source: SIE_STATUS.RX_OVERFLOW RO 0x0

6 ERROR_RX_TIMEOUT: Source: SIE_STATUS.RX_TIMEOUT RO 0x0

5 ERROR_DATA_SEQ: Source: SIE_STATUS.DATA_SEQ_ERROR RO 0x0

4 BUFF_STATUS: Raised when any bit in BUFF_STATUS is set. Clear by clearing

all bits in BUFF_STATUS.

RO 0x0

3 TRANS_COMPLETE: Raised every time SIE_STATUS.TRANS_COMPLETE is

set. Clear by writing to this bit.

RO 0x0

2 HOST_SOF: Host: raised every time the host sends a SOF (Start of Frame).

Cleared by reading SOF_RD

RO 0x0

1 HOST_RESUME: Host: raised when a device wakes up the host. Cleared by

writing to SIE_STATUS.RESUME

RO 0x0
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Bits Description Type Reset

0 HOST_CONN_DIS: Host: raised when a device is connected or disconnected

(i.e. when SIE_STATUS.SPEED changes). Cleared by writing to

SIE_STATUS.SPEED

RO 0x0

USB: SOF_TIMESTAMP_RAW Register

Offset: 0x100

Table 1218.

SOF_TIMESTAMP_RA

W Register

Bits Description Type Reset

31:21 Reserved. - -

20:0 Device only. Raw value of free-running PHY clock counter @48MHz. Used to

calculate time between SOF events.

RO 0x000000

USB: SOF_TIMESTAMP_LAST Register

Offset: 0x104

Table 1219.

SOF_TIMESTAMP_LAS

T Register

Bits Description Type Reset

31:21 Reserved. - -

20:0 Device only. Value of free-running PHY clock counter @48MHz when last SOF

event occured.

RO 0x000000

USB: SM_STATE Register

Offset: 0x108

Table 1220.

SM_STATE Register
Bits Description Type Reset

31:12 Reserved. - -

11:8 RX_DASM RO 0x0

7:5 BC_STATE RO 0x0

4:0 STATE RO 0x00

USB: EP_TX_ERROR Register

Offset: 0x10c

Description

TX error count for each endpoint. Write to each field to reset the counter to 0.

Table 1221.

EP_TX_ERROR

Register

Bits Description Type Reset

31:30 EP15 WC 0x0

29:28 EP14 WC 0x0

27:26 EP13 WC 0x0

25:24 EP12 WC 0x0

23:22 EP11 WC 0x0

21:20 EP10 WC 0x0

19:18 EP9 WC 0x0
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Bits Description Type Reset

17:16 EP8 WC 0x0

15:14 EP7 WC 0x0

13:12 EP6 WC 0x0

11:10 EP5 WC 0x0

9:8 EP4 WC 0x0

7:6 EP3 WC 0x0

5:4 EP2 WC 0x0

3:2 EP1 WC 0x0

1:0 EP0 WC 0x0

USB: EP_RX_ERROR Register

Offset: 0x110

Description

RX error count for each endpoint. Write to each field to reset the counter to 0.

Table 1222.

EP_RX_ERROR

Register

Bits Description Type Reset

31 EP15_SEQ WC 0x0

30 EP15_TRANSACTION WC 0x0

29 EP14_SEQ WC 0x0

28 EP14_TRANSACTION WC 0x0

27 EP13_SEQ WC 0x0

26 EP13_TRANSACTION WC 0x0

25 EP12_SEQ WC 0x0

24 EP12_TRANSACTION WC 0x0

23 EP11_SEQ WC 0x0

22 EP11_TRANSACTION WC 0x0

21 EP10_SEQ WC 0x0

20 EP10_TRANSACTION WC 0x0

19 EP9_SEQ WC 0x0

18 EP9_TRANSACTION WC 0x0

17 EP8_SEQ WC 0x0

16 EP8_TRANSACTION WC 0x0

15 EP7_SEQ WC 0x0

14 EP7_TRANSACTION WC 0x0

13 EP6_SEQ WC 0x0

12 EP6_TRANSACTION WC 0x0

11 EP5_SEQ WC 0x0

RP2350 Datasheet

12.7. USB 1167



Bits Description Type Reset

10 EP5_TRANSACTION WC 0x0

9 EP4_SEQ WC 0x0

8 EP4_TRANSACTION WC 0x0

7 EP3_SEQ WC 0x0

6 EP3_TRANSACTION WC 0x0

5 EP2_SEQ WC 0x0

4 EP2_TRANSACTION WC 0x0

3 EP1_SEQ WC 0x0

2 EP1_TRANSACTION WC 0x0

1 EP0_SEQ WC 0x0

0 EP0_TRANSACTION WC 0x0

USB: DEV_SM_WATCHDOG Register

Offset: 0x114

Description

Watchdog that forces the device state machine to idle and raises an interrupt if the device stays in a state that isn’t

idle for the configured limit. The counter is reset on every state transition.

Set limit while enable is low and then set the enable.

Table 1223.

DEV_SM_WATCHDOG

Register

Bits Description Type Reset

31:21 Reserved. - -

20 FIRED WC 0x0

19 RESET: Set to 1 to forcibly reset the device state machine on watchdog expiry RW 0x0

18 ENABLE RW 0x0

17:0 LIMIT RW 0x00000

12.8. System Timers

12.8.1. Overview

The system timer peripheral on RP2350 provides a microsecond timebase for the system, and generates interrupts

based on this timebase. RP2350 has two instances of the system timer: TIMER0 and TIMER1. This allows for two

separately controlled timers, each in a different security domain. It supports the following features:

• A single 64-bit counter, incrementing once per microsecond

◦ Read from a pair of latching registers for race-free reads over a 32-bit bus

• Four alarms that match on the lower 32 bits of the counter and generate IRQ on match

The timer uses a one microsecond reference generated by the tick generators (see Section 8.5), and derived from the

reference clock (Figure 32), which itself is usually connected directly to the crystal oscillator (Section 8.2).

The 64-bit counter effectively cannot overflow (thousands of years at 1 MHz), so the system timer is completely
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monotonic in practice.

12.8.1.1. Changes from RP2040

• RP2350 now has two timer instances: TIMER0 and TIMER1

• On RP2350, the tick source for each timer comes from the system-level tick generators (see Section 8.5)

• RP2350 added two new registers: LOCKED is used to disable write access to the timer, and SOURCE allows the timer to

count system clock cycles rather than a 1 μs tick

12.8.1.2. Other Timer Resources on RP2350

The system timer provides a global timebase for software. RP2350 has a number of other programmable counter

resources which can provide regular interrupts, or trigger DMA transfers.

• The PWM (Section 12.5) contains 12× 16-bit programmable counters. These counters:

◦ run at up to system speed

◦ can generate interrupts to either of two system IRQ lines

◦ can be continuously reprogrammed via the DMA

◦ can trigger DMA transfers to other peripherals

• 12× PIO state machines (Chapter 11) can count 32-bit values at system speed, and generate interrupts.

• The DMA (Section 12.6) has four internal pacing timers which trigger transfers at regular intervals.

• Each Cortex-M33 core (Section 3.7) has a standard 24-bit SysTick timer, counting either the microsecond tick

(Section 8.5) or the system clock.

• SIO has a standard 64-bit RISC-V platform timer (Section 3.1.8). Arm and RISC-V software can use this timer.

• The Power Manager (Chapter 6) incorporates a 64-bit timer (AON Timer) which nominally counts milliseconds (see

Section 12.10). This is the only timer that runs when the chip is in its lowest power state, with all switchable power

domains powered down. It is used to schedule power-ups.

12.8.2. Counter

The timer has a 64-bit counter, but RP2350 only has a 32-bit data bus. This means that the TIME value is accessed

through a pair of registers. These are:

• TIMEHW and TIMELW to write the time

• TIMEHR and TIMELR to read the time

To use these pairs, access the lower register, L, followed by the higher register, H. In the read case, reading the L register

latches the value in the H register to provide an accurate time. To read the raw time without any latching, use TIMERAWH

and TIMERAWL.

 CAUTION

Don’t write to the TIMEHW and TIMELW registers to force a new time value if other software may be using the timer. The

SDK uses the time value for timeouts, elapsed time, and more, and expects the value to increase monotonically.

12.8.3. Alarms

The timer has 4 alarms, and outputs a separate interrupt for each alarm. The alarms match on the lower 32 bits of the
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64-bit counter, which means they can be fired at a maximum of 232 microseconds into the future. This is equivalent to:

• 232 ÷ 106: ~4295 seconds

• 4295 ÷ 60: ~72 minutes

 NOTE

This timer supports alarm intervals on the order of one microsecond to one hour. For a longer alarm, see Section

12.10.

To enable an alarm:

1. Enable the interrupt at the timer with a write to the appropriate alarm bit in INTE (e.g. (1 << 0) for ALARM0).

2. Enable the appropriate timer interrupt at the processor (see Section 3.2).

3. Write the time you would like the interrupt to fire to ALARM0 (i.e. the current value in TIMERAWL plus your desired alarm

time in microseconds). Writing the time to the ALARM register sets the ARMED bit as a side effect.

Once the alarm has fired, the ARMED bit clears to 0. To clear the latched interrupt, write a 1 to the appropriate bit in INTR.

12.8.4. Programmer’s Model

 NOTE

The timer’s tick (see Section 8.5) must be running for the timer to start counting. The SDK starts this tick as part of

the platform initialisation code.

12.8.4.1. Reading the time

 NOTE

Time here refers to the number of microseconds since the timer was started, not a clock. For a clock, see Section

12.10.

To read the 64-bit time, read TIMELR followed by TIMEHR. Reading TIMELR latches (stops) the value in TIMEHR until TIMEHR is

read. Because RP2350 has 2 cores, it is unsafe to do this if the second core executes code that can also access the

timer, or if the timer is read concurrently in an IRQ handler and in thread mode. If one core reads TIMELR followed by

another core reading TIMELR, the value in TIMEHR isn’t necessarily accurate. The example below shows the simplest form

of getting the 64-bit time:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/timer/timer_lowlevel/timer_lowlevel.c Lines 15 - 23

15 // Simplest form of getting 64 bit time from the timer.
16 // It isn't safe when called from 2 cores because of the latching
17 // so isn't implemented this way in the sdk
18 static uint64_t get_time(void) {
19     // Reading low latches the high value
20     uint32_t lo = timer_hw->timelr;
21     uint32_t hi = timer_hw->timehr;
22     return ((uint64_t) hi << 32u) | lo;
23 }

The SDK provides a time_us_64 function that uses a more thorough method to get the 64-bit time, which makes use of

the TIMERAWH and TIMERAWL registers. The RAW registers don’t latch, making time_us_64 safe to call from multiple cores at

once.
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SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_timer/timer.c Lines 57 - 73

57 uint64_t timer_time_us_64(timer_hw_t *timer) {
58     // Need to make sure that the upper 32 bits of the timer
59     // don't change, so read that first
60     uint32_t hi = timer->timerawh;
61     uint32_t lo;
62     do {
63         // Read the lower 32 bits
64         lo = timer->timerawl;
65         // Now read the upper 32 bits again and
66         // check that it hasn't incremented. If it has loop around
67         // and read the lower 32 bits again to get an accurate value
68         uint32_t next_hi = timer->timerawh;
69         if (hi == next_hi) break;
70         hi = next_hi;
71     } while (true);
72     return ((uint64_t) hi << 32u) | lo;
73 }

12.8.4.2. Set an alarm

The standalone timer example, timer_lowlevel, demonstrates how to set an alarm at a hardware level without the

additional abstraction over the timer provided by SDK. To use these abstractions, see Section 12.8.4.4.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/timer/timer_lowlevel/timer_lowlevel.c Lines 27 - 74

27 // Use alarm 0
28 #define ALARM_NUM 0
29 #define ALARM_IRQ timer_hardware_alarm_get_irq_num(timer_hw, ALARM_NUM)
30 
31 // Alarm interrupt handler
32 static volatile bool alarm_fired;
33 
34 static void alarm_irq(void) {
35     // Clear the alarm irq
36     hw_clear_bits(&timer_hw->intr, 1u << ALARM_NUM);
37 
38     // Assume alarm 0 has fired
39     printf("Alarm IRQ fired\n");
40     alarm_fired = true;
41 }
42 
43 static void alarm_in_us(uint32_t delay_us) {
44     // Enable the interrupt for our alarm (the timer outputs 4 alarm irqs)
45     hw_set_bits(&timer_hw->inte, 1u << ALARM_NUM);
46     // Set irq handler for alarm irq
47     irq_set_exclusive_handler(ALARM_IRQ, alarm_irq);
48     // Enable the alarm irq
49     irq_set_enabled(ALARM_IRQ, true);
50     // Enable interrupt in block and at processor
51 
52     // Alarm is only 32 bits so if trying to delay more
53     // than that need to be careful and keep track of the upper
54     // bits
55     uint64_t target = timer_hw->timerawl + delay_us;
56 
57     // Write the lower 32 bits of the target time to the alarm which
58     // will arm it
59     timer_hw->alarm[ALARM_NUM] = (uint32_t) target;
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60 }
61 
62 int main() {
63     stdio_init_all();
64     printf("Timer lowlevel!\n");
65 
66     // Set alarm every 2 seconds
67     while (1) {
68         alarm_fired = false;
69         alarm_in_us(1000000 * 2);
70         // Wait for alarm to fire
71         while (!alarm_fired);
72     }
73 }

12.8.4.3. Busy wait

If you don’t want to use an alarm to wait for a period of time, use a while loop instead. The SDK provides various

busy_wait_ functions to do this:

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_timer/timer.c Lines 77 - 122

 77 void timer_busy_wait_us_32(timer_hw_t *timer, uint32_t delay_us) {
 78     if (0 <= (int32_t)delay_us) {
 79         // we only allow 31 bits, otherwise we could have a race in the loop below with
 80         // values very close to 2^32
 81         uint32_t start = timer->timerawl;
 82         while (timer->timerawl - start < delay_us) {
 83             tight_loop_contents();
 84         }
 85     } else {
 86         busy_wait_us(delay_us);
 87     }
 88 }
 89 
 90 void timer_busy_wait_us(timer_hw_t *timer, uint64_t delay_us) {
 91     uint64_t base = timer_time_us_64(timer);
 92     uint64_t target = base + delay_us;
 93     if (target < base) {
 94         target = (uint64_t)-1;
 95     }
 96     absolute_time_t t;
 97     update_us_since_boot(&t, target);
 98     timer_busy_wait_until(timer, t);
 99 }
100 
101 void timer_busy_wait_ms(timer_hw_t *timer, uint32_t delay_ms)
102 {
103     if (delay_ms <= 0x7fffffffu / 1000) {
104         timer_busy_wait_us_32(timer, delay_ms * 1000);
105     } else {
106         timer_busy_wait_us(timer, delay_ms * 1000ull);
107     }
108 }
109 
110 void timer_busy_wait_until(timer_hw_t *timer, absolute_time_t t) {
111     uint64_t target = to_us_since_boot(t);
112     uint32_t hi_target = (uint32_t)(target >> 32u);
113     uint32_t hi = timer->timerawh;
114     while (hi < hi_target) {
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115         hi = timer->timerawh;
116         tight_loop_contents();
117     }
118     while (hi == hi_target && timer->timerawl < (uint32_t) target) {
119         hi = timer->timerawh;
120         tight_loop_contents();
121     }
122 }

12.8.4.4. Complete example using SDK

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/timer/hello_timer/hello_timer.c Lines 11 - 57

11 volatile bool timer_fired = false;
12 
13 int64_t alarm_callback(alarm_id_t id, __unused void *user_data) {
14     printf("Timer %d fired!\n", (int) id);
15     timer_fired = true;
16     // Can return a value here in us to fire in the future
17     return 0;
18 }
19 
20 bool repeating_timer_callback(__unused struct repeating_timer *t) {
21     printf("Repeat at %lld\n", time_us_64());
22     return true;
23 }
24 
25 int main() {
26     stdio_init_all();
27     printf("Hello Timer!\n");
28 
29     // Call alarm_callback in 2 seconds
30     add_alarm_in_ms(2000, alarm_callback, NULL, false);
31 
32     // Wait for alarm callback to set timer_fired
33     while (!timer_fired) {
34         tight_loop_contents();
35     }
36 
37     // Create a repeating timer that calls repeating_timer_callback.
38     // If the delay is > 0 then this is the delay between the previous callback ending and the
   next starting.
39     // If the delay is negative (see below) then the next call to the callback will be exactly
   500ms after the
40     // start of the call to the last callback
41     struct repeating_timer timer;
42     add_repeating_timer_ms(500, repeating_timer_callback, NULL, &timer);
43     sleep_ms(3000);
44     bool cancelled = cancel_repeating_timer(&timer);
45     printf("cancelled... %d\n", cancelled);
46     sleep_ms(2000);
47 
48     // Negative delay so means we will call repeating_timer_callback, and call it again
49     // 500ms later regardless of how long the callback took to execute
50     add_repeating_timer_ms(-500, repeating_timer_callback, NULL, &timer);
51     sleep_ms(3000);
52     cancelled = cancel_repeating_timer(&timer);
53     printf("cancelled... %d\n", cancelled);
54     sleep_ms(2000);
55     printf("Done\n");
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56     return 0;
57 }

12.8.5. List of Registers

The TIMER0 and TIMER1 registers start at base addresses of 0x400b0000 and 0x400b8000 respectively (defined as

TIMER0_BASE and TIMER1_BASE in SDK).

Table 1224. List of

TIMER registers
Offset Name Info

0x00 TIMEHW Write to bits 63:32 of time

always write timelw before timehw

0x04 TIMELW Write to bits 31:0 of time

writes do not get copied to time until timehw is written

0x08 TIMEHR Read from bits 63:32 of time

always read timelr before timehr

0x0c TIMELR Read from bits 31:0 of time

0x10 ALARM0 Arm alarm 0, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM0 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

0x14 ALARM1 Arm alarm 1, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM1 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

0x18 ALARM2 Arm alarm 2, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM2 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

0x1c ALARM3 Arm alarm 3, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM3 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

0x20 ARMED Indicates the armed/disarmed status of each alarm.

A write to the corresponding ALARMx register arms the alarm.

Alarms automatically disarm upon firing, but writing ones here

will disarm immediately without waiting to fire.

0x24 TIMERAWH Raw read from bits 63:32 of time (no side effects)

0x28 TIMERAWL Raw read from bits 31:0 of time (no side effects)

0x2c DBGPAUSE Set bits high to enable pause when the corresponding debug

ports are active

0x30 PAUSE Set high to pause the timer

0x34 LOCKED Set locked bit to disable write access to timer

Once set, cannot be cleared (without a reset)
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Offset Name Info

0x38 SOURCE Selects the source for the timer. Defaults to the normal tick

configured in the ticks block (typically configured to 1

microsecond). Writing to 1 will ignore the tick and count clk_sys

cycles instead.

0x3c INTR Raw Interrupts

0x40 INTE Interrupt Enable

0x44 INTF Interrupt Force

0x48 INTS Interrupt status after masking & forcing

TIMER: TIMEHW Register

Offset: 0x00

Table 1225. TIMEHW

Register
Bits Description Type Reset

31:0 Write to bits 63:32 of time

always write timelw before timehw

WF 0x00000000

TIMER: TIMELW Register

Offset: 0x04

Table 1226. TIMELW

Register
Bits Description Type Reset

31:0 Write to bits 31:0 of time

writes do not get copied to time until timehw is written

WF 0x00000000

TIMER: TIMEHR Register

Offset: 0x08

Table 1227. TIMEHR

Register
Bits Description Type Reset

31:0 Read from bits 63:32 of time

always read timelr before timehr

RO 0x00000000

TIMER: TIMELR Register

Offset: 0x0c

Table 1228. TIMELR

Register
Bits Description Type Reset

31:0 Read from bits 31:0 of time RO 0x00000000

TIMER: ALARM0 Register

Offset: 0x10
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Table 1229. ALARM0

Register
Bits Description Type Reset

31:0 Arm alarm 0, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM0 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

RW 0x00000000

TIMER: ALARM1 Register

Offset: 0x14

Table 1230. ALARM1

Register
Bits Description Type Reset

31:0 Arm alarm 1, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM1 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

RW 0x00000000

TIMER: ALARM2 Register

Offset: 0x18

Table 1231. ALARM2

Register
Bits Description Type Reset

31:0 Arm alarm 2, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM2 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

RW 0x00000000

TIMER: ALARM3 Register

Offset: 0x1c

Table 1232. ALARM3

Register
Bits Description Type Reset

31:0 Arm alarm 3, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM3 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

RW 0x00000000

TIMER: ARMED Register

Offset: 0x20

Table 1233. ARMED

Register
Bits Description Type Reset

31:4 Reserved. - -

3:0 Indicates the armed/disarmed status of each alarm.

A write to the corresponding ALARMx register arms the alarm.

Alarms automatically disarm upon firing, but writing ones here

will disarm immediately without waiting to fire.

WC 0x0

TIMER: TIMERAWH Register

Offset: 0x24
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Table 1234.

TIMERAWH Register
Bits Description Type Reset

31:0 Raw read from bits 63:32 of time (no side effects) RO 0x00000000

TIMER: TIMERAWL Register

Offset: 0x28

Table 1235.

TIMERAWL Register
Bits Description Type Reset

31:0 Raw read from bits 31:0 of time (no side effects) RO 0x00000000

TIMER: DBGPAUSE Register

Offset: 0x2c

Description

Set bits high to enable pause when the corresponding debug ports are active

Table 1236.

DBGPAUSE Register
Bits Description Type Reset

31:3 Reserved. - -

2 DBG1: Pause when processor 1 is in debug mode RW 0x1

1 DBG0: Pause when processor 0 is in debug mode RW 0x1

0 Reserved. - -

TIMER: PAUSE Register

Offset: 0x30

Table 1237. PAUSE

Register
Bits Description Type Reset

31:1 Reserved. - -

0 Set high to pause the timer RW 0x0

TIMER: LOCKED Register

Offset: 0x34

Table 1238. LOCKED

Register
Bits Description Type Reset

31:1 Reserved. - -

0 Set locked bit to disable write access to timer

Once set, cannot be cleared (without a reset)

RW 0x0

TIMER: SOURCE Register

Offset: 0x38

Description

Selects the source for the timer. Defaults to the normal tick configured in the ticks block (typically configured to 1

microsecond). Writing to 1 will ignore the tick and count clk_sys cycles instead.

Table 1239. SOURCE

Register
Bits Description Type Reset

31:1 Reserved. - -

0 CLK_SYS RW 0x0
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Bits Description Type Reset

Enumerated values:

0x0 → TICK

0x1 → CLK_SYS

TIMER: INTR Register

Offset: 0x3c

Description

Raw Interrupts

Table 1240. INTR

Register
Bits Description Type Reset

31:4 Reserved. - -

3 ALARM_3 WC 0x0

2 ALARM_2 WC 0x0

1 ALARM_1 WC 0x0

0 ALARM_0 WC 0x0

TIMER: INTE Register

Offset: 0x40

Description

Interrupt Enable

Table 1241. INTE

Register
Bits Description Type Reset

31:4 Reserved. - -

3 ALARM_3 RW 0x0

2 ALARM_2 RW 0x0

1 ALARM_1 RW 0x0

0 ALARM_0 RW 0x0

TIMER: INTF Register

Offset: 0x44

Description

Interrupt Force

Table 1242. INTF

Register
Bits Description Type Reset

31:4 Reserved. - -

3 ALARM_3 RW 0x0

2 ALARM_2 RW 0x0

1 ALARM_1 RW 0x0

0 ALARM_0 RW 0x0

TIMER: INTS Register

RP2350 Datasheet

12.8. System Timers 1178



Offset: 0x48

Description

Interrupt status after masking & forcing

Table 1243. INTS

Register
Bits Description Type Reset

31:4 Reserved. - -

3 ALARM_3 RO 0x0

2 ALARM_2 RO 0x0

1 ALARM_1 RO 0x0

0 ALARM_0 RO 0x0

12.9. Watchdog

12.9.1. Overview

The watchdog is a countdown timer which can be configured to reset selected components when it reaches zero. In

normal operation it is periodically loaded with a non-zero value to prevent the reset occuring. If the chip locks up or

software gets stuck in a loop, the reset allows recovery.

The watchdog is reset by any chip-level reset (see Section 7.3). The sources of the chip-level reset are:

• Power-On Reset (POR)

• Brown-out Detection (BOD)

• External Reset (from the RUN pin)

• Debugger Reset Request

• Rescue Debug Port Request

• Watchdog - a chip-level reset triggered by the Watchdog will reset the Watchdog

• SWCORE powerdown

• Glitch Detector

• Debugger HZD Reset Request

These are described in Section 7.3.3.

12.9.2. Changes from RP2040

On RP2040, the watchdog contained a tick generator used to generate a 1μs tick for the watchdog. This was also

distributed to the system timer. On RP2350, the watchdog instead takes a tick input from the system-level ticks block.

See Section 8.5.

As on RP2040 the watchdog can trigger a PSM (Power-on State Machine) sequence to reset system components or it

can be used to reset selected subsystem components. On RP2350, the watchdog can also trigger a chip level reset.

12.9.3. Watchdog Counter

The watchdog counter is loaded by the LOAD register. The current value can be seen in CTRL.TIME.
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12.9.4. Control Watchdog Reset Levels

To control the level of reset triggered by a watchdog event, use the registers outside the watchdog register block:

• POWMAN_WATCHDOG allows the watchdog to trigger chip level resets

• PSM_WDSEL allows the watchdog to trigger system resets by running a full or partial PSM sequence (Power-on State

Machine)

• RESETS_WDSEL allows the watchdog to trigger subsystem resets

These are described in the Resets section, see Chapter 7.

12.9.5. Scratch Registers

The watchdog contains eight 32-bit scratch registers that can store information between soft resets of the chip. The

scratch registers reset when:

• the watchdog is used to to trigger a chip level reset

• a rst_n_run event occurs, triggered by toggling the RUN pin or cycling the digital core supply (DVDD)

The bootrom checks the watchdog scratch registers for a magic number on boot. You can use this to soft reset the chip

into user-specified code. See Section 5.2.4 for more information.

 NOTE

Additional general-purpose scratch registers are available in POWMAN SCRATCH0 through SCRATCH7. These

registers also survive power cycling the switched core domain.

12.9.6. Programmer’s Model

The SDK provides a hardware_watchdog driver to control the watchdog.

12.9.6.1. Enabling the watchdog

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_watchdog/watchdog.c Lines 42 - 74

42 // Helper function used by both watchdog_enable and watchdog_reboot
43 void _watchdog_enable(uint32_t delay_ms, bool pause_on_debug) {
44     valid_params_if(HARDWARE_WATCHDOG, delay_ms <= WATCHDOG_LOAD_BITS / (1000 *
   WATCHDOG_XFACTOR));
45     hw_clear_bits(&watchdog_hw->ctrl, WATCHDOG_CTRL_ENABLE_BITS);
46 
47     // Reset everything apart from ROSC and XOSC
48     hw_set_bits(&psm_hw->wdsel, PSM_WDSEL_BITS & ~(PSM_WDSEL_ROSC_BITS |
   PSM_WDSEL_XOSC_BITS));
49 
50     uint32_t dbg_bits = WATCHDOG_CTRL_PAUSE_DBG0_BITS |
51                         WATCHDOG_CTRL_PAUSE_DBG1_BITS |
52                         WATCHDOG_CTRL_PAUSE_JTAG_BITS;
53 
54     if (pause_on_debug) {
55         hw_set_bits(&watchdog_hw->ctrl, dbg_bits);
56     } else {
57         hw_clear_bits(&watchdog_hw->ctrl, dbg_bits);
58     }
59 
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60     if (!delay_ms) {
61         hw_set_bits(&watchdog_hw->ctrl, WATCHDOG_CTRL_TRIGGER_BITS);
62     } else {
63         load_value = delay_ms * 1000;
64         if (load_value > WATCHDOG_LOAD_BITS)
65             load_value = WATCHDOG_LOAD_BITS;
66 
67         watchdog_update();
68 
69         hw_set_bits(&watchdog_hw->ctrl, WATCHDOG_CTRL_ENABLE_BITS);
70     }
71 }

12.9.6.2. Updating the watchdog counter

SDK: https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_watchdog/watchdog.c Lines 24 - 28

24 static uint32_t load_value;
25 
26 void watchdog_update(void) {
27     watchdog_hw->load = load_value;
28 }

12.9.6.3. Usage

The Pico Examples repository provides a hello_watchdog example that uses the hardware_watchdog to demonstrate use of

the watchdog.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/watchdog/hello_watchdog/hello_watchdog.c Lines 11 - 33

11 int main() {
12     stdio_init_all();
13 
14     if (watchdog_caused_reboot()) {
15         printf("Rebooted by Watchdog!\n");
16         return 0;
17     } else {
18         printf("Clean boot\n");
19     }
20 
21     // Enable the watchdog, requiring the watchdog to be updated every 100ms or the chip will
   reboot
22     // second arg is pause on debug which means the watchdog will pause when stepping through
   code
23     watchdog_enable(100, 1);
24 
25     for (uint i = 0; i < 5; i++) {
26         printf("Updating watchdog %d\n", i);
27         watchdog_update();
28     }
29 
30     // Wait in an infinite loop and don't update the watchdog so it reboots us
31     printf("Waiting to be rebooted by watchdog\n");
32     while(1);
33 }
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12.9.7. List of Registers

The watchdog registers start at a base address of 0x400d8000 (defined as WATCHDOG_BASE in SDK).

Table 1244. List of

WATCHDOG registers
Offset Name Info

0x00 CTRL Watchdog control

The rst_wdsel register determines which subsystems are reset

when the watchdog is triggered.

The watchdog can be triggered in software.

0x04 LOAD Load the watchdog timer. The maximum setting is 0xffffff which

corresponds to approximately 16 seconds.

0x08 REASON Logs the reason for the last reset. Both bits are zero for the case

of a hardware reset.

Additionally, as of RP2350, a debugger warm reset of either core

(SYSRESETREQ or hartreset) will also clear the watchdog reason

register, so that software loaded under the debugger following a

watchdog timeout will not continue to see the timeout condition.

0x0c SCRATCH0 Scratch register. Information persists through soft reset of the

chip.

0x10 SCRATCH1 Scratch register. Information persists through soft reset of the

chip.

0x14 SCRATCH2 Scratch register. Information persists through soft reset of the

chip.

0x18 SCRATCH3 Scratch register. Information persists through soft reset of the

chip.

0x1c SCRATCH4 Scratch register. Information persists through soft reset of the

chip.

0x20 SCRATCH5 Scratch register. Information persists through soft reset of the

chip.

0x24 SCRATCH6 Scratch register. Information persists through soft reset of the

chip.

0x28 SCRATCH7 Scratch register. Information persists through soft reset of the

chip.

WATCHDOG: CTRL Register

Offset: 0x00

Description

Watchdog control

The rst_wdsel register determines which subsystems are reset when the watchdog is triggered.

The watchdog can be triggered in software.

Table 1245. CTRL

Register
Bits Description Type Reset

31 TRIGGER: Trigger a watchdog reset SC 0x0

30 ENABLE: When not enabled the watchdog timer is paused RW 0x0

29:27 Reserved. - -

26 PAUSE_DBG1: Pause the watchdog timer when processor 1 is in debug mode RW 0x1
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Bits Description Type Reset

25 PAUSE_DBG0: Pause the watchdog timer when processor 0 is in debug mode RW 0x1

24 PAUSE_JTAG: Pause the watchdog timer when JTAG is accessing the bus

fabric

RW 0x1

23:0 TIME: Indicates the time in usec before a watchdog reset will be triggered RO 0x000000

WATCHDOG: LOAD Register

Offset: 0x04

Table 1246. LOAD

Register
Bits Description Type Reset

31:24 Reserved. - -

23:0 Load the watchdog timer. The maximum setting is 0xffffff which corresponds

to approximately 16 seconds.

WF 0x000000

WATCHDOG: REASON Register

Offset: 0x08

Description

Logs the reason for the last reset. Both bits are zero for the case of a hardware reset.

Additionally, as of RP2350, a debugger warm reset of either core (SYSRESETREQ or hartreset) will also clear the

watchdog reason register, so that software loaded under the debugger following a watchdog timeout will not continue

to see the timeout condition.

Table 1247. REASON

Register
Bits Description Type Reset

31:2 Reserved. - -

1 FORCE RO 0x0

0 TIMER RO 0x0

WATCHDOG: SCRATCH0, SCRATCH1, …, SCRATCH6, SCRATCH7 Registers

Offsets: 0x0c, 0x10, …, 0x24, 0x28

Table 1248.

SCRATCH0,

SCRATCH1, …,

SCRATCH6,

SCRATCH7 Registers

Bits Description Type Reset

31:0 Scratch register. Information persists through soft reset of the chip. RW 0x00000000

12.10. Always-On Timer

12.10.1. Overview

The always-on timer (AON Timer) is the only timer that operates in all power modes. It can be used as a real-time

counter or an interval timer and incorporates an alarm which can be used to trigger a power-up event or an interrupt. It

incorporates a 64-bit counter intended to count 1ms ticks, but the tick generator can be configured to run faster or

slower if required. Note that the AON Timer tick generator is independent of all other tick generators on the chip.

The default tick source is the 32kHz on-chip low-power oscillator (LPOSC), see Section 8.4. The LPOSC frequency is not

precise and may vary with voltage and temperature. When the chip core is powered, the tick source can be switched to

the on-chip crystal oscillator (XOSC) for greater precision. If greater precision is also required when the chip core is
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unpowered, then a 32kHz clock or a 1ms tick can be supplied from an external source. Alternatively, the AON Timer can

be synchronised to an external 1Hz source.

The AON Timer is integrated with the power manager (POWMAN) and shares the POWMAN register block. Writes are

limited to 16 bits because a key (0x5afe) is required in the top 16 bits to prevent erroneous writes from locking up the

chip. Most AON Timer registers can be enabled for write by Non-secure software, unlike other POWMAN registers.

However, the registers used to select an external clock, select an external tick source, and enable power-up on alarm

can only be written by Secure software.

12.10.2. Changes from RP2040

The RP2040 Real Time Clock (RTC) is not used in RP2350. Instead, RP2350 has a timer in the Always-On power domain

which is used for scheduling power-up events and can also be used as a real-time counter. The AON Timer works

differently from the RP2040 RTC. It counts milliseconds to 64 bits and this value can be used to calculate the date and

time in software if required.

12.10.3. Accessing the AON Timer

To start and stop the AON Timer, write to TIMER.RUN.

To read the current 64-bit AON Timer value, use the following 2 × 32-bit read-only registers:

• READ_TIME_UPPER

• READ_TIME_LOWER

Because the AON Timer can increment during a read, use the following procedure to protect against erroneous reads:

1. Read READ_TIME_UPPER

2. Read READ_TIME_LOWER

3. Read READ_TIME_UPPER

4. If the READ_TIME_UPPER value changes between steps 1 and 3, repeat the whole procedure

When used as a real time clock, the 64-bit time value is set using 4 × 16-bit registers. These registers can only be written

when the AON Timer is stopped by writing a 0 to TIMER.RUN:

• SET_TIME_63TO48

• SET_TIME_47TO32

• SET_TIME_31TO16

• SET_TIME_15TO0

These registers cannot be used to read the time value.

When used as an interval timer, write a 1 to TIMER.CLEAR to clear the timer value. It is not necessary to stop the AON

Timer to do this. The TIMER.CLEAR register is self-clearing: it returns to 0 when the operation completes. This allows

easy implementation of an alarm that wakes the chip or generates an interrupt at regular intervals.

12.10.4. Using the Alarm

To set the alarm time, use the following 4 × 16-bit registers:

• ALARM_TIME_63TO48

• ALARM_TIME_47TO32
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• ALARM_TIME_31TO16

• ALARM_TIME_15TO0

To avoid false alarms, disable the alarm before setting the alarm time.

To enable the alarm, use TIMER.ALARM_ENAB.

When the alarm fires, the AON Timer sets the alarm status flag TIMER.ALARM.

To clear the alarm status flag, write a 1 to the alarm status flag.

To configure the alarm to trigger a power-up, set TIMER.PWRUP_ON_ALARM. This feature is not available to Non-secure

code.

The alarm can be configured to trigger an interrupt. The interrupt is handled in the standard way using the following

register fields:

• INTR.TIMER - raw interrupt

• INTE.TIMER - interrupt enable

• INTF.TIMER - force interrupt

• INTS.TIMER - interrupt status

12.10.5. Selecting the AON Timer Tick Source

The AON Timer indicates the current configuration with read-only flags. Table 1249 provides a list of sources supported

by the 1kHz AON Timer tick.

Table 1249. AON

Timer tick generators
Tick source Read-only flag

LPOSC clock division TIMER.USING_LPOSC

XOSC clock division TIMER.USING_XOSC

external 1kHz tick TIMER.USING_GPIO_1KHZ

 NOTE

The LPOSC clock can be substituted by an external 32kHz clock.

12.10.5.1. Using LPOSC as the AON Timer Tick Source

LPOSC is the default source and can be used in all power modes. It nominally runs at 32.768kHz and can only be tuned

to 1% accuracy. The AON Timer derives the 1ms tick from the LPOSC using a 6.16 bit fractional divider whose divisor is

initialised to 32.768. The divisor can be modified to achieve greater accuracy. Because the LPOSC frequency varies with

supply voltage and temperature, accuracy is limited unless supply voltage and temperature are stable. To modify the

divisor, write to the following registers:

• LPOSC_FREQ_KHZ_INT (default value: 32)

• LPOSC_FREQ_KHZ_FRAC (default value: 0.768)

These registers should only be written when TIMER.RUN = 0 or TIMER.USING_LPOSC = 0.

If the tick source is not LPOSC, you can switch it back to LPOSC by writing a 1 to TIMER.USE_LPOSC. It is not necessary

to stop the AON Timer to do this. The newly selected tick will be synchronised to the current tick, so the operation may

take up to 1 tick cycle (1ms in normal operation). When the operation is complete, TIMER.USE_LPOSC will self-clear and

TIMER.USING_LPOSC will be set. Due to sampling, a small error of up to 2 periods of the newly selected clock will be

subtracted from the time. When switching to LPOSC at 32kHz, an error of up to 62μs will be subtracted.
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12.10.5.2. Using an External Clock in Place of LPOSC

If LPOSC is not sufficiently accurate, an external 32.768kHz clock can be used. This will be multiplexed onto the internal

low-power clock and will therefore drive all components that are driven by that clock, including the power sequencer

components. The external clock can be used in all power modes. When an external clock is in use, you can stop the

LPOSC (see Section 8.4).

To select an external 32kHz clock:

1. Configure the GPIO source as described in Section 12.10.7.

2. Switch to the external LPOSC by setting EXT_TIME_REF.DRIVE_LPCK. This register should only be written when

TIMER.RUN = 0 and the power sequencer is inactive. You can only write to this register from Secure code.

The external 32kHz clock replaces the clock from LPOSC. Therefore the same registers are used for AON Timer

configuration (see Section 12.10.5.1):

• TIMER.USE_LPOSC

• TIMER.USING_LPOSC

• LPOSC_FREQ_KHZ_INT

• LPOSC_FREQ_KHZ_FRAC

12.10.5.3. Using the XOSC as the AON Timer Tick Source

The XOSC clock is provided via the reference clock (clk_ref). The user must ensure the reference clock is being driven

from the XOSC before selecting it as the source of the AON Timer tick. This is the normal configuration following boot.

To check, look for CLK_REF_SELECTED = 0x4. The reference clock may be a divided version of the XOSC. The divisor

defaults to 1 and can be read from CLK_REF_DIV.INT. If the chip is operated with a faster XOSC, the clock sent to the

AON Timer must not exceed 29MHz.

The AON Timer derives the 1ms tick from the XOSC using a 16.16 bit fractional divider whose divisor is initialised to

12000.0. This assumes a 12MHz crystal is used and the reference clock divisor is 1. If that is not the case, the divisor in

the AON Timer can be modified by writing to the following registers:

• XOSC_FREQ_KHZ_INT (default value: 12000)

• XOSC_FREQ_KHZ_FRAC (default value: 0)

These registers should only be written when TIMER.RUN = 0 or TIMER.USING_XOSC = 0.

To select the XOSC as the AON Timer tick source, write a 1 to TIMER.USE_XOSC. It is not necessary to stop the AON

Timer to do this. The newly selected tick will be synchronised to the current tick, so the operation may take up to 1 tick

cycle (1ms in normal operation). When the operation is complete TIMER.USE_XOSC will self-clear and

TIMER.USING_XOSC will be set. Due to sampling, a small error of up to 2 periods of the newly selected clock will be

subtracted from the time. When switching to XOSC at 12MHz an error of up to 167ns will be subtracted.

When the chip core is powered down the XOSC will stop. If TIMER.USING_XOSC is set, the power-down sequencer

automatically reverts to TIMER.USING_LPOSC before the XOSC stops.

12.10.5.4. Using an External 1ms Tick Source

To select an external 1ms tick source, configure the GPIO source as described in Section 12.10.7. Then, write a 1 to

TIMER.USE_GPIO_1KHZ. It is not necessary to stop the AON Timer to do this, however the newly selected tick will not be

synchronised to the current tick, so the operation so the operation will advance the time by up to 1ms. If using an

external 1ms tick it is recommended to set the time after selecting the source. When the operation is complete

TIMER.USE_GPIO_1KHZ will self-clear and TIMER.USING_GPIO_1KHZ will be set.

The tick is triggered from the falling edge of the selected GPIO. For correct sampling, the GPIO pulse width and interval

must both be greater than the period of LPOSC (>31us). This limits the maximum frequency of the external tick to
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16kHz.

The external 1ms tick can be used in all power modes.

12.10.6. Synchronising the AON Timer to an External 1Hz Clock

In applications that use GPS, a 1s tick may be available. This can be used to synchronise the AON Timer and thus

compensate for inaccuracy in the LPOSC frequency. It can be used with any tick source, but there is little to be gained if

the selected source is already reasonably accurate.

If the LPOSC is fast, the ms counter pauses at a 1 second step until the 1s tick is received. If the LPOSC is slow, the 1s

tick causes the ms counter to run very quickly until reaching the 1 second step. This ensures that all ms values are

counted, ensuring that any alarm set to ms precision will fire. A more sophisticated synchronisation method can be

implemented in software.

To use the hardware synchronisation feature, configure the GPIO source as described in Section 12.10.7. Then, enable

the feature by writing a 1 to TIMER.USE_GPIO_1HZ. This can be set at any time, it is not necessary to stop the AON

Timer. When the operation is complete TIMER.USE_GPIO_1HZ will self-clear and TIMER.USING_GPIO_1HZ will be set.

The tick is triggered from the falling edge of the selected GPIO. For correct sampling, the GPIO pulse width and interval

must be greater than the period of LPOSC (>31us).

The external 1s tick can be used in all power modes.

12.10.7. Using an external clock or tick from GPIO

The following features use a GPIO as a clock or a tick:

• external 32kHz clock source

• external 1kHz tick

• external 1Hz tick

Only 4 GPIOs are available for these features. You can only select one, because they share the same GPIO selection

logic. The set of 4 GPIOs differs between package types. The selection is controlled by a 2-bit register field.

The AON Timer uses the following GPIOs:

• EXT_TIME_REF.SOURCE_SEL = 0 → GPIO12

• EXT_TIME_REF.SOURCE_SEL = 1 → GPIO20

• EXT_TIME_REF.SOURCE_SEL = 2 → GPIO14

• EXT_TIME_REF.SOURCE_SEL = 3 → GPIO22

12.10.8. Using a Tick Faster than 1ms

The tick rate can be increased by scaling the value written to the LPOSC and XOSC frequency registers. For example, if

the frequency value is divided by 4 then the AON Timer will tick 4 times per ms. The minimum value that can be written

to the frequency registers is 2.0, therefore the maximum upscaling using this method with LPOSC is 16, giving a time

resolution of 1/16th of 1 ms (= 62.5us).

As described previously, the external tick is limited to 16kHz, so the maximum upscaling using this method is also 16.

This gives a time resolution of 1/16th of 1 ms (62.5μs).

These limitations can be overcome either by using a faster external clock (see Section 12.10.5.2) or keeping the chip

core powered so the AON Timer is always running from the XOSC. If a faster external clock is used then the power

sequencer timings will also need to be adjusted.
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For example, suppose 1μsec timer precision is required. The user could supply an external 2-25MHz clock in place of

the LPOSC and program both the LPOSC and XOSC frequency registers in MHz units rather than kHz. The maximum

frequency of the external clock is 29MHz.

12.10.9. List of Registers

The AON Timer shares a register address space with the power management subsystems in the always-on domain. The

address space is referred to as POWMAN elsewhere in this document and a complete list of POWMAN registers is provided in

Section 6.4. The registers associated with the AON Timer are:

• SET_TIME_63TO48

• SET_TIME_47TO32

• SET_TIME_31TO16

• SET_TIME_15TO0

• READ_TIME_UPPER

• READ_TIME_LOWER

• ALARM_TIME_63TO48

• ALARM_TIME_47TO32

• ALARM_TIME_31TO16

• ALARM_TIME_15TO0

• TIMER

12.11. HSTX

The high-speed serial transmit (HSTX) streams data from the system clock domain to up to 8 GPIOs at a rate

independent of the system clock. On RP2350, GPIOs 12 through 19 are HSTX-capable. HSTX is output-only.

Async FIFO

8 × 32b
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PIO Outputs

(If clk_hstx is 

clk_sys)

Domain:

clk_sys
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clk_hstx
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Figure 125. A 32-bit-

wide asynchronous

FIFO provides high-

bandwidth access

from the system DMA.

The command

expander manipulates

the datastream, and

the output shift

register portions the

32-bit data over

successive HSTX

clock cycles, swizzled

by the bit crossbar.

Outputs are double-

data-rate: two bits per

pin per cycle.

HSTX drives data through GPIOs using DDR output registers to transfer up to two bits per clock cycle per pin. The HSTX

balances all delays to GPIO outputs within 300 picoseconds, minimising common-mode components when using

neighbouring GPIOs as a pseudo-differential driver. This also helps maintain destination setup and hold time when a

clock is driven alongside the output data.

The maximum frequency for the HSTX clock is 150 MHz, the same as the system clock. With DDR output operation, this
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is a maximum data rate of 300 Mb/s per pin. There are no limits on the frequency ratio of the system and HSTX clocks,

however each clock must be individually fast enough to maintain your required throughput. Very low system clock

frequencies coupled with very high HSTX frequencies may encounter system DMA bandwidth limitations, since the

DMA is capped at one HSTX FIFO write per system clock cycle.

12.11.1. Data FIFO

An 8-entry, 32-bit-wide FIFO buffers data between the system clock domain (clk_sys) and the HSTX clock domain

(clk_hstx). This is accessed through the AHB FASTPERI arbiter, providing single-cycle write access from the DMA. The

FIFO status is also available through this same bus interface, for faster polled processor IO; see Section 12.11.8.

The FIFO is accessed through a bus interface separate from the control registers (Section 12.11.7), which take multiple

cycles to access due to the asynchronous bus crossing. This design avoids incurring bus stalls on the system DMA or

the FASTPERI arbiter when accessing the FIFO.

The HSTX side also pops 32 bits at a time from the FIFO. The word data stream from the FIFO is optionally manipulated

by the command expander (Section 12.11.5) before being passed to the output shift register.

12.11.2. Output Shift Register

System Bit Crossbar
Data FIFO

(8 x 32b async)

N_SHIFTS reached?

Right-rotate

SHIFT = 0-31

Output Shift 

Register 

(32 bits)

1

0

/32

Figure 126. Every

cycle, the output shift

register either refills

32 bits from the FIFO

or recirculates data

through a right-rotate

function. The rotate

can be used to

perform left or right

shifts, and to repeat

data.

The HSTX’s internal data paths are 32 bits wide, but the output is narrower: no more than 16 bits can be output per

HSTX cycle (8 GPIOs × DDR). The output shift register adapts these mismatched data widths. The output shift register

is a 32-bit shift register, which always refills 32 bits at a time, either from the command expander output or directly from

the data FIFO.

The source of data for the output shift register is configured by the CSR.EXPAND_EN field:

• when set, the command expander interposes the FIFO and the output shift register

• when clear, the command expander is bypassed, popping the FIFO directly into the shift register

Whenever CSR.EN is low, the shift register is flushed to empty. Once HSTX has been configured, and EN is set high, the

shift register is ready to accept data, and will pop data as soon as it becomes available.

After popping the first data word, the shift register will now shift every HSTX clock cycle until it becomes empty. The

shift behaviour is configured by:

• CSR.N_SHIFTS, which determines how many times to shift before the register is considered empty

• CSR.SHIFT, which is a right-rotate applied to the shift register every cycle

CSR.N_SHIFTS and CSR.SHIFT must only be changed when CSR.EN is low. It is safe to change these fields in the same

register write that sets EN from low to high.

SHIFT × N_SHIFTS is not necessarily less than or equal to 32. For example, a SHIFT of 31 might be used to shift the register

left by one bit per cycle, since right-rotate is a modular operation, and -1 is equal to 31 under a modulus of 32.

When the shift register is about to become empty, it will immediately refill with fresh data from the command expander

or FIFO if data is available. When data is available, the shift register is never empty for any cycle. If data is not available,
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the shift register becomes empty and stops shifting until more data is provided. Once data is provided, the shift register

refills and begins shifting once again.

12.11.3. Bit Crossbar

The bit crossbar controls which bits of the output shift register appear on which GPIOs during the first and second half

of each HSTX clock cycle. There is a configuration register for each pin, BIT0 through BIT7:

• BITx.SEL_P selects which shift register bit (0 through 31) is output for the first half of each HSTX clock cycle

• BITx.SEL_N selects which shift register bit (0 through 31) is output for the second half of each clock cycle

• BITx.INV inverts the output (logical NOT)

• BITx.CLK indicates that this pin should be connected to the clock generator (Section 12.11.4) rather than the output

shift register

To disable DDR behaviour set SEL_N equal to SEL_P. To implement a differential output, configure two pins identically

except for the INV bit, which should be set for one pin and clear for the other.

12.11.3.1. Examples: One Pin

Together with the SHIFT and N_SHIFTS controls for the shift register, the pin configuration determines the data layout

passed through the HSTX. Since not all of us are accustomed to thinking in four dimensions, it’s worth going through

some examples with a single pin:

• N_SHIFTS = 32, SHIFT = 1, SEL_P = 0, SEL_N = 0:

◦ Shift out one bit per HSTX clock cycle, LSB-first.

◦ Each cycle, the shift register advances to the right by one, and the least-significant bit at that time is

presented to the pin for both halves of the cycle, since SEL_P and SEL_N both select the same bit.

• N_SHIFTS = 32, SHIFT = 31, SEL_P = 31, SEL_N = 31:

◦ Shift out one bit per HSTX clock cycle, MSB-first.

◦ Each cycle, the shift register advances to the left by one (or rather, wraps around the right-hand edge of the

register and ends up one bit left of where it started), and the most-significant bit at that time is presented to

the pin.

• N_SHIFTS = 16, SHIFT = 2, SEL_P = 0, SEL_N = 1:

◦ Shift out two bits per HSTX clock cycle, LSB-first.

◦ Each cycle, the shift register advances to the right by two. The least-significant bit is presented to the pin for

the first half of that cycle, and the neighbouring bit is presented for the second half.

• N_SHIFTS = 16, SHIFT = 30, SEL_P = 31, SEL_N = 30:

◦ Shift out two bits per HSTX clock cycle, MSB-first.

◦ Each cycle, the shift register advances to the left by two. The most-significant bit is presented to the pin for

the first half of that cycle, and the neighbouring bit is presented for the latter half.

• N_SHIFTS = 8, SHIFT = 4, SEL_P = 0, SEL_N = 0:

◦ Shift out the least-significant bit in each group of 4 bits, over the course of 8 clock cycles.

◦ Each cycle, the shift register advances by to the right by four. The least-significant bit of the shift register is

presented to the pin. The bit indices presented to the pin are therefore 0, 4, 8, 12, 16, 20, 24, and 28.

• N_SHIFTS = 32, SHIFT = 4, SEL_P = 0, SEL_N = 0:
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◦ Same as the previous, but repeats the 8-cycle pattern four times before refreshing the shift register.

◦ Rotating by 32 restores the original value that was popped into the shift register from the FIFO or command

expander.

12.11.3.2. Examples: Multiple Pins

The separation of shift register and bit crossbar allows both zipped and unzipped multi-bit records, once multiple pins

are involved. For example, compare these two configurations:

• N_SHIFTS = 8, SHIFT = 4, BIT0.SEL_P = 0, BIT0.SEL_N = 2, BIT1.SEL_P = 1, BIT1.SEL_N = 3:

◦ Each 32-bit word consists of 16 bit-pairs, and a new bit-pair is presented to BIT0 and BIT1 twice per cycle.

◦ The shift register advances by 4 every cycle, introducing two new bit-pairs to the rightmost four bits of the

shift register

• N_SHIFTS = 8, SHIFT = 2, BIT0.SEL_P = 0, BIT0.SEL_N = 1, BIT1.SEL_P = 16, BIT1.SEL_N = 17:

◦ Each 32-bit word consists of a pair of 16-bit values, each of which is shifted to one pin out of BIT0 and BIT1 at

a rate of two bits per cycle.

◦ The shift register advances by two every cycle, introducing a new bit-pair to bits 1:0 for the BIT0 pin, and also

introducing a new bit-pair to bits 17:16 for the BIT1 pin.

Depending on software needs, it may be preferable to pack together all of the bits output on the same cycle (zipped

records), or all of the bits that go through the same pin (unzipped records), so HSTX supports both.

As a final, concrete example, take TMDS (used in DVI): here each 32-bit word contains 3 × 10-bit TMDS symbols, each of

which is serialised to a differential pair over the course of 10 TMDS bit times. For performance, it’s preferable to make

each HSTX clock period equal to two TMDS bit periods, by leveraging the DDR capability. A possible configuration would

therefore be:

• CSR: N_SHIFTS = 5, SHIFT = 2

• BIT0: SEL_P = 0, SEL_N = 1, INV = 0

• BIT1: SEL_P = 0, SEL_N = 1, INV = 1

• BIT2: SEL_P = 10, SEL_N = 11, INV = 0

• BIT3: SEL_P = 10, SEL_N = 11, INV = 1

• BIT4: SEL_P = 20, SEL_N = 21, INV = 0

• BIT5: SEL_P = 20, SEL_N = 21, INV = 1

The missing piece for TMDS is the clock, which has a period of 10 TMDS bit periods, or 5 HSTX clock periods when

shifting two bits per cycle per pin. HSTX has a special-purpose clock generator so that pseudo-clock bits do not have to

be packed into the FIFO data stream. The clock generator is covered in the next section.

12.11.4. Clock Generator

The clock generator is a counter which provides a periodic signal over the course of n HSTX clock cycles, configured by

CSR.CLKDIV. The clock period is always an integer number of HSTX clock cycles, in the range 1 to 16 inclusive. The

clock generator supports both odd and even periods, using the DDR outputs to support mid-HSTX-cycle output

transitions. There is only a single clock generator — to emulate multiple clocks, pack pseudo-clock bits into FIFO data.

The clock generator increments on cycles where the output shift register is shifted. Generally, the clock period will be a

divisor of CSR.N_SHIFTS so that clock and data maintain a consistent alignment. In the TMDS example in the previous

section, a CLKDIV of 5 would be suitable, so that the clock repeats every time the shift register refreshes. This matches

the requirement for a TMDS clock period of 10 bit periods, since two bits are transferred every cycle.

The clock generator output is connected to any pin whose BITx.CLK bit is set (e.g. BIT0.CLK). To produce differential
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clock outputs, connect the clock to two pins, and invert one of them.

The CSR.CLKPHASE field defines the initial phase (count) of the clock generator, configured in units of one half HSTX

clock cycle. The clock generator resets whenever CSR.EN is low and holds at this initial phase. Once CSR.EN is set and

the output shift register begins to shift, the clock generator advances.

Clock generator output whilst CSR.EN is low is determined by the relation of clock period and initial clock phase: if the

initial clock phase is less than one half clock period, then the output is initially low. Otherwise, it is initially high. The

clock generator can be thought of as being low for the first half of each generation period, and high for the second half.

The maximum CSR.CLKPHASE is only 15 half HSTX clock cycles. The maximum CSR.CLKDIV is 16 full HSTX clock

cycles: initial phases of greater than or equal to 180 degrees with the maximum clock period require the inversion of the

clock using the bit crossbar inversion controls.

Only change CSR.CLKPHASE and CSR.CLKDIV when CSR.EN is low. It is safe to modify them in the same register write

that sets EN from low to high.

12.11.4.1. Example: Centre-aligned Clock

When transmitting source-synchronous data, the data sink (the receiver) must not see data transitions too late before or

too soon after the active edges of the clock. Violating these setup and hold constraints can lead to undefined operation

of the external data sink.

Since the HSTX output delays are all mutually balanced, you can meet these constraints by placing clock transitions

halfway between data transitions, known as centre-aligned clocking.

Since this positions the clock with a temporal resolution of one half of a bit time, the maximum data rate is one bit per

HSTX clock cycle per pin. Because the clock already uses DDR, you cannot use DDR to increase the data rate. Therefore

for all BIT0 through BIT7, BITx.SEL_N is equal to BITx.SEL_P.

For single-data-rate data, with an active rising edge, use the following clock generator settings:

• CSR.CLKDIV = 1 (1 HSTX clock period)

• CSR.CLKPHASE = 1 (1/2 HSTX clock period)

The clock is delayed by half an HSTX cycle, to offset it from the launch of the first data.

For single-data-rate data, with an active falling edge, use the following clock generator settings:

• CSR.CLKDIV = 1 (1 HSTX clock period)

• CSR.CLKPHASE = 2 (1 HSTX clock period)

Alternatively, you could use the same settings as an active-rising edge clock, with the clock output inverted via the bit

crossbar configuration.

For double-data-rate data, with active rising and active falling edges, use the following clock generator settings:

• CSR.CLKDIV = 2 (2 HSTX clock period)

• CSR.CLKPHASE = 1 (1/2 HSTX clock period)

In all three cases, the data rate is the same, at 1 bit per HSTX clock cycle, per pin.

12.11.5. Command Expander
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The command expander can be inserted inline between the data FIFO and the output shift register to manipulate the

stream of data words. In general, the output stream is larger than the input stream, hence the name expander. The

commander expander is enabled by setting CSR.EXPAND_EN. Only modify this field when CSR.EN is low. It is safe to

modify this field in the same register write that sets EN from low to high. When the command expander is disabled, data

passes directly from the data FIFO to the output shift register without being modified by the expander.

When the command expander is enabled, the data FIFO carries a mixture of data and commands for the expander. Each

command consists of a 4-bit opcode and a 12-bit length, packed in the 16 LSBs of a data FIFO word, with the opcode in

bits 15 through 12, and the length in bits 11 through 0. The available commands are:

• 0x0: RAW

• 0x1: RAW_REPEAT

• 0x2: TMDS

• 0x3: TMDS_REPEAT

• 0xf: NOP

When the HSTX is first enabled, if the command expander is enabled, it expects the first word in the data FIFO to be a

command. If this command is not a NOP, it will be followed by some amount of data, then another command. Operation

continues in this manner, with runs of data interspersed with commands. A command always acts as a prefix to the

data that follows it in the FIFO.

The count field determines the number of words output by this command to the output shift register downstream, from

1 to 4095. A count of 0 is reserved to mean "infinite". The number of words that this command reads from the data FIFO

in order to produce the specified quantity of downstream data depends on the command and the

EXPAND_SHIFT.ENC_N_SHIFTS and EXPAND_SHIFT.RAW_N_SHIFTS register fields.

The expansion shift register always pops from the FIFO once at the beginning of the command. After this point,

commands bearing the x_REPEAT suffix continue to circulate the same contents through the shift register, rotating right

by EXPAND_SHIFT.ENC_SHIFT or EXPAND_SHIFT.RAW_SHIFT each time the output shift register pulls new data from

the command expander. Use a shift of 0 to repeat identical data without shifting. This is useful, for example, for

transmitting runs of the same TMDS control symbol during horizontal blanking periods in DVI.

RP2350 only implements a TMDS encoder, reserving the remaining opcode space for additional encoders in the future.

RAW and RAW_REPEAT commands bypass the encoder. TMDS and TMDS_REPEAT commands are TMDS-encoded before being

passed to the output shift register. NOP commands have no data, therefore whether they bypass the encoder or not is a

philosophical question beyond the scope of this datasheet.

The EXPAND_SHIFT register has two copies for each of its fields. Fields prefixed with RAW_ are used for RAW and

RAW_REPEAT commands. All other commands use fields prefixed with ENC_, which pass through the encoder. For example,

in DVI, TMDS control symbols using RAW_REPEAT commands may be unshifted. Pixel data using TMDS commands may be

shifted out one pixel at a time, so it is useful to have banked shift controls.

The EXPAND_SHIFT.ENC_N_SHIFTS and EXPAND_SHIFT.RAW_N_SHIFTS fields control how often the expansion shift

register is refilled for encoded and raw commands respectively. x_REPEAT commands ignore these fields since they never

refill from the FIFO, and function similarly to the CSR.N_SHIFTS field which controls the output shift register.

The command expander can only pop from the data FIFO once per cycle, so heavy use of commands (particularly NOP
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commands) can impact HSTX throughput. For use cases that output from the HSTX on every cycle, configure the output

shift register with CSR.N_SHIFTS > 1. This is required because the command expander cannot output data on the cycle

where it pops a command from the FIFO, so the expansion shift register is empty for at least one cycle.

12.11.6. PIO-to-HSTX Coupled Mode

HSTX can connect up to 8 PIO pin outputs to the bit crossbar. Only use the bit crossbar when clk_hstx connects directly

to clk_sys ( CLK_HSTX_CTRL.AUXSRC must select clk_sys).

 NOTE

Running the two clocks at the same frequency is not sufficient. You must select clk_sys directly.

To enable coupled mode, set CSR.COUPLED_MODE. The COUPLED_SEL field in the same register selects the PIO instance,

0 through 2, to couple to HSTX. When coupled mode is enabled, IO outputs 12 through 19 inclusive on the selected PIO

instance appear at bit crossbar PSEL_N and PSEL_P indices 31:24, replacing the most significant 8 bits of the output shift

register from the point of view of the bit crossbar.

This mode allows PIO programs to make use of the HSTX’s DDR outputs. You can use this mode to drive a clock at the

full system clock rate or to position clock transitions relative to data transitions with half-system-clock-cycle resolution.

The PIO outputs used for couple mode are always bits 19 through 12 of the pin outputs driven from that GPIO,

independent of GPIOBASE. When GPIOBASE is 0, the PIO outputs used for coupled mode are those that would normally

appear on the HSTX pins. When GPIOBASE is 16, this uses the PIO outputs that would appear on GPIOs 28 through 35.

The operation of PIO is not affected in any way by coupled mode being enabled.

Outputs presented through the HSTX coupled mode interface have one additional system clock cycle of delay

compared to those presented directly from PIO to the pads.

12.11.7. List of Control Registers

The control registers start at a base address of 0x400c0000 (defined as HSTX_CTRL_BASE in the SDK). They are

accessed through an asynchronous bus crossing, so each bus access takes several cycles, the exact figure depending

on the ratio of clk_sys and clk_hstx.

Table 1250. List of

HSTX_CTRL registers
Offset Name Info

0x00 CSR

0x04 BIT0 Data control register for output bit 0

0x08 BIT1 Data control register for output bit 1

0x0c BIT2 Data control register for output bit 2

0x10 BIT3 Data control register for output bit 3

0x14 BIT4 Data control register for output bit 4

0x18 BIT5 Data control register for output bit 5

0x1c BIT6 Data control register for output bit 6

0x20 BIT7 Data control register for output bit 7

0x24 EXPAND_SHIFT Configure the optional shifter inside the command expander

0x28 EXPAND_TMDS Configure the optional TMDS encoder inside the command

expander
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HSTX_CTRL: CSR Register

Offset: 0x00

Table 1251. CSR

Register
Bits Description Type Reset

31:28 CLKDIV: Clock period of the generated clock, measured in HSTX clock cycles.

Can be odd or even. The generated clock advances only on cycles where the

shift register shifts.

For example, a clkdiv of 5 would generate a complete output clock period for

every 5 HSTX clocks (or every 10 half-clocks).

A CLKDIV value of 0 is mapped to a period of 16 HSTX clock cycles.

RW 0x1

27:24 CLKPHASE: Set the initial phase of the generated clock.

A CLKPHASE of 0 means the clock is initially low, and the first rising edge

occurs after one half period of the generated clock (i.e. CLKDIV/2 cycles of

clk_hstx). Incrementing CLKPHASE by 1 will advance the initial clock phase by

one half clk_hstx period. For example, if CLKDIV=2 and CLKPHASE=1:

* The clock will be initially low

* The first rising edge will be 0.5 clk_hstx cycles after asserting first data

* The first falling edge will be 1.5 clk_hstx cycles after asserting first data

This configuration would be suitable for serialising at a bit rate of clk_hstx

with a centre-aligned DDR clock.

When the HSTX is halted by clearing CSR_EN, the clock generator will return to

its initial phase as configured by the CLKPHASE field.

Note CLKPHASE must be strictly less than double the value of CLKDIV (one

full period), else its operation is undefined.

RW 0x0

23:21 Reserved. - -

20:16 N_SHIFTS: Number of times to shift the shift register before refilling it from

the FIFO. (A count of how many times it has been shifted, not the total shift

distance.)

A register value of 0 means shift 32 times.

RW 0x05

15:13 Reserved. - -

12:8 SHIFT: How many bits to right-rotate the shift register by each cycle.

The use of a rotate rather than a shift allows left shifts to be emulated, by

subtracting the left-shift amount from 32. It also allows data to be repeated,

when the product of SHIFT and N_SHIFTS is greater than 32.

RW 0x06

7 Reserved. - -

6:5 COUPLED_SEL: Select which PIO to use for coupled mode operation. RW 0x0

RP2350 Datasheet

12.11. HSTX 1195



Bits Description Type Reset

4 COUPLED_MODE: Enable the PIO-to-HSTX 1:1 connection. The HSTX must be

clocked directly from the system clock (not just from some other clock source

of the same frequency) for this synchronous interface to function correctly.

When COUPLED_MODE is set, BITx_SEL_P and SEL_N indices 24 through 31

will select bits from the 8-bit PIO-to-HSTX path, rather than shifter bits. Indices

of 0 through 23 will still index the shift register as normal.

The PIO outputs connected to the PIO-to-HSTX bus are those same outputs

that would appear on the HSTX-capable pins if those pins' FUNCSELs were set

to PIO instead of HSTX.

For example, if HSTX is on GPIOs 12 through 19, then PIO outputs 12 through

19 are connected to the HSTX when coupled mode is engaged.

RW 0x0

3:2 Reserved. - -

1 EXPAND_EN: Enable the command expander. When 0, raw FIFO data is

passed directly to the output shift register. When 1, the command expander

can perform simple operations such as run length decoding on data between

the FIFO and the shift register.

Do not change CXPD_EN whilst EN is set. It’s safe to set CXPD_EN

simultaneously with setting EN.

RW 0x0

0 EN: When EN is 1, the HSTX will shift out data as it appears in the FIFO. As

long as there is data, the HSTX shift register will shift once per clock cycle,

and the frequency of popping from the FIFO is determined by the ratio of

SHIFT and SHIFT_THRESH.

When EN is 0, the FIFO is not popped. The shift counter and clock generator

are also reset to their initial state for as long as EN is low. Note the initial

phase of the clock generator can be configured by the CLKPHASE field.

Once the HSTX is enabled again, and data is pushed to the FIFO, the generated

clock’s first rising edge will be one half-period after the first data is launched.

RW 0x0

HSTX_CTRL: BIT0, BIT1, …, BIT6, BIT7 Registers

Offsets: 0x04, 0x08, …, 0x1c, 0x20

Description

Data control register for output bit n

Table 1252. BIT0,

BIT1, …, BIT6, BIT7

Registers

Bits Description Type Reset

31:18 Reserved. - -

17 CLK: Connect this output to the generated clock, rather than the data shift

register. SEL_P and SEL_N are ignored if this bit is set, but INV can still be set

to generate an antiphase clock.

RW 0x0

16 INV: Invert this data output (logical NOT) RW 0x0

15:13 Reserved. - -

12:8 SEL_N: Shift register data bit select for the second half of the HSTX clock

cycle

RW 0x00
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Bits Description Type Reset

7:5 Reserved. - -

4:0 SEL_P: Shift register data bit select for the first half of the HSTX clock cycle RW 0x00

HSTX_CTRL: EXPAND_SHIFT Register

Offset: 0x24

Description

Configure the optional shifter inside the command expander

Table 1253.

EXPAND_SHIFT

Register

Bits Description Type Reset

31:29 Reserved. - -

28:24 ENC_N_SHIFTS: Number of times to consume from the shift register before

refilling it from the FIFO, when the current command is an encoded data

command (e.g. TMDS). A register value of 0 means shift 32 times.

RW 0x01

23:21 Reserved. - -

20:16 ENC_SHIFT: How many bits to right-rotate the shift register by each time data

is pushed to the output shifter, when the current command is an encoded data

command (e.g. TMDS).

RW 0x00

15:13 Reserved. - -

12:8 RAW_N_SHIFTS: Number of times to consume from the shift register before

refilling it from the FIFO, when the current command is a raw data command.

A register value of 0 means shift 32 times.

RW 0x01

7:5 Reserved. - -

4:0 RAW_SHIFT: How many bits to right-rotate the shift register by each time data

is pushed to the output shifter, when the current command is a raw data

command.

RW 0x00

HSTX_CTRL: EXPAND_TMDS Register

Offset: 0x28

Description

Configure the optional TMDS encoder inside the command expander

Table 1254.

EXPAND_TMDS

Register

Bits Description Type Reset

31:24 Reserved. - -

23:21 L2_NBITS: Number of valid data bits for the lane 2 TMDS encoder, starting

from bit 7 of the rotated data. Field values of 0 → 7 encode counts of 1 → 8

bits.

RW 0x0

20:16 L2_ROT: Right-rotate applied to the current shifter data before the lane 2

TMDS encoder.

RW 0x00

15:13 L1_NBITS: Number of valid data bits for the lane 1 TMDS encoder, starting

from bit 7 of the rotated data. Field values of 0 → 7 encode counts of 1 → 8

bits.

RW 0x0

12:8 L1_ROT: Right-rotate applied to the current shifter data before the lane 1

TMDS encoder.

RW 0x00
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Bits Description Type Reset

7:5 L0_NBITS: Number of valid data bits for the lane 0 TMDS encoder, starting

from bit 7 of the rotated data. Field values of 0 → 7 encode counts of 1 → 8

bits.

RW 0x0

4:0 L0_ROT: Right-rotate applied to the current shifter data before the lane 0

TMDS encoder.

RW 0x00

12.11.8. List of FIFO Registers

The FIFO registers start at a base address of 0x50600000 (defined as HSTX_FIFO_BASE in the SDK).

Table 1255. List of

HSTX_FIFO registers
Offset Name Info

0x0 STAT FIFO status

0x4 FIFO Write access to FIFO

HSTX_FIFO: STAT Register

Offset: 0x0

Description

FIFO status

Table 1256. STAT

Register
Bits Description Type Reset

31:11 Reserved. - -

10 WOF: FIFO was written when full. Write 1 to clear. WC 0x0

9 EMPTY RO -

8 FULL RO -

7:0 LEVEL RO 0x00

HSTX_FIFO: FIFO Register

Offset: 0x4

Table 1257. FIFO

Register
Bits Description Type Reset

31:0 Write access to FIFO WF 0x00000000

12.12. TRNG

12.12.1. Overview

RP2350 contains an Arm IP-based True Random Number Generator block. It supports the following features:

• Compliance with FIPS Publication 140-2, BSI AIS-31, and NIST SP 800-90B

• Produces approximately 7.5 kb/s of entropy when the core runs at 150 MHz

On request, the TRNG block generates a block of 192 entropy bits generated by automatically processing a series of

periodic samples from the TRNG block’s internal Ring Oscillator (ROSC).

RP2350 Datasheet

12.12. TRNG 1198



The TRNG block’s ROSC is a free-running oscillator with no direct connection to the system clocks on RP2350. As a

result, the ROSC generally runs asynchronously to the system clocks.

After a sufficient number of samples have been collected, the TRNG block completes the generation process and

presents the random number in the EHR_DATA[x] result registers.

For more information, see ARM IP - True Random Number Generator

12.12.2. Configuration

The TRNG block contains three different built-in entropy checking mechanisms: At reset, these are all enabled by default

and hence do not require explicit enabling.

You can configure the TRNG block in the following ways:

• Configure the frequency of the ROSC by selecting of one of four ROSC chain lengths, see TRNG_CONFIG.

• Configure the ROSC sampling period in terms of system clock ticks, see SAMPLE_CNT1.

Because the system clock generally runs much faster than the ROSC, the sampling period is expected to be at least a

few tens of system clock ticks.

Because the characteristics of the TRNG ROSC and system clock frequency will differ for each implementation of the

TRNG IP block, Arm details a TRNG characterisation procedure to determine the most appropriate ROSC chain length

and sampling frequency settings on each SoC design. For details about that characterisation procedure, see ARM

TrustZone True Number Generator.

Software drivers for the RP2350 TRNG block do not utilise the standard approach (see Section 12.12.4). As a result,

software does not configure the ROSC length and sample count settings provided by the Arm characterisation

procedure.

When configuring the TRNG block, consider the following principles:

• As average generation time increases, result quality increases and failed entropy checks decrease.

• A low sample count decreases average generation time, but increases the chance of NIST test-failing results and

failed entropy checks.

For acceptable results with an average generation time of about 2 milliseconds, use ROSC chain length settings of 0 or

1 and sample count settings of 20-25.

Larger sample count settings (e.g. 100) provide proportionately slower average generation times. These settings

significantly reduce, but do not eliminate NIST test failures and entropy check failures. Results occasionally take an

especially long time to generate.

12.12.3. Operation

To initiate TRNG generation, set the RND_SRC_EN bit in RND_SOURCE_ENABLE. The TRNG will run until:

• It has successfully completed the generation of a random number.

• One, or more, of the internal entropy checking mechanisms indicates a failed run.

In either case, you can read the resultant status from RNG_ISR.

To generate TRNG block interrupts, set bits in RNG_IMR. Use RNG_ICR to clear active interrupt status bits.

The EHR_DATA[x] registers read 0 until successful generation has occurred, so the CPU cannot read random number

results during generation,

After successful generation, read the last result register, EHR_DATA[5] to clear all of the result registers. If the result fails

an entropy check, no results are presented and the EHR_DATA[x] registers all read as 0.

After TRNG generation and when not in use, the RND_SRC_EN bit should be cleared.
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12.12.4. Caveats

The generation of random numbers by the TRNG block is not a deterministic process.

Although the modal and mean average times required to generate random numbers are quite similar, the generation

process can occasionally take much longer to complete: in excess of 100 times the average. Any run resulting in a failed

entropy check discards the result, requiring another generation process.

You can accommodate these unpredictable generation times in your system design. For example, you might generate a

small pool of random numbers, initiating subsequent generation whenever space becomes available in the pool.

In the interests of simplicity and timing predictability, alternative approaches were adopted for the RP2350 bootrom and

the SDK TRNG block drivers. The methodologies used can be found via the links below. However, nothing in the TRNG

block in RP2350 precludes using the block as specified in Arm documentation.

12.12.4.1. Bootrom

The bootrom streams raw TRNG ROSC samples (the TRNG random source) directly into the hardware SHA-256

accelerator. It bypasses all internal checking and conditioning in the TRNG. SHA-256 is a robust hash function which

avoids the pitfalls of some of the conditioning logic in the TRNG, most notably the von Neumann decorrelator.

The bootrom has some hard constraints which guide its implementation choices, most notably: the bootrom must boot.

It cannot afford to poll the TRNG for an indeterminate amount of time to wait for a random number to appear. Complex

error handling is also undesirable.

A link to the bootrom source can be found in Chapter 5. Consult the source code for the exact implementation of the

per-boot random number generation, in varm_boot_path.c.

The A2 bootrom TRNG code is written in assembly due to various implementation constraints, and may not be that

illuminating. The following is excerpted from the A1 bootrom source, lightly edited for readability:

// Boot RNG is derived by streaming a large number of TRNG ROSC samples
// into the SHA-256. BOOT_TRNG_SAMPLE_BLOCKS is the number of SHA-256
// blocks to hash, each containing 384 samples from the TRNG ROSC:
const int BOOT_TRNG_SAMPLE_BLOCKS = 25;

// Fixed delay is required after TRNG soft reset
trng_hw->trng_sw_reset = -1u;
(void)trng_hw->trng_sw_reset;
(void)trng_hw->trng_sw_reset;
// Initialise SHA internal state by writing START bit
sha256_hw->csr = SHA256_CSR_RESET | SHA256_CSR_START_BITS;

// Sample one ROSC bit into EHR every cycle, subject to CPU keeping up. More
// temporal resolution to measure ROSC phase noise is better, if we use a
// high quality hash function instead of naive VN decorrelation. (Also more
// metastability events, which are a secondary noise source)
trng_hw->sample_cnt1 = 0;
// Disable checks and bypass decorrelators, to stream raw TRNG ROSC samples:
trng_hw->trng_debug_control = -1u;
// Start ROSC if it is not already started
trng_hw->rnd_source_enable = -1u;
// Clear all interrupts (including EHR_VLD) -- we will check this
// later, after seeding RCP.
trng_hw->rng_icr = -1u;

// Each half-block (192 samples) takes approx 235 cycles, so 470 cycles/block:
for (int half_blocks = 0; half_blocks < 2 * BOOT_TRNG_SAMPLE_BLOCKS; ++half_blocks) {

    // Wait for 192 ROSC samples to fill EHR, this should take constant time:
    while (trng_hw->trng_busy)
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        ;

    // Copy 6 EHR words to SHA-256, plus garbage (RND_SOURCE_ENABLE and
    // SAMPLE_CNT1) which pads us out to half of a SHA-256 block. This means
    // we can avoid checking SHA-256 ready whilst reading EHR, so we restart
    // sampling sooner. (SHA-256 becomes non-ready for 57 cycles after each
    // 16 words written.)
    io_ro_32 *src = &trng_hw->ehr_data[0];
    io_wo_32 *dst = &sha256_hw->wdata;
    for (int i = 0; i < 8; ++i) {
        *dst = src[i];
    }

    // TRNG is now sampling again, having started after we read the last EHR
    // word. Grab some in-progress SHA bits and use them to modulate the
    // chain length, to reduce chance of injection locking:
    trng_hw->trng_config = sha256_hw->sum[0];
}

// Wait for SHA result -- if skipped we get the previous block's digest. Note
// this never becomes true if we wrote a number of words % 16 != 0.
while (!(sha256_hw->csr & SHA256_CSR_SUM_VLD_BITS))
    ;

// The per-boot random will change on every core 0 reset (except debugger
// skipping ROM). If this is a problem then the user can sample the
// per-boot random into a preserved variable in main SRAM.
for (int i = 0; i < 4; ++i) {
    bootram->always.boot_random.e[i] = sha256_hw->sum[4 + i];
}

trng_hw->trng_config = 0;
// Stop ROSC as it's a waste of power
trng_hw->rnd_source_enable = 0;

The bootrom resets the SHA-256 and TRNG via RESETS immediately before the above code runs. This code typically

runs with clk_sys running from the system ROSC, at its initial boot frequency of approximately 12 MHz. The 256-bit

result is available in the SUM0 through SUM7 registers after the code completes.

This code does not represent best programming practice: for example it writes ones into reserved bits in the

TRNG_DEBUG_CONTROL register. It was written with close reference to the hardware implementation. The above code

listing serves only to document the method the bootrom uses to generate random numbers at boot time, for the once-

per-boot random number available via the get_sys_info() ROM API as well as for initialising the RCP salt registers

(Section 3.6.3.1).

12.12.4.2. SDK

The pico_rand library uses the TRNG as one of its entropy sources. It streams raw ROSC samples from the TRNG ROSC

in a similar manner to the bootrom. It uses the xoroshiro128** and splitmix64() PRNG functions to condition the output.

12.12.5. List of Registers

The TRNG control registers start at a base address of 0x400f0000 (defined as TRNG_BASE in the SDK).

Table 1258. List of

TRNG registers
Offset Name Info

0x100 RNG_IMR Interrupt masking.
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Offset Name Info

0x104 RNG_ISR RNG status register. If corresponding RNG_IMR bit is unmasked,

an interrupt will be generated.

0x108 RNG_ICR Interrupt/status bit clear Register.

0x10c TRNG_CONFIG Selecting the inverter-chain length.

0x110 TRNG_VALID 192 bit collection indication.

0x114 EHR_DATA0 RNG collected bits.

0x118 EHR_DATA1 RNG collected bits.

0x11c EHR_DATA2 RNG collected bits.

0x120 EHR_DATA3 RNG collected bits.

0x124 EHR_DATA4 RNG collected bits.

0x128 EHR_DATA5 RNG collected bits.

0x12c RND_SOURCE_ENABLE Enable signal for the random source.

0x130 SAMPLE_CNT1 Counts clocks between sampling of random bit.

0x134 AUTOCORR_STATISTIC Statistics about autocorrelation test activations.

0x138 TRNG_DEBUG_CONTROL Debug register.

0x140 TRNG_SW_RESET Generate internal SW reset within the RNG block.

0x1b4 RNG_DEBUG_EN_INPUT Enable the RNG debug mode

0x1b8 TRNG_BUSY RNG Busy indication.

0x1bc RST_BITS_COUNTER Reset the counter of collected bits in the RNG.

0x1c0 RNG_VERSION Displays the version settings of the TRNG.

0x1e0 RNG_BIST_CNTR_0 Collected BIST results.

0x1e4 RNG_BIST_CNTR_1 Collected BIST results.

0x1e8 RNG_BIST_CNTR_2 Collected BIST results.

TRNG: RNG_IMR Register

Offset: 0x100

Description

Interrupt masking.

Table 1259. RNG_IMR

Register
Bits Description Type Reset

31:4 Reserved. - -

3 VN_ERR_INT_MASK: Set to 1 to mask (disable) this interrupt: no interrupt will

be generated. See RNG_ISR for an explanation on this interrupt.

RW 0x1

2 CRNGT_ERR_INT_MASK: Set to 1 to mask (disable) this interrupt: no interrupt

will be generated. See RNG_ISR for an explanation on this interrupt.

RW 0x1

1 AUTOCORR_ERR_INT_MASK: Set to 1 to mask (disable) this interrupt: no

interrupt will be generated. See RNG_ISR for an explanation on this interrupt.

RW 0x1

0 EHR_VALID_INT_MASK: Set to 1 to mask (disable) this interrupt: no interrupt

will be generated. See RNG_ISR for an explanation on this interrupt.

RW 0x1

RP2350 Datasheet

12.12. TRNG 1202



TRNG: RNG_ISR Register

Offset: 0x104

Description

RNG status register. If corresponding RNG_IMR bit is unmasked, an interrupt will be generated.

Table 1260. RNG_ISR

Register
Bits Description Type Reset

31:4 Reserved. - -

3 VN_ERR: 1 indicates von Neumann error. Error in von Neumann occurs if 32

consecutive collected bits are identical, ZERO or ONE.

RO 0x0

2 CRNGT_ERR: 1 indicates CRNGT in the RNG test failed. Failure occurs when

two consecutive blocks of 16 collected bits are equal.

RO 0x0

1 AUTOCORR_ERR: 1 indicates Autocorrelation test failed four times in a row.

When set, RNG ceases functioning until next reset.

RO 0x0

0 EHR_VALID: 1 indicates that 192 bits have been collected in the RNG, and are

ready to be read.

RO 0x0

TRNG: RNG_ICR Register

Offset: 0x108

Description

Interrupt/status bit clear Register.

Table 1261. RNG_ICR

Register
Bits Description Type Reset

31:4 Reserved. - -

3 VN_ERR: Write 1 to clear corresponding bit in RNG_ISR. RW 0x0

2 CRNGT_ERR: Write 1 to clear corresponding bit in RNG_ISR. RW 0x0

1 AUTOCORR_ERR: Cannot be cleared by SW! Only RNG reset clears this bit. RW 0x0

0 EHR_VALID: Write 1 - clear corresponding bit in RNG_ISR. RW 0x0

TRNG: TRNG_CONFIG Register

Offset: 0x10c

Description

Selecting the inverter-chain length.

Table 1262.

TRNG_CONFIG

Register

Bits Description Type Reset

31:2 Reserved. - -

1:0 RND_SRC_SEL: Selects the number of inverters (out of four possible

selections) in the ring oscillator (the entropy source). Higher values select

longer inverter chain lengths.

RW 0x0

TRNG: TRNG_VALID Register

Offset: 0x110

Description

192 bit collection indication.
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Table 1263.

TRNG_VALID Register
Bits Description Type Reset

31:1 Reserved. - -

0 EHR_VALID: 1 indicates that collection of bits in the RNG is completed, and

data can be read from EHR_DATA register.

RO 0x0

TRNG: EHR_DATA0, EHR_DATA1, …, EHR_DATA4, EHR_DATA5 Registers

Offsets: 0x114, 0x118, …, 0x124, 0x128

Description

RNG collected bits.

Table 1264.

EHR_DATA0,

EHR_DATA1, …,

EHR_DATA4,

EHR_DATA5 Registers

Bits Description Type Reset

31:0 Bits [(32*(i+1))-1:(32*i)] of Entropy Holding Register. RO 0x00000000

TRNG: RND_SOURCE_ENABLE Register

Offset: 0x12c

Description

Enable signal for the random source.

Table 1265.

RND_SOURCE_ENABLE

Register

Bits Description Type Reset

31:1 Reserved. - -

0 RND_SRC_EN: * 1 - entropy source is enabled.

* 0 - entropy source is disabled

RW 0x0

TRNG: SAMPLE_CNT1 Register

Offset: 0x130

Description

Counts clocks between sampling of random bit.

Table 1266.

SAMPLE_CNT1

Register

Bits Description Type Reset

31:0 SAMPLE_CNTR1: Sets the number of rng_clk cycles between two consecutive

ring oscillator samples.

Note: If the von Neumann decorrelator is bypassed, the minimum value for

sample counter must not be less than seventeen

RW 0x0000ffff

TRNG: AUTOCORR_STATISTIC Register

Offset: 0x134

Description

Statistics about autocorrelation test activations.

Table 1267.

AUTOCORR_STATISTI

C Register

Bits Description Type Reset

31:22 Reserved. - -

21:14 AUTOCORR_FAILS: Count each time an autocorrelation test fails. Any write to

the register reset the counter. Stop collecting statistic if one of the counters

reached the limit.

RW 0x00
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Bits Description Type Reset

13:0 AUTOCORR_TRYS: Count each time an autocorrelation test starts. Any write

to the register reset the counter. Stop collecting statistic if one of the counters

reached the limit.

RW 0x0000

TRNG: TRNG_DEBUG_CONTROL Register

Offset: 0x138

Description

Debug register.

Table 1268.

TRNG_DEBUG_CONTR

OL Register

Bits Description Type Reset

31:4 Reserved. - -

3 AUTO_CORRELATE_BYPASS: When set, the autocorrelation test in the TRNG

module is bypassed.

RW 0x0

2 TRNG_CRNGT_BYPASS: When set, the CRNGT test in the RNG is bypassed. RW 0x0

1 VNC_BYPASS: When set, the Von-Neuman balancer is bypassed (including the

32 consecutive bits test).

N/A

RW 0x0

0 Reserved. - -

TRNG: TRNG_SW_RESET Register

Offset: 0x140

Description

Generate internal SW reset within the RNG block.

Table 1269.

TRNG_SW_RESET

Register

Bits Description Type Reset

31:1 Reserved. - -

0 TRNG_SW_RESET: Writing 1 to this register causes an internal RNG reset. RW 0x0

TRNG: RNG_DEBUG_EN_INPUT Register

Offset: 0x1b4

Description

Enable the RNG debug mode

Table 1270.

RNG_DEBUG_EN_INPU

T Register

Bits Description Type Reset

31:1 Reserved. - -

0 RNG_DEBUG_EN: * 1 - debug mode is enabled.

* 0 - debug mode is disabled

RW 0x0

TRNG: TRNG_BUSY Register

Offset: 0x1b8

Description

RNG Busy indication.
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Table 1271.

TRNG_BUSY Register
Bits Description Type Reset

31:1 Reserved. - -

0 TRNG_BUSY: Reflects rng_busy status. RO 0x0

TRNG: RST_BITS_COUNTER Register

Offset: 0x1bc

Description

Reset the counter of collected bits in the RNG.

Table 1272.

RST_BITS_COUNTER

Register

Bits Description Type Reset

31:1 Reserved. - -

0 RST_BITS_COUNTER: Writing any value to this address will reset the bits

counter and RNG valid registers. RND_SORCE_ENABLE register must be unset

in order for the reset to take place.

RW 0x0

TRNG: RNG_VERSION Register

Offset: 0x1c0

Description

Displays the version settings of the TRNG.

Table 1273.

RNG_VERSION

Register

Bits Description Type Reset

31:8 Reserved. - -

7 RNG_USE_5_SBOXES: * 1 - 5 SBOX AES.

* 0 - 20 SBOX AES

RO 0x0

6 RESEEDING_EXISTS: * 1 - Exists.

* 0 - Does not exist

RO 0x0

5 KAT_EXISTS: * 1 - Exists.

* 0 - Does not exist

RO 0x0

4 PRNG_EXISTS: * 1 - Exists.

* 0 - Does not exist

RO 0x0

3 TRNG_TESTS_BYPASS_EN: * 1 - Exists.

* 0 - Does not exist

RO 0x0

2 AUTOCORR_EXISTS: * 1 - Exists.

* 0 - Does not exist

RO 0x0

1 CRNGT_EXISTS: * 1 - Exists.

* 0 - Does not exist

RO 0x0

0 EHR_WIDTH_192: * 1 - 192-bit EHR.

* 0 - 128-bit EHR

RO 0x0
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TRNG: RNG_BIST_CNTR_0 Register

Offset: 0x1e0

Description

Collected BIST results.

Table 1274.

RNG_BIST_CNTR_0

Register

Bits Description Type Reset

31:22 Reserved. - -

21:0 ROSC_CNTR_VAL: Reflects the results of RNG BIST counter. RO 0x000000

TRNG: RNG_BIST_CNTR_1 Register

Offset: 0x1e4

Description

Collected BIST results.

Table 1275.

RNG_BIST_CNTR_1

Register

Bits Description Type Reset

31:22 Reserved. - -

21:0 ROSC_CNTR_VAL: Reflects the results of RNG BIST counter. RO 0x000000

TRNG: RNG_BIST_CNTR_2 Register

Offset: 0x1e8

Description

Collected BIST results.

Table 1276.

RNG_BIST_CNTR_2

Register

Bits Description Type Reset

31:22 Reserved. - -

21:0 ROSC_CNTR_VAL: Reflects the results of RNG BIST counter. RO 0x000000

12.13. SHA-256 Accelerator

RP2350 is equipped with an implementation of the SHA-256 hash algorithm, as defined in the FIPS 180-4 standard

available from NIST publications. A hash algorithm digests an arbitrary-length stream of data, known as the message,

and produces a fixed-size result, known as a hash. In the case of SHA-256, the result is always 256 bits in size. Hash

algorithms are designed such that:

• Given the hash, it is impossible (or implausibly computationally hard) to recover the original message.

• Small changes to the original message result, on average, in large changes to the hash.

• Given a message with a particular hash, it is impossible (or implausibly computationally hard) to generate a

different message with the same hash.

These properties make hash algorithms useful for checking the integrity of data, in the face of both accidental bit flips

and deliberate tampering.

To compute a SHA-256 with the RP2350 SHA-256 accelerator:

1. Initialise the algorithm state by writing a 1 to CSR.START.

2. Write the message to the WDATA register, polling CSR.WDATA_RDY in between writes.
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3. Write additional trailer and padding data to WDATA, as described in Section 12.13.1 below.

4. Poll CSR.SUM_VLD to wait for the last block to be digested.

5. Read the 256-bit result from the 8 read-only result registers starting at SUM0.

12.13.1. Message Padding

Pad message content according to the standard SHA-256 method as described in the FIPS 180-4 Secure Hash

Standard: append the message with single bit 1, then a number of 0 bits, then a 64-bit count of the number of message

bits. So for a message M with length L bits the padded message should be:

1. message M

2. 1

3. k zero bits, where k is the smallest non-negative solution to the equation: L + 1 + k = 448 mod 512

4. a 64-bit block indicating L (the length of the message) in binary

For example, the 8 bit ASCII message abc has a length of 24 bits. This is padded with 1, then 448-(24+1) = 423 0 bits, and

then the message length as a 64-bit value as follows:

01100001 01100010 01100011 1 00000000 000...0 00000000 000...0 00011000
|---------message--------| 1 |--423 0 bits--| |------64 bit len-------|

12.13.2. Throughput

SHA-256 processes data one 512-bit block at a time. This requires 16 32-bit writes, 32 16-bit writes, or 64 8-bit writes to

the WDATA register. An APB register write costs 4 cycles, so it takes at least 64 system clock cycles to write a data

block.

Once a full block is transferred, the SHA core takes a further 57 cycles to complete the block digest. CSR.WDATA_RDY

goes low, and you must not write to WDATA during this time.

The maximum throughput is therefore one block per 121 system clock cycles, or 0.53 bytes per cycle. At a 150 MHz

system clock this is 79.3 MB/s. This throughput is achieved when you use 32-bit transfers from the DMA. Using

narrower transfers result in lower throughput, as does polling the CSR.WDATA_RDY flag when transferring data from the

processor.

12.13.3. Data Size and Endianness

Data is sent in message blocks of 512 bits, padded as described in Section 12.13.1. The SHA-256 accelerator updates

its 256-bit output state for each input block. The SHA-256 algorithm is defined in terms of big-endian message words,

but this accelerator provides a byte swap function via CSR.BSWAP to support little-endian data. BSWAP is set by default.

For more information, see the register descriptions.

WDATA supports 8-bit, 16-bit and 32-bit writes. The bus interface accumulates 8 and 16-bit writes in a 32-bit shift

register before passing them into the SHA-256 algorithm core. This means you must take care when mixing writes of

different sizes, because taking the shift register level from less than to greater than 32 bits in a single write will silently

drop data. You can avoid this issue by not mixing WDATA write sizes within a single SHA-256 message block (64 bytes).

12.13.4. DMA DREQ Interface

The block can request the DMA controller to send entire blocks of data at once. Configure transfer size using
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CSR.DMA_SIZE so that the DMA controller requests the correct number of transfers.

The DREQ always requests one full SHA block of data at a time. Do not start a DMA on a non-block boundary.

12.13.5. List of Registers

The SHA-256 registers start at a base address of 0x400f8000 (defined as SHA256_BASE in SDK).

Table 1277. List of

SHA256 registers
Offset Name Info

0x00 CSR Control and status register

0x04 WDATA Write data register

0x08 SUM0 256-bit checksum result. Contents are undefined when

CSR_SUM_VLD is 0.

0x0c SUM1 256-bit checksum result. Contents are undefined when

CSR_SUM_VLD is 0.

0x10 SUM2 256-bit checksum result. Contents are undefined when

CSR_SUM_VLD is 0.

0x14 SUM3 256-bit checksum result. Contents are undefined when

CSR_SUM_VLD is 0.

0x18 SUM4 256-bit checksum result. Contents are undefined when

CSR_SUM_VLD is 0.

0x1c SUM5 256-bit checksum result. Contents are undefined when

CSR_SUM_VLD is 0.

0x20 SUM6 256-bit checksum result. Contents are undefined when

CSR_SUM_VLD is 0.

0x24 SUM7 256-bit checksum result. Contents are undefined when

CSR_SUM_VLD is 0.

SHA256: CSR Register

Offset: 0x00

Description

Control and status register

Table 1278. CSR

Register
Bits Description Type Reset

31:13 Reserved. - -
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Bits Description Type Reset

12 BSWAP: Enable byte swapping of 32-bit values at the point they are

committed to the SHA message scheduler.

This block’s bus interface assembles byte/halfword data into message words

in little-endian order, so that DMAing the same buffer with different transfer

sizes always gives the same result on a little-endian system like RP2350.

However, when marshalling bytes into blocks, SHA expects that the first byte

is the most significant in each message word. To resolve this, once the bus

interface has accumulated 32 bits of data (either a word write, two halfword

writes in little-endian order, or four byte writes in little-endian order) the final

value can be byte-swapped before passing to the actual SHA core.

This feature is enabled by default because using the SHA core to checksum

byte buffers is expected to be more common than having preformatted SHA

message words lying around.

RW 0x1

11:10 Reserved. - -

9:8 DMA_SIZE: Configure DREQ logic for the correct DMA data size. Must be

configured before the DMA channel is triggered.

The SHA-256 core’s DREQ logic requests one entire block of data at once,

since there is no FIFO, and data goes straight into the core’s message

schedule and digest hardware. Therefore, when transferring data with DMA,

CSR_DMA_SIZE must be configured in advance so that the correct number of

transfers can be requested per block.

RW 0x2

Enumerated values:

0x0 → 8bit

0x1 → 16bit

0x2 → 32bit

7:5 Reserved. - -

4 ERR_WDATA_NOT_RDY: Set when a write occurs whilst the SHA-256 core is

not ready for data (WDATA_RDY is low). Write one to clear.

WC 0x0

3 Reserved. - -

2 SUM_VLD: If 1, the SHA-256 checksum presented in registers SUM0 through

SUM7 is currently valid.

Goes low when WDATA is first written, then returns high once 16 words have

been written and the digest of the current 512-bit block has subsequently

completed.

RO 0x1

1 WDATA_RDY: If 1, the SHA-256 core is ready to accept more data through the

WDATA register.

After writing 16 words, this flag will go low for 57 cycles whilst the core

completes its digest.

RO 0x1
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Bits Description Type Reset

0 START: Write 1 to prepare the SHA-256 core for a new checksum.

The SUMx registers are initialised to the proper values (fractional bits of

square roots of first 8 primes) and internal counters are cleared. This

immediately forces WDATA_RDY and SUM_VLD high.

START must be written before initiating a DMA transfer to the SHA-256 core,

because the core will always request 16 transfers at a time (1 512-bit block).

Additionally, the DMA channel should be configured for a multiple of 16 32-bit

transfers.

SC 0x0

SHA256: WDATA Register

Offset: 0x04

Description

Write data register

Table 1279. WDATA

Register
Bits Description Type Reset

31:0 After pulsing START and writing 16 words of data to this register, WDATA_RDY

will go low and the SHA-256 core will complete the digest of the current 512-

bit block.

Software is responsible for ensuring the data is correctly padded and

terminated to a whole number of 512-bit blocks.

After this, WDATA_RDY will return high, and more data can be written (if any).

This register supports word, halfword and byte writes, so that DMA from non-

word-aligned buffers can be supported. The total amount of data per block

remains the same (16 words, 32 halfwords or 64 bytes) and byte/halfword

transfers must not be mixed within a block.

WF 0x00000000

SHA256: SUM0 Register

Offset: 0x08

Table 1280. SUM0

Register
Bits Description Type Reset

31:0 256-bit checksum result. Contents are undefined when CSR_SUM_VLD is 0. RO 0x00000000

SHA256: SUM1 Register

Offset: 0x0c

Table 1281. SUM1

Register
Bits Description Type Reset

31:0 256-bit checksum result. Contents are undefined when CSR_SUM_VLD is 0. RO 0x00000000

SHA256: SUM2 Register

Offset: 0x10
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Table 1282. SUM2

Register
Bits Description Type Reset

31:0 256-bit checksum result. Contents are undefined when CSR_SUM_VLD is 0. RO 0x00000000

SHA256: SUM3 Register

Offset: 0x14

Table 1283. SUM3

Register
Bits Description Type Reset

31:0 256-bit checksum result. Contents are undefined when CSR_SUM_VLD is 0. RO 0x00000000

SHA256: SUM4 Register

Offset: 0x18

Table 1284. SUM4

Register
Bits Description Type Reset

31:0 256-bit checksum result. Contents are undefined when CSR_SUM_VLD is 0. RO 0x00000000

SHA256: SUM5 Register

Offset: 0x1c

Table 1285. SUM5

Register
Bits Description Type Reset

31:0 256-bit checksum result. Contents are undefined when CSR_SUM_VLD is 0. RO 0x00000000

SHA256: SUM6 Register

Offset: 0x20

Table 1286. SUM6

Register
Bits Description Type Reset

31:0 256-bit checksum result. Contents are undefined when CSR_SUM_VLD is 0. RO 0x00000000

SHA256: SUM7 Register

Offset: 0x24

Table 1287. SUM7

Register
Bits Description Type Reset

31:0 256-bit checksum result. Contents are undefined when CSR_SUM_VLD is 0. RO 0x00000000

12.14. QSPI Memory Interface (QMI)

12.14.1. Overview

The QSPI memory interface (QMI) provides read/write memory-mapped access to two external QSPI memory devices.

RP2350 has a single QMI instance, embedded in the XIP subsystem (Section 4.4), which replaces the SSI interface

present on RP2040. The QMI supports serial-SPI, dual-SPI, and quad-SPI transfers, with two chip selects and shared

clock/data signals.
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Figure 128. QMI block

diagram: AHB

accesses are address-

translated, broken

down into the

necessary QSPI

transfer phases such

as command, address

and data, and

interfaced to the

external QSPI signals

via the

serialiser/deserialiser.

There is a chip select

per device, and shared

clock/data signals.

Separately, the direct

mode interface can be

used to issue raw SPI

commands through a

pair of FIFOs, which

can be used to

program and configure

the external QSPI

devices.

Each chip select corresponds to a 16 MB AHB address window, so a maximum of 32 MB of external memory is

supported. Chip select 0, which has a dedicated external pin, is mapped to addresses starting from 0x10000000, and chip

select 1, which is available as an alternate GPIO function, starts from 0x11000000. This mapping is mirrored in the

uncached and uncached + untranslated XIP address windows described in Section 4.4.

All timing and SPI command format parameters are configured per chip select, with the correct configuration used

automatically based on address decode. For example, M0_TIMING configures timing parameters for accesses to chip

select 0, and M1_TIMING is an identical register for chip select 1.

The serial clock (SCK) is any integer division of the system clock in the range 1 to 256. The divisors can be adjusted at

any time. Input sample timing can be adjusted in half-system-clock-cycle increments, to compensate for clock-to-data

delay at high SCK frequencies. Double transfer rate mode (DTR) is implemented by halving the SCK frequency whilst

maintaining the data transfer rate, which is capped at 4 bits per system clock cycle.

The number of SCK cycles issued for each access depends on the access size, which varies between one byte and one

cache line. For example, an uncached one-byte read by a processor will fetch exactly one byte of data over the QSPI bus,

to avoid wasting time fetching unwanted data. Cache misses are always issued as 64-bit QSPI transfers.

Optionally, the QMI can automatically chain sequentially addressed AHB accesses into a single, long QSPI transfer. This

avoids issuing redundant commands and addresses on the QSPI bus, and is particularly beneficial for cold code paths

and for streaming in flash data using the XIP streaming hardware (Section 4.4.3). For PSRAM compatibility, chains can

be broken when they exceed a maximum chip select time (M0_TIMING.MAX_SELECT) or when they cross certain

power-of-two address boundaries (M0_TIMING.PAGEBREAK). Section 12.14.2.1 goes into more detail on these

features.

The QMI can map addresses with its built-in address translation hardware: each chip select is partitioned into 4 × 4 MB

windows, whose physical base address and aperture size are configured in units of 4 kB (one flash sector). This enables

the runtime addresses of flash programs to be independent of where they are stored: for example, a flash-resident

bootloader at flash storage address 0 could select one of multiple flash-resident program images, all of them linked to

run at address 0x10000000, and these can be executed in place with no position-independent code required. Address

translation is described fully in Section 12.14.4.

Finally, the direct-mode interface is included for cases where software needs to communicate directly with the external

QSPI devices, for example to access status registers. This interface also supports serial, dual, and quad interface

widths as described in Section 12.14.5.
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12.14.2. QSPI Transfers

A QSPI bus connects one host, such as QMI, to multiple devices, such as a serial NOR flash. It consists of:

• One chip select line per device (CSn)

• One shared clock line (SCK)

• Up to four shared data lines (SD0 through SD3)

No single specification defines the format of QSPI commands. However, certain de facto command sets exist on most

QSPI flash/SRAM/PSRAM devices. QMI supports the most common variations of these commands.

QMI is primarily a memory interface, not a general-purpose QSPI peripheral. Although the direct-mode interface (Section

12.14.5) allows arbitrary QSPI accesses by passing raw data through the FIFOs, QMI is optimised for preformatted

read/write transfers in response to AHB read/write bus accesses.

All QSPI read/write accesses performed by the QMI use the following five phases:

1. Prefix: An optional, constant 8-bit value that indicates the SPI command being performed (referred to as the

command prefix or instruction prefix in SPI device datasheets)

2. Address: A 24-bit byte address that specifies the SPI memory location being read/written, corresponding to the

lower 24 bits of the AHB address

3. Suffix: An optional, constant 8-bit value which follows the address in certain access modes

4. Dummy: 0-value (SPI) or high-impedance (dual/quad-SPI) cycles which precede the data, to provide the SPI device

adequate time to access the first address

5. Data: Transfers memory contents to/from the SPI device at sequential byte addresses from the initial address

indicated in the address phase

The chip select for the addressed device is asserted before the prefix phase, and de-asserted at the end of the data

phase.

Each phase has a length in bits and interface width (single/dual/quad) configured using M0_RFMT/M1_RFMT (for

reads) and M0_WFMT/M1_WFMT for writes. The M0/M1 versions of each register configure accesses to memory

windows 0 and 1 (the two chip selects) respectively. This allows you to address two different QSPI devices with

different command formats transparently.

Figure 129. An

example serial read.

After an 8-bit prefix,

the host sends 24

address bits, and the

device replies with

data starting from the

next cycle.

Figure 129 illustrates the 03h serial read command. This section refers to a handful of common QSPI read/write

commands used by QSPI flash/SRAM/PSRAM devices; refer to a QSPI device datasheet for command details. For

example, the W25Q16JV datasheet available from Winbond provides descriptions of all of the read commands

mentioned in this section.

Applying the five-phase structure introduced previously, the 03h QSPI transaction breaks down as follows:

1. 8-bit prefix, at serial width (prefix = 0x03)

2. 24-bit address, at serial width

3. No suffix (length 0)

4. No dummy bits (length 0)

5. Data bits, at serial width

The number of address bits is fixed at 24 for all QMI accesses. The number of data bits depends on the size of the

transfer: this diagram shows 8 bits being transferred, which corresponds to an uncached byte read from the processor.
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The M0_RFMT/M1_RFMT registers configure all other parameters used for the data phase, such as serial interface

width.

The four data lines SD3 through SD0 make up the QSPI bus. At serial width, the host drives data out on SD0, and the device

responds with data travelling in the opposite direction on SD1. SD3 and SD2 are undriven during serial-SPI and dual-SPI

width parts of a transfer, and are usually pulled high. The shaded background behind the D7 through D0 data bits

indicates that the transfer direction is device-to-host. Higher interface widths use the SDx lines bidirectionally.

Figure 130. The 0Bh

read command adds 8

dummy cycles

between address and

data, to permit higher

bus frequencies.

Figure 130 shows the 0Bh serial read command, a common variation on the 03h. 0Bh adds dummy cycles between the

address and data phases, which helps hide the initial access latency of the storage array inside of the QSPI device. This

allows higher operating frequencies.

Applying the five-phase structure introduced previously, the 0Bh QSPI transaction breaks down as follows:

1. 8-bit prefix, at serial width (prefix = 0x0b)

2. 24-bit address, at serial width

3. No suffix (length 0)

4. Eight dummy bits, at serial width

5. Data bits, at serial width

At serial width, the QMI continues to drive the SD0 line low throughout the dummy phase, as this line is unidirectional at

this width. At dual-SPI and quad-SPI width, SD0 is tristated during the dummy phase along with SD1 through SD3.

QMI idles its clock low between transfers, expecting data to be captured on the leading edge of each clock pulse (i.e.

the rising edge). In legacy Motorola SPI terms, the clock polarity is 0 and the clock phase is 0. Other clock polarities and

phases are not supported. To ensure data is stable across the rising edge, new data is launched on each falling edge.

When transfer chaining is disabled (Section 12.14.2.1), QMI takes advantage of this clock behaviour by suppressing the

final clock pulse on reads. This saves energy by avoiding unnecessary SCK transitions, and by not inadvertently

requesting the data that immediately follows the requested data. QMI still leaves one full SCK period where the last data

is valid, and still captures at the point the SCK rising edge would be launched (Section 12.14.3), but the actual SCK clock

pulse is suppressed.

Figure 131. An EBh

quad I/O read

command. The

command prefix is

serial, but address and

data are 4 bits per

cycle.

Figure 131 shows a quad-width read transfer. In this example, the command prefix is still transferred at serial width, but

the full quad-width is used thereafter, as the prefix identifies the width of the access.

Applying the five-phase structure introduced previously, the QSPI transaction breaks down as follows:

1. 8-bit prefix, at serial width (prefix = 0xeb)

2. 24-bit address, at quad width

3. 8-bit suffix, at quad width (suffix = 0x00)

4. 24 dummy bits, at quad width

5. Data bits, at quad width

The suffix is an extension of the command prefix, placed after the address bits to avoid extending the initial access
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latency. The bit patterns used for prefixes and suffixes are configured using the M0_RCMD/M1_RCMD registers (for

reads) and M0_WCMD/M1_WCMD registers (for writes). One common use of the suffix on EBh quad I/O read

commands is to enter a so-called continuous read mode, where the prefix of the next command is skipped (assumed to

be the same as the current command) to reduce the number of cycles required for the next read access.

Figure 132. An 02h

write transfer, shown

with the device in QPI

mode (4 bits per cycle

for all transfers)

Figure 132 shows a write command at quad width. In this example, the command prefix is also issued in quad mode,

which is common for QSPI RAM. Since read and write commands mix freely, dropping the prefix (like flash continuous

read mode) is less useful, so QSPI RAM devices often support a QPI mode that also issues command prefixes in quad

width to reduce per-access cost.

Applying the five-phase structure introduced previously, the QSPI transaction breaks down as follows:

1. 8-bit prefix, at quad width (prefix = 0x02)

2. 24-bit address, at quad width

3. No suffix (0 bits)

4. No dummy bits

5. Data bits, at quad width

It is worth noting the bit and byte order in this diagram. SPI is conventionally MSB-first within each byte. When multiple

bits transfer each cycle (using the SD0, SD1, SD2 and SD3 data lines in parallel), higher-numbered data lines carry more-

significant bits. The first cycle of the data transfer in Figure 132 transfers the four most-significant bits of the first byte

of data. The most-significant bit (bit 7) transfers on SD3, and the least-significant of these bits (bit 4) transfers on SD0.

Since RP2350 is a little-endian system, higher byte addresses correspond to higher numerical significance. Figure

Figure 132shows the transfer of a 32-bit value spanning four consecutive byte addresses, starting at the initial address

transmitted by the host during the address phase. The first two cycles of the data phase transfer the first byte,

containing the 8 least-significant bits of the 32-bit value. The last two cycles of the data phase transfer the last byte,

containing the 8 most-significant bits of the 32-bit value (bits 31 through 24, inclusive).

12.14.2.1. Transfer Chaining

Referring back to Figure 131, which shows a 32-bit QSPI read with an EBh serial prefix, it’s evident that more time is

spent issuing the prefix and address (14 cycles) and waiting for the initial read latency (an additional 8 cycles), than

actually transferring the data (8 cycles). This overhead leaves only a small fraction of the theoretical maximum QSPI

throughput available for transferring data from flash, which limits the performance of direct code execution.

Figure 133. An EBh

read, without the

command prefix. The

suffix is used to

indicate the lack of

prefix on the next

command.

Figure 133 shows how this can be improved by continuous read mode, which uses a suffix (here 0xa0) to indicate the

lack of command prefix on the next command. This example only transfers 16 bits of data (e.g. an uncached halfword

read by the processor). Suffixes are effectively free to transfer, because they are transferred during the latency wait

period between the address being issued and the first data returned from the QSPI device’s internal storage. However,

this still leaves the majority of the QSPI bus cycles spent issuing addresses and waiting, not transferring data.
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Consequently, QSPI memory’s random-access performance is much lower than its sequential-access performance.

Figure 134. An EBh

read, with a

subsequent sequential

read chained onto the

next transfer

QMI’s transfer chaining feature exploits the difference between sequential and non-sequential access speed. Figure 134

shows two sequentially-addressed halfword reads (i.e. the address of the second transfer is two plus the address of the

first transfer), with M0_TIMING.COOLDOWN/M1_TIMING.COOLDOWN set to a non-zero value.

In Figure 133, QMI suppressed the last clock pulse and immediately released the chip select after the last data

transferred. When transfer chaining is enabled, as in Figure 134, QMI does not suppress the last clock pulse, instead

keeping the chip select asserted. It remains in this state for a certain amount of time, configured by the COOLDOWN register

field, waiting for another transfer. QMI then executes the next transfer by appending more clocks to the current transfer.

The chip select remains asserted throughout instead of releasing and reasserting between commands. To benefit from

transfer chaining, the next transfer must meet the following criteria:

• same direction as the previous transfer (read/write)

• address sequential to the previous transfer (equal to previous address plus previous size)

• address in the same window as the previous transfer (same chip select)

• previous transfer did not reach a page break boundary (configured by M0_TIMING.PAGEBREAK/

M1_TIMING.PAGEBREAK)

This considerably improves throughput for long uncached linear transfers such as using the XIP stream peripheral

(Section 4.4.3) or executing cold code sequences which tend to miss the cache many times sequentially.

This can continue for arbitrarily many transfers. It is possible to read the entire contents of a typical flash device using

transfer chaining from a single address.

Note that the transfer chaining feature can slightly degrade random access performance. If the next transfer is non-

sequential, the chip select must be de-asserted, possibly dwell high for some minimum period (depending on timing

requirements of the QSPI device), and then be reasserted to issue the new address. If transfer chaining were not used,

the chip select would have de-asserted immediately following the end of the previous transfer, avoiding some of this

delay. This can be mitigated by tuning the COOLDOWN timer register parameter to avoid leaving the chip select asserted for

excessively long periods, since sequential transfers are usually tightly grouped in time.

12.14.3. Timing

QMI operates in SPI mode 0, capturing data on each rising edge of SCK. New data is asserted on each subsequent falling

edge. The first output data launches simultaneously with the assertion of the chip select, as illustrated by Figure 135.

Figure 135. A

bidirectional SPI

transfer, as used by

QMI.

QMI timing is relative to the system clock. As this is generally quite fast relative to external signals, the

M0_TIMING.CLKDIV/M1_TIMING.CLKDIV field can uniformly slow SCK and data lines by an integer factor.
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Figure 136. The

CLKDIV controls set

the number of system

clock cycles per SCK

cycle, for each

memory window.

QMI uses DDR input/output registers to enable a resolution of one half system clock cycle for output signal generation

and input sampling. This allows QMI to support odd clock divisors, including divide-by-one (SCK frequency equal to

system clock frequency).

 NOTE

In practice, the maximum SCK frequency is constrained by the limits of the attached QSPI device, the signal integrity

afforded by the PCB layout, and IO delays in the pads. See Section 12.14.3.4.

12.14.3.1. Input Sampling and RXDELAY

QMI samples input data on the rising edge of SCK (Section 12.14.3). To introduce additional delay to the input delay

register (helpful when the round trip delay is longer than half an SCK cycle), use M0_TIMING.RXDELAY/

M1_TIMING.RXDELAY. RXDELAY counts delay in half system clock cycles, instead of SCK cycles.

12.14.3.2. Chip Select Timing

To save power, chip select is de-asserted after a transaction completes. To leave chip select asserted after a

transaction, use M0_TIMING.COOLDOWN/M1_TIMING.COOLDOWN. This can reduce latency and increase bus

throughput.

Chip select can be asserted one system clock cycle early via M0_TIMING.SELECT_SETUP/M1_TIMING.SELECT_SETUP.

Some flash devices require this setting at very high SCK frequencies. Without this setting, QMI asserts chip select one

half SCK period before the first rising edge of SCK. This is simultaneous with the assertion of the first data on SDx.

Chip select hold time can also be extended by up to 3 additional system clock cycles via M0_TIMING

.SELECT_HOLD/M1_TIMING.SELECT_HOLD.

To enforce a maximum amount of time that chip select can remain asserted, use M0_TIMING

.MAX_SELECT/M1_TIMING.MAX_SELECT. This is useful for PSRAM devices, which must issue internal DRAM refresh

cycles when deselected.

To enforce a minimum amount of time that chip select can remain de-asserted, use M0_TIMING

.MIN_DESELECT/M1_TIMING.MIN_DESELECT.

12.14.3.3. Double Transfer Rate (DTR)

Some QSPI memory devices transfer data on both edges of SCK. This feature, known as double transfer rate (DTR),

allows a lower SCK frequency for a given data transfer rate, reducing EM emissions and the energy cost of toggling the

external clock. To enable DTR mode (per-window and per-direction), set the M0_RFMT.DTR/M1_RFMT.DTR flag (for

reads) or M0_WFMT.DTR/M1_WFMT.DTR (for writes).

QMI implements DTR by halving the clock frequency whilst maintaining the data rate. To achieve this, QMI inverts

alternate single transfer rate SCK clock periods, transforming a low-high-low-high sequence into a low-high-high-low

sequence. When DTR is disabled, the QMI launches data on SCK falling edges and captures on rising edges. When DTR is

enabled, the QMI launches data at the point half-way in between two SCK edges, and captures on each edge, as shown in

Figure 137.
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Figure 137. DTR is

implemented by

halving the SCK

frequency whilst

maintaining data rate.

Enabling DTR mode does not change the data timing, only the SCK timing. Data is launched at the point where a SCK

negative edge would be, had the clock rate not been halved.

When DTR is enabled, the prefix and dummy phase of a transfer remain single transfer rate. In these phases, data bits

are doubled to match the half-rate SCK, so that new data is ready in time for each rising edge only. Figure 138 shows the

first byte (the command prefix) at single transfer rate and the second byte (address and data) at double transfer rate.

Figure 138. Parts of

DTR-enabled transfers

are still single transfer

rate: effectively each

data bit is sent twice.

The arrows on the SCK line in Figure 138 show the active edges of SCK (where data is captured). The single transfer rate

portion of the access expects data capture on the rising edge. The double transfer rate portion of the access expects

data capture on both edges.

Data travelling from device to host is likewise launched on both edges of SCK. Each time the QMI launches a new clock

edge, there is some delay as transitions propagate through the RP2350 pad output delay, QSPI device SCK-to-SDx delay,

and back in through the RP2350 SDx pad input delays. QMI captures data simultaneously with the launch of the next SCK

edge, plus any delay configured by M0_TIMING.RXDELAY/M1_TIMING.RXDELAY. The round-trip delay from SCK output

back to SDx input provides the SDx input hold time. If the input setup time is not sufficient, you can increase RXDELAY. For

more information, see the specific QSPI device datasheet, as well as Section 12.14.3.4.

12.14.3.4. AC Timing Parameters

The QMI interface is timed using the internal system clock. Skew between different QMI pins for inputs or outputs is

kept to a minimum. Any additional setup or hold time is supported by using additional clock cycle delays as mentioned

in other sections. Skew values vary depending on whether we consider just the dedicated QSPI pins (QSPI_SS,

QSPI_SD[3:0], QSPI_SCLK) or include the Bank 0 GPIO XIP special functions (for the additional QMI chip select). Different

package options have different skew timing, shown below.

Table 1288. QMI

Timing skew
Interface Typical Skew (ps) Max Skew (ps)

QSPI input 15 25

QSPI output 100 180

Bank 0 GPIO (QFN-60) output 1080 1725

Bank 0 GPIO (QFN-80) output 1280 2100

It is also useful to know the delay from internal register running on system clock to output pin, and similarly the delay

from input pin to the sampling register running on system clock. Table 1289 provides worst case process, voltage, and

temperature timings for inputs and outputs on QSPI, and outputs on GPIO. Note that this delay varies based on the VDDIO

voltage level as shown in the table.

Table 1289. QMI

Timing delay
Path Max delay (ns) VDDIO=3.3V Max delay (ns) VDDIO=1.8V

QSPI input to system clock 1.5 1.2

system clock to QSPI output 2.5 3.6
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Path Max delay (ns) VDDIO=3.3V Max delay (ns) VDDIO=1.8V

system clock to GPIO (QFN-60) output 3.5 4.9

system clock to GPIO (QFN-80) output 4.1 5.4

12.14.4. Address Translation

QMI applies a configurable mapping from the virtual address requested by the processor or DMA to the physical

address transmitted to the external QSPI device. This is performed separately for each of the 16 MB chip select

windows. You cannot map contents between devices.

Each window is divided into four panes, each independently mapped onto the physical address space for that window.

The default configuration applied on QMI reset, as shown in Figure 139, is a 1:1 identity mapping between virtual and

physical addresses. In this state the address mapping has no effect, and the entire 16 MB address space of the external

QSPI device is mapped directly into the system address space.

Window 0

(Virtual)

Window 0

(Physical)

0 MB 4 MB 8 MB 12 MB 16 MB

0 MB 16 MB

Pane 0

ATRANS0

base=0

size=4M

ATRANS1

base=4M

size=4M

ATRANS2

base=8M

size=4M

ATRANS3

base=12M

size=4M

Pane 1 Pane 2 Pane 3

Figure 139. By default,

each window is set up

to map the full 16 MB

virtual address space

directly 1:1 with the

16 MB physical

address space.

Each pane corresponds to the one of the four ATRANSx registers for that window: ATRANS0 through ATRANS3 for window

0, and ATRANS4 through ATRANS7 for window 1.

The virtual base address of each pane is fixed and assigned in 4 MB increments. There are two configurable parameters

for the mapping of that pane into physical address space:

• BASE: defines the physical address corresponding to offset 0 in the virtual address pane. Configured in units of 4 kB

(one flash sector), ranging from 0 to (16 MB minus 4 kB).

• SIZE: defines the amount of address space mapped by this pane. Configured in units of 4 kB (one flash sector)

ranging from 0 to 4 MB.

The mapping grows from the start of the pane. A SIZE of 1 MB maps the first 1 MB of that pane’s virtual address range

to downstream memory, and the remainder is unmapped. A SIZE of 0 means that no address within this virtual address

pane is accessible. Accesses beyond the currently configured SIZE return a bus error, and do not pass through to the

downstream QSPI bus. As a result, they have no effect on the external memory device.

Window 0

(Virtual)

Window 0

(Physical)

0 MB 4 MB 8 MB 12 MB 16 MB

1 MB 5 MB

Pane 0

ATRANS0

base=1M

size=4M

ATRANS1

size=0

ATRANS2

size=0

ATRANS3

size=0

Pane 1 Pane 2 Pane 3

Figure 140. The BASE

of a pane defines

where its physical

mapping begins. The

SIZE defines how far it

extends. A SIZE of 0

means no addresses

are mapped through

that pane.

Figure 140 shows an example mapping, where the first 4 MB of virtual address space for chip select 0 (virtual address

offsets 0x000000 through 0x3fffff inclusive) map to a 4 MB physical address window starting at a 1 MB offset (physical

address offsets 0x100000 through 0x4fffff inclusive). This mapping could be used for flash that contains a 1 MB
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bootloader application followed by a 4 MB user application. Ideally, the user application should not be aware of the flash

layout defined by the bootloader; that way, the same application can run under different bootloader implementations.

The virtual-to-physical mapping solves this problem by making the storage location of the user application (starting at

1 MB) independent of the address it appears at in the system address space (starting at 0 MB).

12.14.4.1. Bootrom Support for Address Translation

The bootrom can automatically configure address translation at boot time, so that a binary stored at some arbitrary

location in physical flash storage can appear at a runtime flash address of 0.

This is done automatically when the booted image is inside of a flash partition (Section 5.1.2), and can be adjusted

manually based on a rolling window delta specified in the IMAGE_DEF of the launched executable (Section 5.1.4).

The bootrom source code and bootrom documentation often refers to the QMI ATRANS mapping as "rolling windows", due

to the modulo address wrapping on 16 MB boundaries — see Section 5.1.19.

12.14.4.2. Translation and the XIP Cache

The QMI address translation is performed downstream of the system XIP cache (Section 4.4.1). Therefore, the XIP

cache is a virtual cache with respect to this translation, because the address translation performed inside QMI is

opaque to the XIP cache.

Consequently, changes to the QMI address translation necessitate a flush of the XIP cache. From the cache’s point of

view, the translation change has moved QMI memory contents around in the cache’s downstream address space in a

way that is incoherent with the cache contents, so a flush is required to restore coherence. At a minimum, any virtual

address whose ATRANSx register (ATRANS0 through ATRANS7) has been modified, and which may be allocated in the

cache in either the clean or the dirty state, must be flushed. It may be simplest to flush the entire cache.

QMI’s address mapping creates another hazard: the same physical address may map to multiple virtual addresses, and

therefore may be allocated multiple times in the XIP cache. When you write to a physical address through a cached

virtual address alias, the XIP cache does not propagate the change to other aliases. To avoid this issue, do not allow

multiple aliases of the same writable physical address at the same instant. Aliasing read-only memory is usually safe.

Aliases that exist at different points in time (for example, across an RTOS context switch boundary) can be kept

coherent with appropriate cleaning and flushing when the translation is changed.

12.14.5. Direct Mode

In direct mode, the AHB XIP address window is disconnected from the QSPI bus, and the bus is controlled through a

TX/RX FIFO pair, similar to a normal SPI peripheral. In this state, the XIP window becomes inaccessible. Attempting to

access it generates a bus fault. This mode is used for low-level access to the QSPI bus, for example when issuing flash

erase/programming commands, or when accessing QSPI device status registers.

All direct-mode operation is controlled through DIRECT_CSR, with data being exchanged through DIRECT_TX and

DIRECT_RX. To enable direct mode, first set DIRECT_CSR.EN, and then poll for DIRECT_CSR.BUSY to go low to ensure

that any in-progress XIP transfer at the point direct mode was enabled has completed.

Direct mode has its own clock divisor and RX sampling delay, configured by DIRECT_CSR.CLKDIV and

DIRECT_CSR.RXDELAY. These are separate from the per-window settings configured in M0_TIMING/M1_TIMING,

because serial commands used for control purposes may have different frequency limits than data accesses used for

execute-in-place.

For each push to DIRECT_TX, QMI will issue 8 or 16 bits of FIFO data to the QSPI bus. Optionally, the same number of

bits are simultaneously sampled and returned in DIRECT_RX. The clock is initially low, and data is always captured on

the rising edge of SCK, transitioning on the subsequent falling edge.

After pushing to DIRECT_TX, DIRECT_CSR.BUSY will go high, and remain high until all direct-mode activity has

completed. This works even if no RX data is returned, so is more reliable than polling the RX FIFO status. The BUSY flag
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stays high for half an SCK period after the transfer finishes, to ensure safe chip select timing when this is used to drive

the chip selects — see Section 12.14.5.2.

QMI will never push to a full RX FIFO, or drop data as a result of the FIFO being full — instead, the interface is paused

until the system pops DIRECT_RX. This avoids a common trap of RX data being lost when the processor is heavily

interrupted during direct-mode operation, but software must take care not to poll for DIRECT_CSR.BUSY low without

also checking the RX FIFO, as this can cause a deadlock when the FIFO fills.

12.14.5.1. Controls in DIRECT_TX

The TX FIFO carries control information as well as data, with data in the 16 LSBs, and control information in the

immediately more-significant bits:

• DIRECT_TX.NOPUSH inhibits the DIRECT_RX push which would match this TX data. This avoids creating garbage

when pushing control/address information at the start of a transfer.

• DIRECT_TX.DWIDTH is the data width of this FIFO record. 0 means the 8 LSBs contain data, and 1 means the 16

LSBs contain data. This also determines the amount of data returned in the matching DIRECT_RX entry.

• DIRECT_TX.IWIDTH is the interface width (single-dual/quad) used to clock out this FIFO record. The corresponding

RX data is sampled at the same width.

• DIRECT_TX.OE controls the pad direction for bidirectional transfers. It is ignored for serial IWIDTH, since SD0 is

always an output and SD1 always an input. At dual/quad width, it must be set in order to enable the output drivers

for the duration of this FIFO record. The TX data is don’t-care when IWIDTH is dual/quad and OE is not set.

The default when all control bits are zero is an 8-bit serial transfer, with 8 bits of sampled data returned. Therefore, you

can ignore the control bits and treat this as a plain 8-bit data FIFO.

12.14.5.2. Chip Select Control

There are two options for driving the chip selects, both via DIRECT_CSR:

• DIRECT_CSR.ASSERT_CS0N and DIRECT_CSR.ASSERT_CS1N will immediately drive the corresponding chip select

low when set

• DIRECT_CSR.AUTO_CS0N and DIRECT_CSR.AUTO_CS1N configure the corresponding chip select to be set low

whenever the interface is busy, i.e. when the DIRECT_CSR.BUSY flag is high due to a previous DIRECT_TX push

 IMPORTANT

The ASSERT_CSxN fields assert the chip select unconditionally, including when DIRECT_CSR.EN is clear. Software must

take care not to set these fields when XIP transfers may be active.

12.14.6. List of Registers

The QMI control registers start at address 0x400d0000, defined as XIP_QMI_BASE in the SDK.

Table 1290. List of

QMI registers
Offset Name Info

0x00 DIRECT_CSR Control and status for direct serial mode

Direct serial mode allows the processor to send and receive raw

serial frames, for programming, configuration and control of the

external memory devices. Only SPI mode 0 (CPOL=0 CPHA=0) is

supported.

0x04 DIRECT_TX Transmit FIFO for direct mode
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Offset Name Info

0x08 DIRECT_RX Receive FIFO for direct mode

0x0c M0_TIMING Timing configuration register for memory address window 0.

0x10 M0_RFMT Read transfer format configuration for memory address window

0.

0x14 M0_RCMD Command constants used for reads from memory address

window 0.

0x18 M0_WFMT Write transfer format configuration for memory address window

0.

0x1c M0_WCMD Command constants used for writes to memory address window

0.

0x20 M1_TIMING Timing configuration register for memory address window 1.

0x24 M1_RFMT Read transfer format configuration for memory address window

1.

0x28 M1_RCMD Command constants used for reads from memory address

window 1.

0x2c M1_WFMT Write transfer format configuration for memory address window

1.

0x30 M1_WCMD Command constants used for writes to memory address window

1.

0x34 ATRANS0 Configure address translation for XIP virtual addresses

0x000000 through 0x3fffff (a 4 MiB window starting at +0 MiB).

0x38 ATRANS1 Configure address translation for XIP virtual addresses

0x400000 through 0x7fffff (a 4 MiB window starting at +4 MiB).

0x3c ATRANS2 Configure address translation for XIP virtual addresses

0x800000 through 0xbfffff (a 4 MiB window starting at +8 MiB).

0x40 ATRANS3 Configure address translation for XIP virtual addresses

0xc00000 through 0xffffff (a 4 MiB window starting at +12 MiB).

0x44 ATRANS4 Configure address translation for XIP virtual addresses

0x1000000 through 0x13fffff (a 4 MiB window starting at +16

MiB).

0x48 ATRANS5 Configure address translation for XIP virtual addresses

0x1400000 through 0x17fffff (a 4 MiB window starting at +20

MiB).

0x4c ATRANS6 Configure address translation for XIP virtual addresses

0x1800000 through 0x1bfffff (a 4 MiB window starting at +24

MiB).

0x50 ATRANS7 Configure address translation for XIP virtual addresses

0x1c00000 through 0x1ffffff (a 4 MiB window starting at +28

MiB).

QMI: DIRECT_CSR Register

Offset: 0x00
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Description

Control and status for direct serial mode

Direct serial mode allows the processor to send and receive raw serial frames, for programming, configuration and

control of the external memory devices. Only SPI mode 0 (CPOL=0 CPHA=0) is supported.

Table 1291.

DIRECT_CSR Register
Bits Description Type Reset

31:30 RXDELAY: Delay the read data sample timing, in units of one half of a system

clock cycle. (Not necessarily half of an SCK cycle.)

RW 0x0

29:22 CLKDIV: Clock divisor for direct serial mode. Divisors of 1..255 are encoded

directly, and the maximum divisor of 256 is encoded by a value of CLKDIV=0.

The clock divisor can be changed on-the-fly by software, without halting or

otherwise coordinating with the serial interface. The serial interface will

sample the latest clock divisor each time it begins the transmission of a new

byte.

RW 0x06

21 Reserved. - -

20:18 RXLEVEL: Current level of DIRECT_RX FIFO RO 0x0

17 RXFULL: When 1, the DIRECT_RX FIFO is currently full. The serial interface will

be stalled until data is popped; the interface will not begin a new serial frame

when the DIRECT_TX FIFO is empty or the DIRECT_RX FIFO is full.

RO 0x0

16 RXEMPTY: When 1, the DIRECT_RX FIFO is currently empty. If the processor

attempts to read more data, the FIFO state is not affected, but the value

returned to the processor is undefined.

RO 0x0

15 Reserved. - -

14:12 TXLEVEL: Current level of DIRECT_TX FIFO RO 0x0

11 TXEMPTY: When 1, the DIRECT_TX FIFO is currently empty. Unless the

processor pushes more data, transmission will stop and BUSY will go low

once the current 8-bit serial frame completes.

RO 0x0

10 TXFULL: When 1, the DIRECT_TX FIFO is currently full. If the processor tries to

write more data, that data will be ignored.

RO 0x0

9:8 Reserved. - -

7 AUTO_CS1N: When 1, automatically assert the CS1n chip select line whenever

the BUSY flag is set.

RW 0x0

6 AUTO_CS0N: When 1, automatically assert the CS0n chip select line whenever

the BUSY flag is set.

RW 0x0

5:4 Reserved. - -

3 ASSERT_CS1N: When 1, assert (i.e. drive low) the CS1n chip select line.

Note that this applies even when DIRECT_CSR_EN is 0.

RW 0x0

2 ASSERT_CS0N: When 1, assert (i.e. drive low) the CS0n chip select line.

Note that this applies even when DIRECT_CSR_EN is 0.

RW 0x0
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Bits Description Type Reset

1 BUSY: Direct mode busy flag. If 1, data is currently being shifted in/out (or

would be if the interface were not stalled on the RX FIFO), and the chip select

must not yet be deasserted.

The busy flag will also be set to 1 if a memory-mapped transfer is still in

progress when direct mode is enabled. Direct mode blocks new memory-

mapped transfers, but can’t halt a transfer that is already in progress. If there

is a chance that memory-mapped transfers may be in progress, the busy flag

should be polled for 0 before asserting the chip select.

(In practice you will usually discover this timing condition through other

means, because any subsequent memory-mapped transfers when direct mode

is enabled will return bus errors, which are difficult to ignore.)

RO 0x0

0 EN: Enable direct mode.

In direct mode, software controls the chip select lines, and can perform direct

SPI transfers by pushing data to the DIRECT_TX FIFO, and popping the same

amount of data from the DIRECT_RX FIFO.

Memory-mapped accesses will generate bus errors when direct serial mode is

enabled.

RW 0x0

QMI: DIRECT_TX Register

Offset: 0x04

Description

Transmit FIFO for direct mode

Table 1292.

DIRECT_TX Register
Bits Description Type Reset

31:21 Reserved. - -

20 NOPUSH: Inhibit the RX FIFO push that would correspond to this TX FIFO

entry.

Useful to avoid garbage appearing in the RX FIFO when pushing the command

at the beginning of a SPI transfer.

WF 0x0

19 OE: Output enable (active-high). For single width (SPI), this field is ignored, and

SD0 is always set to output, with SD1 always set to input.

For dual and quad width (DSPI/QSPI), this sets whether the relevant SDx pads

are set to output whilst transferring this FIFO record. In this case the

command/address should have OE set, and the data transfer should have OE

set or clear depending on the direction of the transfer.

WF 0x0

18 DWIDTH: Data width. If 0, hardware will transmit the 8 LSBs of the DIRECT_TX

DATA field, and return an 8-bit value in the 8 LSBs of DIRECT_RX. If 1, the full

16-bit width is used. 8-bit and 16-bit transfers can be mixed freely.

WF 0x0

17:16 IWIDTH: Configure whether this FIFO record is transferred with

single/dual/quad interface width (0/1/2). Different widths can be mixed freely.

WF 0x0

Enumerated values:

0x0 → Single width
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Bits Description Type Reset

0x1 → Dual width

0x2 → Quad width

15:0 DATA: Data pushed here will be clocked out falling edges of SCK (or before

the very first rising edge of SCK, if this is the first pulse). For each byte clocked

out, the interface will simultaneously sample one byte, on rising edges of SCK,

and push this to the DIRECT_RX FIFO.

For 16-bit data, the least-significant byte is transmitted first.

WF 0x0000

QMI: DIRECT_RX Register

Offset: 0x08

Description

Receive FIFO for direct mode

Table 1293.

DIRECT_RX Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 With each byte clocked out on the serial interface, one byte will simultaneously

be clocked in, and will appear in this FIFO. The serial interface will stall when

this FIFO is full, to avoid dropping data.

When 16-bit data is pushed into the TX FIFO, the corresponding RX FIFO push

will also contain 16 bits of data. The least-significant byte is the first one

received.

RF 0x0000

QMI: M0_TIMING, M1_TIMING Registers

Offsets: 0x0c, 0x20

Description

Timing configuration register for memory address window 0/1.

Table 1294.

M0_TIMING,

M1_TIMING Registers

Bits Description Type Reset

31:30 COOLDOWN: Chip select cooldown period. When a memory transfer finishes,

the chip select remains asserted for 64 x COOLDOWN system clock cycles,

plus half an SCK clock period (rounded up for odd SCK divisors). After this

cooldown expires, the chip select is always deasserted to save power.

If the next memory access arrives within the cooldown period, the QMI may be

able to append more SCK cycles to the currently ongoing SPI transfer, rather

than starting a new transfer. This reduces access latency and increases bus

throughput.

Specifically, the next access must be in the same direction (read/write),

access the same memory window (chip select 0/1), and follow sequentially

the address of the last transfer. If any of these are false, the new access will

first deassert the chip select, then begin a new transfer.

If COOLDOWN is 0, the address alignment configured by PAGEBREAK has

been reached, or the total chip select assertion limit MAX_SELECT has been

reached, the cooldown period is skipped, and the chip select will always be

deasserted one half SCK period after the transfer finishes.

RW 0x1
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Bits Description Type Reset

29:28 PAGEBREAK: When page break is enabled, chip select will automatically

deassert when crossing certain power-of-2-aligned address boundaries. The

next access will always begin a new read/write SPI burst, even if the address

of the next access follows in sequence with the last access before the page

boundary.

Some flash and PSRAM devices forbid crossing page boundaries with a single

read/write transfer, or restrict the operating frequency for transfers that do

cross page a boundary. This option allows the QMI to safely support those

devices.

This field has no effect when COOLDOWN is disabled.

RW 0x0

Enumerated values:

0x0 → No page boundary is enforced

0x1 → Break bursts crossing a 256-byte page boundary

0x2 → Break bursts crossing a 1024-byte quad-page boundary

0x3 → Break bursts crossing a 4096-byte sector boundary

27:26 Reserved. - -

25 SELECT_SETUP: Add up to one additional system clock cycle of setup

between chip select assertion and the first rising edge of SCK.

The default setup time is one half SCK period, which is usually sufficient

except for very high SCK frequencies with some flash devices.

RW 0x0

24:23 SELECT_HOLD: Add up to three additional system clock cycles of active hold

between the last falling edge of SCK and the deassertion of this window’s chip

select.

The default hold time is one system clock cycle. Note that flash datasheets

usually give chip select active hold time from the last rising edge of SCK, and

so even zero hold from the last falling edge would be safe.

Note that this is a minimum hold time guaranteed by the QMI: the actual chip

select active hold may be slightly longer for read transfers with low clock

divisors and/or high sample delays. Specifically, if the point two cycles after

the last RX data sample is later than the last SCK falling edge, then the hold

time is measured from this point.

Note also that, in case the final SCK pulse is masked to save energy (true for

non-DTR reads when COOLDOWN is disabled or PAGE_BREAK is reached), all

of QMI’s timing logic behaves as though the clock pulse were still present. The

SELECT_HOLD time is applied from the point where the last SCK falling edge

would be if the clock pulse were not masked.

RW 0x0
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Bits Description Type Reset

22:17 MAX_SELECT: Enforce a maximum assertion duration for this window’s chip

select, in units of 64 system clock cycles. If 0, the QMI is permitted to keep the

chip select asserted indefinitely when servicing sequential memory accesses

(see COOLDOWN).

This feature is required to meet timing constraints of PSRAM devices, which

specify a maximum chip select assertion so they can perform DRAM refresh

cycles. See also MIN_DESELECT, which can enforce a minimum deselect time.

If a memory access is in progress at the time MAX_SELECT is reached, the

QMI will wait for the access to complete before deasserting the chip select.

This additional time must be accounted for to calculate a safe MAX_SELECT

value. In the worst case, this may be a fully-formed serial transfer, including

command prefix and address, with a data payload as large as one cache line.

RW 0x00

16:12 MIN_DESELECT: After this window’s chip select is deasserted, it remains

deasserted for half an SCK cycle (rounded up to an integer number of system

clock cycles), plus MIN_DESELECT additional system clock cycles, before the

QMI reasserts either chip select pin.

Nonzero values may be required for PSRAM devices which enforce a longer

minimum CS deselect time, so that they can perform internal DRAM refresh

cycles whilst deselected.

RW 0x00

11 Reserved. - -

10:8 RXDELAY: Delay the read data sample timing, in units of one half of a system

clock cycle. (Not necessarily half of an SCK cycle.) An RXDELAY of 0 means

the sample is captured at the SDI input registers simultaneously with the rising

edge of SCK launched from the SCK output register.

At higher SCK frequencies, RXDELAY may need to be increased to account for

the round trip delay of the pads, and the clock-to-Q delay of the QSPI memory

device.

RW 0x0

7:0 CLKDIV: Clock divisor. Odd and even divisors are supported. Defines the SCK

clock period in units of 1 system clock cycle. Divisors 1..255 are encoded

directly, and a divisor of 256 is encoded with a value of CLKDIV=0.

The clock divisor can be changed on-the-fly, even when the QMI is currently

accessing memory in this address window. All other parameters must only be

changed when the QMI is idle.

If software is increasing CLKDIV in anticipation of an increase in the system

clock frequency, a dummy access to either memory window (and appropriate

processor barriers/fences) must be inserted after the Mx_TIMING write to

ensure the SCK divisor change is in effect before the system clock is changed.

RW 0x04

QMI: M0_RFMT, M1_RFMT Registers

Offsets: 0x10, 0x24

Description

Read transfer format configuration for memory address window 0/1.

Configure the bus width of each transfer phase individually, and configure the length or presence of the command

prefix, command suffix and dummy/turnaround transfer phases. Only 24-bit addresses are supported.
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The reset value of the Mx_RFMT register is configured to support a basic 03h serial read transfer with no additional

configuration.

Table 1295.

M0_RFMT, M1_RFMT

Registers

Bits Description Type Reset

31:29 Reserved. - -

28 DTR: Enable double transfer rate (DTR) for read commands: address, suffix

and read data phases are active on both edges of SCK. SDO data is launched

centre-aligned on each SCK edge, and SDI data is captured on the SCK edge

that follows its launch.

DTR is implemented by halving the clock rate; SCK has a period of 2 x CLK_DIV

throughout the transfer. The prefix and dummy phases are still single transfer

rate.

If the suffix is quad-width, it must be 0 or 8 bits in length, to ensure an even

number of SCK edges.

RW 0x0

27:19 Reserved. - -

18:16 DUMMY_LEN: Length of dummy phase between command suffix and data

phase, in units of 4 bits. (i.e. 1 cycle for quad width, 2 for dual, 4 for single)

RW 0x0

Enumerated values:

0x0 → No dummy phase

0x1 → 4 dummy bits

0x2 → 8 dummy bits

0x3 → 12 dummy bits

0x4 → 16 dummy bits

0x5 → 20 dummy bits

0x6 → 24 dummy bits

0x7 → 28 dummy bits

15:14 SUFFIX_LEN: Length of post-address command suffix, in units of 4 bits. (i.e. 1

cycle for quad width, 2 for dual, 4 for single)

Only values of 0 and 8 bits are supported.

RW 0x0

Enumerated values:

0x0 → No suffix

0x2 → 8-bit suffix

13 Reserved. - -

12 PREFIX_LEN: Length of command prefix, in units of 8 bits. (i.e. 2 cycles for

quad width, 4 for dual, 8 for single)

RW 0x1

Enumerated values:

0x0 → No prefix

0x1 → 8-bit prefix

11:10 Reserved. - -

9:8 DATA_WIDTH: The width used for the data transfer RW 0x0
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Bits Description Type Reset

Enumerated values:

0x0 → Single width

0x1 → Dual width

0x2 → Quad width

7:6 DUMMY_WIDTH: The width used for the dummy phase, if any.

If width is single, SD0/MOSI is held asserted low during the dummy phase, and

SD1…SD3 are tristated. If width is dual/quad, all IOs are tristated during the

dummy phase.

RW 0x0

Enumerated values:

0x0 → Single width

0x1 → Dual width

0x2 → Quad width

5:4 SUFFIX_WIDTH: The width used for the post-address command suffix, if any RW 0x0

Enumerated values:

0x0 → Single width

0x1 → Dual width

0x2 → Quad width

3:2 ADDR_WIDTH: The transfer width used for the address. The address phase

always transfers 24 bits in total.

RW 0x0

Enumerated values:

0x0 → Single width

0x1 → Dual width

0x2 → Quad width

1:0 PREFIX_WIDTH: The transfer width used for the command prefix, if any RW 0x0

Enumerated values:

0x0 → Single width

0x1 → Dual width

0x2 → Quad width

QMI: M0_RCMD, M1_RCMD Registers

Offsets: 0x14, 0x28

Description

Command constants used for reads from memory address window 0/1.

The reset value of the Mx_RCMD register is configured to support a basic 03h serial read transfer with no additional

configuration.

Table 1296.

M0_RCMD, M1_RCMD

Registers

Bits Description Type Reset

31:16 Reserved. - -
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Bits Description Type Reset

15:8 SUFFIX: The command suffix bits following the address, if

Mx_RFMT_SUFFIX_LEN is nonzero.

RW 0xa0

7:0 PREFIX: The command prefix bits to prepend on each new transfer, if

Mx_RFMT_PREFIX_LEN is nonzero.

RW 0x03

QMI: M0_WFMT, M1_WFMT Registers

Offsets: 0x18, 0x2c

Description

Write transfer format configuration for memory address window 0/1.

Configure the bus width of each transfer phase individually, and configure the length or presence of the command

prefix, command suffix and dummy/turnaround transfer phases. Only 24-bit addresses are supported.

The reset value of the Mx_WFMT register is configured to support a basic 02h serial write transfer. However, writes to

this window must first be enabled via the XIP_CTRL_WRITABLE_Mx bit for this window, as XIP memory is read-only by

default.

Table 1297.

M0_WFMT, M1_WFMT

Registers

Bits Description Type Reset

31:29 Reserved. - -

28 DTR: Enable double transfer rate (DTR) for write commands: address, suffix

and write data phases are active on both edges of SCK. SDO data is launched

centre-aligned on each SCK edge, and SDI data is captured on the SCK edge

that follows its launch.

DTR is implemented by halving the clock rate; SCK has a period of 2 x CLK_DIV

throughout the transfer. The prefix and dummy phases are still single transfer

rate.

If the suffix is quad-width, it must be 0 or 8 bits in length, to ensure an even

number of SCK edges.

RW 0x0

27:19 Reserved. - -

18:16 DUMMY_LEN: Length of dummy phase between command suffix and data

phase, in units of 4 bits. (i.e. 1 cycle for quad width, 2 for dual, 4 for single)

RW 0x0

Enumerated values:

0x0 → No dummy phase

0x1 → 4 dummy bits

0x2 → 8 dummy bits

0x3 → 12 dummy bits

0x4 → 16 dummy bits

0x5 → 20 dummy bits

0x6 → 24 dummy bits

0x7 → 28 dummy bits

15:14 SUFFIX_LEN: Length of post-address command suffix, in units of 4 bits. (i.e. 1

cycle for quad width, 2 for dual, 4 for single)

Only values of 0 and 8 bits are supported.

RW 0x0
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Bits Description Type Reset

Enumerated values:

0x0 → No suffix

0x2 → 8-bit suffix

13 Reserved. - -

12 PREFIX_LEN: Length of command prefix, in units of 8 bits. (i.e. 2 cycles for

quad width, 4 for dual, 8 for single)

RW 0x1

Enumerated values:

0x0 → No prefix

0x1 → 8-bit prefix

11:10 Reserved. - -

9:8 DATA_WIDTH: The width used for the data transfer RW 0x0

Enumerated values:

0x0 → Single width

0x1 → Dual width

0x2 → Quad width

7:6 DUMMY_WIDTH: The width used for the dummy phase, if any.

If width is single, SD0/MOSI is held asserted low during the dummy phase, and

SD1…SD3 are tristated. If width is dual/quad, all IOs are tristated during the

dummy phase.

RW 0x0

Enumerated values:

0x0 → Single width

0x1 → Dual width

0x2 → Quad width

5:4 SUFFIX_WIDTH: The width used for the post-address command suffix, if any RW 0x0

Enumerated values:

0x0 → Single width

0x1 → Dual width

0x2 → Quad width

3:2 ADDR_WIDTH: The transfer width used for the address. The address phase

always transfers 24 bits in total.

RW 0x0

Enumerated values:

0x0 → Single width

0x1 → Dual width

0x2 → Quad width

1:0 PREFIX_WIDTH: The transfer width used for the command prefix, if any RW 0x0

Enumerated values:

0x0 → Single width
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Bits Description Type Reset

0x1 → Dual width

0x2 → Quad width

QMI: M0_WCMD, M1_WCMD Registers

Offsets: 0x1c, 0x30

Description

Command constants used for writes to memory address window 0/1.

The reset value of the Mx_WCMD register is configured to support a basic 02h serial write transfer with no additional

configuration.

Table 1298.

M0_WCMD,

M1_WCMD Registers

Bits Description Type Reset

31:16 Reserved. - -

15:8 SUFFIX: The command suffix bits following the address, if

Mx_WFMT_SUFFIX_LEN is nonzero.

RW 0xa0

7:0 PREFIX: The command prefix bits to prepend on each new transfer, if

Mx_WFMT_PREFIX_LEN is nonzero.

RW 0x02

QMI: ATRANS0, ATRANS4 Registers

Offsets: 0x34, 0x44

Description

Configure address translation for a 4 MiB window of XIP virtual addresses starting at n x 4 MiB.

Address translation allows a program image to be executed in place at multiple physical flash addresses (for example,

a double-buffered flash image for over-the-air updates), without the overhead of position-independent code.

At reset, the address translation registers are initialised to an identity mapping, so that they can be ignored if address

translation is not required.

Note that the XIP cache is fully virtually addressed, so a cache flush is required after changing the address translation.

Table 1299. ATRANS0,

ATRANS4 Registers
Bits Description Type Reset

31:27 Reserved. - -

26:16 SIZE: Translation aperture size for this virtual address range, in units of 4 kiB

(one flash sector).

Bits 21:12 of the virtual address are compared to SIZE. Offsets greater than

SIZE return a bus error, and do not cause a QSPI access.

RW 0x400

15:12 Reserved. - -

11:0 BASE: Physical address base for this virtual address range, in units of 4 kiB

(one flash sector).

Taking a 24-bit virtual address, firstly bits 23:22 (the two MSBs) are masked to

zero, and then BASE is added to bits 23:12 (the upper 12 bits) to form the

physical address. Translation wraps on a 16 MiB boundary.

RW 0x000

QMI: ATRANS1, ATRANS5 Registers

Offsets: 0x38, 0x48
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Description

Configure address translation for XIP virtual addresses 0x400000 through 0x7fffff (a 4 MiB window starting at +4

MiB).

Address translation allows a program image to be executed in place at multiple physical flash addresses (for example,

a double-buffered flash image for over-the-air updates), without the overhead of position-independent code.

At reset, the address translation registers are initialised to an identity mapping, so that they can be ignored if address

translation is not required.

Note that the XIP cache is fully virtually addressed, so a cache flush is required after changing the address translation.

Table 1300. ATRANS1,

ATRANS5 Registers
Bits Description Type Reset

31:27 Reserved. - -

26:16 SIZE: Translation aperture size for this virtual address range, in units of 4 kiB

(one flash sector).

Bits 21:12 of the virtual address are compared to SIZE. Offsets greater than

SIZE return a bus error, and do not cause a QSPI access.

RW 0x400

15:12 Reserved. - -

11:0 BASE: Physical address base for this virtual address range, in units of 4 kiB

(one flash sector).

Taking a 24-bit virtual address, firstly bits 23:22 (the two MSBs) are masked to

zero, and then BASE is added to bits 23:12 (the upper 12 bits) to form the

physical address. Translation wraps on a 16 MiB boundary.

RW 0x400

QMI: ATRANS2, ATRANS6 Registers

Offsets: 0x3c, 0x4c

Description

Configure address translation for XIP virtual addresses 0x800000 through 0xbfffff (a 4 MiB window starting at +8

MiB).

Address translation allows a program image to be executed in place at multiple physical flash addresses (for example,

a double-buffered flash image for over-the-air updates), without the overhead of position-independent code.

At reset, the address translation registers are initialised to an identity mapping, so that they can be ignored if address

translation is not required.

Note that the XIP cache is fully virtually addressed, so a cache flush is required after changing the address translation.

Table 1301. ATRANS2,

ATRANS6 Registers
Bits Description Type Reset

31:27 Reserved. - -

26:16 SIZE: Translation aperture size for this virtual address range, in units of 4 kiB

(one flash sector).

Bits 21:12 of the virtual address are compared to SIZE. Offsets greater than

SIZE return a bus error, and do not cause a QSPI access.

RW 0x400

15:12 Reserved. - -
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Bits Description Type Reset

11:0 BASE: Physical address base for this virtual address range, in units of 4 kiB

(one flash sector).

Taking a 24-bit virtual address, firstly bits 23:22 (the two MSBs) are masked to

zero, and then BASE is added to bits 23:12 (the upper 12 bits) to form the

physical address. Translation wraps on a 16 MiB boundary.

RW 0x800

QMI: ATRANS3, ATRANS7 Registers

Offsets: 0x40, 0x50

Description

Configure address translation for XIP virtual addresses 0xc00000 through 0xffffff (a 4 MiB window starting at +12

MiB).

Address translation allows a program image to be executed in place at multiple physical flash addresses (for example,

a double-buffered flash image for over-the-air updates), without the overhead of position-independent code.

At reset, the address translation registers are initialised to an identity mapping, so that they can be ignored if address

translation is not required.

Note that the XIP cache is fully virtually addressed, so a cache flush is required after changing the address translation.

Table 1302. ATRANS3,

ATRANS7 Registers
Bits Description Type Reset

31:27 Reserved. - -

26:16 SIZE: Translation aperture size for this virtual address range, in units of 4 kiB

(one flash sector).

Bits 21:12 of the virtual address are compared to SIZE. Offsets greater than

SIZE return a bus error, and do not cause a QSPI access.

RW 0x400

15:12 Reserved. - -

11:0 BASE: Physical address base for this virtual address range, in units of 4 kiB

(one flash sector).

Taking a 24-bit virtual address, firstly bits 23:22 (the two MSBs) are masked to

zero, and then BASE is added to bits 23:12 (the upper 12 bits) to form the

physical address. Translation wraps on a 16 MiB boundary.

RW 0xc00

12.15. System Control Registers

These registers are not associated with any particular peripheral. They control, or provide information about, system-

level hardware such as the bus fabric. This is also where chip identification information such as the JEDEC IDCODE is

provided in a software-accessible manner.

12.15.1. SYSINFO

12.15.1.1. Overview

The sysinfo block contains system information. The first register contains the Chip ID, which allows the programmer to

know which version of the chip software is running on. The second register indicates which package configuration is
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used (QFN-60 or QFN-80). The third register will always read as 1.

12.15.1.2. List of Registers

The sysinfo registers start at a base address of 0x40000000 (defined as SYSINFO_BASE in SDK).

Table 1303. List of

SYSINFO registers
Offset Name Info

0x00 CHIP_ID JEDEC JEP-106 compliant chip identifier.

0x04 PACKAGE_SEL Package selection indicator, 0 = QFN80, 1 = QFN60

0x08 PLATFORM Platform register. Allows software to know what environment it

is running in during pre-production development. Post-

production, the PLATFORM is always ASIC, non-SIM.

0x14 GITREF_RP2350 Git hash of the chip source. Used to identify chip version.

SYSINFO: CHIP_ID Register

Offset: 0x00

Description

JEDEC JEP-106 compliant chip identifier.

Table 1304. CHIP_ID

Register
Bits Description Type Reset

31:28 REVISION RO -

27:12 PART RO -

11:1 MANUFACTURER RO -

0 STOP_BIT RO 0x1

SYSINFO: PACKAGE_SEL Register

Offset: 0x04

Table 1305.

PACKAGE_SEL

Register

Bits Description Type Reset

31:1 Reserved. - -

0 Package selection indicator, 0 = QFN80, 1 = QFN60 RO 0x0

SYSINFO: PLATFORM Register

Offset: 0x08

Description

Platform register. Allows software to know what environment it is running in during pre-production development.

Post-production, the PLATFORM is always ASIC, non-SIM.

Table 1306.

PLATFORM Register
Bits Description Type Reset

31:5 Reserved. - -

4 GATESIM RO -

3 BATCHSIM RO -

2 HDLSIM RO -

1 ASIC RO -
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Bits Description Type Reset

0 FPGA RO -

SYSINFO: GITREF_RP2350 Register

Offset: 0x14

Table 1307.

GITREF_RP2350

Register

Bits Description Type Reset

31:0 Git hash of the chip source. Used to identify chip version. RO -

12.15.2. SYSCFG

12.15.2.1. Overview

The system config block controls miscellaneous chip settings, including:

• Check debug halt status of both cores

• Processor GPIO input synchroniser control (set to 1 to allow input synchroniser bypassing to reduce latency for

synchronous clocks)

• SWD interface control from inside the chip (allows one core to debug another, which may make debug connectivity

easier)

• State-retaining memory power down (SRAM periphery can be powered down when not in use to save a small

amount of power)

◦ when powered down in this way, power is still applied to the SRAM storage array; use the Power Manager

(Chapter 6) to completely remove power

• Additional controls found in the AUXCTRL register

12.15.2.2. Changes from RP2040

• Moved the NMI mask to per-core registers in the EPPB (Section 3.7.5.1). The new registers reset on a processor

warm reset, which avoids issues with NMIs asserting during the bootrom early boot process.

• Expanded MEMPOWERDOWN to cover new memory banks

• Removed controls from DBGFORCE to account for the new single-DP debug topology

12.15.2.3. List of Registers

The system config registers start at a base address of 0x40008000 (defined as SYSCFG_BASE in SDK).

Table 1308. List of

SYSCFG registers
Offset Name Info

0x00 PROC_CONFIG Configuration for processors
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Offset Name Info

0x04 PROC_IN_SYNC_BYPASS For each bit, if 1, bypass the input synchronizer between that

GPIO

and the GPIO input register in the SIO. The input synchronizers

should

generally be unbypassed, to avoid injecting metastabilities into

processors.

If you’re feeling brave, you can bypass to save two cycles of

input

latency. This register applies to GPIO 0…31.

0x08 PROC_IN_SYNC_BYPASS_HI For each bit, if 1, bypass the input synchronizer between that

GPIO

and the GPIO input register in the SIO. The input synchronizers

should

generally be unbypassed, to avoid injecting metastabilities into

processors.

If you’re feeling brave, you can bypass to save two cycles of

input

latency. This register applies to GPIO 32…47. USB GPIO 56..57

QSPI GPIO 58..63

0x0c DBGFORCE Directly control the chip SWD debug port

0x10 MEMPOWERDOWN Control PD pins to memories.

Set high to put memories to a low power state. In this state the

memories will retain contents but not be accessible

Use with caution

0x14 AUXCTRL Auxiliary system control register

SYSCFG: PROC_CONFIG Register

Offset: 0x00

Description

Configuration for processors

Table 1309.

PROC_CONFIG

Register

Bits Description Type Reset

31:2 Reserved. - -

1 PROC1_HALTED: Indication that proc1 has halted RO 0x0

0 PROC0_HALTED: Indication that proc0 has halted RO 0x0

SYSCFG: PROC_IN_SYNC_BYPASS Register

Offset: 0x04

Description

For each bit, if 1, bypass the input synchronizer between that GPIO

and the GPIO input register in the SIO. The input synchronizers should

generally be unbypassed, to avoid injecting metastabilities into processors.

If you’re feeling brave, you can bypass to save two cycles of input

latency. This register applies to GPIO 0…31.
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Table 1310.

PROC_IN_SYNC_BYPA

SS Register

Bits Description Type Reset

31:0 GPIO RW 0x00000000

SYSCFG: PROC_IN_SYNC_BYPASS_HI Register

Offset: 0x08

Description

For each bit, if 1, bypass the input synchronizer between that GPIO

and the GPIO input register in the SIO. The input synchronizers should

generally be unbypassed, to avoid injecting metastabilities into processors.

If you’re feeling brave, you can bypass to save two cycles of input

latency. This register applies to GPIO 32…47. USB GPIO 56..57 QSPI GPIO 58..63

Table 1311.

PROC_IN_SYNC_BYPA

SS_HI Register

Bits Description Type Reset

31:28 QSPI_SD RW 0x0

27 QSPI_CSN RW 0x0

26 QSPI_SCK RW 0x0

25 USB_DM RW 0x0

24 USB_DP RW 0x0

23:16 Reserved. - -

15:0 GPIO RW 0x0000

SYSCFG: DBGFORCE Register

Offset: 0x0c

Description

Directly control the chip SWD debug port

Table 1312.

DBGFORCE Register
Bits Description Type Reset

31:4 Reserved. - -

3 ATTACH: Attach chip debug port to syscfg controls, and disconnect it from

external SWD pads.

RW 0x0

2 SWCLK: Directly drive SWCLK, if ATTACH is set RW 0x1

1 SWDI: Directly drive SWDIO input, if ATTACH is set RW 0x1

0 SWDO: Observe the value of SWDIO output. RO -

SYSCFG: MEMPOWERDOWN Register

Offset: 0x10

Description

Control PD pins to memories.

Set high to put memories to a low power state. In this state the memories will retain contents but not be accessible

Use with caution

Table 1313.

MEMPOWERDOWN

Register

Bits Description Type Reset

31:13 Reserved. - -

12 BOOTRAM RW 0x0
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Bits Description Type Reset

11 ROM RW 0x0

10 USB RW 0x0

9 SRAM9 RW 0x0

8 SRAM8 RW 0x0

7 SRAM7 RW 0x0

6 SRAM6 RW 0x0

5 SRAM5 RW 0x0

4 SRAM4 RW 0x0

3 SRAM3 RW 0x0

2 SRAM2 RW 0x0

1 SRAM1 RW 0x0

0 SRAM0 RW 0x0

SYSCFG: AUXCTRL Register

Offset: 0x14

Description

Auxiliary system control register

Table 1314. AUXCTRL

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 * Bits 7:2: Reserved

* Bit 1: When clear, the LPOSC output is XORed into the TRNG ROSC output as

an additional, uncorrelated entropy source. When set, this behaviour is

disabled.

* Bit 0: Force POWMAN clock to switch to LPOSC, by asserting its WDRESET

input. This must be set before initiating a watchdog reset of the RSM from a

stage that includes CLOCKS, if POWMAN is running from clk_ref at the point

that the watchdog reset takes place. Otherwise, the short pulse generated on

clk_ref by the reset of the CLOCKS block may affect POWMAN register state.

RW 0x00

12.15.3. TBMAN

TBMAN refers to the testbench manager, used during chip development simulations to verify the design. During these

simulations TBMAN allows software running on RP2350 to control the testbench and simulation environment. On the

real chip, it has no effect other than providing a single PLATFORM register that indicates that this is the real chip. This

PLATFORM functionality is duplicated in the sysinfo (Section 12.15.1) registers.

12.15.3.1. List of Registers

The TBMAN registers start at a base address of 0x40160000 (defined as TBMAN_BASE in SDK).
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Table 1315. List of

TBMAN registers
Offset Name Info

0x0 PLATFORM Indicates the type of platform in use

TBMAN: PLATFORM Register

Offset: 0x0

Description

Indicates the type of platform in use

Table 1316.

PLATFORM Register
Bits Description Type Reset

31:3 Reserved. - -

2 HDLSIM: Indicates the platform is a simulation RO 0x0

1 FPGA: Indicates the platform is an FPGA RO 0x0

0 ASIC: Indicates the platform is an ASIC RO 0x1

12.15.4. BUSCTRL

This block provides basic controls and monitoring for the system bus fabric.

12.15.4.1. Bus Priority

RP2350 implements a dynamic bus priority scheme described in Section 2.1.1. The BUS_PRIORITY register implements

the priority controls for this scheme.

12.15.4.2. Performance Counters

There are four 24-bit counters, each of which can subscribe to a single performance event from the system bus fabric.

Counters saturate at a value of all-ones: the counter stops incrementing when it reaches its maximum value, rather than

wrapping to zero.

The performance counters are initially disabled: you must write 1 to PERFCTR_EN before the counters begin to

increment. Write any value to a counter to clear the counter to zero in before running a profiled section of code, and

enable the counters immediately before entering the profiled section. Disable the counters again immediately upon

leaving the profiled section. The counters do not support arbitrary writes: they only count up from zero.

Write to a performance event selector register PERFSEL0 through PERFSEL3 to select the performance event which

increments the corresponding counter, PERFCTR0 through PERFCTR3.

For each of the seventeen downstream bus ports on the main system AHB5 crossbar shown in Figure 5, there are four

types of event which the performance counters detect. These events do not distinguish reads from writes, but they do

distinguish different types of bus stall, which can be helpful when diagnosing performance issues. The types of event

are:

Access

Increment when any access completes on this downstream port.

Contested Access

Increment when any access completes on this downstream port which previously stalled due to the port being

occupied by another access. For example, if two managers access an initially idle port simultaneously, one will

complete before the other. The access that completes first is said to not be contested, and does not increment this

counter. The access that completes second (which was initially deferred due to the access from the other
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manager) is contested, and increments this counter when it completes.

Upstream-stalled Cycle

Increment once per cycle while any manager experiences a stall on this port. This may be either due to arbitration

with another manager (a contested access) or due to a stall on the downstream bus port, such as access to a slow

peripheral. This is measured at the port, before leaving the main AHB5 crossbar.

Downstream-stalled Cycle

Increment once per cycle while this port itself experiences a stall on the downstream bus. This indicates the

peripheral or memory device itself being slow to respond, such as an XIP cache miss.

The first two event types listed above are the same as RP2040. The latter two are new for RP2350.

12.15.4.3. List of Registers

The Bus Fabric registers start at a base address of 0x40068000 (defined as BUSCTRL_BASE in SDK).

Table 1317. List of

BUSCTRL registers
Offset Name Info

0x00 BUS_PRIORITY Set the priority of each master for bus arbitration.

0x04 BUS_PRIORITY_ACK Bus priority acknowledge

0x08 PERFCTR_EN Enable the performance counters. If 0, the performance counters

do not increment. This can be used to precisely start/stop event

sampling around the profiled section of code.

The performance counters are initially disabled, to save energy.

0x0c PERFCTR0 Bus fabric performance counter 0

0x10 PERFSEL0 Bus fabric performance event select for PERFCTR0

0x14 PERFCTR1 Bus fabric performance counter 1

0x18 PERFSEL1 Bus fabric performance event select for PERFCTR1

0x1c PERFCTR2 Bus fabric performance counter 2

0x20 PERFSEL2 Bus fabric performance event select for PERFCTR2

0x24 PERFCTR3 Bus fabric performance counter 3

0x28 PERFSEL3 Bus fabric performance event select for PERFCTR3

BUSCTRL: BUS_PRIORITY Register

Offset: 0x00

Description

Set the priority of each master for bus arbitration.

Table 1318.

BUS_PRIORITY

Register

Bits Description Type Reset

31:13 Reserved. - -

12 DMA_W: 0 - low priority, 1 - high priority RW 0x0

11:9 Reserved. - -

8 DMA_R: 0 - low priority, 1 - high priority RW 0x0

7:5 Reserved. - -

4 PROC1: 0 - low priority, 1 - high priority RW 0x0
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Bits Description Type Reset

3:1 Reserved. - -

0 PROC0: 0 - low priority, 1 - high priority RW 0x0

BUSCTRL: BUS_PRIORITY_ACK Register

Offset: 0x04

Description

Bus priority acknowledge

Table 1319.

BUS_PRIORITY_ACK

Register

Bits Description Type Reset

31:1 Reserved. - -

0 Goes to 1 once all arbiters have registered the new global priority levels.

Arbiters update their local priority when servicing a new nonsequential access.

In normal circumstances this will happen almost immediately.

RO 0x0

BUSCTRL: PERFCTR_EN Register

Offset: 0x08

Table 1320.

PERFCTR_EN Register
Bits Description Type Reset

31:1 Reserved. - -

0 Enable the performance counters. If 0, the performance counters do not

increment. This can be used to precisely start/stop event sampling around the

profiled section of code.

The performance counters are initially disabled, to save energy.

RW 0x0

BUSCTRL: PERFCTR0 Register

Offset: 0x0c

Description

Bus fabric performance counter 0

Table 1321.

PERFCTR0 Register
Bits Description Type Reset

31:24 Reserved. - -

23:0 Busfabric saturating performance counter 0

Count some event signal from the busfabric arbiters, if PERFCTR_EN is set.

Write any value to clear. Select an event to count using PERFSEL0

WC 0x000000

BUSCTRL: PERFSEL0 Register

Offset: 0x10

Description

Bus fabric performance event select for PERFCTR0

Table 1322. PERFSEL0

Register
Bits Description Type Reset

31:7 Reserved. - -
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Bits Description Type Reset

6:0 Select an event for PERFCTR0. For each downstream port of the main

crossbar, four events are available: ACCESS, an access took place;

ACCESS_CONTESTED, an access took place that previously stalled due to

contention from other masters; STALL_DOWNSTREAM, count cycles where

any master stalled due to a stall on the downstream bus; STALL_UPSTREAM,

count cycles where any master stalled for any reason, including contention

from other masters.

RW 0x1f

Enumerated values:

0x00 → siob_proc1_stall_upstream

0x01 → siob_proc1_stall_downstream

0x02 → siob_proc1_access_contested

0x03 → siob_proc1_access

0x04 → siob_proc0_stall_upstream

0x05 → siob_proc0_stall_downstream

0x06 → siob_proc0_access_contested

0x07 → siob_proc0_access

0x08 → apb_stall_upstream

0x09 → apb_stall_downstream

0x0a → apb_access_contested

0x0b → apb_access

0x0c → fastperi_stall_upstream

0x0d → fastperi_stall_downstream

0x0e → fastperi_access_contested

0x0f → fastperi_access

0x10 → sram9_stall_upstream

0x11 → sram9_stall_downstream

0x12 → sram9_access_contested

0x13 → sram9_access

0x14 → sram8_stall_upstream

0x15 → sram8_stall_downstream

0x16 → sram8_access_contested

0x17 → sram8_access

0x18 → sram7_stall_upstream

0x19 → sram7_stall_downstream

0x1a → sram7_access_contested

0x1b → sram7_access

0x1c → sram6_stall_upstream

0x1d → sram6_stall_downstream
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Bits Description Type Reset

0x1e → sram6_access_contested

0x1f → sram6_access

0x20 → sram5_stall_upstream

0x21 → sram5_stall_downstream

0x22 → sram5_access_contested

0x23 → sram5_access

0x24 → sram4_stall_upstream

0x25 → sram4_stall_downstream

0x26 → sram4_access_contested

0x27 → sram4_access

0x28 → sram3_stall_upstream

0x29 → sram3_stall_downstream

0x2a → sram3_access_contested

0x2b → sram3_access

0x2c → sram2_stall_upstream

0x2d → sram2_stall_downstream

0x2e → sram2_access_contested

0x2f → sram2_access

0x30 → sram1_stall_upstream

0x31 → sram1_stall_downstream

0x32 → sram1_access_contested

0x33 → sram1_access

0x34 → sram0_stall_upstream

0x35 → sram0_stall_downstream

0x36 → sram0_access_contested

0x37 → sram0_access

0x38 → xip_main1_stall_upstream

0x39 → xip_main1_stall_downstream

0x3a → xip_main1_access_contested

0x3b → xip_main1_access

0x3c → xip_main0_stall_upstream

0x3d → xip_main0_stall_downstream

0x3e → xip_main0_access_contested

0x3f → xip_main0_access

0x40 → rom_stall_upstream

0x41 → rom_stall_downstream
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Bits Description Type Reset

0x42 → rom_access_contested

0x43 → rom_access

BUSCTRL: PERFCTR1 Register

Offset: 0x14

Description

Bus fabric performance counter 1

Table 1323.

PERFCTR1 Register
Bits Description Type Reset

31:24 Reserved. - -

23:0 Busfabric saturating performance counter 1

Count some event signal from the busfabric arbiters, if PERFCTR_EN is set.

Write any value to clear. Select an event to count using PERFSEL1

WC 0x000000

BUSCTRL: PERFSEL1 Register

Offset: 0x18

Description

Bus fabric performance event select for PERFCTR1

Table 1324. PERFSEL1

Register
Bits Description Type Reset

31:7 Reserved. - -

6:0 Select an event for PERFCTR1. For each downstream port of the main

crossbar, four events are available: ACCESS, an access took place;

ACCESS_CONTESTED, an access took place that previously stalled due to

contention from other masters; STALL_DOWNSTREAM, count cycles where

any master stalled due to a stall on the downstream bus; STALL_UPSTREAM,

count cycles where any master stalled for any reason, including contention

from other masters.

RW 0x1f

Enumerated values:

0x00 → siob_proc1_stall_upstream

0x01 → siob_proc1_stall_downstream

0x02 → siob_proc1_access_contested

0x03 → siob_proc1_access

0x04 → siob_proc0_stall_upstream

0x05 → siob_proc0_stall_downstream

0x06 → siob_proc0_access_contested

0x07 → siob_proc0_access

0x08 → apb_stall_upstream

0x09 → apb_stall_downstream

0x0a → apb_access_contested

0x0b → apb_access
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Bits Description Type Reset

0x0c → fastperi_stall_upstream

0x0d → fastperi_stall_downstream

0x0e → fastperi_access_contested

0x0f → fastperi_access

0x10 → sram9_stall_upstream

0x11 → sram9_stall_downstream

0x12 → sram9_access_contested

0x13 → sram9_access

0x14 → sram8_stall_upstream

0x15 → sram8_stall_downstream

0x16 → sram8_access_contested

0x17 → sram8_access

0x18 → sram7_stall_upstream

0x19 → sram7_stall_downstream

0x1a → sram7_access_contested

0x1b → sram7_access

0x1c → sram6_stall_upstream

0x1d → sram6_stall_downstream

0x1e → sram6_access_contested

0x1f → sram6_access

0x20 → sram5_stall_upstream

0x21 → sram5_stall_downstream

0x22 → sram5_access_contested

0x23 → sram5_access

0x24 → sram4_stall_upstream

0x25 → sram4_stall_downstream

0x26 → sram4_access_contested

0x27 → sram4_access

0x28 → sram3_stall_upstream

0x29 → sram3_stall_downstream

0x2a → sram3_access_contested

0x2b → sram3_access

0x2c → sram2_stall_upstream

0x2d → sram2_stall_downstream

0x2e → sram2_access_contested

0x2f → sram2_access
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Bits Description Type Reset

0x30 → sram1_stall_upstream

0x31 → sram1_stall_downstream

0x32 → sram1_access_contested

0x33 → sram1_access

0x34 → sram0_stall_upstream

0x35 → sram0_stall_downstream

0x36 → sram0_access_contested

0x37 → sram0_access

0x38 → xip_main1_stall_upstream

0x39 → xip_main1_stall_downstream

0x3a → xip_main1_access_contested

0x3b → xip_main1_access

0x3c → xip_main0_stall_upstream

0x3d → xip_main0_stall_downstream

0x3e → xip_main0_access_contested

0x3f → xip_main0_access

0x40 → rom_stall_upstream

0x41 → rom_stall_downstream

0x42 → rom_access_contested

0x43 → rom_access

BUSCTRL: PERFCTR2 Register

Offset: 0x1c

Description

Bus fabric performance counter 2

Table 1325.

PERFCTR2 Register
Bits Description Type Reset

31:24 Reserved. - -

23:0 Busfabric saturating performance counter 2

Count some event signal from the busfabric arbiters, if PERFCTR_EN is set.

Write any value to clear. Select an event to count using PERFSEL2

WC 0x000000

BUSCTRL: PERFSEL2 Register

Offset: 0x20

Description

Bus fabric performance event select for PERFCTR2

Table 1326. PERFSEL2

Register
Bits Description Type Reset

31:7 Reserved. - -
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Bits Description Type Reset

6:0 Select an event for PERFCTR2. For each downstream port of the main

crossbar, four events are available: ACCESS, an access took place;

ACCESS_CONTESTED, an access took place that previously stalled due to

contention from other masters; STALL_DOWNSTREAM, count cycles where

any master stalled due to a stall on the downstream bus; STALL_UPSTREAM,

count cycles where any master stalled for any reason, including contention

from other masters.

RW 0x1f

Enumerated values:

0x00 → siob_proc1_stall_upstream

0x01 → siob_proc1_stall_downstream

0x02 → siob_proc1_access_contested

0x03 → siob_proc1_access

0x04 → siob_proc0_stall_upstream

0x05 → siob_proc0_stall_downstream

0x06 → siob_proc0_access_contested

0x07 → siob_proc0_access

0x08 → apb_stall_upstream

0x09 → apb_stall_downstream

0x0a → apb_access_contested

0x0b → apb_access

0x0c → fastperi_stall_upstream

0x0d → fastperi_stall_downstream

0x0e → fastperi_access_contested

0x0f → fastperi_access

0x10 → sram9_stall_upstream

0x11 → sram9_stall_downstream

0x12 → sram9_access_contested

0x13 → sram9_access

0x14 → sram8_stall_upstream

0x15 → sram8_stall_downstream

0x16 → sram8_access_contested

0x17 → sram8_access

0x18 → sram7_stall_upstream

0x19 → sram7_stall_downstream

0x1a → sram7_access_contested

0x1b → sram7_access

0x1c → sram6_stall_upstream

0x1d → sram6_stall_downstream
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Bits Description Type Reset

0x1e → sram6_access_contested

0x1f → sram6_access

0x20 → sram5_stall_upstream

0x21 → sram5_stall_downstream

0x22 → sram5_access_contested

0x23 → sram5_access

0x24 → sram4_stall_upstream

0x25 → sram4_stall_downstream

0x26 → sram4_access_contested

0x27 → sram4_access

0x28 → sram3_stall_upstream

0x29 → sram3_stall_downstream

0x2a → sram3_access_contested

0x2b → sram3_access

0x2c → sram2_stall_upstream

0x2d → sram2_stall_downstream

0x2e → sram2_access_contested

0x2f → sram2_access

0x30 → sram1_stall_upstream

0x31 → sram1_stall_downstream

0x32 → sram1_access_contested

0x33 → sram1_access

0x34 → sram0_stall_upstream

0x35 → sram0_stall_downstream

0x36 → sram0_access_contested

0x37 → sram0_access

0x38 → xip_main1_stall_upstream

0x39 → xip_main1_stall_downstream

0x3a → xip_main1_access_contested

0x3b → xip_main1_access

0x3c → xip_main0_stall_upstream

0x3d → xip_main0_stall_downstream

0x3e → xip_main0_access_contested

0x3f → xip_main0_access

0x40 → rom_stall_upstream

0x41 → rom_stall_downstream

RP2350 Datasheet

12.15. System Control Registers 1250



Bits Description Type Reset

0x42 → rom_access_contested

0x43 → rom_access

BUSCTRL: PERFCTR3 Register

Offset: 0x24

Description

Bus fabric performance counter 3

Table 1327.

PERFCTR3 Register
Bits Description Type Reset

31:24 Reserved. - -

23:0 Busfabric saturating performance counter 3

Count some event signal from the busfabric arbiters, if PERFCTR_EN is set.

Write any value to clear. Select an event to count using PERFSEL3

WC 0x000000

BUSCTRL: PERFSEL3 Register

Offset: 0x28

Description

Bus fabric performance event select for PERFCTR3

Table 1328. PERFSEL3

Register
Bits Description Type Reset

31:7 Reserved. - -

6:0 Select an event for PERFCTR3. For each downstream port of the main

crossbar, four events are available: ACCESS, an access took place;

ACCESS_CONTESTED, an access took place that previously stalled due to

contention from other masters; STALL_DOWNSTREAM, count cycles where

any master stalled due to a stall on the downstream bus; STALL_UPSTREAM,

count cycles where any master stalled for any reason, including contention

from other masters.

RW 0x1f

Enumerated values:

0x00 → siob_proc1_stall_upstream

0x01 → siob_proc1_stall_downstream

0x02 → siob_proc1_access_contested

0x03 → siob_proc1_access

0x04 → siob_proc0_stall_upstream

0x05 → siob_proc0_stall_downstream

0x06 → siob_proc0_access_contested

0x07 → siob_proc0_access

0x08 → apb_stall_upstream

0x09 → apb_stall_downstream

0x0a → apb_access_contested

0x0b → apb_access
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Bits Description Type Reset

0x0c → fastperi_stall_upstream

0x0d → fastperi_stall_downstream

0x0e → fastperi_access_contested

0x0f → fastperi_access

0x10 → sram9_stall_upstream

0x11 → sram9_stall_downstream

0x12 → sram9_access_contested

0x13 → sram9_access

0x14 → sram8_stall_upstream

0x15 → sram8_stall_downstream

0x16 → sram8_access_contested

0x17 → sram8_access

0x18 → sram7_stall_upstream

0x19 → sram7_stall_downstream

0x1a → sram7_access_contested

0x1b → sram7_access

0x1c → sram6_stall_upstream

0x1d → sram6_stall_downstream

0x1e → sram6_access_contested

0x1f → sram6_access

0x20 → sram5_stall_upstream

0x21 → sram5_stall_downstream

0x22 → sram5_access_contested

0x23 → sram5_access

0x24 → sram4_stall_upstream

0x25 → sram4_stall_downstream

0x26 → sram4_access_contested

0x27 → sram4_access

0x28 → sram3_stall_upstream

0x29 → sram3_stall_downstream

0x2a → sram3_access_contested

0x2b → sram3_access

0x2c → sram2_stall_upstream

0x2d → sram2_stall_downstream

0x2e → sram2_access_contested

0x2f → sram2_access
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Bits Description Type Reset

0x30 → sram1_stall_upstream

0x31 → sram1_stall_downstream

0x32 → sram1_access_contested

0x33 → sram1_access

0x34 → sram0_stall_upstream

0x35 → sram0_stall_downstream

0x36 → sram0_access_contested

0x37 → sram0_access

0x38 → xip_main1_stall_upstream

0x39 → xip_main1_stall_downstream

0x3a → xip_main1_access_contested

0x3b → xip_main1_access

0x3c → xip_main0_stall_upstream

0x3d → xip_main0_stall_downstream

0x3e → xip_main0_access_contested

0x3f → xip_main0_access

0x40 → rom_stall_upstream

0x41 → rom_stall_downstream

0x42 → rom_access_contested

0x43 → rom_access
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Chapter 13. OTP
RP2350 provides 8 kB of one-time programmable storage (OTP), which holds:

• Preprogrammed per-device information, such as unique device identifier and oscillator trim values

• Security configuration such as debug disable and secure boot enable

• Public key fingerprints for secure boot

• Symmetric keys for decryption of flash contents into SRAM

• Configuration for the USB bootloader, such as customising VID/PID and descriptors

• Bootable software images, for low-cost flashless applications or custom bootloaders

• Any other user-defined data, such as per-device personalisation values

For the full listing of predefined OTP contents, see Section 13.9.

OTP is physically an array of 4096 rows of 24 bits each. You can directly access these 24-bit values, but there is also

hardware support for storing 16 bits of data in each row, with 6 bits of Hamming ECC protection and 2 bits of bit polarity

reversal protection, yielding an ECC data capacity of 8192 bytes.

On a blank device, the OTP contents is all zeroes, except for some basic device information pre-programmed during

manufacturing test. Each bit can be irreversibly programmed from zero to one. To program the OTP contents:

• directly access the registers using the SBPI bridge

• call the bootrom otp_access API (Section 5.4.8.21)

• use the PICOBOOT interface of the USB bootloader (Section 5.6)

RP2350 enforces page-based permissions on OTP to partition Secure from Non-secure data and to ensure that

contents that should not change do not change. The OTP address space is logically partitioned into 64 pages, each 64

rows in size, for a total of 128 bytes of ECC data per page. Pages initially have full read-write permissions, but can be

restricted to read-only or inaccessible for each of Secure, Non-secure and bootloader access.

The page permissions themselves are stored in OTP. Locking pages in this way is an irreversible operation, referred to

as hard locking. The hardware also supports soft locking, where a page’s permissions are further restricted by writing to

the relevant register in SW_LOCK0 through SW_LOCK63; this restriction remains in effect until the next OTP reset.

Resetting the OTP block also resets the processors, so soft locking can be used to restrict the availability of sensitive

content like decryption keys to early boot stages.

OTP access keys (Section 13.5.2) provide an additional layer of protection. A fixed challenge is written to a write-only

OTP area. Pages registered to that key require the key to be entered to a write-only register in order to open read or write

access. This supports configuration data that can be accessed or edited by the board manufacturer, but not by general

firmware running on the device.

13.1. OTP Address Map

The OTP hardware resides in a 128 kB region starting at 0x40120000 (OTP_BASE in the SDK). Bit 16 of the address is used

to select either the OTP control registers, in the lower 64 kB, or one of the OTP read data aliases, in the upper 64 kB of

this space.

The OTP control registers (Section 13.8) are aliased at 4 kB intervals to implement the usual set, clear, and XOR atomic

write aliases described in Section 2.1.3.

The read data region starting at 0x40130000 divides further into four aliases:

• 0x40130000, OTP_DATA_BASE: ECC read alias. A 32-bit read returns the ECC-corrected data for two neighbouring rows, or

all-ones on permission failure. Only the first 8 kB is populated.
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• 0x40138000, OTP_DATA_GUARDED_BASE: ECC guarded read alias. Successful reads return the same data as OTP_DATA_BASE.

Only the first 8 kB is populated.

• 0x40134000, OTP_DATA_RAW_BASE: raw read alias. A 32-bit read directly returns the 24-bit contents of a single row, with

zeroes in the eight MSBs, or returns all-ones on permission failure.

• 0x4013c000, OTP_DATA_RAW_GUARDED_BASE: raw, guarded read alias. Successful reads return the same data as

OTP_DATA_RAW_BASE.

Bit 15 of the address selects ECC (0) vs raw (1). Bit 14 of the address selects unguarded (0) vs guarded (1) access.

Guarded reads return the same data as unguarded reads, but perform additional hardware consistency checks and

return bus faults on permission failure. For more information, see Section 13.1.1.

 IMPORTANT

The read data regions starting at 0x40130000 are accessible only when USR.DCTRL is set, otherwise all reads return a

bus error response. This bit is clear when the OTP is being programmed via the SBPI bridge.

Writing to the read data aliases is not a valid operation, and will always return a bus fault. The OTP is programmed by

the SBPI bridge, which is used internally by the bootrom otp_access API, Section 5.4.8.21.

13.1.1. Guarded Reads

Reads through the guarded aliases differ from unguarded reads in the following ways:

• Permission failures return bus faults rather than a bit pattern of all-ones.

• Uncorrectable ECC errors return a bus fault if detected.

• Guarded reads perform an additional hardware consistency check to detect power transients. If this check fails,

the read returns a bus fault.

These checks help to make the OTP fail-safe in contexts where deliberate fault injection is a possibility. For example,

the RP2350 bootrom uses guarded reads to check boot configuration flags.

The data returned from a successful guarded read is the same as the data returned by a successful read from the

corresponding unguarded alias.

13.2. Background: OTP IP Details

The RP2350 OTP subsystem uses the Synopsys NVM OTP IP, which comes in 3 parts:

• Integrated Power Supply (IPS), including:

◦ Charge Pump (for programming)

◦ Regulator (for reading)

• OTP Macro (SHF, Fuse)

◦ 4096 × 24 (8 kB with ECC, 16-bit ECC write granularity)

• Access port (AP), providing:

◦ Basic read access

◦ Programming access

◦ ECC and bit redundancy

◦ BOOT function, which polls for stable OTP power supply at start-of-day
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13.3. Background: OTP Hardware Architecture

This diagram shows the integration of the three Synopsys IP components, and the Raspberry Pi hardware added to

make this all function in the context of RP2350’s system and security architecture. More specifically:

• APB interface(s) to connect to the SoC

• Internal ring oscillator with clock edge randomisation

• Power-up state machine, running off the ring oscillator

• Lock shim, sitting between the SNPS RTL and the memory core (fuse)

Figure 141. OTP

architecture

The OTP subsystem clock is initially provided by the OTP boot oscillator (Section 13.3.3) during hardware startup, but

switches to clk_ref before any software runs on the processors. The frequency of clk_ref must not exceed 25 MHz

when accessing the OTP.

13.3.1. Lock Shim

The lock shim is inserted between the Synopsys AP block and the SHF block, and is used to enforce read/write page

locks, based on:

• The OTP address presented on the AP → SHF bus

• The read/write strobe on the AP → SHF bus

• The security attribute of the upstream bus access which caused this SHF access (assumed to be Secure if SBPI is

currently enabled via USR.DCTRL)

Because the Synopsys AP performs both reads and writes in the course of programming an OTP row, it is impossible to

disable reads to an address without also disabling writes. Three lock states are supported:

• Read/Write

• Read-only

• Inaccessible

The full locking scheme is described in in Section 13.5, but to summarise:

• The lock state of each OTP page is read from OTP at boot time.
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• There is a separate copy of the lock state for Secure/Non-secure accesses. The lock shim applies the Secure read

permissions to Secure reads, and the Non-secure read permissions to Non-secure reads. There is no such rule for

writes, because Non-secure code is not capable of accessing the programming hardware.

• The lock encoding in OTP storage is such that a page can always be locked down to a less permissive state (in the

order RW → RO → Inaccessible) but can never return to a more permissive state.

• Software can advance the state of each individual lock at runtime without programming OTP, and this lasts until

the OTP PSM is re-run.

• Software locks also obey the lock progression order (RW → RO → Inaccessible) and can not be regressed.

The full locking scheme is described in in Section 13.5.

13.3.2. External Interfaces

The OTP integration has one upstream APB interface, which splits internally onto two separate interfaces. This

guarantees the hardware only serves a single upstream APB access at a time, with a single PPROT security level.

The first APB interface is the data interface (or data bridge) (OTPD). It has the following characteristics:

• Read-only

• Connects to the Synopsys device access port (DAP)

• Data interface reads always return 32 or 24 bits of valid data

• The data interface address is rounded down to a multiple of 32 bits, so that narrow reads return the correct byte

lanes

• There is an 8 kB window which supports 32-bit ECC reads

◦ Each upstream bus read is split into two OTP accesses, each of which returns 16 bits of error-corrected data

from the OTP

• There is an 8 kB window which supports guarded 32-bit ECC reads, and returns a bus error if the guarding read

fails.

◦ Functions the same as the ECC read window, but reads the Synopsys boot word before accessing the OTP

array, and return a bus error if the first read does not match the expected constant

◦ Used to increase confidence in software OTP reads in the bootrom

• There is a 16 kB window which supports 24-bit raw reads

◦ Each access returns a single raw 24-bit OTP row, bypassing error correction

◦ Software must provide its own redundancy (e.g. triple majority vote)

◦ Allows bit-mutable data structures, such as boot flags, or thermometer counters

The second APB interface is the command interface. This provides two main functions:

• Provides a bridge to the SBPI interface (Synopsys proprietary Serial and Byte-Parallel Interface bus)

◦ SBPI connects to the Programmable Master Controller (PMC), with access to the DAP, DATAPATH, charge

pump (IPS), and fuse memory (SHF)

◦ Allows arbitrary OTP operations, including programming

◦ Only accessible to Secure reads and writes

• Provides control registers for Raspberry Pi hardware

◦ Registers have different accessibility according to Secure/Non-secure and read/write

◦ Software lock registers are always readable by both security domains

Hardware configuration data read from OTP during the power-up sequence drives system-level control signals, e.g.
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disabling CoreSight APs. This is described in more detail in (Section 13.3.4).

A single system-level interrupt output (IRQ) generates interrupts for the following sources:

• Secure read failed due to locks

• Non-secure read failed due to locks

• Write failed due to locks

• SBPI FLAG, used by the PMC to signal completion

• Data port access when DCTRL is set error

◦ USR.DCTRL tells the SNPS AP whether the SBPI bridge or data bridge can access the memory array; this help

debugging SW if a data access is attempted whilst the DAP is inaccessible

Any failed access also returns a bus fault (PSLVERR). To determine whether an OTP address is accessible, query the lock

tables.

Non-secure code cannot access the interrupt status registers.

13.3.3. OTP Boot Oscillator

The OTP startup sequence (Section 13.3.4) runs from a local ring oscillator, dedicated to the OTP subsystem. This is

separate from the system ring oscillator (the ROSC) which provides the system clock to run the processors during boot.

• The OTP boot oscillator is the only clock used by the OTP power-up state machine

• The OTP boot oscillator dynamically randomises its own frequency controls, to deliberately add jitter to the clock

• The OTP boot oscillator stops when the PSM completes, and does not start again until the OTP resets

• The OTP clock automatically switches to clk_ref when the OTP boot oscillator stops

The boot oscillator has a nominal frequency of 12MHz. It provides the clock for reading out hardware configuration

from OTP, including the critical flags (Section 13.4) which configure hardware security features such as debug disable

and the glitch detectors.

Keeping this oscillator local to the OTP hardware subsystem reduces the power signature of the clock itself, due to the

lower switched clock capacitance. Along with the random jitter of the frequency controls, this helps frustrate attempts

to recover OTP access keys and debug keys via power signature analysis attacks, or to disable security features by

timing fault injection against the OTP clock.

Only the OTP boot oscillator enables the ROSC frequency randomisation feature by default: for later operations using

the system ROSC (Section 8.3), you must explicitly enable this feature on that oscillator, by programming the ROSC

control registers. The crystal oscillator (XOSC) does not support frequency randomisation.

13.3.4. Power-up State Machine

The OTP is the second item in the switched core domain’s Power-On State Machine (Section 7.4), after the processor

cold reset. OTP does not release its rst_done, or enable any debug interface (including the factory test JTAG described in

Section 10.10), until the OTP PSM reads out OTP-resident hardware configuration. The rst_done output to the system

PSM holds the rest of the system in reset until the OTP PSM completes, so that no software runs until the OTP’s

contents are known.

The OTP boot sequence runs from a local ring oscillator. This oscillator is dedicated to the OTP subsystem, and is

separate from the main system ROSC used by the processors at boot. The sequence is:

1. First, the PSM runs the Synopsys boot instruction. This has the following steps:

a. Wait for the power supply to return a 'good' value.
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b. Read consistency check location until hardware sees the correct value for 16 successive reads.

 NOTE

Consistency checks use predefined words stored in mask ROM cells with similar analogue properties to

OTP cells.

2. Read critical flags (non-ECC): each critical bit is redundant across 8 OTP rows, with three-of-eight vote for each

flag.

3. Read hardware access keys via ECC read interface.

4. Read valid bits for hardware access keys, including the debug keys (Section 3.5.9.2)

5. Initialise page lock registers from the lock page via raw read interface.

6. Assert rst_done signal to the system power-on state machine

7. The system reset sequence continues, starting with the system ROSC

13.4. Critical Flags

Critical flags enable hardware security features which are fundamental to RP2350’s secure boot implementation. The

OTP power-up state machine reads critical flags very early in the system reset sequence, before any code runs on the

processors.

Most critical flags are in the main Boot Configuration page, page 1. These are listed under CRIT1 in the OTP data listing.

The exceptions are the Arm/RISC-V disable flags, which are in the Chip Info page, page 0. This page is made read-only

during factory programming, so users can not write to the CRIT0 flags.

Critical flags define 0 as the unprogrammed value, and 1 as the programmed value. On a blank device, all of the CRIT1

flags are 0. The reset value specified below is the value assigned to the internal logic net between the OTP reset being

applied and the OTP PSM completing. For example, the reset value of 1 for the debug disable flags implies that debug is

not accessible whilst the OTP PSM is running, but may be available afterward, depending on the value read from OTP

storage.

• ARM_DISABLE (reset: 0 ): Force the ARCHSEL register to RISC-V, at higher priority than RISC-V disable flag, secure boot

enable flag, or default boot architecture flag.

• RISCV_DISABLE (reset: 0): Force the ARCHSEL register to Arm, at higher priority than the default boot architecture flag.

• SECURE_BOOT_ENABLE (reset: 1 ): Enable boot signature checking in bootrom, disable factory JTAG, and force the

ARCHSEL register to Arm, at higher priority than the default boot architecture flag.

• SECURE_DEBUG_DISABLE (reset: 1 ): Disable factory JTAG, block Secure accesses from Mem-APs, and block halt

requests to Secure processors.

◦ Prevents secure AP accesses by masking their ap_secure_en signals.

◦ Prevents secure processor halting by masking the Cortex-M33’s SPIDEN and NSPIDEN signals.

◦ Secure debug can be re-enabled by a Secure register in the OTP block.

◦ Re-enable of Secure debug can be disabled by a Secure write-1-only lock register, also in the OTP block.

• DEBUG_DISABLE (reset: 1): Completely disable the Mem-APs, in addition to disabling everything disabled by the secure

debug disable flag.

• BOOT_ARCH (reset: 0 ): set the reset value of the ARCHSEL register (0 → Arm, 1 → RISC-V) if it has not been forced by

other critical flags.

◦ Not critical, but hardware-read.

• GLITCH_DETECTOR_ENABLE (reset: 0): pass an enable signal to the glitch detectors so that they can be armed before any

software runs.
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• GLITCH_DETECTOR_SENS(reset: 0): configure the initial sensitivity of the glitch detector circuits.

Critical flags are encoded with a three-of-eight vote across eight consecutive OTP rows. Each flag is redundantly

programmed to the same bit position in eight consecutive rows. Hardware considers the flag to be set if the bit reads as

1 in at least three of these eight rows. The flag is considered clear if no more than two bits are observed to be set.

JTAG disable is ignored only if the customer RMA flag (Section 13.7) is set.

For further discussion of the effects of the critical flags, see:

• Section 3.5.9.1 for the effects of the debug disable flags

• Section 3.9 for the effects of the Arm/RISC-V architecture select flags

• Section 10.9 for the effects of the glitch detector configuration flags

• Section 10.1.1 for discussion of the bootrom secure boot support enabled by the SECURE_BOOT_ENABLE flag

13.5. Page Locks

The OTP protection hardware logically segments OTP into 64 pages (0 through 63), each 128 bytes in size, or

equivalently 64 OTP rows.

Each page has a set of lock registers which determine read and write access for that page from Secure and Non-secure

code. The lock registers are preloaded from OTP at reset, and can then be advanced (i.e. made less permissive) by

software. Lock registers themselves are always world-readable.

Pages 61 through 63 are not so neatly described by a single set of lock registers. These pages store lock initialisation

metadata. For more details, see Section 13.5.4. This section describes the more common case of a page protected by a

set of page locks.

13.5.1. Lock Progression

Due to hardware constraints (Section 13.3.1), read and write restrictions are not orthogonal: it’s impossible to disallow

reads to an address without also disallowing writes. So, the progression of locking for a given page is:

0. Read/Write

1. Read-only

2. Inaccessible

Lock state only increases. This is enforced in two ways:

• Due to the nature of OTP and the choice of encoding, you cannot lower the OTP values preloaded to the lock

registers during boot.

• The lock registers ignore writes of lower-than-current values.

Secure and Non-secure use separate lock values, which can advance independently of one another. There is no

hardware distinction between Non-secure Read/Write and Non-secure Read-only, since Non-secure can not directly

write to the OTP anyway. It is still worth encoding, because Secure software performing a write on Non-secure

software’s behalf can check and enforce the Non-secure write lock.

You can reprogram bits from any state to any higher state. Locks use a 2-bit thermometer code: the initial all-zeroes

state is read-write, and locks are advanced by programming first bit 0, then bit 1.

Lock bits in OTP are triple-redundant with a majority vote. They can’t be ECC-protected, because they may be mutated

bit-by-bit over multiple programming operations.

The OTP-resident lock bits are write-protected by their own Secure lock level. The lock pages are always world-readable.

The Secure lock registers can be advanced by Secure code, and are world-readable.
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The Non-secure lock registers can be advanced by Secure or Non-secure code, and are world-readable.

13.5.2. OTP Access Keys

Page 61 contains 128-bit keys. Each key has a valid bit: when set, the key becomes completely inaccessible to

software. The keys are always read out into hidden registers by hardware during startup so that hardware can perform

key comparisons without exposing the keys to software.

Pages can require specific keys for some page permissions. To unlock the page, the user writes their key to a write-only

register in the OTP block. The page remains unlocked for as long as the correct key is present in this register. To re-lock

the page, erase the active key by writing zeroes to the key register.

The per-page lock config specifies the following:

• a read key index 1-7, or 0 if there is no read key

• a write key index 1-7 or 0 if there is no write key

• the no-key state: either Read-only or Inaccessible, state of the page when no registered key has been entered by

software into the key register

The no-key state is encoded as follows:

• 0 for Read-only (lock level 1)

• 1 for Inaccessible (lock level 2).

 TIP

Key index 7 does not exist in the configuration. If you specify key index 7, it is guaranteed to never match.

The hardware determines the key lock level by comparing the entered key to the key config of the current page, as

follows:

1. If no keys are registered, the key lock level is 0

2. Else if keys are registered and no matching key is entered, the key lock level is 2 or 1 depending on the "no-key

state" config

3. Else if a write key is registered and present, the key lock level is 0

4. Else if a read key is registered and present, the key lock level is 1

Hardware compares the key lock level to the page’s lock level for the current security domain (Secure/Non-secure) and

takes whichever is higher. For example, if a page has been made Non-secure read-only, there is nothing a key can do to

make it Non-secure writable.

There are six 128-bit access keys stored in the OTP. Keys 5 and 6 also function as the Secure debug access key and

Non-secure debug access key, respectively. See Section 3.5.9.2 for information on how the debug keys affect external

debug access.

You might use OTP access keys if a bootloader contains OTP configuration that needs to be Secure-writable only to the

board owner, not to general Secure software on the device.

13.5.3. Lock Encoding in OTP

Page locks are encoded as a 16-bit value. This value is stored as a pair of triple-redundant bytes, each byte occupying a

24-bit OTP row.

The lock halfword is encoded as follows:
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Bits Purpose

2:0 Write key index, or 0 if no write key

5:3 Read key index, or 0 if no read key

6 No-key state, 0=Read-only 1=Inaccessible

7 Reserved

9:8 Secure lock state (thermometer code 0 → 2)

11:10 Non-secure lock state (thermometer code 0 → 2)

13:12 PicoBoot lock state (thermometer code 0 → 2) or software-defined use if PicoBoot OTP is disabled

15:12 Reserved

13.5.4. Special Pages

The following pages require special case handling in their lock checks:

• The lock word region itself (pages 62 and 63)

◦ Lock words are always world-readable

◦ Lock words are writable by Secure code if the lock word itself permits Secure writes

◦ Consequently, lock words 62 and 63 are considered "spare", since they do not protect pages 62 and 63; the

page 63 lock word is repurposed for the RMA flag

• The hardware access key page (page 61)

◦ Contains OTP access keys and debug access keys

◦ Each key also has a valid bit (rbit)

◦ Page 61 (key page) has all of the usual protections from the page 61 lock word

◦ If a key’s valid bit is set, that key is inaccessible; the converse is not necessarily true

Page 0, known as the chip info page, is not a special page. Raspberry Pi sets page 0 to read-only during factory test,

after writing chip identification and calibration values.

13.5.5. Permissions of Blank Devices

Each RP2350 device has some information programmed during manufacturing test. At this time, a small number of

hard page lock bits are also programmed:

• Page 0, which contains chip information, is read-only for all accesses.

• Pages 1 and 2, which contain boot config and boot key fingerprints, are read-only for Non-secure access, read-

write for Secure access, and read-write for bootloader access.

• Page 63, which contains the RMA flag, is read-only for Non-secure and bootloader access, and read-write for

Secure access.

This minimal set of default permissions on blank devices avoids certain classes of security model violation, like Non-

secure code being able to brick the chip by overwriting the boot key fingerprints with invalid data. In this context, the

term blank device refers to a device that has gone through manufacturing test programming, but has not had any other

OTP bits programmed by the user.

You can add additional soft or hard locks to these default permissions, with the exception of page 0. Page 0 cannot be

hard-locked, since the secure read-only permission prevents a user from altering its lock word.
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Lock words 2 through 61, covering all pages with user-defined contents, are left unprogrammed. On a blank device,

these pages are fully accessible from all domains. Before launching any Non-secure application, you should apply at

least a soft read-only lock to all pages that are not explicitly allocated for Non-secure use. To do this, write to

SW_LOCK2 through SW_LOCK61. For devices that you don’t expect to RMA, such as those that have passed board-level

manufacturing tests, you should lock secure writes to the RMA flag.

13.6. Error Correction Code (ECC)

ECC-protected rows store data in the following structure, accessible through a raw alias:

• Bits 23:22: bit repair by polarity (BRP) flag

• Bits 21:16: modified Hamming ECC code

• Bits 15:0 (the 16 LSBs): data

RP2350 stores the following error correction data in the 8 MSBs of each 24-bit row:

• a 6-bit modified Hamming code ECC, providing single-error-correct and double-error-detect capabilities

• 2 bits of bit repair by polarity (BRP), which supports inverting the entire row at programming time to repair a single

set bit that should be clear

Writes first encode ECC, then BRP. Reads first decode BRP, then ECC. When reading through an ECC data alias (Section

13.1), hardware performs correction transparently. ECC programming operations (writes) automatically generate ECC

bits when you use the bootrom otp_access API (Section 5.4.8.21).

ECC is not suitable for data that mutates one bit at a time, since the ECC value is derived from the entire 16-bit data

value. When storing data without ECC, use another form of redundancy, such as 3-way majority vote.

13.6.1. Bit repair by polarity (BRP)

Bit repair by polarity (BRP) compensates for a single bit present at time of programming.

When programming a row, hardware or software first calculates a 24-bit target value consisting of:

• Two zeroes in bits 23:22

• 6-bit Hamming ECC in bits 21:16

• 16-bit data value in bits 15:0

Before programming, an OTP row should contain all zeros. However, sometimes OTP rows contain a single bit that is

already set to 1, either due to manufacturing flaws or previous programming. If a bit is already set (1) in an OTP row

before programming, BRP checks the status of the corresponding bit in the target value. BRP compensates for this

single set bit in one of two ways, depending on the corresponding value in the target value:

• If the bit is clear (0), BRP inverts the target row and writes two ones in bits 23:22.

• If the bit is set (1), BRP does not invert the target row, leaving two zeroes in bits 23:22.

When you read an OTP value through an ECC alias (Section 13.1), BRP checks for two ones in bits 23:22. When both bits

23 and 22 are set, BRP inverts the entire row before passing it to the modified Hamming code stage.

BRP makes it possible to store any 22-bit value in a row that initially has at most one bit set, preserving the correction

margin of the modified Hamming code. During manufacturing test, hardware scans the entire OTP array to ensure no

rows contain more than one pre-set bit.
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13.6.2. Modified Hamming ECC

ECC generates six parity bits based on the data value stored in bits 15:0 of an OTP row. When programming a row, ECC

generates those six parity bits and includes them in the target value as bits 21:16. This code consists of:

• A 5-bit Hamming code that identifies single-bit errors

• An even parity bit which allows two-bit errors to be detected in the Hamming code and the original 16-bit data

When you read an OTP value through an ECC alias (Section 13.1), ECC recalculates the six parity bits based on the value

read from the OTP row. Then, ECC XORs the original six parity bits with the newly-calculated parity bits. This generates

6 new bits:

• the 5 LSBs are the syndrome, a unique bit pattern that corresponds to each possible bit flip in the data value

• the MSB distinguishes between odd and even numbers of bit flips

If all 6 bits in this value are zero, ECC did not detect an error. If the MSB is 1, the syndrome should indicate a single-bit

error. ECC flips the corresponding data bit to recover from the error. If the MSB is 0, but the syndrome contains a value

other than 0, the ECC detected an unrecoverable multi-bit error.

You can calculate 5-bit Hamming codes and parity bits with the following C code (adapted from the RP2350 bootrom

source):

uint32_t even_parity(uint32_t input) {
    uint32_t rc = 0;
    while (input) {
        rc ^= input & 1;
        input >>= 1;
    }
    return rc;
}

const uint32_t otp_ecc_parity_table[6] = {
    0b0000001010110101011011,
    0b0000000011011001101101,
    0b0000001100011110001110,
    0b0000000000011111110000,
    0b0000001111100000000000,
    0b0111111111111111111111
};

uint32_t s_otp_calculate_ecc(uint16_t x) {
    uint32_t p = x;
    for (uint i = 0; i < 6; ++i) {
        p |= even_parity(p & otp_ecc_parity_table[i]) << (16 + i);
    }
    return p;
}

13.7. Device Decommissioning (RMA)

Decommissioning refers to destroying a device’s sensitive contents and restoring some test or debug functionality

when a device reaches the end of its security lifecycle. The OTP hardware can’t actually destroy user data without

circumventing write protection in some way. Instead, decommissioning is implemented with the RMA flag, which

modifies devices in the following ways:

• re-enables factory test JTAG which is otherwise disabled by the secure boot critical flag
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• makes pages 3 through 61 inaccessible

The RMA flag doesn’t change permissions for page 0 (manufacturing data), pages 1 and 2 (boot configuration), page 61

(OTP access keys), or pages 62 and 63 (locks).

The RMA flag is encoded in a spare bit of the page 63 lock word. This lock word would otherwise be unused, since page

63 is one of the lock pages; consequently, it is not protected by a lock word. Instead, each lock word protects itself.

Like all other lock words, the page 63 lock word is protected by its own locks, which means it can be hard- and soft-

locked to prevent the RMA flag being set. Locking the RMA flag makes it impossible to re-enable the factory JTAG

interface if any of CRIT1.SECURE_BOOT_ENABLE, CRIT1.DEBUG_DISABLE or CRIT1.SECURE_DEBUG_DISABLE is set.

This makes it impossible for Raspberry Pi to re-test such devices if they are returned for fault analysis.

 IMPORTANT

Setting the RMA flag does not destroy OTP contents, it merely renders it inaccessible. The design intent is for this to

be irreversible, but hardware is never perfect. This is something the user’s threat model must account for when

programming the RMA flag on devices with sensitive OTP contents — for example, by personalising per-device OTP

secrets to avoid class breaks if an attacker is able to retrieve the keys.

13.8. List of Registers

The OTP control registers start at a base address of 0x40120000 (defined as OTP_BASE in the SDK).

Table 1329. List of

OTP registers
Offset Name Info

0x000 SW_LOCK0 Software lock register for page 0.

0x004 SW_LOCK1 Software lock register for page 1.

0x008 SW_LOCK2 Software lock register for page 2.

0x00c SW_LOCK3 Software lock register for page 3.

0x010 SW_LOCK4 Software lock register for page 4.

0x014 SW_LOCK5 Software lock register for page 5.

0x018 SW_LOCK6 Software lock register for page 6.

0x01c SW_LOCK7 Software lock register for page 7.

0x020 SW_LOCK8 Software lock register for page 8.

0x024 SW_LOCK9 Software lock register for page 9.

0x028 SW_LOCK10 Software lock register for page 10.

0x02c SW_LOCK11 Software lock register for page 11.

0x030 SW_LOCK12 Software lock register for page 12.

0x034 SW_LOCK13 Software lock register for page 13.

0x038 SW_LOCK14 Software lock register for page 14.

0x03c SW_LOCK15 Software lock register for page 15.

0x040 SW_LOCK16 Software lock register for page 16.

0x044 SW_LOCK17 Software lock register for page 17.

0x048 SW_LOCK18 Software lock register for page 18.

0x04c SW_LOCK19 Software lock register for page 19.
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Offset Name Info

0x050 SW_LOCK20 Software lock register for page 20.

0x054 SW_LOCK21 Software lock register for page 21.

0x058 SW_LOCK22 Software lock register for page 22.

0x05c SW_LOCK23 Software lock register for page 23.

0x060 SW_LOCK24 Software lock register for page 24.

0x064 SW_LOCK25 Software lock register for page 25.

0x068 SW_LOCK26 Software lock register for page 26.

0x06c SW_LOCK27 Software lock register for page 27.

0x070 SW_LOCK28 Software lock register for page 28.

0x074 SW_LOCK29 Software lock register for page 29.

0x078 SW_LOCK30 Software lock register for page 30.

0x07c SW_LOCK31 Software lock register for page 31.

0x080 SW_LOCK32 Software lock register for page 32.

0x084 SW_LOCK33 Software lock register for page 33.

0x088 SW_LOCK34 Software lock register for page 34.

0x08c SW_LOCK35 Software lock register for page 35.

0x090 SW_LOCK36 Software lock register for page 36.

0x094 SW_LOCK37 Software lock register for page 37.

0x098 SW_LOCK38 Software lock register for page 38.

0x09c SW_LOCK39 Software lock register for page 39.

0x0a0 SW_LOCK40 Software lock register for page 40.

0x0a4 SW_LOCK41 Software lock register for page 41.

0x0a8 SW_LOCK42 Software lock register for page 42.

0x0ac SW_LOCK43 Software lock register for page 43.

0x0b0 SW_LOCK44 Software lock register for page 44.

0x0b4 SW_LOCK45 Software lock register for page 45.

0x0b8 SW_LOCK46 Software lock register for page 46.

0x0bc SW_LOCK47 Software lock register for page 47.

0x0c0 SW_LOCK48 Software lock register for page 48.

0x0c4 SW_LOCK49 Software lock register for page 49.

0x0c8 SW_LOCK50 Software lock register for page 50.

0x0cc SW_LOCK51 Software lock register for page 51.

0x0d0 SW_LOCK52 Software lock register for page 52.

0x0d4 SW_LOCK53 Software lock register for page 53.

0x0d8 SW_LOCK54 Software lock register for page 54.

0x0dc SW_LOCK55 Software lock register for page 55.
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Offset Name Info

0x0e0 SW_LOCK56 Software lock register for page 56.

0x0e4 SW_LOCK57 Software lock register for page 57.

0x0e8 SW_LOCK58 Software lock register for page 58.

0x0ec SW_LOCK59 Software lock register for page 59.

0x0f0 SW_LOCK60 Software lock register for page 60.

0x0f4 SW_LOCK61 Software lock register for page 61.

0x0f8 SW_LOCK62 Software lock register for page 62.

0x0fc SW_LOCK63 Software lock register for page 63.

0x100 SBPI_INSTR Dispatch instructions to the SBPI interface, used for

programming the OTP fuses.

0x104 SBPI_WDATA_0 SBPI write payload bytes 3..0

0x108 SBPI_WDATA_1 SBPI write payload bytes 7..4

0x10c SBPI_WDATA_2 SBPI write payload bytes 11..8

0x110 SBPI_WDATA_3 SBPI write payload bytes 15..12

0x114 SBPI_RDATA_0 Read payload bytes 3..0. Once read, the data in the register will

automatically clear to 0.

0x118 SBPI_RDATA_1 Read payload bytes 7..4. Once read, the data in the register will

automatically clear to 0.

0x11c SBPI_RDATA_2 Read payload bytes 11..8. Once read, the data in the register will

automatically clear to 0.

0x120 SBPI_RDATA_3 Read payload bytes 15..12. Once read, the data in the register will

automatically clear to 0.

0x124 SBPI_STATUS

0x128 USR Controls for APB data read interface (USER interface)

0x12c DBG Debug for OTP power-on state machine

0x134 BIST During BIST, count address locations that have at least one leaky

bit

0x138 CRT_KEY_W0 Word 0 (bits 31..0) of the key. Write only, read returns 0x0

0x13c CRT_KEY_W1 Word 1 (bits 63..32) of the key. Write only, read returns 0x0

0x140 CRT_KEY_W2 Word 2 (bits 95..64) of the key. Write only, read returns 0x0

0x144 CRT_KEY_W3 Word 3 (bits 127..96) of the key. Write only, read returns 0x0

0x148 CRITICAL Quickly check values of critical flags read during boot up

0x14c KEY_VALID Which keys were valid (enrolled) at boot time

0x150 DEBUGEN Enable a debug feature that has been disabled. Debug features

are disabled if one of the relevant critical boot flags is set in OTP

(DEBUG_DISABLE or SECURE_DEBUG_DISABLE), OR if a debug

key is marked valid in OTP, and the matching key value has not

been supplied over SWD.
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Offset Name Info

0x154 DEBUGEN_LOCK Write 1s to lock corresponding bits in DEBUGEN. This register is

reset by the processor cold reset.

0x158 ARCHSEL Architecture select (Arm/RISC-V), applied on next processor

reset. The default and allowable values of this register are

constrained by the critical boot flags.

0x15c ARCHSEL_STATUS Get the current architecture select state of each core. Cores

sample the current value of the ARCHSEL register when their

warm reset is released, at which point the corresponding bit in

this register will also update.

0x160 BOOTDIS Tell the bootrom to ignore scratch register boot vectors (both

power manager and watchdog) on the next power up.

0x164 INTR Raw Interrupts

0x168 INTE Interrupt Enable

0x16c INTF Interrupt Force

0x170 INTS Interrupt status after masking & forcing

OTP: SW_LOCK0, SW_LOCK1, …, SW_LOCK62, SW_LOCK63 Registers

Offsets: 0x000, 0x004, …, 0x0f8, 0x0fc

Description

Software lock register for page N.

Locks are initialised from the OTP lock pages at reset. This register can be written to further advance the lock state of

each page (until next reset), and read to check the current lock state of a page.

Table 1330.

SW_LOCK0,

SW_LOCK1, …,

SW_LOCK62,

SW_LOCK63 Registers

Bits Description Type Reset

31:4 Reserved. - -

3:2 NSEC: Non-secure lock status. Writes are OR’d with the current value. RW -

Enumerated values:

0x0 → read_write

0x1 → read_only

0x3 → inaccessible

1:0 SEC: Secure lock status. Writes are OR’d with the current value. This field is

read-only to Non-secure code.

RW -

Enumerated values:

0x0 → read_write

0x1 → read_only

0x3 → inaccessible

OTP: SBPI_INSTR Register

Offset: 0x100

Description

Dispatch instructions to the SBPI interface, used for programming the OTP fuses.
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Table 1331.

SBPI_INSTR Register
Bits Description Type Reset

31 Reserved. - -

30 EXEC: Execute instruction SC 0x0

29 IS_WR: Payload type is write RW 0x0

28 HAS_PAYLOAD: Instruction has payload (data to be written or to be read) RW 0x0

27:24 PAYLOAD_SIZE_M1: Instruction payload size in bytes minus 1 RW 0x0

23:16 TARGET: Instruction target, it can be PMC (0x3a) or DAP (0x02) RW 0x00

15:8 CMD RW 0x00

7:0 SHORT_WDATA: wdata to be used only when payload_size_m1=0 RW 0x00

OTP: SBPI_WDATA_0 Register

Offset: 0x104

Table 1332.

SBPI_WDATA_0

Register

Bits Description Type Reset

31:0 SBPI write payload bytes 3..0 RW 0x00000000

OTP: SBPI_WDATA_1 Register

Offset: 0x108

Table 1333.

SBPI_WDATA_1

Register

Bits Description Type Reset

31:0 SBPI write payload bytes 7..4 RW 0x00000000

OTP: SBPI_WDATA_2 Register

Offset: 0x10c

Table 1334.

SBPI_WDATA_2

Register

Bits Description Type Reset

31:0 SBPI write payload bytes 11..8 RW 0x00000000

OTP: SBPI_WDATA_3 Register

Offset: 0x110

Table 1335.

SBPI_WDATA_3

Register

Bits Description Type Reset

31:0 SBPI write payload bytes 15..12 RW 0x00000000

OTP: SBPI_RDATA_0 Register

Offset: 0x114

Table 1336.

SBPI_RDATA_0

Register

Bits Description Type Reset

31:0 Read payload bytes 3..0. Once read, the data in the register will automatically

clear to 0.

RO 0x00000000

OTP: SBPI_RDATA_1 Register

Offset: 0x118
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Table 1337.

SBPI_RDATA_1

Register

Bits Description Type Reset

31:0 Read payload bytes 7..4. Once read, the data in the register will automatically

clear to 0.

RO 0x00000000

OTP: SBPI_RDATA_2 Register

Offset: 0x11c

Table 1338.

SBPI_RDATA_2

Register

Bits Description Type Reset

31:0 Read payload bytes 11..8. Once read, the data in the register will automatically

clear to 0.

RO 0x00000000

OTP: SBPI_RDATA_3 Register

Offset: 0x120

Table 1339.

SBPI_RDATA_3

Register

Bits Description Type Reset

31:0 Read payload bytes 15..12. Once read, the data in the register will

automatically clear to 0.

RO 0x00000000

OTP: SBPI_STATUS Register

Offset: 0x124

Table 1340.

SBPI_STATUS Register
Bits Description Type Reset

31:24 Reserved. - -

23:16 MISO: SBPI MISO (master in - slave out): response from SBPI RO -

15:13 Reserved. - -

12 FLAG: SBPI flag RO -

11:9 Reserved. - -

8 INSTR_MISS: Last instruction missed (dropped), as the previous has not

finished running

WC 0x0

7:5 Reserved. - -

4 INSTR_DONE: Last instruction done WC 0x0

3:1 Reserved. - -

0 RDATA_VLD: Read command has returned data WC 0x0

OTP: USR Register

Offset: 0x128

Description

Controls for APB data read interface (USER interface)

Table 1341. USR

Register
Bits Description Type Reset

31:5 Reserved. - -

4 PD: Power-down; 1 disables current reference. Must be 0 to read data from the

OTP.

RW 0x0

3:1 Reserved. - -
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Bits Description Type Reset

0 DCTRL: 1 enables USER interface; 0 disables USER interface (enables SBPI).

This bit must be cleared before performing any SBPI access, such as when

programming the OTP. The APB data read interface (USER interface) will be

inaccessible during this time, and will return a bus error if any read is

attempted.

RW 0x1

OTP: DBG Register

Offset: 0x12c

Description

Debug for OTP power-on state machine

Table 1342. DBG

Register
Bits Description Type Reset

31:13 Reserved. - -

12 CUSTOMER_RMA_FLAG: The chip is in RMA mode RO -

11:8 Reserved. - -

7:4 PSM_STATE: Monitor the PSM FSM’s state RO -

3 ROSC_UP: Ring oscillator is up and running RO -

2 ROSC_UP_SEEN: Ring oscillator was seen up and running WC 0x0

1 BOOT_DONE: PSM boot done status flag RO -

0 PSM_DONE: PSM done status flag RO -

OTP: BIST Register

Offset: 0x134

Description

During BIST, count address locations that have at least one leaky bit

Table 1343. BIST

Register
Bits Description Type Reset

31 Reserved. - -

30 CNT_FAIL: Flag if the count of address locations with at least one leaky bit

exceeds cnt_max

RO -

29 CNT_CLR: Clear counter before use SC 0x0

28 CNT_ENA: Enable the counter before the BIST function is initated RW 0x0

27:16 CNT_MAX: The cnt_fail flag will be set if the number of leaky locations

exceeds this number

RW 0xfff

15:13 Reserved. - -

12:0 CNT: Number of locations that have at least one leaky bit. Note: This count is

true only if the BIST was initiated without the fix option.

RO -

OTP: CRT_KEY_W0 Register

Offset: 0x138
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Table 1344.

CRT_KEY_W0 Register
Bits Description Type Reset

31:0 Word 0 (bits 31..0) of the key. Write only, read returns 0x0 WO 0x00000000

OTP: CRT_KEY_W1 Register

Offset: 0x13c

Table 1345.

CRT_KEY_W1 Register
Bits Description Type Reset

31:0 Word 1 (bits 63..32) of the key. Write only, read returns 0x0 WO 0x00000000

OTP: CRT_KEY_W2 Register

Offset: 0x140

Table 1346.

CRT_KEY_W2 Register
Bits Description Type Reset

31:0 Word 2 (bits 95..64) of the key. Write only, read returns 0x0 WO 0x00000000

OTP: CRT_KEY_W3 Register

Offset: 0x144

Table 1347.

CRT_KEY_W3 Register
Bits Description Type Reset

31:0 Word 3 (bits 127..96) of the key. Write only, read returns 0x0 WO 0x00000000

OTP: CRITICAL Register

Offset: 0x148

Description

Quickly check values of critical flags read during boot up

Table 1348. CRITICAL

Register
Bits Description Type Reset

31:18 Reserved. - -

17 RISCV_DISABLE RO 0x0

16 ARM_DISABLE RO 0x0

15:7 Reserved. - -

6:5 GLITCH_DETECTOR_SENS RO 0x0

4 GLITCH_DETECTOR_ENABLE RO 0x0

3 DEFAULT_ARCHSEL RO 0x0

2 DEBUG_DISABLE RO 0x0

1 SECURE_DEBUG_DISABLE RO 0x0

0 SECURE_BOOT_ENABLE RO 0x0

OTP: KEY_VALID Register

Offset: 0x14c

Table 1349.

KEY_VALID Register
Bits Description Type Reset

31:8 Reserved. - -
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Bits Description Type Reset

7:0 Which keys were valid (enrolled) at boot time RO 0x00

OTP: DEBUGEN Register

Offset: 0x150

Description

Enable a debug feature that has been disabled. Debug features are disabled if one of the relevant critical boot flags

is set in OTP (DEBUG_DISABLE or SECURE_DEBUG_DISABLE), OR if a debug key is marked valid in OTP, and the

matching key value has not been supplied over SWD.

Specifically:

• The DEBUG_DISABLE flag disables all debug features. This can be fully overridden by setting all bits of this

register.

• The SECURE_DEBUG_DISABLE flag disables secure processor debug. This can be fully overridden by setting the

PROC0_SECURE and PROC1_SECURE bits of this register.

• If a single debug key has been registered, and no matching key value has been supplied over SWD, then all debug

features are disabled. This can be fully overridden by setting all bits of this register.

• If both debug keys have been registered, and the Non-secure key’s value (key 6) has been supplied over SWD,

secure processor debug is disabled. This can be fully overridden by setting the PROC0_SECURE and

PROC1_SECURE bits of this register.

• If both debug keys have been registered, and the Secure key’s value (key 5) has been supplied over SWD, then no

debug features are disabled by the key mechanism. However, note that in this case debug features may still be

disabled by the critical boot flags.

Table 1350. DEBUGEN

Register
Bits Description Type Reset

31:9 Reserved. - -

8 MISC: Enable other debug components. Specifically, the CTI, and the APB-AP

used to access the RISC-V Debug Module.

These components are disabled by default if either of the debug disable

critical flags is set, or if at least one debug key has been enrolled and the least

secure of these enrolled key values has not been provided over SWD.

RW 0x0

7:4 Reserved. - -

3 PROC1_SECURE: Permit core 1’s Mem-AP to generate Secure accesses,

assuming it is enabled at all. Also enable secure debug of core 1 (SPIDEN and

SPNIDEN).

Secure debug of core 1 is disabled by default if the secure debug disable

critical flag is set, or if at least one debug key has been enrolled and the most

secure of these enrolled key values not yet provided over SWD.

RW 0x0

2 PROC1: Enable core 1’s Mem-AP if it is currently disabled.

The Mem-AP is disabled by default if either of the debug disable critical flags

is set, or if at least one debug key has been enrolled and the least secure of

these enrolled key values has not been provided over SWD.

RW 0x0
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Bits Description Type Reset

1 PROC0_SECURE: Permit core 0’s Mem-AP to generate Secure accesses,

assuming it is enabled at all. Also enable secure debug of core 0 (SPIDEN and

SPNIDEN).

Secure debug of core 0 is disabled by default if the secure debug disable

critical flag is set, or if at least one debug key has been enrolled and the most

secure of these enrolled key values not yet provided over SWD.

Note also that core Mem-APs are unconditionally disabled when a core is

switched to RISC-V mode (by setting the ARCHSEL bit and performing a warm

reset of the core).

RW 0x0

0 PROC0: Enable core 0’s Mem-AP if it is currently disabled.

The Mem-AP is disabled by default if either of the debug disable critical flags

is set, or if at least one debug key has been enrolled and the least secure of

these enrolled key values has not been provided over SWD.

Note also that core Mem-APs are unconditionally disabled when a core is

switched to RISC-V mode (by setting the ARCHSEL bit and performing a warm

reset of the core).

RW 0x0

OTP: DEBUGEN_LOCK Register

Offset: 0x154

Description

Write 1s to lock corresponding bits in DEBUGEN. This register is reset by the processor cold reset.

Table 1351.

DEBUGEN_LOCK

Register

Bits Description Type Reset

31:9 Reserved. - -

8 MISC: Write 1 to lock the MISC bit of DEBUGEN. Can’t be cleared once set. RW 0x0

7:4 Reserved. - -

3 PROC1_SECURE: Write 1 to lock the PROC1_SECURE bit of DEBUGEN. Can’t be

cleared once set.

RW 0x0

2 PROC1: Write 1 to lock the PROC1 bit of DEBUGEN. Can’t be cleared once set. RW 0x0

1 PROC0_SECURE: Write 1 to lock the PROC0_SECURE bit of DEBUGEN. Can’t be

cleared once set.

RW 0x0

0 PROC0: Write 1 to lock the PROC0 bit of DEBUGEN. Can’t be cleared once set. RW 0x0

OTP: ARCHSEL Register

Offset: 0x158

Description

Architecture select (Arm/RISC-V). The default and allowable values of this register are constrained by the critical

boot flags.

This register is reset by the earliest reset in the switched core power domain (before a processor cold reset).

Cores sample their architecture select signal on a warm reset. The source of the warm reset could be the system

power-up state machine, the watchdog timer, Arm SYSRESETREQ or from RISC-V hartresetreq.

Note that when an Arm core is deselected, its cold reset domain is also held in reset, since in particular the
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SYSRESETREQ bit becomes inaccessible once the core is deselected. Note also the RISC-V cores do not have a cold

reset domain, since their corresponding controls are located in the Debug Module.

Table 1352. ARCHSEL

Register
Bits Description Type Reset

31:2 Reserved. - -

1 CORE1: Select architecture for core 1. RW 0x0

Enumerated values:

0x0 → Switch core 1 to Arm (Cortex-M33)

0x1 → Switch core 1 to RISC-V (Hazard3)

0 CORE0: Select architecture for core 0. RW 0x0

Enumerated values:

0x0 → Switch core 0 to Arm (Cortex-M33)

0x1 → Switch core 0 to RISC-V (Hazard3)

OTP: ARCHSEL_STATUS Register

Offset: 0x15c

Description

Get the current architecture select state of each core. Cores sample the current value of the ARCHSEL register

when their warm reset is released, at which point the corresponding bit in this register will also update.

Table 1353.

ARCHSEL_STATUS

Register

Bits Description Type Reset

31:2 Reserved. - -

1 CORE1: Current architecture for core 0. Updated on processor warm reset. RO 0x0

Enumerated values:

0x0 → Core 1 is currently Arm (Cortex-M33)

0x1 → Core 1 is currently RISC-V (Hazard3)

0 CORE0: Current architecture for core 0. Updated on processor warm reset. RO 0x0

Enumerated values:

0x0 → Core 0 is currently Arm (Cortex-M33)

0x1 → Core 0 is currently RISC-V (Hazard3)

OTP: BOOTDIS Register

Offset: 0x160

Description

Tell the bootrom to ignore scratch register boot vectors (both power manager and watchdog) on the next power up.

If an early boot stage has soft-locked some OTP pages in order to protect their contents from later stages, there is a risk

that Secure code running at a later stage can unlock the pages by performing a watchdog reset that resets the OTP.

This register can be used to ensure that the bootloader runs as normal on the next power up, preventing Secure code at

a later stage from accessing OTP in its unlocked state.

Should be used in conjunction with the power manager BOOTDIS register.
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Table 1354. BOOTDIS

Register
Bits Description Type Reset

31:2 Reserved. - -

1 NEXT: This flag always ORs writes into its current contents. It can be set but

not cleared by software.

The BOOTDIS_NEXT bit is OR’d into the BOOTDIS_NOW bit when the core is

powered down. Simultaneously, the BOOTDIS_NEXT bit is cleared. Setting this

bit means that the boot scratch registers will be ignored following the next

core power down.

This flag should be set by an early boot stage that has soft-locked OTP pages,

to prevent later stages from unlocking it via watchdog reset.

RW 0x0

0 NOW: When the core is powered down, the current value of BOOTDIS_NEXT is

OR’d into BOOTDIS_NOW, and BOOTDIS_NEXT is cleared.

The bootrom checks this flag before reading the boot scratch registers. If it is

set, the bootrom clears it, and ignores the BOOT registers. This prevents

Secure software from diverting the boot path before a bootloader has had the

chance to soft lock OTP pages containing sensitive data.

WC 0x0

OTP: INTR Register

Offset: 0x164

Description

Raw Interrupts

Table 1355. INTR

Register
Bits Description Type Reset

31:5 Reserved. - -

4 APB_RD_NSEC_FAIL WC 0x0

3 APB_RD_SEC_FAIL WC 0x0

2 APB_DCTRL_FAIL WC 0x0

1 SBPI_WR_FAIL WC 0x0

0 SBPI_FLAG_N RO 0x0

OTP: INTE Register

Offset: 0x168

Description

Interrupt Enable

Table 1356. INTE

Register
Bits Description Type Reset

31:5 Reserved. - -

4 APB_RD_NSEC_FAIL RW 0x0

3 APB_RD_SEC_FAIL RW 0x0

2 APB_DCTRL_FAIL RW 0x0

1 SBPI_WR_FAIL RW 0x0

0 SBPI_FLAG_N RW 0x0

RP2350 Datasheet

13.8. List of Registers 1276



OTP: INTF Register

Offset: 0x16c

Description

Interrupt Force

Table 1357. INTF

Register
Bits Description Type Reset

31:5 Reserved. - -

4 APB_RD_NSEC_FAIL RW 0x0

3 APB_RD_SEC_FAIL RW 0x0

2 APB_DCTRL_FAIL RW 0x0

1 SBPI_WR_FAIL RW 0x0

0 SBPI_FLAG_N RW 0x0

OTP: INTS Register

Offset: 0x170

Description

Interrupt status after masking & forcing

Table 1358. INTS

Register
Bits Description Type Reset

31:5 Reserved. - -

4 APB_RD_NSEC_FAIL RO 0x0

3 APB_RD_SEC_FAIL RO 0x0

2 APB_DCTRL_FAIL RO 0x0

1 SBPI_WR_FAIL RO 0x0

0 SBPI_FLAG_N RO 0x0

13.9. Predefined OTP Data Locations

This section lists OTP locations used by either the hardware (particularly the OTP power-on state machine), the

bootrom, or both. This listing is for RP2350 silicon revision A2.

OTP locations are listed by row number, not by address. When read through an ECC alias, OTP rows are spaced two

bytes apart in the system address space; when read through a raw alias, OTP rows are four bytes apart. Therefore the

row numbers given here should be multiplied by two or four appropriately when reading OTP contents directly from

software. The OTP APIs provided by the bootrom use OTP row numbers directly, so this row-to-byte-address conversion

is not necessary when accessing OTP through these APIs.

For normal (non-guarded) reads, you can access error-corrected content starting at OTP_DATA_BASE (0x40130000), and raw

content starting at OTP_DATA_RAW_BASE (0x40134000). The register listings below indicate whether or not a given OTP row

contains error-corrected contents. OTP never mixes error-corrected and non-error-corrected content in the same row.

All predefined data fields have some form of redundancy. Where ECC is not viable, for instance because a location is

expected to have individual bits programmed at different times, best-of-three majority vote is used instead. The only

exception to this is the critical hardware flags in CRIT0 and CRIT1. These flags use a three-of-eight vote encoding for

each individual flag: the flag is considered set when at least three bits are set out of the eight redundant bit locations.

The description for each row indicates the type of redundancy.
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Pages 3 through 60 (rows 0x0c0 through 0xf3f) are free for arbitrary user content such as OTP-resident bootloaders, and

Raspberry Pi will avoid allocating any of these locations for bootrom configuration if possible. This is a total of 7424

bytes of ECC-protected content.

Page 2 (rows 0x080 through 0x0bf) is also available for user content if secure boot is disabled. It is partially available if

secure boot is enabled and fewer than four boot key fingerprints are registered. This is an additional 128 ECC bytes

potentially available for user content.

Pages 0, 1, and 61 through 63 are reserved for future use by Raspberry Pi. Software should avoid allocating content in

these regions, even if they currently have no defined use in this data listing.

Table 1359. List of

OTP_DATA registers
Offset Name Info

0x000 CHIPID0 Bits 15:0 of public device ID. (ECC)

The CHIPID0..3 rows contain a 64-bit random identifier for this

chip, which can be read from the USB bootloader PICOBOOT

interface or from the get_sys_info ROM API.

The number of random bits makes the occurrence of twins

exceedingly unlikely: for example, a fleet of a hundred million

devices has a 99.97% probability of no twinned IDs. This is

estimated to be lower than the occurrence of process errors in

the assignment of sequential random IDs, and for practical

purposes CHIPID may be treated as unique.

0x001 CHIPID1 Bits 31:16 of public device ID (ECC)

0x002 CHIPID2 Bits 47:32 of public device ID (ECC)

0x003 CHIPID3 Bits 63:48 of public device ID (ECC)

0x004 RANDID0 Bits 15:0 of private per-device random number (ECC)

The RANDID0..7 rows form a 128-bit random number generated

during device test.

This ID is not exposed through the USB PICOBOOT GET_INFO

command or the ROM get_sys_info() API. However note that the

USB PICOBOOT OTP access point can read the entirety of page

0, so this value is not meaningfully private unless the USB

PICOBOOT interface is disabled via the

DISABLE_BOOTSEL_USB_PICOBOOT_IFC flag in BOOT_FLAGS0.

0x005 RANDID1 Bits 31:16 of private per-device random number (ECC)

0x006 RANDID2 Bits 47:32 of private per-device random number (ECC)

0x007 RANDID3 Bits 63:48 of private per-device random number (ECC)

0x008 RANDID4 Bits 79:64 of private per-device random number (ECC)

0x009 RANDID5 Bits 95:80 of private per-device random number (ECC)

0x00a RANDID6 Bits 111:96 of private per-device random number (ECC)

0x00b RANDID7 Bits 127:112 of private per-device random number (ECC)

0x010 ROSC_CALIB Ring oscillator frequency in kHz, measured during manufacturing

(ECC)

This is measured at 1.1 V, at room temperature, with the ROSC

configuration registers in their reset state.
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0x011 LPOSC_CALIB Low-power oscillator frequency in Hz, measured during

manufacturing (ECC)

This is measured at 1.1V, at room temperature, with the LPOSC

trim register in its reset state.

0x018 NUM_GPIOS The number of main user GPIOs (bank 0). Should read 48 in the

QFN80 package, and 30 in the QFN60 package. (ECC)

0x036 INFO_CRC0 Lower 16 bits of CRC32 of OTP addresses 0x00 through 0x6b

(polynomial 0x4c11db7, input reflected, output reflected, seed

all-ones, final XOR all-ones) (ECC)

0x037 INFO_CRC1 Upper 16 bits of CRC32 of OTP addresses 0x00 through 0x6b

(ECC)

0x038 CRIT0 Page 0 critical boot flags (RBIT-8)

0x039 CRIT0_R1 Redundant copy of CRIT0

0x03a CRIT0_R2 Redundant copy of CRIT0

0x03b CRIT0_R3 Redundant copy of CRIT0

0x03c CRIT0_R4 Redundant copy of CRIT0

0x03d CRIT0_R5 Redundant copy of CRIT0

0x03e CRIT0_R6 Redundant copy of CRIT0

0x03f CRIT0_R7 Redundant copy of CRIT0

0x040 CRIT1 Page 1 critical boot flags (RBIT-8)

0x041 CRIT1_R1 Redundant copy of CRIT1

0x042 CRIT1_R2 Redundant copy of CRIT1

0x043 CRIT1_R3 Redundant copy of CRIT1

0x044 CRIT1_R4 Redundant copy of CRIT1

0x045 CRIT1_R5 Redundant copy of CRIT1

0x046 CRIT1_R6 Redundant copy of CRIT1

0x047 CRIT1_R7 Redundant copy of CRIT1

0x048 BOOT_FLAGS0 Disable/Enable boot paths/features in the RP2350 mask ROM.

Disables always supersede enables. Enables are provided where

there are other configurations in OTP that must be valid. (RBIT-3)

0x049 BOOT_FLAGS0_R1 Redundant copy of BOOT_FLAGS0

0x04a BOOT_FLAGS0_R2 Redundant copy of BOOT_FLAGS0

0x04b BOOT_FLAGS1 Disable/Enable boot paths/features in the RP2350 mask ROM.

Disables always supersede enables. Enables are provided where

there are other configurations in OTP that must be valid. (RBIT-3)

0x04c BOOT_FLAGS1_R1 Redundant copy of BOOT_FLAGS1

0x04d BOOT_FLAGS1_R2 Redundant copy of BOOT_FLAGS1

0x04e DEFAULT_BOOT_VERSION0 Default boot version thermometer counter, bits 23:0 (RBIT-3)

0x04f DEFAULT_BOOT_VERSION0_R1 Redundant copy of DEFAULT_BOOT_VERSION0
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0x050 DEFAULT_BOOT_VERSION0_R2 Redundant copy of DEFAULT_BOOT_VERSION0

0x051 DEFAULT_BOOT_VERSION1 Default boot version thermometer counter, bits 47:24 (RBIT-3)

0x052 DEFAULT_BOOT_VERSION1_R1 Redundant copy of DEFAULT_BOOT_VERSION1

0x053 DEFAULT_BOOT_VERSION1_R2 Redundant copy of DEFAULT_BOOT_VERSION1

0x054 FLASH_DEVINFO Stores information about external flash device(s). (ECC)

Assumed to be valid if

BOOT_FLAGS0_FLASH_DEVINFO_ENABLE is set.

0x055 FLASH_PARTITION_SLOT_SIZE Gap between partition table slot 0 and slot 1 at the start of flash

(the default size is 4096 bytes) (ECC) Enabled by the

OVERRIDE_FLASH_PARTITION_SLOT_SIZE bit in BOOT_FLAGS,

the size is 4096 * (value + 1)

0x056 BOOTSEL_LED_CFG Pin configuration for LED status, used by USB bootloader. (ECC)

Must be valid if BOOT_FLAGS0_ENABLE_BOOTSEL_LED is set.

0x057 BOOTSEL_PLL_CFG Optional PLL configuration for BOOTSEL mode. (ECC)

0x058 BOOTSEL_XOSC_CFG Non-default crystal oscillator configuration for the USB

bootloader. (ECC)

0x059 USB_BOOT_FLAGS USB boot specific feature flags (RBIT-3)

0x05a USB_BOOT_FLAGS_R1 Redundant copy of USB_BOOT_FLAGS

0x05b USB_BOOT_FLAGS_R2 Redundant copy of USB_BOOT_FLAGS

0x05c USB_WHITE_LABEL_ADDR Row index of the USB_WHITE_LABEL structure within OTP (ECC)

0x05e OTPBOOT_SRC OTP start row for the OTP boot image. (ECC)

0x05f OTPBOOT_LEN Length in rows of the OTP boot image. (ECC)

0x060 OTPBOOT_DST0 Bits 15:0 of the OTP boot image load destination (and entry

point). (ECC)

0x061 OTPBOOT_DST1 Bits 31:16 of the OTP boot image load destination (and entry

point). (ECC)

0x080 BOOTKEY0_0 Bits 15:0 of SHA-256 hash of boot key 0 (ECC)

0x081 BOOTKEY0_1 Bits 31:16 of SHA-256 hash of boot key 0 (ECC)

0x082 BOOTKEY0_2 Bits 47:32 of SHA-256 hash of boot key 0 (ECC)

0x083 BOOTKEY0_3 Bits 63:48 of SHA-256 hash of boot key 0 (ECC)

0x084 BOOTKEY0_4 Bits 79:64 of SHA-256 hash of boot key 0 (ECC)

0x085 BOOTKEY0_5 Bits 95:80 of SHA-256 hash of boot key 0 (ECC)

0x086 BOOTKEY0_6 Bits 111:96 of SHA-256 hash of boot key 0 (ECC)

0x087 BOOTKEY0_7 Bits 127:112 of SHA-256 hash of boot key 0 (ECC)

0x088 BOOTKEY0_8 Bits 143:128 of SHA-256 hash of boot key 0 (ECC)

0x089 BOOTKEY0_9 Bits 159:144 of SHA-256 hash of boot key 0 (ECC)

0x08a BOOTKEY0_10 Bits 175:160 of SHA-256 hash of boot key 0 (ECC)

0x08b BOOTKEY0_11 Bits 191:176 of SHA-256 hash of boot key 0 (ECC)
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0x08c BOOTKEY0_12 Bits 207:192 of SHA-256 hash of boot key 0 (ECC)

0x08d BOOTKEY0_13 Bits 223:208 of SHA-256 hash of boot key 0 (ECC)

0x08e BOOTKEY0_14 Bits 239:224 of SHA-256 hash of boot key 0 (ECC)

0x08f BOOTKEY0_15 Bits 255:240 of SHA-256 hash of boot key 0 (ECC)

0x090 BOOTKEY1_0 Bits 15:0 of SHA-256 hash of boot key 1 (ECC)

0x091 BOOTKEY1_1 Bits 31:16 of SHA-256 hash of boot key 1 (ECC)

0x092 BOOTKEY1_2 Bits 47:32 of SHA-256 hash of boot key 1 (ECC)

0x093 BOOTKEY1_3 Bits 63:48 of SHA-256 hash of boot key 1 (ECC)

0x094 BOOTKEY1_4 Bits 79:64 of SHA-256 hash of boot key 1 (ECC)

0x095 BOOTKEY1_5 Bits 95:80 of SHA-256 hash of boot key 1 (ECC)

0x096 BOOTKEY1_6 Bits 111:96 of SHA-256 hash of boot key 1 (ECC)

0x097 BOOTKEY1_7 Bits 127:112 of SHA-256 hash of boot key 1 (ECC)

0x098 BOOTKEY1_8 Bits 143:128 of SHA-256 hash of boot key 1 (ECC)

0x099 BOOTKEY1_9 Bits 159:144 of SHA-256 hash of boot key 1 (ECC)

0x09a BOOTKEY1_10 Bits 175:160 of SHA-256 hash of boot key 1 (ECC)

0x09b BOOTKEY1_11 Bits 191:176 of SHA-256 hash of boot key 1 (ECC)

0x09c BOOTKEY1_12 Bits 207:192 of SHA-256 hash of boot key 1 (ECC)

0x09d BOOTKEY1_13 Bits 223:208 of SHA-256 hash of boot key 1 (ECC)

0x09e BOOTKEY1_14 Bits 239:224 of SHA-256 hash of boot key 1 (ECC)

0x09f BOOTKEY1_15 Bits 255:240 of SHA-256 hash of boot key 1 (ECC)

0x0a0 BOOTKEY2_0 Bits 15:0 of SHA-256 hash of boot key 2 (ECC)

0x0a1 BOOTKEY2_1 Bits 31:16 of SHA-256 hash of boot key 2 (ECC)

0x0a2 BOOTKEY2_2 Bits 47:32 of SHA-256 hash of boot key 2 (ECC)

0x0a3 BOOTKEY2_3 Bits 63:48 of SHA-256 hash of boot key 2 (ECC)

0x0a4 BOOTKEY2_4 Bits 79:64 of SHA-256 hash of boot key 2 (ECC)

0x0a5 BOOTKEY2_5 Bits 95:80 of SHA-256 hash of boot key 2 (ECC)

0x0a6 BOOTKEY2_6 Bits 111:96 of SHA-256 hash of boot key 2 (ECC)

0x0a7 BOOTKEY2_7 Bits 127:112 of SHA-256 hash of boot key 2 (ECC)

0x0a8 BOOTKEY2_8 Bits 143:128 of SHA-256 hash of boot key 2 (ECC)

0x0a9 BOOTKEY2_9 Bits 159:144 of SHA-256 hash of boot key 2 (ECC)

0x0aa BOOTKEY2_10 Bits 175:160 of SHA-256 hash of boot key 2 (ECC)

0x0ab BOOTKEY2_11 Bits 191:176 of SHA-256 hash of boot key 2 (ECC)

0x0ac BOOTKEY2_12 Bits 207:192 of SHA-256 hash of boot key 2 (ECC)

0x0ad BOOTKEY2_13 Bits 223:208 of SHA-256 hash of boot key 2 (ECC)

0x0ae BOOTKEY2_14 Bits 239:224 of SHA-256 hash of boot key 2 (ECC)

0x0af BOOTKEY2_15 Bits 255:240 of SHA-256 hash of boot key 2 (ECC)
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0x0b0 BOOTKEY3_0 Bits 15:0 of SHA-256 hash of boot key 3 (ECC)

0x0b1 BOOTKEY3_1 Bits 31:16 of SHA-256 hash of boot key 3 (ECC)

0x0b2 BOOTKEY3_2 Bits 47:32 of SHA-256 hash of boot key 3 (ECC)

0x0b3 BOOTKEY3_3 Bits 63:48 of SHA-256 hash of boot key 3 (ECC)

0x0b4 BOOTKEY3_4 Bits 79:64 of SHA-256 hash of boot key 3 (ECC)

0x0b5 BOOTKEY3_5 Bits 95:80 of SHA-256 hash of boot key 3 (ECC)

0x0b6 BOOTKEY3_6 Bits 111:96 of SHA-256 hash of boot key 3 (ECC)

0x0b7 BOOTKEY3_7 Bits 127:112 of SHA-256 hash of boot key 3 (ECC)

0x0b8 BOOTKEY3_8 Bits 143:128 of SHA-256 hash of boot key 3 (ECC)

0x0b9 BOOTKEY3_9 Bits 159:144 of SHA-256 hash of boot key 3 (ECC)

0x0ba BOOTKEY3_10 Bits 175:160 of SHA-256 hash of boot key 3 (ECC)

0x0bb BOOTKEY3_11 Bits 191:176 of SHA-256 hash of boot key 3 (ECC)

0x0bc BOOTKEY3_12 Bits 207:192 of SHA-256 hash of boot key 3 (ECC)

0x0bd BOOTKEY3_13 Bits 223:208 of SHA-256 hash of boot key 3 (ECC)

0x0be BOOTKEY3_14 Bits 239:224 of SHA-256 hash of boot key 3 (ECC)

0x0bf BOOTKEY3_15 Bits 255:240 of SHA-256 hash of boot key 3 (ECC)

0xf48 KEY1_0 Bits 15:0 of OTP access key 1 (ECC)

0xf49 KEY1_1 Bits 31:16 of OTP access key 1 (ECC)

0xf4a KEY1_2 Bits 47:32 of OTP access key 1 (ECC)

0xf4b KEY1_3 Bits 63:48 of OTP access key 1 (ECC)

0xf4c KEY1_4 Bits 79:64 of OTP access key 1 (ECC)

0xf4d KEY1_5 Bits 95:80 of OTP access key 1 (ECC)

0xf4e KEY1_6 Bits 111:96 of OTP access key 1 (ECC)

0xf4f KEY1_7 Bits 127:112 of OTP access key 1 (ECC)

0xf50 KEY2_0 Bits 15:0 of OTP access key 2 (ECC)

0xf51 KEY2_1 Bits 31:16 of OTP access key 2 (ECC)

0xf52 KEY2_2 Bits 47:32 of OTP access key 2 (ECC)

0xf53 KEY2_3 Bits 63:48 of OTP access key 2 (ECC)

0xf54 KEY2_4 Bits 79:64 of OTP access key 2 (ECC)

0xf55 KEY2_5 Bits 95:80 of OTP access key 2 (ECC)

0xf56 KEY2_6 Bits 111:96 of OTP access key 2 (ECC)

0xf57 KEY2_7 Bits 127:112 of OTP access key 2 (ECC)

0xf58 KEY3_0 Bits 15:0 of OTP access key 3 (ECC)

0xf59 KEY3_1 Bits 31:16 of OTP access key 3 (ECC)

0xf5a KEY3_2 Bits 47:32 of OTP access key 3 (ECC)

0xf5b KEY3_3 Bits 63:48 of OTP access key 3 (ECC)
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0xf5c KEY3_4 Bits 79:64 of OTP access key 3 (ECC)

0xf5d KEY3_5 Bits 95:80 of OTP access key 3 (ECC)

0xf5e KEY3_6 Bits 111:96 of OTP access key 3 (ECC)

0xf5f KEY3_7 Bits 127:112 of OTP access key 3 (ECC)

0xf60 KEY4_0 Bits 15:0 of OTP access key 4 (ECC)

0xf61 KEY4_1 Bits 31:16 of OTP access key 4 (ECC)

0xf62 KEY4_2 Bits 47:32 of OTP access key 4 (ECC)

0xf63 KEY4_3 Bits 63:48 of OTP access key 4 (ECC)

0xf64 KEY4_4 Bits 79:64 of OTP access key 4 (ECC)

0xf65 KEY4_5 Bits 95:80 of OTP access key 4 (ECC)

0xf66 KEY4_6 Bits 111:96 of OTP access key 4 (ECC)

0xf67 KEY4_7 Bits 127:112 of OTP access key 4 (ECC)

0xf68 KEY5_0 Bits 15:0 of OTP access key 5 (ECC)

0xf69 KEY5_1 Bits 31:16 of OTP access key 5 (ECC)

0xf6a KEY5_2 Bits 47:32 of OTP access key 5 (ECC)

0xf6b KEY5_3 Bits 63:48 of OTP access key 5 (ECC)

0xf6c KEY5_4 Bits 79:64 of OTP access key 5 (ECC)

0xf6d KEY5_5 Bits 95:80 of OTP access key 5 (ECC)

0xf6e KEY5_6 Bits 111:96 of OTP access key 5 (ECC)

0xf6f KEY5_7 Bits 127:112 of OTP access key 5 (ECC)

0xf70 KEY6_0 Bits 15:0 of OTP access key 6 (ECC)

0xf71 KEY6_1 Bits 31:16 of OTP access key 6 (ECC)

0xf72 KEY6_2 Bits 47:32 of OTP access key 6 (ECC)

0xf73 KEY6_3 Bits 63:48 of OTP access key 6 (ECC)

0xf74 KEY6_4 Bits 79:64 of OTP access key 6 (ECC)

0xf75 KEY6_5 Bits 95:80 of OTP access key 6 (ECC)

0xf76 KEY6_6 Bits 111:96 of OTP access key 6 (ECC)

0xf77 KEY6_7 Bits 127:112 of OTP access key 6 (ECC)

0xf79 KEY1_VALID Valid flag for key 1.

0xf7a KEY2_VALID Valid flag for key 2.

0xf7b KEY3_VALID Valid flag for key 3.

0xf7c KEY4_VALID Valid flag for key 4.

0xf7d KEY5_VALID Valid flag for key 5.

0xf7e KEY6_VALID Valid flag for key 6.

0xf80 PAGE0_LOCK0 Lock configuration LSBs for page 0 (rows 0x0 through 0x3f).

0xf81 PAGE0_LOCK1 Lock configuration MSBs for page 0 (rows 0x0 through 0x3f).
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0xf82 PAGE1_LOCK0 Lock configuration LSBs for page 1 (rows 0x40 through 0x7f).

0xf83 PAGE1_LOCK1 Lock configuration MSBs for page 1 (rows 0x40 through 0x7f).

0xf84 PAGE2_LOCK0 Lock configuration LSBs for page 2 (rows 0x80 through 0xbf).

0xf85 PAGE2_LOCK1 Lock configuration MSBs for page 2 (rows 0x80 through 0xbf).

0xf86 PAGE3_LOCK0 Lock configuration LSBs for page 3 (rows 0xc0 through 0xff).

0xf87 PAGE3_LOCK1 Lock configuration MSBs for page 3 (rows 0xc0 through 0xff).

0xf88 PAGE4_LOCK0 Lock configuration LSBs for page 4 (rows 0x100 through 0x13f).

0xf89 PAGE4_LOCK1 Lock configuration MSBs for page 4 (rows 0x100 through 0x13f).

0xf8a PAGE5_LOCK0 Lock configuration LSBs for page 5 (rows 0x140 through 0x17f).

0xf8b PAGE5_LOCK1 Lock configuration MSBs for page 5 (rows 0x140 through 0x17f).

0xf8c PAGE6_LOCK0 Lock configuration LSBs for page 6 (rows 0x180 through 0x1bf).

0xf8d PAGE6_LOCK1 Lock configuration MSBs for page 6 (rows 0x180 through 0x1bf).

0xf8e PAGE7_LOCK0 Lock configuration LSBs for page 7 (rows 0x1c0 through 0x1ff).

0xf8f PAGE7_LOCK1 Lock configuration MSBs for page 7 (rows 0x1c0 through 0x1ff).

0xf90 PAGE8_LOCK0 Lock configuration LSBs for page 8 (rows 0x200 through 0x23f).

0xf91 PAGE8_LOCK1 Lock configuration MSBs for page 8 (rows 0x200 through 0x23f).

0xf92 PAGE9_LOCK0 Lock configuration LSBs for page 9 (rows 0x240 through 0x27f).

0xf93 PAGE9_LOCK1 Lock configuration MSBs for page 9 (rows 0x240 through 0x27f).

0xf94 PAGE10_LOCK0 Lock configuration LSBs for page 10 (rows 0x280 through

0x2bf).

0xf95 PAGE10_LOCK1 Lock configuration MSBs for page 10 (rows 0x280 through

0x2bf).

0xf96 PAGE11_LOCK0 Lock configuration LSBs for page 11 (rows 0x2c0 through 0x2ff).

0xf97 PAGE11_LOCK1 Lock configuration MSBs for page 11 (rows 0x2c0 through

0x2ff).

0xf98 PAGE12_LOCK0 Lock configuration LSBs for page 12 (rows 0x300 through

0x33f).

0xf99 PAGE12_LOCK1 Lock configuration MSBs for page 12 (rows 0x300 through

0x33f).

0xf9a PAGE13_LOCK0 Lock configuration LSBs for page 13 (rows 0x340 through

0x37f).

0xf9b PAGE13_LOCK1 Lock configuration MSBs for page 13 (rows 0x340 through

0x37f).

0xf9c PAGE14_LOCK0 Lock configuration LSBs for page 14 (rows 0x380 through

0x3bf).

0xf9d PAGE14_LOCK1 Lock configuration MSBs for page 14 (rows 0x380 through

0x3bf).

0xf9e PAGE15_LOCK0 Lock configuration LSBs for page 15 (rows 0x3c0 through 0x3ff).
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0xf9f PAGE15_LOCK1 Lock configuration MSBs for page 15 (rows 0x3c0 through

0x3ff).

0xfa0 PAGE16_LOCK0 Lock configuration LSBs for page 16 (rows 0x400 through

0x43f).

0xfa1 PAGE16_LOCK1 Lock configuration MSBs for page 16 (rows 0x400 through

0x43f).

0xfa2 PAGE17_LOCK0 Lock configuration LSBs for page 17 (rows 0x440 through

0x47f).

0xfa3 PAGE17_LOCK1 Lock configuration MSBs for page 17 (rows 0x440 through

0x47f).

0xfa4 PAGE18_LOCK0 Lock configuration LSBs for page 18 (rows 0x480 through

0x4bf).

0xfa5 PAGE18_LOCK1 Lock configuration MSBs for page 18 (rows 0x480 through

0x4bf).

0xfa6 PAGE19_LOCK0 Lock configuration LSBs for page 19 (rows 0x4c0 through 0x4ff).

0xfa7 PAGE19_LOCK1 Lock configuration MSBs for page 19 (rows 0x4c0 through

0x4ff).

0xfa8 PAGE20_LOCK0 Lock configuration LSBs for page 20 (rows 0x500 through

0x53f).

0xfa9 PAGE20_LOCK1 Lock configuration MSBs for page 20 (rows 0x500 through

0x53f).

0xfaa PAGE21_LOCK0 Lock configuration LSBs for page 21 (rows 0x540 through

0x57f).

0xfab PAGE21_LOCK1 Lock configuration MSBs for page 21 (rows 0x540 through

0x57f).

0xfac PAGE22_LOCK0 Lock configuration LSBs for page 22 (rows 0x580 through

0x5bf).

0xfad PAGE22_LOCK1 Lock configuration MSBs for page 22 (rows 0x580 through

0x5bf).

0xfae PAGE23_LOCK0 Lock configuration LSBs for page 23 (rows 0x5c0 through 0x5ff).

0xfaf PAGE23_LOCK1 Lock configuration MSBs for page 23 (rows 0x5c0 through

0x5ff).

0xfb0 PAGE24_LOCK0 Lock configuration LSBs for page 24 (rows 0x600 through

0x63f).

0xfb1 PAGE24_LOCK1 Lock configuration MSBs for page 24 (rows 0x600 through

0x63f).

0xfb2 PAGE25_LOCK0 Lock configuration LSBs for page 25 (rows 0x640 through

0x67f).

0xfb3 PAGE25_LOCK1 Lock configuration MSBs for page 25 (rows 0x640 through

0x67f).

0xfb4 PAGE26_LOCK0 Lock configuration LSBs for page 26 (rows 0x680 through

0x6bf).
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0xfb5 PAGE26_LOCK1 Lock configuration MSBs for page 26 (rows 0x680 through

0x6bf).

0xfb6 PAGE27_LOCK0 Lock configuration LSBs for page 27 (rows 0x6c0 through 0x6ff).

0xfb7 PAGE27_LOCK1 Lock configuration MSBs for page 27 (rows 0x6c0 through

0x6ff).

0xfb8 PAGE28_LOCK0 Lock configuration LSBs for page 28 (rows 0x700 through

0x73f).

0xfb9 PAGE28_LOCK1 Lock configuration MSBs for page 28 (rows 0x700 through

0x73f).

0xfba PAGE29_LOCK0 Lock configuration LSBs for page 29 (rows 0x740 through

0x77f).

0xfbb PAGE29_LOCK1 Lock configuration MSBs for page 29 (rows 0x740 through

0x77f).

0xfbc PAGE30_LOCK0 Lock configuration LSBs for page 30 (rows 0x780 through

0x7bf).

0xfbd PAGE30_LOCK1 Lock configuration MSBs for page 30 (rows 0x780 through

0x7bf).

0xfbe PAGE31_LOCK0 Lock configuration LSBs for page 31 (rows 0x7c0 through 0x7ff).

0xfbf PAGE31_LOCK1 Lock configuration MSBs for page 31 (rows 0x7c0 through

0x7ff).

0xfc0 PAGE32_LOCK0 Lock configuration LSBs for page 32 (rows 0x800 through

0x83f).

0xfc1 PAGE32_LOCK1 Lock configuration MSBs for page 32 (rows 0x800 through

0x83f).

0xfc2 PAGE33_LOCK0 Lock configuration LSBs for page 33 (rows 0x840 through

0x87f).

0xfc3 PAGE33_LOCK1 Lock configuration MSBs for page 33 (rows 0x840 through

0x87f).

0xfc4 PAGE34_LOCK0 Lock configuration LSBs for page 34 (rows 0x880 through

0x8bf).

0xfc5 PAGE34_LOCK1 Lock configuration MSBs for page 34 (rows 0x880 through

0x8bf).

0xfc6 PAGE35_LOCK0 Lock configuration LSBs for page 35 (rows 0x8c0 through 0x8ff).

0xfc7 PAGE35_LOCK1 Lock configuration MSBs for page 35 (rows 0x8c0 through

0x8ff).

0xfc8 PAGE36_LOCK0 Lock configuration LSBs for page 36 (rows 0x900 through

0x93f).

0xfc9 PAGE36_LOCK1 Lock configuration MSBs for page 36 (rows 0x900 through

0x93f).

0xfca PAGE37_LOCK0 Lock configuration LSBs for page 37 (rows 0x940 through

0x97f).

0xfcb PAGE37_LOCK1 Lock configuration MSBs for page 37 (rows 0x940 through

0x97f).
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0xfcc PAGE38_LOCK0 Lock configuration LSBs for page 38 (rows 0x980 through

0x9bf).

0xfcd PAGE38_LOCK1 Lock configuration MSBs for page 38 (rows 0x980 through

0x9bf).

0xfce PAGE39_LOCK0 Lock configuration LSBs for page 39 (rows 0x9c0 through 0x9ff).

0xfcf PAGE39_LOCK1 Lock configuration MSBs for page 39 (rows 0x9c0 through

0x9ff).

0xfd0 PAGE40_LOCK0 Lock configuration LSBs for page 40 (rows 0xa00 through

0xa3f).

0xfd1 PAGE40_LOCK1 Lock configuration MSBs for page 40 (rows 0xa00 through

0xa3f).

0xfd2 PAGE41_LOCK0 Lock configuration LSBs for page 41 (rows 0xa40 through

0xa7f).

0xfd3 PAGE41_LOCK1 Lock configuration MSBs for page 41 (rows 0xa40 through

0xa7f).

0xfd4 PAGE42_LOCK0 Lock configuration LSBs for page 42 (rows 0xa80 through

0xabf).

0xfd5 PAGE42_LOCK1 Lock configuration MSBs for page 42 (rows 0xa80 through

0xabf).

0xfd6 PAGE43_LOCK0 Lock configuration LSBs for page 43 (rows 0xac0 through 0xaff).

0xfd7 PAGE43_LOCK1 Lock configuration MSBs for page 43 (rows 0xac0 through

0xaff).

0xfd8 PAGE44_LOCK0 Lock configuration LSBs for page 44 (rows 0xb00 through

0xb3f).

0xfd9 PAGE44_LOCK1 Lock configuration MSBs for page 44 (rows 0xb00 through

0xb3f).

0xfda PAGE45_LOCK0 Lock configuration LSBs for page 45 (rows 0xb40 through

0xb7f).

0xfdb PAGE45_LOCK1 Lock configuration MSBs for page 45 (rows 0xb40 through

0xb7f).

0xfdc PAGE46_LOCK0 Lock configuration LSBs for page 46 (rows 0xb80 through

0xbbf).

0xfdd PAGE46_LOCK1 Lock configuration MSBs for page 46 (rows 0xb80 through

0xbbf).

0xfde PAGE47_LOCK0 Lock configuration LSBs for page 47 (rows 0xbc0 through 0xbff).

0xfdf PAGE47_LOCK1 Lock configuration MSBs for page 47 (rows 0xbc0 through

0xbff).

0xfe0 PAGE48_LOCK0 Lock configuration LSBs for page 48 (rows 0xc00 through

0xc3f).

0xfe1 PAGE48_LOCK1 Lock configuration MSBs for page 48 (rows 0xc00 through

0xc3f).

0xfe2 PAGE49_LOCK0 Lock configuration LSBs for page 49 (rows 0xc40 through

0xc7f).
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0xfe3 PAGE49_LOCK1 Lock configuration MSBs for page 49 (rows 0xc40 through

0xc7f).

0xfe4 PAGE50_LOCK0 Lock configuration LSBs for page 50 (rows 0xc80 through

0xcbf).

0xfe5 PAGE50_LOCK1 Lock configuration MSBs for page 50 (rows 0xc80 through

0xcbf).

0xfe6 PAGE51_LOCK0 Lock configuration LSBs for page 51 (rows 0xcc0 through 0xcff).

0xfe7 PAGE51_LOCK1 Lock configuration MSBs for page 51 (rows 0xcc0 through

0xcff).

0xfe8 PAGE52_LOCK0 Lock configuration LSBs for page 52 (rows 0xd00 through

0xd3f).

0xfe9 PAGE52_LOCK1 Lock configuration MSBs for page 52 (rows 0xd00 through

0xd3f).

0xfea PAGE53_LOCK0 Lock configuration LSBs for page 53 (rows 0xd40 through

0xd7f).

0xfeb PAGE53_LOCK1 Lock configuration MSBs for page 53 (rows 0xd40 through

0xd7f).

0xfec PAGE54_LOCK0 Lock configuration LSBs for page 54 (rows 0xd80 through

0xdbf).

0xfed PAGE54_LOCK1 Lock configuration MSBs for page 54 (rows 0xd80 through

0xdbf).

0xfee PAGE55_LOCK0 Lock configuration LSBs for page 55 (rows 0xdc0 through 0xdff).

0xfef PAGE55_LOCK1 Lock configuration MSBs for page 55 (rows 0xdc0 through

0xdff).

0xff0 PAGE56_LOCK0 Lock configuration LSBs for page 56 (rows 0xe00 through

0xe3f).

0xff1 PAGE56_LOCK1 Lock configuration MSBs for page 56 (rows 0xe00 through

0xe3f).

0xff2 PAGE57_LOCK0 Lock configuration LSBs for page 57 (rows 0xe40 through

0xe7f).

0xff3 PAGE57_LOCK1 Lock configuration MSBs for page 57 (rows 0xe40 through

0xe7f).

0xff4 PAGE58_LOCK0 Lock configuration LSBs for page 58 (rows 0xe80 through

0xebf).

0xff5 PAGE58_LOCK1 Lock configuration MSBs for page 58 (rows 0xe80 through

0xebf).

0xff6 PAGE59_LOCK0 Lock configuration LSBs for page 59 (rows 0xec0 through 0xeff).

0xff7 PAGE59_LOCK1 Lock configuration MSBs for page 59 (rows 0xec0 through

0xeff).

0xff8 PAGE60_LOCK0 Lock configuration LSBs for page 60 (rows 0xf00 through 0xf3f).

0xff9 PAGE60_LOCK1 Lock configuration MSBs for page 60 (rows 0xf00 through

0xf3f).
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Offset Name Info

0xffa PAGE61_LOCK0 Lock configuration LSBs for page 61 (rows 0xf40 through 0xf7f).

0xffb PAGE61_LOCK1 Lock configuration MSBs for page 61 (rows 0xf40 through

0xf7f).

0xffc PAGE62_LOCK0 Lock configuration LSBs for page 62 (rows 0xf80 through 0xfbf).

0xffd PAGE62_LOCK1 Lock configuration MSBs for page 62 (rows 0xf80 through

0xfbf).

0xffe PAGE63_LOCK0 Lock configuration LSBs for page 63 (rows 0xfc0 through 0xfff).

0xfff PAGE63_LOCK1 Lock configuration MSBs for page 63 (rows 0xfc0 through 0xfff).

OTP_DATA: CHIPID0 Register

Offset: 0x000

Table 1360. CHIPID0

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 15:0 of public device ID. (ECC)

The CHIPID0..3 rows contain a 64-bit random identifier for this chip, which can

be read from the USB bootloader PICOBOOT interface or from the get_sys_info

ROM API.

The number of random bits makes the occurrence of twins exceedingly

unlikely: for example, a fleet of a hundred million devices has a 99.97%

probability of no twinned IDs. This is estimated to be lower than the

occurrence of process errors in the assignment of sequential random IDs, and

for practical purposes CHIPID may be treated as unique.

RO -

OTP_DATA: CHIPID1 Register

Offset: 0x001

Table 1361. CHIPID1

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 31:16 of public device ID (ECC) RO -

OTP_DATA: CHIPID2 Register

Offset: 0x002

Table 1362. CHIPID2

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 47:32 of public device ID (ECC) RO -

OTP_DATA: CHIPID3 Register

Offset: 0x003

Table 1363. CHIPID3

Register
Bits Description Type Reset

31:16 Reserved. - -
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Bits Description Type Reset

15:0 Bits 63:48 of public device ID (ECC) RO -

OTP_DATA: RANDID0 Register

Offset: 0x004

Table 1364. RANDID0

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 15:0 of private per-device random number (ECC)

The RANDID0..7 rows form a 128-bit random number generated during device

test.

This ID is not exposed through the USB PICOBOOT GET_INFO command or the

ROM get_sys_info() API. However note that the USB PICOBOOT OTP access

point can read the entirety of page 0, so this value is not meaningfully private

unless the USB PICOBOOT interface is disabled via the

DISABLE_BOOTSEL_USB_PICOBOOT_IFC flag in BOOT_FLAGS0.

RO -

OTP_DATA: RANDID1 Register

Offset: 0x005

Table 1365. RANDID1

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 31:16 of private per-device random number (ECC) RO -

OTP_DATA: RANDID2 Register

Offset: 0x006

Table 1366. RANDID2

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 47:32 of private per-device random number (ECC) RO -

OTP_DATA: RANDID3 Register

Offset: 0x007

Table 1367. RANDID3

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 63:48 of private per-device random number (ECC) RO -

OTP_DATA: RANDID4 Register

Offset: 0x008
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Table 1368. RANDID4

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 79:64 of private per-device random number (ECC) RO -

OTP_DATA: RANDID5 Register

Offset: 0x009

Table 1369. RANDID5

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 95:80 of private per-device random number (ECC) RO -

OTP_DATA: RANDID6 Register

Offset: 0x00a

Table 1370. RANDID6

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 111:96 of private per-device random number (ECC) RO -

OTP_DATA: RANDID7 Register

Offset: 0x00b

Table 1371. RANDID7

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 127:112 of private per-device random number (ECC) RO -

OTP_DATA: ROSC_CALIB Register

Offset: 0x010

Table 1372.

ROSC_CALIB Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Ring oscillator frequency in kHz, measured during manufacturing (ECC)

This is measured at 1.1 V, at room temperature, with the ROSC configuration

registers in their reset state.

RO -

OTP_DATA: LPOSC_CALIB Register

Offset: 0x011
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Table 1373.

LPOSC_CALIB Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Low-power oscillator frequency in Hz, measured during manufacturing (ECC)

This is measured at 1.1V, at room temperature, with the LPOSC trim register in

its reset state.

RO -

OTP_DATA: NUM_GPIOS Register

Offset: 0x018

Table 1374.

NUM_GPIOS Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 The number of main user GPIOs (bank 0). Should read 48 in the QFN80

package, and 30 in the QFN60 package. (ECC)

RO -

OTP_DATA: INFO_CRC0 Register

Offset: 0x036

Table 1375.

INFO_CRC0 Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Lower 16 bits of CRC32 of OTP addresses 0x00 through 0x6b (polynomial

0x4c11db7, input reflected, output reflected, seed all-ones, final XOR all-ones)

(ECC)

RO -

OTP_DATA: INFO_CRC1 Register

Offset: 0x037

Table 1376.

INFO_CRC1 Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Upper 16 bits of CRC32 of OTP addresses 0x00 through 0x6b (ECC) RO -

OTP_DATA: CRIT0 Register

Offset: 0x038

Description

Page 0 critical boot flags (RBIT-8)

Table 1377. CRIT0

Register
Bits Description Type Reset

31:2 Reserved. - -

1 RISCV_DISABLE: Permanently disable RISC-V processors (Hazard3) RO -

0 ARM_DISABLE: Permanently disable ARM processors (Cortex-M33) RO -

OTP_DATA: CRIT0_R1, CRIT0_R2, …, CRIT0_R6, CRIT0_R7 Registers

Offsets: 0x039, 0x03a, …, 0x03e, 0x03f
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Table 1378. CRIT0_R1,

CRIT0_R2, …,

CRIT0_R6, CRIT0_R7

Registers

Bits Description Type Reset

31:24 Reserved. - -

23:0 Redundant copy of CRIT0 RO -

OTP_DATA: CRIT1 Register

Offset: 0x040

Description

Page 1 critical boot flags (RBIT-8)

Table 1379. CRIT1

Register
Bits Description Type Reset

31:7 Reserved. - -

6:5 GLITCH_DETECTOR_SENS: Increase the sensitivity of the glitch detectors

from their default.

RO -

4 GLITCH_DETECTOR_ENABLE: Arm the glitch detectors to reset the system if

an abnormal clock/power event is observed.

RO -

3 BOOT_ARCH: Set the default boot architecture, 0=ARM 1=RISC-V. Ignored if

ARM_DISABLE, RISCV_DISABLE or SECURE_BOOT_ENABLE is set.

RO -

2 DEBUG_DISABLE: Disable all debug access RO -

1 SECURE_DEBUG_DISABLE: Disable Secure debug access RO -

0 SECURE_BOOT_ENABLE: Enable boot signature enforcement, and

permanently disable the RISC-V cores.

RO -

OTP_DATA: CRIT1_R1, CRIT1_R2, …, CRIT1_R6, CRIT1_R7 Registers

Offsets: 0x041, 0x042, …, 0x046, 0x047

Table 1380. CRIT1_R1,

CRIT1_R2, …,

CRIT1_R6, CRIT1_R7

Registers

Bits Description Type Reset

31:24 Reserved. - -

23:0 Redundant copy of CRIT1 RO -

OTP_DATA: BOOT_FLAGS0 Register

Offset: 0x048

Description

Disable/Enable boot paths/features in the RP2350 mask ROM. Disables always supersede enables. Enables are

provided where there are other configurations in OTP that must be valid. (RBIT-3)

Table 1381.

BOOT_FLAGS0

Register

Bits Description Type Reset

31:22 Reserved. - -

21 DISABLE_SRAM_WINDOW_BOOT RO -

20 DISABLE_XIP_ACCESS_ON_SRAM_ENTRY: Disable all access to XIP after

entering an SRAM binary.

Note that this will cause bootrom APIs that access XIP to fail, including APIs

that interact with the partition table.

RO -

19 DISABLE_BOOTSEL_UART_BOOT RO -
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Bits Description Type Reset

18 DISABLE_BOOTSEL_USB_PICOBOOT_IFC RO -

17 DISABLE_BOOTSEL_USB_MSD_IFC RO -

16 DISABLE_WATCHDOG_SCRATCH RO -

15 DISABLE_POWER_SCRATCH RO -

14 ENABLE_OTP_BOOT: Enable OTP boot. A number of OTP rows specified by

OTPBOOT_LEN will be loaded, starting from OTPBOOT_SRC, into the SRAM

location specified by OTPBOOT_DST1 and OTPBOOT_DST0.

The loaded program image is stored with ECC, 16 bits per row, and must

contain a valid IMAGE_DEF. Do not set this bit without first programming an

image into OTP and configuring OTPBOOT_LEN, OTPBOOT_SRC,

OTPBOOT_DST0 and OTPBOOT_DST1.

Note that OTPBOOT_LEN and OTPBOOT_SRC must be even numbers of OTP

rows. Equivalently, the image must be a multiple of 32 bits in size, and must

start at a 32-bit-aligned address in the ECC read data address window.

RO -

13 DISABLE_OTP_BOOT: Takes precedence over ENABLE_OTP_BOOT. RO -

12 DISABLE_FLASH_BOOT RO -

11 ROLLBACK_REQUIRED: Require binaries to have a rollback version. Set

automatically the first time a binary with a rollback version is booted.

RO -

10 HASHED_PARTITION_TABLE: Require a partition table to be hashed (if not

signed)

RO -

9 SECURE_PARTITION_TABLE: Require a partition table to be signed RO -

8 DISABLE_AUTO_SWITCH_ARCH: Disable auto-switch of CPU architecture on

boot when the (only) binary to be booted is for the other Arm/RISC-V

architecture and both architectures are enabled

RO -

7 SINGLE_FLASH_BINARY: Restrict flash boot path to use of a single binary at

the start of flash

RO -

6 OVERRIDE_FLASH_PARTITION_SLOT_SIZE: Override the limit for default flash

metadata scanning.

The value is specified in FLASH_PARTITION_SLOT_SIZE. Make sure

FLASH_PARTITION_SLOT_SIZE is valid before setting this bit

RO -

5 FLASH_DEVINFO_ENABLE: Mark FLASH_DEVINFO as containing valid, ECC’d

data which describes external flash devices.

RO -

4 FAST_SIGCHECK_ROSC_DIV: Enable quartering of ROSC divisor during

signature check, to reduce secure boot time

RO -

3 FLASH_IO_VOLTAGE_1V8: If 1, configure the QSPI pads for 1.8 V operation

when accessing flash for the first time from the bootrom, using the

VOLTAGE_SELECT register for the QSPI pads bank. This slightly improves the

input timing of the pads at low voltages, but does not affect their output

characteristics.

If 0, leave VOLTAGE_SELECT in its reset state (suitable for operation at and

above 2.5 V)

RO -
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Bits Description Type Reset

2 ENABLE_BOOTSEL_NON_DEFAULT_PLL_XOSC_CFG: Enable loading of the

non-default XOSC and PLL configuration before entering BOOTSEL mode.

Ensure that BOOTSEL_XOSC_CFG and BOOTSEL_PLL_CFG are correctly

programmed before setting this bit.

If this bit is set, user software may use the contents of BOOTSEL_PLL_CFG to

calculated the expected XOSC frequency based on the fixed USB boot

frequency of 48 MHz.

RO -

1 ENABLE_BOOTSEL_LED: Enable bootloader activity LED. If set,

bootsel_led_cfg is assumed to be valid

RO -

0 Reserved. - -

OTP_DATA: BOOT_FLAGS0_R1, BOOT_FLAGS0_R2 Registers

Offsets: 0x049, 0x04a

Table 1382.

BOOT_FLAGS0_R1,

BOOT_FLAGS0_R2

Registers

Bits Description Type Reset

31:24 Reserved. - -

23:0 Redundant copy of BOOT_FLAGS0 RO -

OTP_DATA: BOOT_FLAGS1 Register

Offset: 0x04b

Description

Disable/Enable boot paths/features in the RP2350 mask ROM. Disables always supersede enables. Enables are

provided where there are other configurations in OTP that must be valid. (RBIT-3)

Table 1383.

BOOT_FLAGS1

Register

Bits Description Type Reset

31:20 Reserved. - -

19 DOUBLE_TAP: Enable entering BOOTSEL mode via double-tap of the

RUN/RSTn pin. Adds a significant delay to boot time, as configured by

DOUBLE_TAP_DELAY.

This functions by waiting at startup (i.e. following a reset) to see if a second

reset is applied soon afterward. The second reset is detected by the bootrom

with help of the POWMAN_CHIP_RESET_DOUBLE_TAP flag, which is not reset

by the external reset pin, and the bootrom enters BOOTSEL mode (NSBOOT) to

await further instruction over USB or UART.

RO -

18:16 DOUBLE_TAP_DELAY: Adjust how long to wait for a second reset when double

tap BOOTSEL mode is enabled via DOUBLE_TAP. The minimum is 50

milliseconds, and each unit of this field adds an additional 50 milliseconds.

For example, settings this field to its maximum value of 7 will cause the chip

to wait for 400 milliseconds at boot to check for a second reset which

requests entry to BOOTSEL mode.

200 milliseconds (DOUBLE_TAP_DELAY=3) is a good intermediate value.

RO -

15:12 Reserved. - -
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Bits Description Type Reset

11:8 KEY_INVALID: Mark a boot key as invalid, or prevent it from ever becoming

valid. The bootrom will ignore any boot key marked as invalid during secure

boot signature checks.

Each bit in this field corresponds to one of the four 256-bit boot key hashes

that may be stored in page 2 of the OTP.

When provisioning boot keys, it’s recommended to mark any boot key slots

you don’t intend to use as KEY_INVALID, so that spurious keys can not be

installed at a later time.

RO -

7:4 Reserved. - -

3:0 KEY_VALID: Mark each of the possible boot keys as valid. The bootrom will

check signatures against all valid boot keys, and ignore invalid boot keys.

Each bit in this field corresponds to one of the four 256-bit boot key hashes

that may be stored in page 2 of the OTP.

A KEY_VALID bit is ignored if the corresponding KEY_INVALID bit is set. Boot

keys are considered valid only when KEY_VALID is set and KEY_INVALID is

clear.

Do not mark a boot key as KEY_VALID if it does not contain a valid SHA-256

hash of your secp256k1 public key. Verify keys after programming, before

setting the KEY_VALID bits — a boot key with uncorrectable ECC faults will

render your device unbootable if secure boot is enabled.

Do not enable secure boot without first installing a valid key. This will render

your device unbootable.

RO -

OTP_DATA: BOOT_FLAGS1_R1, BOOT_FLAGS1_R2 Registers

Offsets: 0x04c, 0x04d

Table 1384.

BOOT_FLAGS1_R1,

BOOT_FLAGS1_R2

Registers

Bits Description Type Reset

31:24 Reserved. - -

23:0 Redundant copy of BOOT_FLAGS1 RO -

OTP_DATA: DEFAULT_BOOT_VERSION0 Register

Offset: 0x04e

Table 1385.

DEFAULT_BOOT_VERS

ION0 Register

Bits Description Type Reset

31:24 Reserved. - -

23:0 Default boot version thermometer counter, bits 23:0 (RBIT-3) RO -

OTP_DATA: DEFAULT_BOOT_VERSION0_R1, DEFAULT_BOOT_VERSION0_R2

Registers

Offsets: 0x04f, 0x050
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Table 1386.

DEFAULT_BOOT_VERS

ION0_R1,

DEFAULT_BOOT_VERS

ION0_R2 Registers

Bits Description Type Reset

31:24 Reserved. - -

23:0 Redundant copy of DEFAULT_BOOT_VERSION0 RO -

OTP_DATA: DEFAULT_BOOT_VERSION1 Register

Offset: 0x051

Table 1387.

DEFAULT_BOOT_VERS

ION1 Register

Bits Description Type Reset

31:24 Reserved. - -

23:0 Default boot version thermometer counter, bits 47:24 (RBIT-3) RO -

OTP_DATA: DEFAULT_BOOT_VERSION1_R1, DEFAULT_BOOT_VERSION1_R2

Registers

Offsets: 0x052, 0x053

Table 1388.

DEFAULT_BOOT_VERS

ION1_R1,

DEFAULT_BOOT_VERS

ION1_R2 Registers

Bits Description Type Reset

31:24 Reserved. - -

23:0 Redundant copy of DEFAULT_BOOT_VERSION1 RO -

OTP_DATA: FLASH_DEVINFO Register

Offset: 0x054

Description

Stores information about external flash device(s). (ECC)

Assumed to be valid if BOOT_FLAGS0_FLASH_DEVINFO_ENABLE is set.

Table 1389.

FLASH_DEVINFO

Register

Bits Description Type Reset

31:16 Reserved. - -

15:12 CS1_SIZE: The size of the flash/PSRAM device on chip select 1 (addressable

at 0x11000000 through 0x11ffffff).

A value of zero is decoded as a size of zero (no device). Nonzero values are

decoded as 4kiB << CS1_SIZE. For example, four megabytes is encoded with a

CS1_SIZE value of 10, and 16 megabytes is encoded with a CS1_SIZE value of

12.

When BOOT_FLAGS0_FLASH_DEVINFO_ENABLE is not set, a default of zero is

used.

RO -

Enumerated values:

0x0 → NONE

0x1 → 8K

0x2 → 16K

0x3 → 32K

0x4 → 64k

0x5 → 128K
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Bits Description Type Reset

0x6 → 256K

0x7 → 512K

0x8 → 1M

0x9 → 2M

0xa → 4M

0xb → 8M

0xc → 16M

11:8 CS0_SIZE: The size of the flash/PSRAM device on chip select 0 (addressable

at 0x10000000 through 0x10ffffff).

A value of zero is decoded as a size of zero (no device). Nonzero values are

decoded as 4kiB << CS0_SIZE. For example, four megabytes is encoded with a

CS0_SIZE value of 10, and 16 megabytes is encoded with a CS0_SIZE value of

12.

When BOOT_FLAGS0_FLASH_DEVINFO_ENABLE is not set, a default of 12 (16

MiB) is used.

RO -

Enumerated values:

0x0 → NONE

0x1 → 8K

0x2 → 16K

0x3 → 32K

0x4 → 64k

0x5 → 128K

0x6 → 256K

0x7 → 512K

0x8 → 1M

0x9 → 2M

0xa → 4M

0xb → 8M

0xc → 16M

7 D8H_ERASE_SUPPORTED: If true, all attached devices are assumed to

support (or ignore, in the case of PSRAM) a block erase command with a

command prefix of D8h, an erase size of 64 kiB, and a 24-bit address. Almost

all 25-series flash devices support this command.

If set, the bootrom will use the D8h erase command where it is able, to

accelerate bulk erase operations. This makes flash programming faster.

When BOOT_FLAGS0_FLASH_DEVINFO_ENABLE is not set, this field defaults

to false.

RO -

6 Reserved. - -
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Bits Description Type Reset

5:0 CS1_GPIO: Indicate a GPIO number to be used for the secondary flash chip

select (CS1), which selects the external QSPI device mapped at system

addresses 0x11000000 through 0x11ffffff. There is no such configuration for

CS0, as the primary chip select has a dedicated pin.

On RP2350 the permissible GPIO numbers are 0, 8, 19 and 47.

Ignored if CS1_size is zero. If CS1_SIZE is nonzero, the bootrom will

automatically configure this GPIO as a second chip select upon entering the

flash boot path, or entering any other path that may use the QSPI flash

interface, such as BOOTSEL mode (nsboot).

RO -

OTP_DATA: FLASH_PARTITION_SLOT_SIZE Register

Offset: 0x055

Table 1390.

FLASH_PARTITION_SL

OT_SIZE Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 Gap between partition table slot 0 and slot 1 at the start of flash (the default

size is 4096 bytes) (ECC) Enabled by the

OVERRIDE_FLASH_PARTITION_SLOT_SIZE bit in BOOT_FLAGS, the size is

4096 * (value + 1)

RO -

OTP_DATA: BOOTSEL_LED_CFG Register

Offset: 0x056

Description

Pin configuration for LED status, used by USB bootloader. (ECC)

Must be valid if BOOT_FLAGS0_ENABLE_BOOTSEL_LED is set.

Table 1391.

BOOTSEL_LED_CFG

Register

Bits Description Type Reset

31:9 Reserved. - -

8 ACTIVELOW: LED is active-low. (Default: active-high.) RO -

7:6 Reserved. - -

5:0 PIN: GPIO index to use for bootloader activity LED. RO -

OTP_DATA: BOOTSEL_PLL_CFG Register

Offset: 0x057

Description

Optional PLL configuration for BOOTSEL mode. (ECC)

This should be configured to produce an exact 48 MHz based on the crystal oscillator frequency. User mode software

may also use this value to calculate the expected crystal frequency based on an assumed 48 MHz PLL output.

If no configuration is given, the crystal is assumed to be 12 MHz.

The PLL frequency can be calculated as:

PLL out = (XOSC frequency / (REFDIV+1)) x FBDIV / (POSTDIV1 x POSTDIV2)

Conversely the crystal frequency can be calculated as:

XOSC frequency = 48 MHz x (REFDIV+1) x (POSTDIV1 x POSTDIV2) / FBDIV
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(Note the +1 on REFDIV is because the value stored in this OTP location is the actual divisor value minus one.)

Used if and only if ENABLE_BOOTSEL_NON_DEFAULT_PLL_XOSC_CFG is set in BOOT_FLAGS0. That bit should be set

only after this row and BOOTSEL_XOSC_CFG are both correctly programmed.

Table 1392.

BOOTSEL_PLL_CFG

Register

Bits Description Type Reset

31:16 Reserved. - -

15 REFDIV: PLL reference divisor, minus one.

Programming a value of 0 means a reference divisor of 1. Programming a

value of 1 means a reference divisor of 2 (for exceptionally fast XIN inputs)

RO -

14:12 POSTDIV2: PLL post-divide 2 divisor, in the range 1..7 inclusive. RO -

11:9 POSTDIV1: PLL post-divide 1 divisor, in the range 1..7 inclusive. RO -

8:0 FBDIV: PLL feedback divisor, in the range 16..320 inclusive. RO -

OTP_DATA: BOOTSEL_XOSC_CFG Register

Offset: 0x058

Description

Non-default crystal oscillator configuration for the USB bootloader. (ECC)

These values may also be used by user code configuring the crystal oscillator.

Used if and only if ENABLE_BOOTSEL_NON_DEFAULT_PLL_XOSC_CFG is set in BOOT_FLAGS0. That bit should be set

only after this row and BOOTSEL_PLL_CFG are both correctly programmed.

Table 1393.

BOOTSEL_XOSC_CFG

Register

Bits Description Type Reset

31:16 Reserved. - -

15:14 RANGE: Value of the XOSC_CTRL_FREQ_RANGE register. RO -

Enumerated values:

0x0 → 1_15MHZ

0x1 → 10_30MHZ

0x2 → 25_60MHZ

0x3 → 40_100MHZ

13:0 STARTUP: Value of the XOSC_STARTUP register RO -

OTP_DATA: USB_BOOT_FLAGS Register

Offset: 0x059

Description

USB boot specific feature flags (RBIT-3)

Table 1394.

USB_BOOT_FLAGS

Register

Bits Description Type Reset

31:24 Reserved. - -

23 DP_DM_SWAP: Swap DM/DP during USB boot, to support board layouts with

mirrored USB routing (deliberate or accidental).

RO -
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Bits Description Type Reset

22 WHITE_LABEL_ADDR_VALID: valid flag for

INFO_UF2_TXT_BOARD_ID_STRDEF entry of the USB_WHITE_LABEL struct

(index 15)

RO -

21:16 Reserved. - -

15 WL_INFO_UF2_TXT_BOARD_ID_STRDEF_VALID: valid flag for the

USB_WHITE_LABEL_ADDR field

RO -

14 WL_INFO_UF2_TXT_MODEL_STRDEF_VALID: valid flag for

INFO_UF2_TXT_MODEL_STRDEF entry of the USB_WHITE_LABEL struct (index

14)

RO -

13 WL_INDEX_HTM_REDIRECT_NAME_STRDEF_VALID: valid flag for

INDEX_HTM_REDIRECT_NAME_STRDEF entry of the USB_WHITE_LABEL

struct (index 13)

RO -

12 WL_INDEX_HTM_REDIRECT_URL_STRDEF_VALID: valid flag for

INDEX_HTM_REDIRECT_URL_STRDEF entry of the USB_WHITE_LABEL struct

(index 12)

RO -

11 WL_SCSI_INQUIRY_VERSION_STRDEF_VALID: valid flag for

SCSI_INQUIRY_VERSION_STRDEF entry of the USB_WHITE_LABEL struct

(index 11)

RO -

10 WL_SCSI_INQUIRY_PRODUCT_STRDEF_VALID: valid flag for

SCSI_INQUIRY_PRODUCT_STRDEF entry of the USB_WHITE_LABEL struct

(index 10)

RO -

9 WL_SCSI_INQUIRY_VENDOR_STRDEF_VALID: valid flag for

SCSI_INQUIRY_VENDOR_STRDEF entry of the USB_WHITE_LABEL struct

(index 9)

RO -

8 WL_VOLUME_LABEL_STRDEF_VALID: valid flag for VOLUME_LABEL_STRDEF

entry of the USB_WHITE_LABEL struct (index 8)

RO -

7 WL_USB_CONFIG_ATTRIBUTES_MAX_POWER_VALUES_VALID: valid flag for

USB_CONFIG_ATTRIBUTES_MAX_POWER_VALUES entry of the

USB_WHITE_LABEL struct (index 7)

RO -

6 WL_USB_DEVICE_SERIAL_NUMBER_STRDEF_VALID: valid flag for

USB_DEVICE_SERIAL_NUMBER_STRDEF entry of the USB_WHITE_LABEL

struct (index 6)

RO -

5 WL_USB_DEVICE_PRODUCT_STRDEF_VALID: valid flag for

USB_DEVICE_PRODUCT_STRDEF entry of the USB_WHITE_LABEL struct (index

5)

RO -

4 WL_USB_DEVICE_MANUFACTURER_STRDEF_VALID: valid flag for

USB_DEVICE_MANUFACTURER_STRDEF entry of the USB_WHITE_LABEL

struct (index 4)

RO -

3 WL_USB_DEVICE_LANG_ID_VALUE_VALID: valid flag for

USB_DEVICE_LANG_ID_VALUE entry of the USB_WHITE_LABEL struct (index

3)

RO -

2 WL_USB_DEVICE_SERIAL_NUMBER_VALUE_VALID: valid flag for

USB_DEVICE_BCD_DEVICEVALUE entry of the USB_WHITE_LABEL struct

(index 2)

RO -

1 WL_USB_DEVICE_PID_VALUE_VALID: valid flag for USB_DEVICE_PID_VALUE

entry of the USB_WHITE_LABEL struct (index 1)

RO -
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Bits Description Type Reset

0 WL_USB_DEVICE_VID_VALUE_VALID: valid flag for USB_DEVICE_VID_VALUE

entry of the USB_WHITE_LABEL struct (index 0)

RO -

OTP_DATA: USB_BOOT_FLAGS_R1, USB_BOOT_FLAGS_R2 Registers

Offsets: 0x05a, 0x05b

Table 1395.

USB_BOOT_FLAGS_R1,

USB_BOOT_FLAGS_R2

Registers

Bits Description Type Reset

31:24 Reserved. - -

23:0 Redundant copy of USB_BOOT_FLAGS RO -

OTP_DATA: USB_WHITE_LABEL_ADDR Register

Offset: 0x05c

Table 1396.

USB_WHITE_LABEL_A

DDR Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 Row index of the USB_WHITE_LABEL structure within OTP (ECC)

The table has 16 rows, each of which are also ECC and marked valid by the

corresponding valid bit in USB_BOOT_FLAGS (ECC).

The entries are either _VALUEs where the 16 bit value is used as is, or

_STRDEFs which acts as a pointers to a string value.

The value stored in a _STRDEF is two separate bytes: The low seven bits of the

first (LSB) byte indicates the number of characters in the string, and the top bit

of the first (LSB) byte if set to indicate that each character in the string is two

bytes (Unicode) versus one byte if unset. The second (MSB) byte represents

the location of the string data, and is encoded as the number of rows from this

USB_WHITE_LABEL_ADDR; i.e. the row of the start of the string is

USB_WHITE_LABEL_ADDR value + msb_byte.

In each case, the corresponding valid bit enables replacing the default value

for the corresponding item provided by the boot rom.

Note that Unicode _STRDEFs are only supported for

USB_DEVICE_PRODUCT_STRDEF, USB_DEVICE_SERIAL_NUMBER_STRDEF

and USB_DEVICE_MANUFACTURER_STRDEF. Unicode values will be ignored if

specified for other fields, and non-unicode values for these three items will be

converted to Unicode characters by setting the upper 8 bits to zero.

Note that if the USB_WHITE_LABEL structure or the corresponding strings are

not readable by BOOTSEL mode based on OTP permissions, or if alignment

requirements are not met, then the corresponding default values are used.

The index values indicate where each field is located (row

USB_WHITE_LABEL_ADDR value + index):

RO -

Enumerated values:

0x0000 → INDEX_USB_DEVICE_VID_VALUE

0x0001 → INDEX_USB_DEVICE_PID_VALUE

RP2350 Datasheet

13.9. Predefined OTP Data Locations 1302



Bits Description Type Reset

0x0002 → INDEX_USB_DEVICE_BCD_DEVICE_VALUE

0x0003 → INDEX_USB_DEVICE_LANG_ID_VALUE

0x0004 → INDEX_USB_DEVICE_MANUFACTURER_STRDEF

0x0005 → INDEX_USB_DEVICE_PRODUCT_STRDEF

0x0006 → INDEX_USB_DEVICE_SERIAL_NUMBER_STRDEF

0x0007 → INDEX_USB_CONFIG_ATTRIBUTES_MAX_POWER_VALUES

0x0008 → INDEX_VOLUME_LABEL_STRDEF

0x0009 → INDEX_SCSI_INQUIRY_VENDOR_STRDEF

0x000a → INDEX_SCSI_INQUIRY_PRODUCT_STRDEF

0x000b → INDEX_SCSI_INQUIRY_VERSION_STRDEF

0x000c → INDEX_INDEX_HTM_REDIRECT_URL_STRDEF

0x000d → INDEX_INDEX_HTM_REDIRECT_NAME_STRDEF

0x000e → INDEX_INFO_UF2_TXT_MODEL_STRDEF

0x000f → INDEX_INFO_UF2_TXT_BOARD_ID_STRDEF

OTP_DATA: OTPBOOT_SRC Register

Offset: 0x05e

Table 1397.

OTPBOOT_SRC

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 OTP start row for the OTP boot image. (ECC)

If OTP boot is enabled, the bootrom will load from this location into SRAM and

then directly enter the loaded image. Note that the image must be signed if

SECURE_BOOT_ENABLE is set. The image itself is assumed to be ECC-

protected.

This must be an even number. Equivalently, the OTP boot image must start at

a word-aligned location in the ECC read data address window.

RO -

OTP_DATA: OTPBOOT_LEN Register

Offset: 0x05f

Table 1398.

OTPBOOT_LEN

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 Length in rows of the OTP boot image. (ECC)

OTPBOOT_LEN must be even. The total image size must be a multiple of 4

bytes (32 bits).

RO -

OTP_DATA: OTPBOOT_DST0 Register

Offset: 0x060
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Table 1399.

OTPBOOT_DST0

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 15:0 of the OTP boot image load destination (and entry point). (ECC)

This must be a location in main SRAM (main SRAM is addresses 0x20000000

through 0x20082000) and must be word-aligned.

RO -

OTP_DATA: OTPBOOT_DST1 Register

Offset: 0x061

Table 1400.

OTPBOOT_DST1

Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 31:16 of the OTP boot image load destination (and entry point). (ECC)

This must be a location in main SRAM (main SRAM is addresses 0x20000000

through 0x20082000) and must be word-aligned.

RO -

OTP_DATA: BOOTKEY0_0, BOOTKEY0_1, …, BOOTKEY3_14, BOOTKEY3_15

Registers

Offsets: 0x080, 0x081, …, 0x0be, 0x0bf

Table 1401.

BOOTKEY0_0,

BOOTKEY0_1, …,

BOOTKEY3_14,

BOOTKEY3_15

Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits N + 15 : N of SHA-256 hash of boot key K (ECC) RO -

OTP_DATA: KEY1_0, KEY2_0, …, KEY5_0, KEY6_0 Registers

Offsets: 0xf48, 0xf50, …, 0xf68, 0xf70

Table 1402. KEY1_0,

KEY2_0, …, KEY5_0,

KEY6_0 Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 15:0 of OTP access key n (ECC) RO -

OTP_DATA: KEY1_1, KEY2_1, …, KEY5_1, KEY6_1 Registers

Offsets: 0xf49, 0xf51, …, 0xf69, 0xf71

Table 1403. KEY1_1,

KEY2_1, …, KEY5_1,

KEY6_1 Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 31:16 of OTP access key n (ECC) RO -

OTP_DATA: KEY1_2, KEY2_2, …, KEY5_2, KEY6_2 Registers

Offsets: 0xf4a, 0xf52, …, 0xf6a, 0xf72
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Table 1404. KEY1_2,

KEY2_2, …, KEY5_2,

KEY6_2 Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 47:32 of OTP access key n (ECC) RO -

OTP_DATA: KEY1_3, KEY2_3, …, KEY5_3, KEY6_3 Registers

Offsets: 0xf4b, 0xf53, …, 0xf6b, 0xf73

Table 1405. KEY1_3,

KEY2_3, …, KEY5_3,

KEY6_3 Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 63:48 of OTP access key n (ECC) RO -

OTP_DATA: KEY1_4, KEY2_4, …, KEY5_4, KEY6_4 Registers

Offsets: 0xf4c, 0xf54, …, 0xf6c, 0xf74

Table 1406. KEY1_4,

KEY2_4, …, KEY5_4,

KEY6_4 Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 79:64 of OTP access key n (ECC) RO -

OTP_DATA: KEY1_5, KEY2_5, …, KEY5_5, KEY6_5 Registers

Offsets: 0xf4d, 0xf55, …, 0xf6d, 0xf75

Table 1407. KEY1_5,

KEY2_5, …, KEY5_5,

KEY6_5 Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 95:80 of OTP access key n (ECC) RO -

OTP_DATA: KEY1_6, KEY2_6, …, KEY5_6, KEY6_6 Registers

Offsets: 0xf4e, 0xf56, …, 0xf6e, 0xf76

Table 1408. KEY1_6,

KEY2_6, …, KEY5_6,

KEY6_6 Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 111:96 of OTP access key n (ECC) RO -

OTP_DATA: KEY1_7, KEY2_7, …, KEY5_7, KEY6_7 Registers

Offsets: 0xf4f, 0xf57, …, 0xf6f, 0xf77

Table 1409. KEY1_7,

KEY2_7, …, KEY5_7,

KEY6_7 Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Bits 127:112 of OTP access key n (ECC) RO -

OTP_DATA: KEY1_VALID Register

Offset: 0xf79

Description

Valid flag for key 1. Once the valid flag is set, the key can no longer be read or written, and becomes a valid fixed

key for protecting OTP pages.
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Table 1410.

KEY1_VALID Register
Bits Description Type Reset

31:17 Reserved. - -

16 VALID_R2: Redundant copy of VALID, with 3-way majority vote RO -

15:9 Reserved. - -

8 VALID_R1: Redundant copy of VALID, with 3-way majority vote RO -

7:1 Reserved. - -

0 VALID RO -

OTP_DATA: KEY2_VALID Register

Offset: 0xf7a

Description

Valid flag for key 2. Once the valid flag is set, the key can no longer be read or written, and becomes a valid fixed

key for protecting OTP pages.

Table 1411.

KEY2_VALID Register
Bits Description Type Reset

31:17 Reserved. - -

16 VALID_R2: Redundant copy of VALID, with 3-way majority vote RO -

15:9 Reserved. - -

8 VALID_R1: Redundant copy of VALID, with 3-way majority vote RO -

7:1 Reserved. - -

0 VALID RO -

OTP_DATA: KEY3_VALID Register

Offset: 0xf7b

Description

Valid flag for key 3. Once the valid flag is set, the key can no longer be read or written, and becomes a valid fixed

key for protecting OTP pages.

Table 1412.

KEY3_VALID Register
Bits Description Type Reset

31:17 Reserved. - -

16 VALID_R2: Redundant copy of VALID, with 3-way majority vote RO -

15:9 Reserved. - -

8 VALID_R1: Redundant copy of VALID, with 3-way majority vote RO -

7:1 Reserved. - -

0 VALID RO -

OTP_DATA: KEY4_VALID Register

Offset: 0xf7c

Description

Valid flag for key 4. Once the valid flag is set, the key can no longer be read or written, and becomes a valid fixed

key for protecting OTP pages.
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Table 1413.

KEY4_VALID Register
Bits Description Type Reset

31:17 Reserved. - -

16 VALID_R2: Redundant copy of VALID, with 3-way majority vote RO -

15:9 Reserved. - -

8 VALID_R1: Redundant copy of VALID, with 3-way majority vote RO -

7:1 Reserved. - -

0 VALID RO -

OTP_DATA: KEY5_VALID Register

Offset: 0xf7d

Description

Valid flag for key 5. Once the valid flag is set, the key can no longer be read or written, and becomes a valid fixed

key for protecting OTP pages.

Table 1414.

KEY5_VALID Register
Bits Description Type Reset

31:17 Reserved. - -

16 VALID_R2: Redundant copy of VALID, with 3-way majority vote RO -

15:9 Reserved. - -

8 VALID_R1: Redundant copy of VALID, with 3-way majority vote RO -

7:1 Reserved. - -

0 VALID RO -

OTP_DATA: KEY6_VALID Register

Offset: 0xf7e

Description

Valid flag for key 6. Once the valid flag is set, the key can no longer be read or written, and becomes a valid fixed

key for protecting OTP pages.

Table 1415.

KEY6_VALID Register
Bits Description Type Reset

31:17 Reserved. - -

16 VALID_R2: Redundant copy of VALID, with 3-way majority vote RO -

15:9 Reserved. - -

8 VALID_R1: Redundant copy of VALID, with 3-way majority vote RO -

7:1 Reserved. - -

0 VALID RO -

OTP_DATA: PAGE0_LOCK0, PAGE1_LOCK0, …, PAGE61_LOCK0,

PAGE62_LOCK0 Registers

Offsets: 0xf80, 0xf82, …, 0xffa, 0xffc

Description

Lock configuration LSBs for page N (rows 0x40 * N through 0x40 * N + 0x3f). Locks are stored with 3-way majority

vote encoding, so that bits can be set independently.
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This OTP location is always readable, and is write-protected by its own permissions.

Table 1416.

PAGE0_LOCK0,

PAGE1_LOCK0, …,

PAGE61_LOCK0,

PAGE62_LOCK0

Registers

Bits Description Type Reset

31:24 Reserved. - -

23:16 R2: Redundant copy of bits 7:0 RO -

15:8 R1: Redundant copy of bits 7:0 RO -

7 Reserved. - -

6 NO_KEY_STATE: State when at least one key is registered for this page and no

matching key has been entered.

RO -

Enumerated values:

0x0 → read_only

0x1 → inaccessible

5:3 KEY_R: Index 1-6 of a hardware key which must be entered to grant read

access, or 0 if no such key is required.

RO -

2:0 KEY_W: Index 1-6 of a hardware key which must be entered to grant write

access, or 0 if no such key is required.

RO -

OTP_DATA: PAGE0_LOCK1, PAGE1_LOCK1, …, PAGE61_LOCK1,

PAGE62_LOCK1 Registers

Offsets: 0xf81, 0xf83, …, 0xffb, 0xffd

Description

Lock configuration MSBs for page N (rows 0x40 * N through 0x40 * N + 0x3f). Locks are stored with 3-way majority

vote encoding, so that bits can be set independently.

This OTP location is always readable, and is write-protected by its own permissions.

Table 1417.

PAGE0_LOCK1,

PAGE1_LOCK1, …,

PAGE61_LOCK1,

PAGE62_LOCK1

Registers

Bits Description Type Reset

31:24 Reserved. - -

23:16 R2: Redundant copy of bits 7:0 RO -

15:8 R1: Redundant copy of bits 7:0 RO -

7:6 Reserved. - -

5:4 LOCK_BL: Dummy lock bits reserved for bootloaders (including the RP2350

USB bootloader) to store their own OTP access permissions. No hardware

effect, and no corresponding SW_LOCKx registers.

RO -

Enumerated values:

0x0 → Bootloader permits user reads and writes to this page

0x1 → Bootloader permits user reads of this page

0x2 → Do not use. Behaves the same as INACCESSIBLE

0x3 → Bootloader does not permit user access to this page
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Bits Description Type Reset

3:2 LOCK_NS: Lock state for Non-secure accesses to this page. Thermometer-

coded, so lock state can be advanced permanently from any state to any less-

permissive state by programming OTP. Software can also advance the lock

state temporarily (until next OTP reset) using the SW_LOCKx registers.

Note that READ_WRITE and READ_ONLY are equivalent in hardware, as the

SBPI programming interface is not accessible to Non-secure software.

However, Secure software may check these bits to apply write permissions to

a Non-secure OTP programming API.

RO -

Enumerated values:

0x0 → Page can be read by Non-secure software, and Secure software may

permit Non-secure writes.

0x1 → Page can be read by Non-secure software

0x2 → Do not use. Behaves the same as INACCESSIBLE.

0x3 → Page can not be accessed by Non-secure software.

1:0 LOCK_S: Lock state for Secure accesses to this page. Thermometer-coded, so

lock state can be advanced permanently from any state to any less-permissive

state by programming OTP. Software can also advance the lock state

temporarily (until next OTP reset) using the SW_LOCKx registers.

RO -

Enumerated values:

0x0 → Page is fully accessible by Secure software.

0x1 → Page can be read by Secure software, but can not be written.

0x2 → Do not use. Behaves the same as INACCESSIBLE.

0x3 → Page can not be accessed by Secure software.

OTP_DATA: PAGE63_LOCK0 Register

Offset: 0xffe

Description

Lock configuration LSBs for page 63 (rows 0xfc0 through 0xfff). Locks are stored with 3-way majority vote

encoding, so that bits can be set independently.

This OTP location is always readable, and is write-protected by its own permissions.

Table 1418.

PAGE63_LOCK0

Register

Bits Description Type Reset

31:24 Reserved. - -

23:16 R2: Redundant copy of bits 7:0 RO -

15:8 R1: Redundant copy of bits 7:0 RO -

7 RMA: Decommission for RMA of a suspected faulty device. This re-enables

the factory test JTAG interface, and makes pages 3 through 61 of the OTP

permanently inaccessible.

RO -

6 NO_KEY_STATE: State when at least one key is registered for this page and no

matching key has been entered.

RO -

Enumerated values:

0x0 → read_only
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Bits Description Type Reset

0x1 → inaccessible

5:3 KEY_R: Index 1-6 of a hardware key which must be entered to grant read

access, or 0 if no such key is required.

RO -

2:0 KEY_W: Index 1-6 of a hardware key which must be entered to grant write

access, or 0 if no such key is required.

RO -

OTP_DATA: PAGE63_LOCK1 Register

Offset: 0xfff

Description

Lock configuration MSBs for page 63 (rows 0xfc0 through 0xfff). Locks are stored with 3-way majority vote

encoding, so that bits can be set independently.

This OTP location is always readable, and is write-protected by its own permissions.

Table 1419.

PAGE63_LOCK1

Register

Bits Description Type Reset

31:24 Reserved. - -

23:16 R2: Redundant copy of bits 7:0 RO -

15:8 R1: Redundant copy of bits 7:0 RO -

7:6 Reserved. - -

5:4 LOCK_BL: Dummy lock bits reserved for bootloaders (including the RP2350

USB bootloader) to store their own OTP access permissions. No hardware

effect, and no corresponding SW_LOCKx registers.

RO -

Enumerated values:

0x0 → Bootloader permits user reads and writes to this page

0x1 → Bootloader permits user reads of this page

0x2 → Do not use. Behaves the same as INACCESSIBLE

0x3 → Bootloader does not permit user access to this page

3:2 LOCK_NS: Lock state for Non-secure accesses to this page. Thermometer-

coded, so lock state can be advanced permanently from any state to any less-

permissive state by programming OTP. Software can also advance the lock

state temporarily (until next OTP reset) using the SW_LOCKx registers.

Note that READ_WRITE and READ_ONLY are equivalent in hardware, as the

SBPI programming interface is not accessible to Non-secure software.

However, Secure software may check these bits to apply write permissions to

a Non-secure OTP programming API.

RO -

Enumerated values:

0x0 → Page can be read by Non-secure software, and Secure software may

permit Non-secure writes.

0x1 → Page can be read by Non-secure software

0x2 → Do not use. Behaves the same as INACCESSIBLE.

0x3 → Page can not be accessed by Non-secure software.
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Bits Description Type Reset

1:0 LOCK_S: Lock state for Secure accesses to this page. Thermometer-coded, so

lock state can be advanced permanently from any state to any less-permissive

state by programming OTP. Software can also advance the lock state

temporarily (until next OTP reset) using the SW_LOCKx registers.

RO -

Enumerated values:

0x0 → Page is fully accessible by Secure software.

0x1 → Page can be read by Secure software, but can not be written.

0x2 → Do not use. Behaves the same as INACCESSIBLE.

0x3 → Page can not be accessed by Secure software.
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Chapter 14. Electrical and
Mechanical
This section contains physical and electrical details for RP2350.

14.1. QFN-60 Package

Figure 142. Top down

view (left, top) and

side view (right,

bottom), along with

bottom view (right,

top) of the RP2350

QFN-60 package
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 NOTE

Leads have a matte Tin (Sn) finish. Annealing is done post-plating, baking at 150°C for 1 hour. Minimum thickness

for lead plating is 8 microns, and the intermediate layer material is CuFe2P (roughened Copper (Cu)).

14.1.1. Thermal characteristics

The thermal characteristics of the QFN-60 package are shown in Table 1420.

Table 1420. Thermal

data for the QFN-60

package.

Device θJA (°C/W) - Still

Air

θJA (°C/W) - 1m/s

Forced Air

θJA (°C/W) - 2m/s

Forced Air

θJB (°C/W) θJC (°C/W)

RP2350A 40.542 31.99 30.264 12.588 14.315

RP2354A TBD TBD TBD TBD TBD

14.1.2. Recommended PCB Footprint

Figure 143.

Recommended PCB

Footprint for the

RP2350 QFN-60

package

14.2. QFN-80 Package
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Figure 144. Top down

view (left, top) and

side view (right,

bottom), along with

bottom view (right,

top) of the RP2350

QFN-80 package

 NOTE

Leads have a matte Tin (Sn) finish. Annealing is done post-plating, baking at 150°C for 1 hour. Minimum thickness

for lead plating is 8 microns, and the intermediate layer material is CuFe2P (roughened Copper (Cu)).

14.2.1. Thermal characteristics

The thermal characteristics of the QFN-80 package are shown in Table 1421.

Table 1421. Thermal

data for the QFN-80

package.

Device θJA (°C/W) - Still

Air

θJA (°C/W) - 1m/s

Forced Air

θJA (°C/W) - 2m/s

Forced Air

θJB (°C/W) θJC (°C/W)

RP2350B TBD TBD TBD TBD TBD

RP2354B TBD TBD TBD TBD TBD

14.2.2. Recommended PCB Footprint
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Figure 145.

Recommended PCB

Footprint for the

RP2350 QFN-80

package

14.3. Flash in Package

RP2354A and RP2354B feature 2 MB of internal flash. In all other respects, including pinout, they are identical to their

flashless counterparts RP2350A and RP2350B. They use the same QFN-60 (RP2354A) and QFN-80 (RP2354B)

packages. An RP2354 device contains two stacked silicon die:

• the same RP2350 die as the flashless variants

• a Winbond W25Q16JVWI QSPI NOR flash

Winbond W25Q16JVWI Datasheet

For detailed information on the W25Q16JVWI device used in RP2354 see:

www.winbond.com/hq/product/code-storage-flash-memory/serial-nor-

flash/?__locale=en&partNo=W25Q16JV

The six dedicated QSPI pads on the RP2350 die (CSn, SCK and SD0 through SD3) connect to both the internal flash die and

the external package pins. This makes them behave similarly to flashless RP2350 devices in the following ways:

• The QSPI CSn can be driven low at reset or power-up to select BOOTSEL mode

◦ This harmlessly selects the internal flash die but does not issue commands to it

• The QSPI SD1 pin can be driven high when selecting BOOTSEL to choose UART boot

◦ UART TX appears on SD2 and UART RX on SD3, as per Section 5.8

◦ Even with the chip select asserted low, the internal flash die maintains a high-impedance state on its SD0

through SD3 pins if there are no transitions on SCK, so you can keep CSn asserted throughout UART boot

• Internal flash can be programmed via UF2 drag-and-drop download using the USB BOOTSEL mode

• A second QSPI device can be attached externally by connecting it to the QSPI pins and a secondary chip select

from the Bank 0 GPIOs

◦ This may be used for additional flash capacity, or external QSPI RAM

RP2350 Datasheet
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◦ See Section 12.14 for more details of the RP2350 QSPI memory interface and its capabilities

The internal flash die can also be programmed externally by holding the RP2350 die in reset via the RUN pin (active-low

reset), and driving QSPI signals into the chip from an external programmer.

The internal flash is powered by the QSPI_IOVDD supply input. This voltage must be in the range 2.7 to 3.6 V. You

should account for the increased high-frequency currents on this supply pin in your decoupling circuit and PCB layout.

The maximum QSPI clock frequency of the W25Q16JVWI is 133 MHz. Consult the W25Q16JVWI datasheet for detailed

timings and AC parameters.

If you do not require access to the RP2350 QSPI bus from the outside, you should minimise the track length connected

to the QSPI package pins on your PCB. This avoids unnecessary emissions and capacitive loading of the QSPI bus.

The PADRESETB reset input on the W25Q16JVWI is not connected to any external package pins, or to any internal

signals on the RP2350 die. This means there is no way to perform a hardware reset of the flash die. When the RP2350

die comes out of reset it initialises the flash die in the same way it would an external flash device by issuing a fixed XIP

exit sequence that returns the flash die to a serial command state in preparation for execute-in-place setup.

14.4. Package Markings

RP2350 comes in 7 × 7 mm QFN-60 and 10 × 10 mm QFN-80 packages which are marked with the following data:

• Pin 1 Dot

• Logo

• Part number

• Date code (Week)

• Silicon lot number

• Date code (Year)

Part number includes the following:

• Device name "RP2350"

• Package type, "A" for QFN-60 or "B" for QFN-80

• Revision "0A2"

14.5. Storage conditions

In order to preserve the shelf and floor life of bare RP2350 devices, follow JEDEC J-STD (020E & 033D).

RP2350 QFN-60 is classified as Moisture Sensitivity Level 1 (MSL1). The MSL of QFN-80 is still being characterised and

details will follow in a future datasheet update.

All RP2350 devices should be stored under 30°C and 85% relative humidity.

14.6. Solder profile

RP2350 is a Pb-free part, with a Tp value of 260°C.

All temperatures refer to the centre of the package, measured on the package body surface that faces up during

assembly reflow (live-bug orientation). If parts are reflowed in a different orientation (e.g. dead-bug), Tp shall be within

±2°C of the live-bug Tp and still meet the Tc requirements; otherwise, you must adjust the profile to achieve the latter.

RP2350 Datasheet
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Classification profile

(not to scale)

 NOTE

Reflow profiles in this document are for classification/preconditioning, and are not meant to specify board assembly

profiles. Actual board assembly profiles should be developed based on specific process needs and board designs,

and should not exceed the parameters in Table 1422.

Table 1422. Solder

profile values
Profile feature Value

Temperature min (Tsmin) 150°C

Temperature max (Tsmax) 200°C

Time (ts) from (Tsmin to Tsmax) 60 - 120 seconds

Ramp-up rate (TL to Tp) 3°C/second max.

Liquidous temperature (TL) 217°C

Time (tL) maintained above TL 60 to 150 seconds

Peak package body temperature (Tp) 260°C

Classification temperature (Tc) 260°C

Time (tp) within 5°C of the specified classification temperature (Tc) 30 seconds

Ramp-down rate (Tp to TL) 6°C/second max.

Time 25°C to peak temperature 8 minutes max.
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14.7. Compliance

RP2350 QFN-60 is compliant to Moisture Sensitivity Level 1. The Moisture Sensitivity Level compliance of RP2350 QFN-

80 is yet to be fully characterised, and details will follow in a future datasheet update.

RP2350 is compliant to the requirement of REACH Substances of Very High Concern (SVHC), EU ECHA directive.

RP2350 is compliant to the requirement and standard of Controlled Environment-related Substance of RoHS directive

(EU) 2011/65/EU and directive (EU) 2015/863.

Raspberry Pi Ltd carried out the following Package Level reliability qualifications on RP2350:

• Temperature Cycling per JESD22-A104

• HAST per JESD22-A110

• HTSL per JESD22-A103

• MSL level per JESD22-A113

The following Silicon Level reliability qualification were also carried out:

• HTOL per JESD22-A108F

 NOTE

A tin whiskers test is not performed. RP2350 is a bottom-only termination device in the QFN-60 and QFN-80

packages, therefore JEDEC standard (JESD201A) is not applicable.

14.8. Pinout

14.8.1. Pin Locations

14.8.1.1. QFN-60 (RP2350A)

RP2350 Datasheet
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Figure 147. RP2350

Pinout for QFN-60

7×7mm

14.8.1.2. QFN-80 (RP2350B)
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Pinout for QFN-80

10×10mm
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14.8.2. Pin Definitions

14.8.2.1. Pin Types

In the following pin tables (Table 1424), the pin types are defined as shown below.

Table 1423. Pin Types
Pin Type Direction Description

Digital In Input only Standard Digital. Programmable Pull-Up, Pull-Down, Slew Rate,

Schmitt Trigger and Drive Strength. Default Drive Strength is 4mA.
Digital IO Bi-directional

Digital In (FT) Input only Fault Tolerant Digital. These pins are described as Fault Tolerant,

which in this case means that very little current flows into the pin

whilst it is below 3.63V and IOVDD is 0V. These pins have enhanced

ESD protection. Programmable Pull-Up, Pull-Down, Slew Rate, Schmitt

Trigger and Drive Strength. Default Drive Strength is 4mA.

Digital IO (FT) Bi-directional

Digital IO / Analogue Bi-directional (digital),

Input (Analogue)

Standard Digital and ADC input. Programmable Pull-Up, Pull-Down,

Slew Rate, Schmitt Trigger and Drive Strength. Default Drive Strength

is 4mA.

USB IO Bi-directional These pins are for USB use, and contain internal pull-up and pull-down

resistors, as per the USB specification. USB operation requires

external 27Ω series resistors.

Analogue (XOSC) Oscillator input pins for attaching a 12MHz crystal. Alternatively, XIN

may be driven by a square wave.

14.8.2.2. Pin List

Table 1424. GPIO pins
Name QFN-60 Number QFN-80 Number Type Power Domain Reset State Description

GPIO0 2 77 Digital IO (FT) IOVDD Pull-Down User IO

GPIO1 3 78 Digital IO (FT) IOVDD Pull-Down User IO

GPIO2 4 79 Digital IO (FT) IOVDD Pull-Down User IO

GPIO3 5 80 Digital IO (FT) IOVDD Pull-Down User IO

GPIO4 7 1 Digital IO (FT) IOVDD Pull-Down User IO

GPIO5 8 2 Digital IO (FT) IOVDD Pull-Down User IO

GPIO6 9 3 Digital IO (FT) IOVDD Pull-Down User IO

GPIO7 10 4 Digital IO (FT) IOVDD Pull-Down User IO

GPIO8 12 6 Digital IO (FT) IOVDD Pull-Down User IO

GPIO9 13 7 Digital IO (FT) IOVDD Pull-Down User IO

GPIO10 14 8 Digital IO (FT) IOVDD Pull-Down User IO

GPIO11 15 9 Digital IO (FT) IOVDD Pull-Down User IO

GPIO12 16 11 Digital IO (FT) IOVDD Pull-Down User IO

GPIO13 17 12 Digital IO (FT) IOVDD Pull-Down User IO

GPIO14 18 13 Digital IO (FT) IOVDD Pull-Down User IO

GPIO15 19 14 Digital IO (FT) IOVDD Pull-Down User IO

RP2350 Datasheet
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Name QFN-60 Number QFN-80 Number Type Power Domain Reset State Description

GPIO16 27 16 Digital IO (FT) IOVDD Pull-Down User IO

GPIO17 28 17 Digital IO (FT) IOVDD Pull-Down User IO

GPIO18 29 18 Digital IO (FT) IOVDD Pull-Down User IO

GPIO19 31 19 Digital IO (FT) IOVDD Pull-Down User IO

GPIO20 32 20 Digital IO (FT) IOVDD Pull-Down User IO

GPIO21 33 21 Digital IO (FT) IOVDD Pull-Down User IO

GPIO22 34 22 Digital IO (FT) IOVDD Pull-Down User IO

GPIO23 35 23 Digital IO (FT) IOVDD Pull-Down User IO

GPIO24 36 25 Digital IO (FT) IOVDD Pull-Down User IO

GPIO25 37 26 Digital IO (FT) IOVDD Pull-Down User IO

GPIO26_ADC0 40 - Digital IO /

Analogue

IOVDD /
ADC_AVDD

Pull-Down User IO or ADC

input

GPIO27_ADC1 41 - Digital IO /

Analogue

IOVDD /
ADC_AVDD

Pull-Down User IO or ADC

input

GPIO28_ADC2 42 - Digital IO /

Analogue

IOVDD /
ADC_AVDD

Pull-Down User IO or ADC

input

GPIO29_ADC3 43 - Digital IO /

Analogue

IOVDD /
ADC_AVDD

Pull-Down User IO or ADC

input

GPIO26 - 27 Digital IO (FT) IOVDD Pull-Down User IO

GPIO27 - 28 Digital IO (FT) IOVDD Pull-Down User IO

GPIO28 - 36 Digital IO (FT) IOVDD Pull-Down User IO

GPIO29 - 37 Digital IO (FT) IOVDD Pull-Down User IO

GPIO30 - 38 Digital IO (FT) IOVDD Pull-Down User IO

GPIO31 - 39 Digital IO (FT) IOVDD Pull-Down User IO

GPIO32 - 40 Digital IO (FT) IOVDD Pull-Down User IO

GPIO33 - 42 Digital IO (FT) IOVDD Pull-Down User IO

GPIO34 - 43 Digital IO (FT) IOVDD Pull-Down User IO

GPIO35 - 44 Digital IO (FT) IOVDD Pull-Down User IO

GPIO36 - 45 Digital IO (FT) IOVDD Pull-Down User IO

GPIO37 - 46 Digital IO (FT) IOVDD Pull-Down User IO

GPIO38 - 47 Digital IO (FT) IOVDD Pull-Down User IO

GPIO39 - 48 Digital IO (FT) IOVDD Pull-Down User IO

GPIO40_ADC0 - 49 Digital IO /

Analogue

IOVDD /
ADC_AVDD

Pull-Down User IO or ADC

input

GPIO41_ADC1 - 52 Digital IO /

Analogue

IOVDD /
ADC_AVDD

Pull-Down User IO or ADC

input

GPIO42_ADC2 - 53 Digital IO /

Analogue

IOVDD /
ADC_AVDD

Pull-Down User IO or ADC

input
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Name QFN-60 Number QFN-80 Number Type Power Domain Reset State Description

GPIO43_ADC3 - 54 Digital IO /

Analogue

IOVDD /
ADC_AVDD

Pull-Down User IO or ADC

input

GPIO44_ADC4 - 55 Digital IO /

Analogue

IOVDD /
ADC_AVDD

Pull-Down User IO or ADC

input

GPIO45_ADC5 - 56 Digital IO /

Analogue

IOVDD /
ADC_AVDD

Pull-Down User IO or ADC

input

GPIO46_ADC6 - 57 Digital IO /

Analogue

IOVDD /
ADC_AVDD

Pull-Down User IO or ADC

input

GPIO47_ADC7 - 58 Digital IO /

Analogue

IOVDD /
ADC_AVDD

Pull-Down User IO or ADC

input

Table 1425. QSPI pins
Name QFN-60 Number QFN-80 Number Type Power Domain Reset State Description

QSPI_SD3 55 70 Digital IO QSPI_IOVDD Pull-Up QSPI data

QSPI_SCLK 56 71 Digital IO QSPI_IOVDD Pull-Down QSPI clock

QSPI_SD0 57 72 Digital IO QSPI_IOVDD Pull-Down QSPI data

QSPI_SD2 58 73 Digital IO QSPI_IOVDD Pull-Up QSPI data

QSPI_SD1 59 74 Digital IO QSPI_IOVDD Pull-Down QSPI data

QSPI_SS 60 75 Digital IO QSPI_IOVDD Pull-Up QSPI chip

select / USB

BOOTSEL

Table 1426. Crystal

oscillator pins
Name QFN-60 Number QFN-80 Number Type Power Domain Description

XIN 21 30 Analogue (XOSC) IOVDD Crystal oscillator.

XIN may also be

driven by a square

wave.

XOUT 22 31 Analogue (XOSC) IOVDD Crystal oscillator.

Table 1427.

Miscellaneous pins
Name QFN-60 Number QFN-80 Number Type Power Domain Reset State Description

RUN 26 35 Digital In (FT) IOVDD Pull-Up Chip enable /

reset_n

SWCLK 24 33 Digital In (FT) IOVDD Pull-Up Serial Wire

Debug clock

SWDIO 25 34 Digital IO (FT) IOVDD Pull-Up Serial Wire

Debug data

Table 1428. USB pins
Name QFN-60 Number QFN-80 Number Type Power Domain Description

USB_DP 52 67 USB IO USB_OTP_VDD USB Data +ve.

27Ω series

resistor required

for USB operation
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Name QFN-60 Number QFN-80 Number Type Power Domain Description

USB_DM 51 66 USB IO USB_OTP_VDD USB Data -ve. 27Ω

series resistor

required for USB

operation

Table 1429. Power

supply pins
Name QFN-60 Number(s) QFN-80 Number(s) Description

DVDD 6, 23, 39 10, 32, 51 Core supply

IOVDD 11, 20, 30, 38, 45, 54 5, 15, 24, 29, 41, 50, 60, 76 IO supply

QSPI_IOVDD 54 69 QSPI IO supply

USB_OTP_VDD 53 68 USB & OTP supply

ADC_AVDD 44 59 ADC supply

VREG_AVDD 46 61 Voltage regulator analogue

supply

VREG_PGND 47 62 Voltage regulator ground

VREG_LX 48 63 Voltage regulator switching

output (connect to inductor)

VREG_VIN 49 64 Voltage regulator input

supply

VREG_FB 50 65 Voltage regulator feedback

input

GND - - Ground connection via

central exposed pad

14.9. Electrical Specifications

The following electrical specifications are obtained from characterisation over the specified temperature and voltage

ranges, as well as process variation, unless the specification is marked as 'Simulated'. In this case, the data is for

information purposes only, and is not guaranteed.

14.9.1. Absolute Maximum Ratings

Table 1430. Absolute

maximum ratings
Parameter Symbol Conditions Minimum Maximum Units Comment

Core Supply

(DVDD) Voltage

DVDD -0.5 1.21 V

I/O Supply

(IOVDD) & QSPI

Supply

(QSPI_IOVDD)

Voltage

IOVDD -0.5 3.63 V

Voltage at IO

(Standard)

VPIN -0.5 IOVDD + 0.5 V
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Parameter Symbol Conditions Minimum Maximum Units Comment

Voltage at IO

(FT)

VPIN_FT IOVDD=3.3V -0.5 5.5 V IOVDD must be

present
IOVDD=2.5V -0.5 4.2 V

IOVDD=1.8V -0.5 3.63 V

IOVDD=0V -0.5 3.63 V

14.9.2. ESD Performance

Table 1431. ESD

performance for all

pins, unless otherwise

stated

Parameter Symbol Maximum Units Comment

Human Body Model HBM 2 kV Compliant with JEDEC

specification JS-001-

2012 (April 2012)

Human Body Model

Digital (FT) pins only

HBM 4 kV Compliant with JEDEC

specification JS-001-

2012 (April 2012)

Charged Device Model CDM 500 V Compliant with

JESD22-C101E

(December 2009)

14.9.3. Thermal Performance

Table 1432. Thermal

Performance
Parameter Symbol Minimum Typical Maximum Units Comment

Case

Temperature

TC -40 85 °C

14.9.4. IO Electrical Characteristics

Table 1433. Digital IO

characteristics -

Standard and FT

unless otherwise

stated. In this table

IOVDD also refers to

QSPI_IOVDD where

appropriate

Parameter Symbol Conditions Minimum Maximum Units Comment

Pin Input

Leakage

Current

IIN 1 μA

Input Voltage

High (Standard

IO)

VIH IOVDD=1.8V 0.65 * IOVDD IOVDD + 0.3 V

IOVDD=2.5V 1.7 IOVDD + 0.3 V

IOVDD=3.3V 2 IOVDD + 0.3 V

Input Voltage

High (FT)

VIH IOVDD=1.8V 0.65 * IOVDD 3.63 V IOVDD must be

powered to

tolerate input

voltages above

3.63V

IOVDD=2.5V 1.7 4.2 V

IOVDD=3.3V 2 5.5 V

Input Voltage

Low

VIL IOVDD=1.8V -0.3 0.35 * IOVDD V

IOVDD=2.5V -0.3 0.7 V

IOVDD=3.3V -0.3 0.8 V
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Parameter Symbol Conditions Minimum Maximum Units Comment

Input

Hysteresis

Voltage

VHYS IOVDD=1.8V 0.1 * IOVDD V Schmitt Trigger

enabled
IOVDD=2.5V 0.2 V

IOVDD=3.3V 0.2 V

Output Voltage

High

VOH IOVDD=1.8V 1.24 IOVDD V IOH = 2, 4, 8 or

12mA

depending on

setting

IOVDD=2.5V 1.78 IOVDD V

IOVDD=3.3V 2.62 IOVDD V

Output Voltage

Low

VOL IOVDD=1.8V 0 0.3 V IOL = 2, 4, 8 or

12mA

depending on

setting

IOVDD=2.5V 0 0.4 V

IOVDD=3.3V 0 0.5 V

Pull-Up

Resistance

RPU IOVDD=1.8V 32 106 kΩ

IOVDD=2.5V 42 123 kΩ

IOVDD=3.3V 32 86 kΩ

Pull-Down

Resistance

RPD IOVDD=1.8V 35 189 kΩ

IOVDD=2.5V 49 180 kΩ

IOVDD=3.3V 36 113 kΩ

Maximum Total

IOVDD current

IIOVDD_MAX 100 mA Sum of all

current being

sourced by

GPIO pins

Maximum Total

QSPI_IOVDD

current

IQSPI_IOVDD_MAX 20 mA Sum of all

current being

sourced by

QSPI pins

Maximum Total

VSS current

due to GPIO

(IOVSS)

IIOVSS_MAX 100 mA Sum of all

current being

sunk into GPIO

pins

Maximum Total

VSS current

due to QSPI

(QSPI_IOVSS)

IQSPI_IOVSS_MAX 20 mA Sum of all

current being

sunk into QSPI

pins

Table 1434. USB IO

characteristics
Parameter Symbol Minimum Maximum Units Comment

Pin Input Leakage

Current

IIN 1 μA

Single Ended Input

Voltage High

VIHSE 2 V

Single Ended Input

Voltage Low

VILSE 0.8 V

Differential Input

Voltage High

VIHDIFF 0.2 V
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Parameter Symbol Minimum Maximum Units Comment

Differential Input

Voltage Low

VILDIFF -0.2 V

Output Voltage

High

VOH 2.8 USB_OTG_VDD V

Output Voltage

Low

VOL 0 0.3 V

Pull-Up Resistance

- RPU2

RPU2 0.873 1.548 kΩ

Pull-Up Resistance

- RPU1&2

RPU1&2 1.398 3.063 kΩ

Pull-Down

Resistance

RPD 14.25 15.75 kΩ

Table 1435. ADC

characteristics
Parameter Symbol Minimum Typical Maximum Units Comment

ADC Input

Voltage Range

VPIN_ADC 0 ADC_AVDD V

Effective

Number of Bits

ENOB 9 9.5 bits

Resolved Bits 12 bits

ADC Input

Impedance

RIN_ADC 100 kΩ

Table 1436. Oscillator

pin characteristics
Parameter Symbol Minimum Typical Maximum Units Comment

Input

Frequency

fosc 1 12 50 MHz See Section

8.6.3 for

restrictions

imposed by

PLLs.

See Section

5.2.8.1 for

restrictions

imposed by the

USB and UART

bootloaders.

Input Voltage

High

VIH 0.65*IOVDD IOVDD + 0.3 V Square Wave

input. XIN only.

XOUT floating

Input Voltage

Low

VIL 0 0.35*IOVDD V Square Wave

input. XIN only.

XOUT floating
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 NOTE

By default, USB Bootmode relies on a 12MHz input being present. However OTP can be configured to override the

XOSC and PLL settings during USB Bootmode. See Section 13.9 for details.

See Section 8.2 for more details on the Oscillator, and the Minimal Design Example in Hardware design with RP2350 for

information on crystal usage.

Table 1437. SWCLK

pin characteristics
Parameter Symbol Minimum Typical Maximum Units Comment

SWCLK Input

Frequency

fSWCLK 0 10 50 MHz See Table 1427

for SWCLK pin

definitions.

Host-to-target data on the SWDIO pin should be transmitted centre-aligned with SWCLK. Target-to-host data on the SWDIO pin

transitions on rising edges of SWCLK.

 NOTE

RP2350 internal SWD logic in the SW-DP operates reliably up to 50 MHz. However, signal integrity of the external

SWD signals may be a challenge.

If you observe unreliable SWD operation such as write data parity errors from the SW-DP, reduce the SWCLK frequency.

Always connect ground directly between the SWD probe and RP2350 in addition to SWDIO and SWCLK. Minimise the wire

length between the probe and RP2350, and avoid multi-drop wiring at higher frequencies.

14.9.4.1. Interpreting GPIO output voltage specifications

The GPIOs on RP2350 have four different output drive strengths, nominally called 2, 4, 8 and 12mA modes. These are

not hard limits, nor do they mean that they will always source (or sink) the selected amount of milliamps.

The amount of current a GPIO sources or sinks is dependent on the load attached. It will attempt to drive the output to

the IOVDD level (or 0V in the case of a logic 0), but the amount of current it is able to source is limited and dependent on

the selected drive strength.

Therefore the higher the current load is, the lower the voltage will be at the pin. At some point, the GPIO will source so

much current and the voltage will drop so low that it won’t be recognised as a logic 1 by the input of a connected device.

The output specifications in Table 1433 quantify how much lower the voltage can be expected to be when drawing

specified amounts of current from the pin.

The Output High Voltage (VOH) is defined as the lowest voltage the output pin can be when driven to a logic 1 with a

particular selected drive strength; e.g., 4mA sourced by the pin whilst in 4mA drive strength mode. The Output Low

Voltage is similar, but with a logic 0 being driven.

In addition to this, the sum of all the IO currents being sourced (i.e. when outputs are being driven high) from the IOVDD

bank (essentially the GPIO and QSPI pins), must not exceed IIOVDD_MAX. Similarly, the sum of all the IO currents being sunk

(i.e. when the outputs are being driven low) must not exceed IIOVSS_MAX.
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Figure 149. Typical

Current vs Voltage

curves of a GPIO

output.

Figure 149 shows the effect on the output voltage as the current load on the pin increases. You can clearly see the

effect of the different drive strengths; the higher the drive strength, the closer the output voltage is to IOVDD (or 0V) for

a given current. The minimum VOH and maximum VOL limits are shown in red.

You can see that at the specified current for each drive strength, the voltage is well within the allowed limits, meaning

that this particular device could drive a lot more current and still be within VOH/VOL specification. This is a typical part at

room temperature, but because devices vary, there will be a spread of other devices which will have voltages much

closer to this limit.

If your application doesn’t need such tightly controlled voltages, you can source or sink more current from the GPIO

than the selected drive strength setting. However, experimentation is required to determine if it indeed safe to do so in

your application.

14.9.5. Power Supplies

Table 1438. Power

Supply Specifications
Power Supply Supplies Min Typ Max Units

IOVDDa Digital IO 1.62 1.8 / 3.3 3.63 V

QSPI_IOVDD

(RP2350 only)a

Digital IO 1.62 1.8 / 3.3 3.63 V

QSPI_IOVDD

(RP2354 only)

Digital IO 2.97 3.3 3.63 V

DVDDb Digital core 1.05 1.1 1.16 V

VREG_VIN Voltage regulator 2.7 3.3 5.5 V

VREG_AVDD Voltage regulator 3.135 3.3 3.63 V
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Power Supply Supplies Min Typ Max Units

USB_OTP_VDD USB PHY & OTP 3.135 3.3 3.63 V

ADC_AVDDc ADC 1.62 3.3 3.63 V

a If IOVDD <2.5V, GPIO VOLTAGE_SELECT registers should be adjusted accordingly. See Section 6.1 for details.

b Short term transients should be within +/-100mV.

c ADC performance will be compromised at voltages below 2.97V

 NOTE

RP2354 contains an internal 3.3V flash device, therefore QSPI_IOVDD must be 3.3V. Furthermore, if the QSPI pins are to

be used to connect to an additional flash or PSRAM device, then IOVDD must be 3.3V, as a GPIO is used as QSPI

chip select in this case.

14.9.6. Core Voltage Regulator

Table 1439. Voltage

Regulator

Specifications

Parameter Description Min Typ Max Units

VOUT (normal mode) regulated output

voltage range

(normal mode)

0.55 1.1 3.3 V

VOUT (low power mode) regulated output

voltage range (low

power mode)

0.55 1.1 1.3 V

ΔVOUT (normal mode) voltage deviation

from programmed

value (normal

mode)

-3 +3 % of selected

output voltage

ΔVOUT (low power mode) voltage deviation

from programmed

value (low power

mode)

-9 +9 % of selected

output voltage

IMAX (normal mode) output current

(normal mode)

200 mA

IMAX (low power mode) output current

(low power mode)

1 mA

ILIMIT (normal mode startup) current limit

(normal mode

startup)

240 300 mA

ILIMIT (normal mode) current limit

(normal mode)

260 500 800 mA

ILIMIT (low power mode) current limit (low

power mode)

5 25 mA

VOUT_OKTH.ASSERT VOUT_OK assertion

threshold

87 90 93 % of selected

output voltage
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Parameter Description Min Typ Max Units

VOUT_OKTH.DEASSERT VOUT_OK de-

assertion

threshold

84 87 90 % of selected

output voltage

fsw switching

frequency

3 MHz

Efficiency (V

OUT=1.1V)

Iload=10mA,

VREG_VIN=2.7V

74 %

Iload=10mA,

VREG_VIN=3.3V

70 %

Iload=10mA,

VREG_VIN=5.5V

59 %

Iload=100mA,

VREG_VIN=2.7V

70 %

Iload=100mA,

VREG_VIN=3.3V

72 %

Iload=100mA,

VREG_VIN=5.5V

72 %

Iload=200mA,

VREG_VIN=2.7V

70 %

Iload=200mA,

VREG_VIN=3.3V

59 %

Iload=200mA,

VREG_VIN=5.5V

63 %

 WARNING

VOUT can exceed the maximum core supply (DVDD). While there is a voltage limit to prevent this happening

accidentally, the limit can be disabled under software control. For reliable operation DVDD should not exceed its

maximum voltage rating.

Figure 150. Typical

Regulator Efficiency,

Vout=1.1V,

VREG_VIN=3.3V.

14.9.7. Power Consumption
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14.9.7.1. Peripheral power consumption

Baseline readings are taken with only clock sources and essential peripherals (BUSCTRL, BUSFAB, VREG, Resets, ROM,

SRAMs) active in the WAKE_EN0/WAKE_EN1 registers. Clocks are set to default clock settings.

Each peripheral is activated in turn by enabling all clock sources for the peripheral in the WAKE_EN0/WAKE_EN1 registers.

Current consumption is the increase in current when the peripheral clocks are enabled.

Table 1440. Baseline

power consumption
Peripheral Typical DVDD Current Consumption (μA/MHz)

DMA 2.6

I2C0 3

I2C1 3.6

IO + Pads 24.5

PWM 9.9

SIO 2

SHA256 0.1

SPI0 1.7

SPI1 1.4

Timer 0 0.8

Timer 1 0.6

TRNG 0.8

UART0 2.6

UART1 3.6

Watchdog 1.1

XIP 37.6

Because of fixed reference clocks of 48MHz, as well as the variable system clock input, ADC and USBCTRL power

consumption does not vary linearly with system clock (as it does for other peripherals which only have system and/or

peripheral clock inputs). The following table shows absolute DVDD current consumption of the ADC and USBCTRL

blocks at standard clocks settings:

Table 1441. Baseline

power consumption

for ADC and USBCTRL

Peripheral Typical DVDD Current Consumption (mA)

ADC 0.14

USBCTRL 1.25

14.9.7.2. Power consumption in Low Power states

Table 1442 shows the typical power consumption in low power states P1.0 → P1.7. All voltage supplies are 3.3V (except

DVDD which is supplied by the voltage regulator (in low power mode)), with the environment at room temperature.

All GPIOs, SWDIO and SWCLK are pulled down internally, and not connected externally. QSPI is connected to

W25Q16JVSSIQ flash device. USB PHY has been powered down, and the DP and DM pull-downs were enabled prior to

entering the low power state. The USB cable remains connected to a host computer. The table also shows the power

consumed when RUN is held low. This is not technically a low power state (the voltage regulator is in normal switching

mode), but it is included for completeness.

RP2350 Datasheet

14.9. Electrical Specifications 1331



Table 1442. Low

Power States Power

Consumption

Low Power

State

VREG_VIN (μA) VREG_AVDD (μA) IOVDD (μA) QSPI_IOVDD (μA) ADC_IOVDD (μA) USB_OTP_VDD

(μA)

Total Power

(μW)

P1.0 128 0.5 11 22 1 3.5 548

P1.1 77 0.5 11 22 1 3.5 380

P1.2 79 0.5 11 22 1 3.5 380

P1.3 26 0.5 11 22 1 3.5 204

P1.4 120 0.5 11 22 1 3.5 520

P1.5 67 0.5 11 22 1 3.5 345

P1.6 68 0.5 11 22 1 3.5 350

P1.7 19 0.5 11 22 1 3.5 188

RUN=low 40 187 69 22 1 35 1170

14.9.7.3. Power consumption for typical user cases

The following table details the typical power consumption of RP2350 in various example use cases. All measurements

were taken using 3.3V voltage supplies (except DVDD, which is supplied by the voltage regulator (set to 1.1V)), with the

environment at room temperature.

SWD and SWCLK are not connected externally. GPIO0 and GPIO1 are connected to a Raspberry Pi Debug Probe (UART), but

all other GPIOs are not connected (except USB Boot mode, where GPIO0 and GPIO1 are also unconnected). QSPI is

connected to W25Q16JVSSIQ flash device, and USB is connected to a host.

hello_serial, hello_usb and hello_adc are basic applications found in pico-examples where characters are constantly

transmitted to a serial console.

Table 1443. Power

Consumption
Use Case Condition VREG_VIN (μA) VREG_AVDD

(μA)

IOVDD (μA) QSPI_IOVDD

(μA

ADC_IOVDD

(μA)

USB_OTP_VDD

(μA)

Total Power

(mW)

USB Boot

mode

Bus Idle

(average)

6530 220 437 22 1 375 25

During Boot

(peak)

6050

During UF2

write

(average)

1280

hello_serial 14690 216 506 22 1 62 51.1

hello_usb 14700 216 453 22 1 570 52.7

hello_adc 14680 216 506 22 142 62 51.6

CoreMark

benchmark

Single core

@150MHz

11000 212 455 22 1 90 38.7

14.9.7.3.1. Power Consumption versus frequency

There is a relationship between the core RP2350 frequency and the current consumed by the DVDD supply. Figure 151

shows the measured results of a typical RP2350 device that continuously runs CoreMark benchmark tests on a single

core at various core clock frequencies.
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Figure 151. DVDD

Current vs Core

Frequency of a typical

RP2350 device, whilst

running CoreMark

benchmark
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Appendix A: Register Field Types

Changes from RP2040

Register field types are unchanged. The descriptions have been clarified.

Standard types

RW:

• Read/Write

• Read operation returns the register value

• Write operation updates the register value

RO:

• Read-only

• Read operation returns the register value

• Write operations are ignored

WO:

• Write-only

• Read operation returns 0

• Write operation updates the register value

Clear types

SC:

• Self-Clearing

• Writing a 1 to a bit in an SC field will trigger an event, once the event is triggered the bit clears automatically

• Writing a 0 to a bit in an SC field does nothing

WC:

• Write-Clear

• Writing a 1 to a bit in a WC field will write that bit to 0
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• Writing a 0 to a bit in a WC field does nothing

• Read operation returns the register value

FIFO types

These fields are used for reading and writing data to and from FIFOs. Accompanying registers provide FIFO control and

status. There is no fixed format for the control and status registers, as they are specific to each FIFO interface.

RWF:

• Read/Write FIFO

• Reading this field returns data from a FIFO

◦ When the read is complete, the data value is removed from the FIFO

◦ If the FIFO is empty, a default value will be returned; the default value is specific to each FIFO interface

• Data written to this field is pushed to a FIFO, Behaviour when the FIFO is full is specific to each FIFO interface

• Read and write operations may access different FIFOs

RF:

• Read FIFO

• Functions the same as RWF, but read-only

WF:

• Write FIFO

• Functions the same as RWF, but write-only
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Appendix B: Units Used in This
Document
This datasheet follows standard practice for use of SI units as recommended by NIST, except in the context of memory

and storage capacity. Here it adopts the convention that the prefixes k (kilo), M (mega) and G (giga) always refer to the

nearest power of two to their standard decimal value. This aligns the datasheet with common usage for these units.

Memory and Storage Capacity

This datasheet expresses memory and storage capacity using the following units:

• b: bit

◦ kb: kilobit, 210 b = 1024 b

◦ Mb: megabit, 220 b = 1,048,576 b

◦ Gb: gigabit, 230 b = 1,073,741,824 b

• B: byte, eight bits, one octet

◦ kB: kilobyte, 210 B = 1024 B

◦ MB: megabyte, 220 B = 1,048,576 B

◦ GB: gigabyte, 230 B = 1,073,741,824 B

The bit is the most basic unit of information. A bit is either true (1) or false (0).

Transfer Rate

Units for transfer rate are dimensionally the product of one byte or bit with a unit of frequency such as MHz. Therefore

the standard SI prefixes apply:

• b/s: bit per second

◦ kb/s: kilobit per second, 1000 b/s

◦ Mb/s: megabit per second, 1,000,000 b/s

◦ Gb/s: gigabit per second, 1,000,000,000 b/s

• B/s: byte per second, 8 b/s

◦ kB/s: kilobyte per second, 1000 B/s

◦ MB/s: megabyte per second, 1,000,000 B/s

◦ GB/s: gigabyte per second, 1,000,000,000 B/s

Physical Quantities

The following units express physical quantities such as voltage and frequency:

• A: ampere, unit of electrical current, one coulomb per second
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◦ mA: milliampere, 10-3 A

◦ μA: microampere, 10-6 A

• Ω: ohm, unit of electrical impedance or resistance, one volt per ampere

◦ MΩ: megohm, 106 Ω

◦ kΩ: kilohm, 103 Ω

◦ mΩ: milliohm, 10-3 Ω

• V: volt, unit of electrical potential difference, one joule per coulomb

◦ kV: kilovolt, 103 V

◦ mV: millivolt, 10-3 V

◦ μV: microvolt, 10-6 V

• Hz: hertz, unit of frequency, one period per second (s-1)

◦ kHz: kilohertz, 103 Hz

◦ MHz: megahertz, 106 Hz

◦ GHz: gigahertz, 109 Hz

• F: farad, unit of electrical capacitance, one coulomb per volt

◦ mF: millifarad, 10-3 F

◦ μF: microfarad, 10-6 F

◦ nF: nanofarad, 10-9 F

◦ pF: picofarad, 10-12 F

• H: henry, unit of electrical inductance, one volt-second per ampere (VsA-1)

◦ mH: millihenry, 10-3 H

◦ μH: microhenry, 10-6 H

◦ nH: nanohenry, 10-9 H

• s: second, unit of time

◦ ms: millisecond, 10-3 s

◦ μs: microsecond, 10-6 s

◦ ns: nanosecond, 10-9 s

◦ ps: picosecond, 10-12 s

• J: joule, unit of energy or work, one newton-metre

• C: coulomb, unit of electrical charge

◦ mC: millicoulomb, 10-3 C

◦ μC: microcoulomb, 10-6 C

◦ nC: nanocoulomb, 10-9 C

• m: metre, unit of length or distance

◦ mm: millimetre, 10-3 m

• °C: degree celsius, unit of temperature

• W: watt, unit of power, one joule per second (Js-1) or one volt-ampere (VA)
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◦ mW: milliwatt, 10-3 W

◦ μW: microwatt, 10-6 W

◦ nW: nanowatt, 10-9 W

Scale Prefixes

The standard SI prefixes used in the previous sections are:

• G: giga, factor of 109 (one short billion)

• M: mega, factor of 106 (one million)

• k: kilo, factor of 103 (one thousand)

• c: centi, factor of 10-2 (one hundredth)

• m: milli, factor of 10-3 (one thousandth)

• μ, micro, factor of 10-6 (one millionth)

• n: nano, factor of 10-9 (one short billionth)

• p: pico, factor of 10-12 (one short trillionth)

The customary binary prefixes used in the memory and storage capacity section are:

• G: giga, factor of 230 (approximately 109)

• M: mega, factor of 220 (approximately 106)

• k: kilo, factor of 210 (approximately 103)

These customary binary prefixes are equivalent to the following prefixes from IEC 60027-2:

• Gi, gibi

• Mi, mebi

• Ki, kibi

Digit Separators

Numbers written out with many digits may have either commas or spaces inserted for easier reading:

• 1,000,000: one million

• 1 000 000: one million

A comma in a number never represents a decimal (radix) point.
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Appendix E: Errata
Alphabetical by section.

ACCESSCTRL

RP2350-E3

Reference RP2350-E3

Summary In QFN-60 package, GPIO_NSMASK controls wrong PADS registers

Affects RP2350 A2, QFN-60 package only

Description RP2350 remaps IOs, their control registers and their ADC channels so that both package sizes appear to

have consecutively numbered GPIOs, even though for physical design reasons the QFN-60 package

bonds out a sparse selection of IO pads.

The connection between the GPIO_NSMASK0/GPIO_NSMASK1 registers and the PADS registers does not

take this remapping into account. Consequently, in the QFN-60 package only, the GPIO_NSMASK0 register bits

are applied to registers for the wrong pads. Specifically, PADS_BANK0 registers 29 through 0 are controlled

by the concatenation of GPIO_NSMASK bits 47 through 44, 39 through 33, 30 through 28, 24 through 17 and

15 through 8 (all inclusive ranges).

This means that granting Non-secure access to the PADS registers in the QFN-60 package does not allow

Non-secure software to control the correct pads. It may also allow Non-secure control of pads that are

not granted in GPIO_NSMASK0.

Note that the QSPI PADS registers (Bank 1) are not affected, as these are not remapped for different

packages.

Workaround Disable Non-secure access to the PADS registers by clearing PADS_BANK0.NSP, NSU.

Implement a Secure Gateway (Arm) or ecall handler (RISC-V) to permit Non-secure/U-mode code to

read/write its assigned PADS_BANK0 registers.

Fixed by Documentation, software

Bootrom

RP2350-E10

Reference RP2350-E10

Summary UF2 drag & drop doesn’t work with partition tables

Affects RP2350 A2
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Description When dragging & dropping a UF2 onto the USB Mass Storage Device, the bootrom on chip revision A2

does not set up the flash before checking the partition table. This causes the UF2 download to fail if there

is a partition table present.

Workaround Add a single block at the start of the UF2 with an Absolute family ID, targeting the end of Flash, with block

number set to 0 and number of blocks set to 2. This block will be written to flash first but doesn’t reboot

the device, and sets up the flash for the rest of the UF2 to be downloaded correctly.

This is handled for you automatically by picotool in the SDK, which adds this block when generating UF2s

if the --abs-block flag is specified.

Fixed by Documentation, software

DMA

RP2350-E5

Reference RP2350-E5

Summary Interactions between CHAIN_TO and ABORT of active channels

Affects RP2350 A2

Description The CHAN_ABORT register commands a DMA channel to stop issuing transfers, and to clear its BUSY flag

once in-flight transfers have completed. This was originally intended for recovering channels which are

stuck with their DREQ low. An ABORT is initiated by writing a bitmap of aborted channels to CHAN_ABORT.

Bits remain set until each channel comes to rest.

This erratum is a compound of two behaviours: first, aborting a channel will cause its CHAIN_TO to fire, if

and only if the aborted channel is the last channel to have completed a write transfer. Second, a channel

undergoing an ABORT is susceptible to be re-triggered on the last cycle before the ABORT register clears,

because the channel is both inactive and enabled on this cycle, and the ABORT itself does not inhibit

triggering. However, since the ABORT is still in effect, the transfer count is held at zero. On the cycle after

the ABORT finishes, the channel completes because its transfer counter is zero. This causes the channel’s

IRQ and CHAIN_TO to fire on the cycle after the ABORT completes.

These two behaviours are problematic when aborting multiple channels that chain to one another, since

they may cause the channels to immediately restart post-abort.

Workaround Before aborting an active channel, clear the EN bit (CH0_CTRL_TRIG.EN) of both the aborted channel and

any channel it chains to. This ensures the channel is not susceptible to re-triggering.

Fixed by Documentation

RP2350-E8

Reference RP2350-E8

Summary CHAIN_TO may not fire for zero-length transfers

Affects RP2350 A2
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Description The CTRL.CHAIN_TO field configures a channel to start another channel once it completes its programmed

sequence of transfers. The CHAIN_TO takes place on the cycle where the channel’s last write completes,

and the chainee becomes active on the next cycle.

The hardware implementation assumes that CHAIN_TO always happens as a result of a write completion.

This is not the case when a channel is triggered with a transfer count of zero: in this case the channel

completes on the cycle immediately after the trigger, without performing any bus accesses.

A CHAIN_TO from a channel started with a transfer count of zero will fire if and only if that channel is the

last channel to have completed a write transfer. This is true only when the channel in question has

previously performed a non-zero-length sequence of transfers, and no other channel has completed a

write since.

Workaround Do not use CHAIN_TO in conjunction with zero-length transfers. Avoid zero-length transfers in the middle of

control block lists, and replace them with dummy transfers if possible.

Fixed by Documentation

GPIO

RP2350-E9

Reference RP2350-E9

Summary Increased leakage current on Bank 0 GPIO when pad input is enabled

Affects RP2350 A2
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Description For GPIO pads 0 through 47:

Increased leakage current when Bank 0 GPIO pads are configured as inputs and the pad is somewhere

between VIL and VIH (the undefined logic region).

When the pad is set as an input (input enable is enabled and output enable is disabled) and the voltage

on the pad is within the undefined logic region, the leakage current exceeds the standard specified IIN

leakage level. During this condition the pad can source current (the exact amount is dependent on the

chip itself and the exact pad voltage, but typically around 120μA). This leakage will hold the pad at

around 2.2 V as that is the effective source voltage of the leakage, and can only be overcome with a

suitably low impedance driver / pull.

Note that the pad pull-down (if enabled) is significantly weaker than the leakage current in this state and

therefore is not strong enough to pull the pad voltage low.

Driving / pulling the pad input low with a low impedance source of 8.2 kΩ or less will overcome the

erroneous leakage and drive the voltage below the level where the leakage current occurrs, so in this case

if the pad is driven / pulled low it will stay low.

The erroneous leakage only occurs (and continues to occur) when the pad input enable is enabled;

disabling the input enable will reset (remove) the leakage.

The pad pull-up still works. If enabled it will pull the pad to IOVDD as it will pull the input voltage out of the

problematic range.

The voltages and currents above are based on IOVDD at 3.3 V. For IOVDD at 1.8 V the effective source

voltage of the leakage becomes 1.8 V and the peak current is around 30μA. This is effectively a pull-up

(separate to the standard pad pull-up) when the pad voltage is between 0.6 V and 1.8 V.

These graphs show the leakage current versus pad input voltage for a typical chip for IOVDD at 3.3 V

Figure 152 and 1.8 V Figure 153.

In detail, this issue presents under the following conditions, for any GPIO 0 through 47:

1. The voltage on the pad is in the undefined logic region.

2. Input buffer is enabled in GPIO0.IE

3. Output buffer is disabled (e.g. selecting the NULL GPIO function)

4. Isolation is clear in GPIO0.ISO, or the previous were true at the point isolation was set

When all of the above conditions are met, the input leakage of the pad may exceed the specification.

This issue may affect a number of common circuits:

• Relying on floating pins to have a low leakage current

• Relying on the internal pull-down resistor

If the internal pull-up is enabled then any floating signal will be pulled high thus removing increased

leakage condition as the excess leakage is only sourcing current. This of course can’t prevent the

increased leakage if the pad is fed via a strong source e.g. strong potential divider.

Note that this does not affect the pull-down behaviour of the pads immediately following a PoR or RUN

reset, because the input enable field is initially clear. The pull-down resistor functions normally in this

state.

This issue does not affect the QSPI pads, which use a different pad macro without the faulty circuitry.

The USB PHY’s pins are also unaffected.

This issue does also affect the SWD pads, which use the same fault-tolerant pad macro as the Bank 0

GPIOs. However, both SWD pads are pull-up by default, so there is no ill effect.
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Workaround If pad pull-down behaviour is required, clear the pad input enable in GPIO0.IE (for GPIOs 0 through 47) to

ensure that the pad pull-down resistor pulls the pad signal low. To read the state of a pad pulled-down

GPIO from software, enable the input buffer by setting GPIO0.IE immediately before reading, and then re-

disable immediately afterwards. Note that if the pad is already a logic-0, re-enabling the input does not

disturb the pull-down state.

Alternatively an external pull-down of 8.2 kΩ or less can be used.

Note that PIO programs can’t toggle pad controls and therefore external pulls may be required, depending

on your application.

As normal, if ADC channels are being used on a pin, clear the relevant GPIO input enable as stated in

Section 12.4.3.

Fixed by Documentation

Figure 152. GPIO Pad

leakage for

IOVDD=3.3 V

Figure 153. GPIO Pad

leakage for

IOVDD=1.8 V

Hazard3
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RP2350-E4

Reference RP2350-E4

Summary System Bus Access stalls indefinitely when core 1 is in clock-gated sleep

Affects RP2350 A2

Description System Bus Access (SBA) is a RISC-V debug feature that allows the Debug Module direct access to the

system bus, independent of the state of harts in the system. RP2350 implements SBA by arbitrating

Debug Module bus accesses with the core 1 load/store port.

Hazard3 implements custom low-power states controlled by the MSLEEP CSR. When

MSLEEP.DEEPSLEEP is set, Hazard3 completely gates its clock, with the exception of the minimal logic

required to wake again. Due to a design oversight, this also clock-gates the arbiter between SBA and

load/store bus access. (This is addressed in upstream commit c11581e.)

Consequently, if you initiate an SBA transfer whilst MSLEEP.DEEPSLEEP is set on core 1, and core 1 is in

a WFI-equivalent sleep state, the SBA transfer will make no progress until core 1 wakes from the WFI

state. The processor wakes upon an enabled interrupt being asserted, or a debug halt request.

Workaround Either configure your debug translator to not use SBA, or do not enter clock-gated sleep on core 1. The A2

bootrom mitigates this issue by not setting DEEPSLEEP in the initial core 1 wait-for-launch code.

Note that the processors are synthesised with hierarchical clock gating, so the top-level clock gate

controlled by the DEEPSLEEP flag brings minimal power savings over a default WFI sleep state.

Fixed by Documentation

RP2350-E6

Reference RP2350-E6

Summary PMPCFGx RWX fields are transposed

Affects RP2350 A2

Description The Physical Memory Protection unit (PMP) defines read, write and execute permissions (RWX) for

configurable ranges of physical memory. The RWX permissions for four regions are packed into each 32-

bit PMPCFG register, PMPCFG0 through PMPCFG3.

Per the RISC-V privileged ISA specification, the permission fields are ordered X, W, R from MSB to LSB.

Hazard3 implements them in the order R, W, X. This means software using the correct bit order will have

its read permissions applied as execute, and vice versa. (See upstream commit 7d37029.)

Workaround When configuring PMP with X != R, use the bit order implemented by this version of Hazard3. In the SDK,

the hardware/regs/rvcsr.h register header provides bitfield definitions for the as-implemented order when

building for RP2350.

Fixed by Documentation

RP2350-E7

Reference RP2350-E7

Summary U-mode does not ignore mstatus.mie

Affects RP2350 A2
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Description The MSTATUS.MIE bit is a global enable for interrupts which target M-mode. Software generally clears

this momentarily to ensure short critical sections are atomic with respect to interrupt handlers.

The RISC-V privileged ISA specification requires that the interrupt enable flag for a given privilege mode is

treated as 1 when the hart is in a lower privilege mode. In this case, mstatus.mie should be treated as 1

when the core is in U-mode.

Hazard3 does not implement this rule, so entering U-mode with M-mode interrupts disabled results in no

M-mode interrupts being taken. (See upstream commit a84742a.)

Workaround When returning to U-mode from M-mode via an mret with mstatus.mpp == 0, ensure mstatus.mpie is set, so

that IRQs will be enabled by the return.

Fixed by Documentation

SIO

RP2350-E1

Reference RP2350-E1

Affects RP2350 A2

Summary Interpolator OVERF bits are broken by new right-rotate behaviour

Description RP2350 replaces the interpolator right-shift with a right-rotate, so that left shifts can be synthesised. This

is useful for scaled indexed addressing in tight address-generating loops.

The OVERF flag functions by checking for nonzero bits in the post-shift value that have been masked out by

the MSB mask configured by the CTRL_LANE0_MASK_MSB and CTRL_LANE1_MASK_MSB register fields. This is used to

discard samples outside of the [0, 1) wrapping domain of UV coordinates represented by ACCUM0 and

ACCUM1, for example in affine-transformed sprite sampling.

The issue occurs because the right-rotate causes nonzero LSBs to be rotated up to the MSBs. These

nonzero bits spuriously set the OVERF flag.

Workaround Either compute OVERF manually by checking the ACCUM0/ACCUM1 MSBs, or precompute the bounds in advance

to avoid per-sample checks.

Fixed by Documentation

RP2350-E2

Reference RP2350-E2

Summary SIO SPINLOCK writes are mirrored at +0x80 offset

Affects RP2350 A2
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Description The SIO contains spinlock registers, SPINLOCK0 through SPINLOCK31. Reading a spinlock register

attempts to claim it, returning nonzero if the claim was successful and 0 if unsuccessful. Writing to a

spinlock register releases it, so the next claim will be successful. SIO spinlock registers are at register

offsets 0x100 through 0x17c within SIO.

RP2350 adds new SIO registers at register offsets 0x180 and above: Doorbells, the PERI_NONSEC register,

the RISC-V soft IRQ register, the RISC-V MTIME registers, and the TMDS encoder.

The SIO address decoder detects writes to spinlocks by decoding on bit 8 of the address. This means

writes in the range 0x180 through 0x1fc are spuriously detected as writes to the corresponding spinlock

address 128 bytes below, in the range 0x100 through 0x17c. Writing to any of these high registers will set

the corresponding lock to the unclaimed state.

This erratum only affects writes to the spinlock registers. Reads are correctly decoded, so are not

affected by accesses above 0x17c.

Workaround Use processor atomic instructions instead of the SIO spinlocks. The SDK hardware_sync_spin_lock library

uses software lock variables by default when building for RP2350, instead of hardware spinlocks.

The following SIO spinlocks can be used normally as they do not alias with writable registers: 5, 6, 7, 10,

11, and 18 through 31. Some of the other lock addresses may be used safely depending on which of the

high-addressed SIO registers are in use.

Note that locks 18 through 24 alias with some read-only TMDS encoder registers, which is safe as only

writes are misdecoded.

Fixed by Documentation, software
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Appendix H: Documentation Release
History

6 September 2024

• Enhanced E9 errata description with additional details.

• Improved description of debug and trace components.

• Fixed some minor typos.

• Implemented some minor readability improvements.

• Fixed word inaccuracy in the Minimum Arm IMAGE_DEF description.

8 August 2024

Initial release.
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